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Abstract
Monoclonal antibodies are promising biomolecules for the prevention and
treatment of infectious diseases. The COVID-19 pandemic poses unique
challenges to the health systems worldwide, and monoclonal antibodies were the
therapeutic product developed by many pharmaceutical companies to support
the licensed vaccines in reducing hospitalisation and control the infections. We
have described the potency, functionality and genetic characteristics of a panel
of human monoclonal antibodies isolated from COVID-19 convalescent patients.
We have shown that the most potent neutralising antibodies recognise the spike
protein receptor-binding domain. Only 1.4% of them neutralise the authentic
virus with a potency of 1 − 10 ng/mL. Prophylactic and therapeutic efficacy in
the hamster model was observed at 0.25 and 4 mg/kg respectively in absence
of antibody Fc functions. Our results were used to select a candidate human
monoclonal antibody evaluated in a Phase 2-3 clinical trial aimed to assess the
antibody ability to treat SARS-CoV-2 infection and reduce the hospitalisation
time.

Beside conventional microfluidics-based assay, we investigate the potential of
using high-throughput confocal microscopy as a platform to develop functional
assay for the identification of compounds, e.g. monoclonal antibodies or small-
molecules, able to inhibit the SARS-CoV-2 in vitro. We used an image dataset
released during the pandemic to show that Wasserstein Generative Adversarial
Networks enable high-throughput compound screening based on raw images. We
demonstrate this by classifying active and inactive compounds tested for the
inhibition of SARS-CoV-2 infection in two different cell models: the primary
human renal cortical epithelial cells (HRCE) and the African green monkey
kidney epithelial cells (VERO). In contrast to previous methods, our deep
learning-based approach does not require any annotation, and can also be used
to solve subtle tasks it was not specifically trained on, in a self-supervised
manner.

Our results motivated the effort for the development of a staining protocol
and extend the result obtained on the SARS-CoV-2 to the study of bacteria
opsonization mediated by monoclonal antibodies. In particular, our approach
utilises high-content microscopy and image analysis techniques to assess how
effective monoclonal antibodies are at promoting the process of phagocytosis
in macrophages infected with bacteria. Through this method, we were able to
measure the extent to which the monoclonal antibodies facilitated the engulfment
of the bacteria by the macrophages.
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Chapter 1

Introduction
Throughout our biological history, humans have been faced with infectious
diseases. While scientific advancements have allowed for better control and
eradication of diseases like plague, polio, and smallpox through the development
of antibiotics and vaccines, infectious diseases still pose a persistent and global
threat. Tuberculosis, caused by a bacterial infection, remains the leading cause
of infectious disease in modern times and is responsible for approximately one
million deaths each year [1]. Additionally, viral pandemics such as the flu,
AIDS, and COVID-19 have collectively claimed many lives [2], [3]. The biological
complexity of pathogens like Neisseria gonorrhoeae and their ability to evolve and
evade immune responses make infectious disease a difficult challenge. However,
recent technological advancements in biology and computational power have
the potential to expand our understanding of infectious disease and lead to
new interventions that reduce human suffering. Human monoclonal antibodies
(mAbs) are an attractive class of biologic drug that can significantly help in
controlling infectious deseases caused by viral and bacterial pathogens. There
are many reasons to study mAbs beyond the obvious goal of drug development
for prophylaxis or therapy. One of the main benefits of working with mAbs is
gaining a comprehensive understanding of the genetic, molecular, and cellular
basis of the naturally occurring immunity to viruses and bacteria. Moreover,
analysing mAbs isolated from humans after natural infection or vaccination
provides fundamental insights into the functioning of the human immune system.

1.1 Objective

This thesis presents the results of our study, which aims to make novel contribu-
tions to the characterisation of heavy and light chain sequences of monoclonal
antibodies (mAbs) capable of neutralising SARS-CoV-2. Additionally, we explore
the utilisation of biological images in infectious disease research, as well as their
applications in the broader fields of computation and biology. The objectives of
this study are as follows:

Characterise SARS-CoV-2 Neutralising mAbs Sequences Our primary ob-
jective is to analyse and characterise the heavy and light chain sequences of
monoclonal antibodies that demonstrate effective neutralisation of SARS-
CoV-2. Through this analysis, we aim to identify key features and patterns
within these sequences that contribute to their neutralising capabilities.

Biological Image Utilisation We explore the utilisation of biological images in
the context of infectious disease research. Our objective is to assess the
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value and potential of using fluorescent confocal microscopy to perform high-
throughput characterisation of the activity of therapeutic approaches as
monoclonal antibodies, or small molecules, and enhance our understanding
of viral infections and aid in the development of targeted therapies.

Interdisciplinary Applications Furthermore, we aim to demonstrate the
broader applications of biological images in the fields of computation and
biology. This includes exploring how advanced computational methods,
such as generative deep learning, can be integrated with biological image
data to facilitate more accurate and efficient analysis, diagnosis, and
treatment of infectious diseases.

By achieving these objectives, we intend to contribute to the existing knowledge
of mAbs’ neutralisation potential against SARS-CoV-2 and provide valuable
insights into the utilisation of biological images for infectious disease research
and the interdisciplinary fields of computational biology.

1.2 Literature Review

During the early phase of the COVID-19 pandemic, mAbs have been developed as
one of the most rapid public health tool to prevent and treat viral infections[4]–[7].
Moreover, given the crucial role of adaptive immunity in safeguarding against
viral infection and disease, extensive efforts have been undertaken by the scientific
community to investigate mAbs mediated immunity. These endeavors aim to
identify correlates of protection, develop immune-based therapies, and optimise
vaccine design and delivery [8]–[12].

In the event of an outbreak caused by an infectious agent such as the SARS-
CoV-2 virus or a bacterium with antimicrobial resistance, an exceptionally
successful approach for the development of mAb-based therapies involves
the identification of naturally occurring human monoclonal antibodies from
individuals who have successfully recovered from the specific infection. This
strategy expedites the discovery process, mitigates the risks of adverse effects,
and enhances the accessibility of the therapy [13]–[15]. Key to this strategy is an
effective high-throughput screening (HTS) technology, to quickly identify those
few, most potent natural monoclonal antibodies among the many thousands
potentially isolated from each patient. The screening should identify monoclonals
for their ability to confer disease protection, and fluorescent microscopy and
biological images offers a robust platform to develop those HTS screening assay
[16]–[20].

Thanks to their inherent capability to discover hidden data structures
and extract powerful features representation, Convolutional Neural Network
(CNNs) have become the fundamental building blocks in many computer vision
applications. Nevertheless, much of their recent success lies in the existence
of large labelled datasets: CNNs are data-hungry supervised algorithms, and
thus supposed to be fed with a large amount of high quality annotated training
samples ([21]; [22]).
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However, associating labels to a massive number of images to effectively train
a CNN may be extremely problematic in a number of real-world applications.
Significant examples are the medical and computational biology domains, where
image annotation is an especially cumbersome and time-consuming task that
requires solid domain expertise and, more often than not, necessitates consensus
strategies to aggregate annotations from several experts to solve class variability
problems ([23]; [24]). Moreover, biological systems are affected by multiple
sources of variability that make the definition of a supervised task impractical, as
they require discovering new effects that were not observed during the generation
of the training set. Seeking answer to such limitations, a considerable amount of
literature focuses on machine learning systems, especially CNNs, able to adapt
to new conditions without needing a large amount of high-cost data annotations.
This effort includes advances on transfer learning ([25]), domain adaptation ([26]),
semi-supervised learning ([27]; [28]) and self-supervised representation learning
([21]; [29]; [30]). The self-supervised representation learning (SSRL) paradigm
has especially received increasing attention in the research community. Yann
LeCun, invited speaker at AAAI 2020 conference ([31]), has defined the SSRL
as “the ability of a machine to predict any parts of its input from any observed
part”. In other words, SSRL can be realised by contextualising a supervised
learning task in a peculiar form (known as pretext task) to predict only a subset
of the information and using the rest to drive the decision process. Although
the pretext task guides the learning by means of a supervised loss function, the
performance of the model on the pretext is irrelevant, as the actual objective of
SSRL is to learn an intermediate representation capable of solving a variety of
practical downstream tasks that are completely different from the pretext one.
Popular SSRL pretext tasks are rotation, jigsaw, instance discrimination and
auto-encoders methods (colorization, denoising, inpainting) ([21]; [32]). There is
a twofold explanation behind SSRL’s recent success: on one hand it can make
use of the tremendous amounts of unlabeled data, heritage of the big-data era;
on the other hand it is able to dispose of the human supervision and turn back
to the data’s self-supervision ([21]; [32]).

Current literature has primarily exploited SSRL on general category object
classification tasks (e.g. ImageNet classification) ([21]; [32]). Surprisingly few
studies have investigated how to extend SSRL methodologies to other important
domains like computational biology or medicine, even though they are among
the ones that are most affected by the lack of labelled training data ([32]). In
this regard, a longitudinal investigation by Wallace et al. ([32]) recently showed
how traditional SSRL feature embedding fails in several biological downstream
tasks. The authors suggest that the absence of canonical orientation, coupled
with the textural nature of the problems, prevents classical SSRL methods from
learning a pertinent representation space. They conclude that finding an optimal
SSRL feature embedding for fine-grained, textural and biological domains is still
an open question.

In an attempt to solve this problem, one the first works exploring image
generation as a SSRL pretext task with biological images was undertaken by
Goldsborough et al. ([33]), for the morphological profiling of human cultured
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cells with fluorescence microscopy. While they speculated the superiority
of adversarially learned representations over auto-encoders ones, the authors
found their generative approach not competitive yet with traditional transfer
learning-based methodologies ([33]). More recently, a number of studies have
further investigated and improved generative-based SSRL methods for biological
applications, with special focus on histopathological images ([34]; [35]) and, more
recently, cancer cell cultures ([36]). Nonetheless, existing works typically make
use of side information in the construction of their generative pretext task, that
is tailored to the specific application ([37]).

1.3 Outline

The rest of the thesis is organised as follows:

Chapter 2 presents the result obtained from the identification and study
of human monoclonal antibodies isolated from COVID-19 convalescent
patients, posing a particular focus on their genetic characterisation.

Chapter 3 is dedicated to biological image analysis. Here we show that
Wasserstein Generative Adversarial Networks [38] enable high-throughput
compound screening based on raw fluorescent microscopy images. The
proposed deep learning-based approach does not require any annotation,
and can also be used to solve subtle tasks it was not specifically trained
on, in a self-supervised manner.

Chapter 4 describes an opsono-phagocytosis assay, that relies on confocal
microscopy and image analysis based on methods developed in Chapter 3,
to quantify the impact of mAbs on phagocytosis of bacterium Neisseria
gonorrhoeae by macrophages.

4



Chapter 2

Extremely potent human
monoclonal antibodies from
COVID-19 convalescent patients
Human monoclonal antibodies are safe, preventive, and therapeutic tools that
have the potential to help restore the massive health and economic disruption
caused by the coronavirus disease 2019 (COVID-19) pandemic. In a work we
published in 2021 [39], by single-cell sorting 4,277 SARS-CoV-2 spike protein-
specific memory B cells from fourteen COVID-19 convalescent patients, we
identified 453 neutralising antibodies. The most potent neutralising antibodies
recognised the spike protein receptor-binding domain, followed in potency by
antibodies that recognise the S1 domain, the spike protein trimer, and the S2
sub-unit. Only 1.4% of them neutralised the authentic virus with a potency
of 1–10 ng/mL. The most potent monoclonal antibody, engineered to reduce
the risk of antibody-dependent enhancement and prolong half-life, neutralised
the authentic wild-type virus and emerging variants containing D614G, E484K,
and N501Y substitutions. During the first months of the COVID-19 pandemic,
many research groups have been active in isolating and characterising human
monoclonal antibodies from COVID-19 convalescent patients or from humanised
mice. Notably, in November 2020 two of them have received the Emergency Use
Authorization (EUA) from the FDA ([40] ; [41]). The vast majority of the isolated
human monoclonal antibodies neutralise SARS-CoV-2 infection by binding to the
spike glycoprotein (S protein), a trimeric class I viral fusion protein that mediates
virus entry into host cells by engaging with the human angiotensin-converting
enzyme 2 (hACE2) and cellular heparan sulfate as receptors ([42]). The S protein
exists in a meta-stable pre-fusion conformation and in a stable post-fusion form
([43]; [44]). Each S protein monomer is composed of two distinct regions, the S1
and S2 subunits. The S1 sub-unit contains the receptor-binding domain (RBD),
which is responsible for the interaction with hACE2 and heparan sulfate on
host cell membranes triggering the destabilisation of the pre-fusion state of the
S protein and consequent transition into the post-fusion conformation. This
event results in the entry of the virus particle into the host cell and the onset of
infection ([44]; [45]).

To retrieve human monoclonal antibodies specific for SARS-CoV-2 S protein,
peripheral blood mononuclear cells (PBMCs) were collected and stained with
fluorescently labelled S protein trimer to identify antigen-specific memory B cells
(MBCs). A panel of 1,731 human monoclonal antibodies specific for the SARS-
CoV-2 S protein were identified and characterised. The 1,731 S protein-specific
mAbs, were screened in vitro for their ability to neutralise authentic SARS-CoV-
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Genetic characterisation

Subject ID S-protein
positive
mAbs

SARS-CoV-2
Neutralizing
mAbs

PT-004 158 13
PT-005 33 4
PT-006 34 4
PT-008 148 48
PT-009 61 12
PT-010 39 3
PT-012 132 14
PT-014 165 53
PT-041 165 77
PT-100 230 59
PT-101 219 66
PT-102 145 42
PT-103 129 54
PT-188 72 4
TOTAL 1.731 453

Table 2.1: COVID-19 mAbs summary, the table summarises the number of
S-protein specific mAbs, and SARS-CoV-2 neutralising antibodies.

2 virus by in vitro micro-neutralisation assay. A panel of 453 (26.2%) mAbs
neutralised the authentic virus and prevented infection of Vero E6 cells (Table
2.1). The majority of neutralising antibodies (nAbs) were able to specifically
recognise the S protein S1 domain (57.5%; n = 244), while 7.3% (n = 53) of
nAbs were specific for the S2 domain, and 35.2% (n = 156) did not recognise
single domains but only the S protein in its trimeric conformation.

2.1 Genetic characterisation

From the panel of 453 nAbs, we recovered the heavy chain (HC) and light
chain (LC) variable regions of 220 nAbs, which were expressed as full-length
immunoglobulin G1 (IgG1) using the transcriptionally active PCR (TAP) [46]
approach to characterise their neutralisation potency against the live virus at
100 TCID50. The vast majority of nAbs identified (65.9%; n = 145) had a
low neutralising potency and required more than 500 ng/mL to achieve 100%
inhibitory concentration (IC100). A smaller fraction of the antibodies had an
intermediate neutralising potency (23.6%; n = 52) requiring between 100 and
500 ng/mL to achieve the IC100, while 9.1% (n = 20) required between 10 and
100 ng/mL. Finally, only 1.4% (n = 3) of the expressed nAbs were classified as
extremely potent nAbs, showing an IC100 lower than 10 ng/mL.

Based on the first round of screening, 14 nAbs were selected for further genetic
characterisation. The genes encoding the fragment antigen-binding region of

6
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Figure 2.1: Characterisation and distribution of SARS-CoV-2 S protein-
specific nAbs, (A) The bar graph shows the distribution of nAbs binding to
different S-protein domains. In dark red, light blue and gray are shown antibodies
binding to the S1-domain, S2-domain and S-protein trimer respectively. The
total number (n) of antibodies tested per individual is shown on top of each bar.
(B) The bar graph shows the distribution of nAbs with different neutralization
potencies. nAbs were classified as weakly neutralizing (> 500 ng/mL; pale
orange), medium neutralizing (100 – 500 ng/mL; orange), highly neutralizing
(10 – 100 ng/mL; dark orange) and extremely neutralizing (1 – 10 ng/mL; dark
red). The total number (n) of antibodies tested per individual is shown on top
of each bar.

the Heavy and Light chains of the 14 selected nAbs were sequenced, and their
IGHV and IGKV genes were compared with publicly available SARS-CoV-2
neutralising antibody sequences collected in the CoV-AbDab: the Coronavirus
Antibody Database ([47]). Four nAbs used one of the most predominant IGHV
genes for SARS-CoV-2 nAbs (IGHV1-69), while three nAbs used one of the
least representative IGHV genes (IGHV1-24). Two other nAbs employed the
most common germline observed for SARS-CoV-2 nAbs, which is IGHV3-53
(Figure 2.2) [48]. Interestingly, while IGHV1-69 and IGHV1-24 accommodate
IGHJ diversity, nAbs belonging to the IGHV3-53 gene family only showed
recombination with the IGHJ6 gene (Table 2.2). The IGHV genes somatic
hypermutation level and complementary determining region 3 (H-CDR3) length
were also evaluated. Our selected nAbs displayed a low level of somatic mutations
when compared to the inferred germline with sequence identities ranging from
95.6% to 99.3% (Figure 2.2 (b); Table 2.2). The H-CDR3 length spanned from
7 to 21 amino acids (aa) with the majority of the antibodies (n = 6; 42.0%)
having a length of 14 to 16 aa that is slightly longer than previously observed
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mAb ID IGHV
gene

IGHJ
gene

H-
CDR3
Length

IGHV
Germline
identity

IGLV
gene

IGLJ
gene

L CDR3
Length

IGLV
Germline
identity

J08 IGHV1-
69

IGHJ4 18 96.9 IGKV3-
11

IGKJ4 5 98.9

I14 IGHV1-
58

IGHJ3 16 96.9 IGKV3-
20

IGKJ1 9 98.6

F05 IGHV3-
53

IGHJ6 14 97.6 IGKV1-
17

IGKJ1 9 94.3

I15 IGHV1-
24

IGHJ4 20 96.9 IGKV1-9 IGKJ2 9 98.9

G12 IGHV1-
69

IGHJ4 14 95.6 IGKV3-
15

IGKJ4 8 97.5

I21 IGHV3-
30

IGHJ4 16 98.3 IGKV1-9 IGKJ4 10 98.6

F10 IGHV1-
24

IGHJ6 21 96.6 IGKV2-
24

IGKJ2 9 98.7

L19 IGHV3-
11

IGHJ5 11 96.3 IGKV1-
33

IGKJ5 9 98.2

H20 IGHV1-
69

IGHJ2 15 97.3 IGKV3-
11

IGKJ1 10 98.6

F20 IGHV1-
24

IGHJ5 15 96.9 IGKV3-
15

IGKJ2 10 98.2

J13 IGHV1-
69

IGHJ6 17 99.3 IGKV3-
11

IGKJ3 10 98.9

C14 IGHV3-
53

IGHJ6 11 96.6 IGKV1-9 IGKJ5 8 98.2

D14 IGHV3-
30

IGHJ4 13 96.6 IGKV1-
39

IGKJ1 10 97.9

B07 IGHV1-
46

IGHJ4 7 97.6 IGKV1-
16

IGKJ5 9 98.6

Table 2.2: Genetic description of fourteen selected SARS-CoV-2 nAbs,
The table describes the heavy and light chain V-J gene usage, heavy and
light complementary determining region 3 (H-CDR3) length and percentage of
nucleotide germline identity for all the fourteen antibodies characterised in this
study.

(Figure 2.2 (c); Table 2.2). All of our nAbs used the Kappa light chain, and
the majority of them used the common genes IGKV1-9 and IGKV3-11 (n = 6;
42.0%) (Figure 2.3; Table 2.2).

The level of IGKV somatic hypermutation was extremely low for LCs showing
a percentage of sequence identities ranging from 94.3% to 98.9% (Figure 2.3
(b); Table 2.2). The LC CDR3 (L-CDR3) lengths were ranging from 5 to 10
aa, which is in line with what was previously observed for SARS-CoV-2 nAbs
[49]–[51] (Figure 2.3 (b); Table 2.2). When paired HC and LC gene analysis
was performed, IGHV1-69-derived nAbs were found to rearrange exclusively
with IGKV3 gene family, whereas IGHV1-24-derived nAbs accommodate LC
diversity (Table 2.2). Of note, some of our candidates showed unique HC and LC
pairing when compared to the public SARS-CoV-2 nAb repertoire. Particularly,
five different HC and LC rearrangements not previously described for nAbs
against SARS-CoV-2 were identified. These included the IGHV1-24;IGKV1-9,
IGHV1-24;IGKV3-15, IGHV1-46;IGKV1-16, IGHV3-30;IGKV1-9, and IGHV3-
53;IGKV1-17 (Figure 2.4).

8



Genetic characterisation

Figure 2.2: Genetic characterisation of SARS-CoV-2 S selected
monoclonal antibodies IGH genes, (a) Bar graph show the heavy chains
usage for neutralising antibodies against SARS-CoV-2 in the public repertoire
compared to the antibodies identified in this study. Our and public antibodies are
shown in dark and light colours, respectively. (b-c) The heavy chain percentage
of identity to the inferred germline and amino acidic CDR3 length are shown as
violin and distribution plot, respectively.
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Genetic characterisation

Figure 2.3: Genetic characterisation of SARS-CoV-2 S selected
monoclonal antibodies IGK/IGL genes, (a) Bar graphs show the light
chains usage for neutralising antibodies against SARS-CoV-2 in the public
repertoire compared to the antibodies identified in this study. Our and public
antibodies are shown in dark and light colours, respectively. (b-c) The light
chain percentage of identity to the inferred germline and amino acidic CDR3
length are shown as violin and distribution plot, respectively.
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Genetic characterisation

Figure 2.4: Heavy and light chain pairing for SARS-CoV-2 neutralising
human monoclonal antibodies, the heat-map shows the frequency of
heavy and light chain pairing for SARS-CoV-2 neutralising human monoclonal
antibodies already published. The number within the heat-map cells represent
the amount of nAbs described in this manuscript showing already published
(coloured cells) or novel heavy and light chain rearrangements (blank cells).
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Methods for sequence analysis and mAbs annotation

2.2 Methods for sequence analysis and mAbs annotation

For the genetic Analyses of SARS-CoV-2 S-protein specific nAbs, a cus-
tom pipeline was developed for the analyses of antibody sequences and
the characterisation and annotation of immunoglobulin genes. Raw se-
quences were stored as .ab1 files and transformed into .fastq using
Biopython[52]. The reads were then quality checked using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and a report was
generated using MultiQC [53]. The antibody leader sequence and the terminal
part of the constant region were removed by trimming using Trimmomatic [54].
This latter program was also used to scan and remove low-quality reads using
a sliding-window parameter. Once sequences were recovered, germline gene
assignment and annotation were performed using the MiXCR suite [55]. The
single-read alignment parameters was used, and a CSV-formatted output was
generated.

2.3 Discussion

We have described a systematic genetic characterisation of memory B cells from
SARS-CoV-2 convalescent patients and the identification of human monoclonal
antibodies against SARS-CoV-2. We demonstrated that antibodies with relatively
high percentage of identity to the inferred germline are able to neutralise
the authentic virus with a potency of 1–10 ng/mL, and the antibody that
showed the highest neutralisation potency is able to neutralise the authentic WT
SARS-CoV-2 virus at pico molar concentration in vitro. To advance machine-
learning-based approaches for designing and modifying antibodies, it is essential
to develop experimental datasets comprising sequence data, binding affinity,
neutralization potency, and structure conformation. This can save the time-
consuming process of discovering new therapeutic antibodies. An example of this
strategy is demonstrated in [56], where authors introduced a few mutations to a
regulatory-approved antibody product that had escaped the virus and evaluated
its enhanced binding efficacy against SARS-CoV-2 Omicron subvariants. The
approach utilizes high-performance computing resources, simulation, and machine
learning to co-optimize binding efficacy against multiple antigen targets, including
RBDs from various SARS-CoV-2 strains, and other desirable qualities, such as
thermostability.

In the search for potent antibodies, we found that approximately 10% of
the total B cells against the S protein isolated produce neutralizing antibodies,
and these can be divided into four different groups recognizing the S1 RBD,
S1 domain, S2 domain, and the S protein trimer. Most potently neutralizing
antibodies are extremely rare and recognize the RBD, followed in potency by
antibodies recognizing the S1 domain, the trimeric structure and the S2 subunit.
From these data we can conclude that in COVID-19 convalescent patients, most
of the observed neutralization titers are likely mediated by antibodies with
medium-high neutralizing potency. Indeed, the extremely potent antibodies
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Limitations of the study

and the antibodies against the S2 subunit are unlikely to contribute to the
overall neutralizing titers because they are respectively too rare and too poor
neutralizers to be able to make a difference. We and others found that the
antibody repertoire of convalescent patients is mostly germline-like. This may be
a consequence of the loss of Bcl-6-expressing follicular helper T cells and the loss
of germinal centers in COVID-19 patients, which may limit and constrain the B
cell affinity maturation [57]. It will be therefore important to perform similar
studies following vaccination as it is likely that the repertoire of neutralizing
antibodies induced by vaccination may be different from the one described here.

A potential issue associated with the use of human mAbs against viral
pathogens is the potential selection of escape mutants. This is usually addressed
by using a combination of antibodies directed against non-overlapping epitopes.
While this is an ultimate clear solution, it increases the complexity of development,
costs of production, drug availability, and affordability. In our case, we believe
that selection of escape mutants upon treatment with a single mAb may be
quite difficult as the SARS-CoV-2 RNA-dependent polymerase possesses a
proofreading machinery, and the epitope recognized by the antibodies herein
described overlaps with the region necessary to bind the hACE2 receptor. In
this regard, it took more than 70 days of continuous co-culture of the virus in
presence of the antibodies before we were able to detect the first emergence of
escape mutants of the WT SARS-CoV-2 (data not shown).

Nucleotide and amino acidic sequences of all SARS-CoV-2-neutralising
antibodies were deposited in the Italian patent applications n. 102020000015754
filed on June 30th 2020 and 102020000018955 filed on August 3rd 2020. The
accession number for the nucleotide sequences of all SARS-CoV-2-neutralising
antibodies reported in this paper is GenBank: MW_598287 - MW_598314.

2.4 Limitations of the study

While we believe that our antibodies are extremely potent when compared to
most of those described in literature, we acknowledge that in most cases, direct
comparison was not performed, and we rely on published data.

13



Chapter 3

Generative self-supervised learning
for the assessment of biological
images with lack of annotations
A powerful, and high-throughput approach to characterise the activity of
therapeutic approaches as monoclonal antibodies, or small molecules, is the
analysis of microscopy images from eukariotic cell lines co-incubated with the
treatment under investigation.

However, computer-aided analysis of biological images typically requires
extensive training on large-scale annotated datasets, which is costly to produce
in many practical applications. In this chapter, we present Generative Adversarial
Network Discriminator Learner (GAN-DL), a self-supervised learning paradigm
based on the StyleGAN2 ([58]) architecture, which we employ for self-supervised
image representation learning in the case of fluorescent biological images.

In this chapter, we show that Wasserstein Generative Adversarial Networks
enable high-throughput compound screening based on raw fluorescent microscopy
images. We demonstrate this by classifying active and inactive compounds tested
for the inhibition of SARS-CoV-2 infection in two different cell models: the
primary human renal cortical epithelial cells (HRCE) and the African green
monkey kidney epithelial cells (VERO). In contrast to previous methods, our
deep learning-based approach does not require any annotation, and can also be
used to solve subtle tasks it was not specifically trained on, in a self-supervised
manner. For example, it can effectively derive a dose-response curve for the
tested treatments.

3.1 Introduction and motivation

Motivated by the the preliminary results obtained by generative-based SSRL
methods with different types of microscopy images, in this study we propose
GAN Discriminator Learner (GAN-DL), a SSRL framework that exploits the
discriminator of a Generative Adversarial Network (GAN) for feature extraction,
using a state-of-the-art StyleGAN2 architecture as the backbone ([58]). In our
framework, the adversarial training of the StyleGAN2 is exploited as a pretext
task, and the trained features of the discriminator provide a new representation
space to solve different downstream tasks. By doing so, GAN-DL does not make
use of any annotations on the training images, nor of any side information about
the specific tasks.

The idea of leveraging GAN’s discriminator as feature extractor was first
introduced by Radford et al. ([61]), but its employment has been mainly
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Introduction and motivation

(a)

(b)

(c)

Figure 3.1: The first two rows of the figure show illustrative examples of
RxRx19a [59](a) and RxRx1 [60] datasets (b). The third row (c) presents
representative examples of Style-GAN generated images for the RxRx19a [59]
dataset.

confined to non-biological applications ([62]; [63]). In 2020, Mao et al. ([64])
showed that the effectiveness and robustness of discriminator features strongly
depend on avoiding mode collapse in the network. The Wasserstein GANs family
StyleGAN2 belongs to are known to be particularly resistant to the mode collapse
phenomenon ([63]; [38]). This motivated our choice of using StyleGAN2 ([58])
as the backbone of our method.

To characterise our framework, we focus on a relevant biological case-study,
that is COVID-19 drug discovery, exploiting two recently released fluorescence
microscopy datasets: (1) RxRx19a ([59]), a morphological imaging dataset that
is specific of COVID-19; (2) RxRx1 ([60]; [65]), a non-COVID related collection
of fluorescent microscopy images (a more detailed description will follow). In Fig.
1 we show a representative collection of images from RxRx19a ([59]) (a) and
RxRx1 ([60]) (b) datasets, depicting different cell models stained with multiple
fluorescent dyes. The reported datasets perfectly embody those features (absence
of canonical orientation, fine-grained content, textural nature) that make the
classical SSRL pretext tasks, as described in the work by Wallace and colleagues
([32]), difficult, if not unsolvable.

Besides the imaging data, a transfer learning-based image embedding for
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Introduction and motivation

the RxRx19a benchmark is also accessible online ([66]), which does not exploit
any annotation of the target dataset. Such embedding is taken as baseline
comparison to prove the goodness of our approach, and referred to as baseline
in the rest of the manuscript.

To the best of our knowledge, the only other works addressing the problem
of COVID-19 drug discovery with RxRx19a exploit labels of the target dataset
in the construction of their embedding ([67]; [68]).

Training set

GAN-DL features
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Figure 3.2: Overview of GAN-DL self-supervised representation learning frame-
work, whose pretext task consists in the adversarial game between the generator
and the discriminator of the backbone StyleGAN2 (a). The discriminator’s
features are exploited to several downstream tasks (b): (i) Controls classification
- classification of active and inactive compounds against SARS-CoV2 in two
different cell models; (ii) Dose-response modelling - disease-associated profiling
from raw microscopy images; (iii) Cell models classification - zero-shot represen-
tation learning classification task consisting in categorising four different cell
types.

The main contributions of the proposed method are the following:

• We propose GAN-DL, a fully SSRL-based approach to characterize relevant
biological case studies. We specifically employ generative SSRL in a
challenging, real-world biological application of microscopy imaging tailored
to COVID-19 drug discovery. We show that GAN-DL, leveraging the
pretext of creating diverse and realistic images, is capable not only
of proficiently managing downstream classification tasks, but also of
separating multiple unrelated features at once along different axis of the
latent space.

• GAN-DL significantly deviates from the baseline featurization method
proposed by Cuccarese et al. [66] and released together with the
RxRx19a [59] benchmark. As a matter of fact, the authors proposed
a classic transfer-learning approach featuring a deep network trained from
scratch on the RxRx1 [60] and on an additional proprietary images, a very
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Dataset

large dataset that is similar in terms of imaging technology and content
to their final application, the RxRx19a [59] dataset. The necessity of
a pre-training phase leveraging about 300GB of annotated microscopy
images puts serious limitations to the applicability of such method in
other contexts affected by scarcity of labelled data. Conversely, as above-
mentioned, GAN-DL is trained solely on the unlabelled RxRx19a [59].

• To assess GAN-DL’s ability to solve different downstream tasks, we evaluate
our method on the classification of active and inactive compounds against
SARS-CoV2 in two different cell lines (see Figure 3.2(b)). We show
that GAN-DL: (i) outperforms the classical transfer learning approach
consisting of a CNN pre-trained on ImageNet; (ii) is comparable to the
baseline method in terms of accuracy, even though it was not purposely
trained for the downstream tasks; (iii) is able to model disease-associated
profiles from raw microscopy images, without the use of any purposely
labelled data during the training.

• Finally, to assess the generalization capability of our method, we exploit
the GAN-DL embedding learnt on RxRx19a in a zero-shot representation
learning task consisting in categorizing the four different cell types of
the RxRx1 [60] benchmark: human liver cancer cells (HEPG2), human
umbilical vein endothelial cells (HUVEC), retinal pigment epithelium cells
(RPE) and human bone osteosarcoma epithelial cells (U2OS).

3.2 Dataset

The data used in this work are part of the RxRx datasets collections, that are
available online [69]. More specifically, in our experiments we exploit:

1. The RxRx19a [59], which gathers several experiments aimed at investigating
therapeutic potential treatments for COVID-19 from a library of FDA-
approved and EMA-approved drugs or compounds in late-stage clinical
trials [59]. After 24 hours post-seeding, the cells have been infected with
SARS-CoV-2 and then incubated for 96 hours before fixation, staining
and imaging. Images were produced using five channels to highlight the
cell membrane and different cellular compartments, leveraging a specific
fluorescent staining protocol, as described in the work by Cuccarese and
colleagues [66]. The compounds were screened by treating cells in six half-
log doses with six replicates per dose for each compound approximately
two hours after cell seeding. Further details about the assays protocol can
be found at the official dataset website [60]. The resulting dataset is made
up of 305,520 fluorescent microscopy images of size equal to 1024×1024×5.
To assess the specificity of the tested compounds, two suitable control
groups have been designed. The first one consists in conditioned media
preparations generated from uninfected cells (Mock), the second one is
made up of cells infected in vitro by active SARS-CoV-2 virus and not
treated with any compounds.
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GAN-DL’s backbone: the StyleGAN2 model

2. The RxRx1 [60], a dataset consisting of 296 GB of 16-bit fluorescent
microscopy images, created under controlled conditions to provide the
appropriate data for discerning biological variation in the common context
of changing experimental conditions. The RxRx1 [60] has been specifically
created to push innovative machine learning and deep learning pipeline on
large biological datasets, aimed at drug discovery and development [60].

We leverage the whole RxRx19a [59] to train our GAN-DL on the pretext
task of creating diverse and realistic images. Notably, such task does not require
any specific annotation. Experiments on downstream tasks were conducted by
using 75% of the control images for training and 25% for testing (randomly split
by well), with all images outside of the control group used for dose-response
evaluation. Images from the same wells were put in the same partition and
class imbalances were corrected by automatically adjusting weights inversely
proportional to class frequencies in the input data.

No images outside of the training subset of the control group were used in
the training of the downstream tasks. For both the RxRx19a and the RxRx1
we performed standard post-processing of the embedded images as described in
[66], including normalisation to remove inter-plate variance.

3.3 GAN-DL’s backbone: the StyleGAN2 model

The recent literature about GANs is focused on methodologies to improve
their training and counteract the well known difficulties and limitations of this
phase [70]. More specifically, Wasserstein Generative Adversarial Networks (W-
GANs) [38] have been introduced to prevent two common problems of training
GANs. First, mode collapse is a form of GAN failure in which the network learns
to generate only a subset of the data, eventually a single image or a discrete
set of images representing the modes the distribution has collapsed to. The
discriminator ends up trapped into a local minimum and the generator easily
presents the same examples over and over to convince the discriminator. This
results in a model that is heavily over-fitted on this particular subset. Second,
lack of convergence due to either the generator or the discriminator, which are
improving at a faster pace than the other network. This prevents the mutual
improvement that is necessary for convergence.

W-GANs have proved to be an efficient solution to overcome both those
limitation at once, by replacing the classical discriminator model with a
critic that scores the realness of a given image by means of the so-called
Wasserstein distance [38]. For our GAN-DL we employed the Nvidia’s StyleGAN2
architecture [58], that is an instance of W-GAN with residual connections in
both the generator and the discriminator.

The original StyleGAN2 model has been scaled down to allow training on
more reasonable hardware and time-frames. To reduce the number of parameters,
we simplified the fully connected mapping network to be 3 layers deep instead
of the original 8. The latent space we employ corresponds to the style vector,
the sizing of which is 512 in accordance with the original paper. The network
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Counterpart embedding

analyses each sample as a 5-channel image, with each channel containing 1 stain.
To do so, the only adaptation needed over the original StyleGAN2 model is to
increase the filter size of the convolutional layer closest to the image of both the
generator and the discriminator to 5. Refer to Supplementary Materials for the
experimental setup.

3.4 Counterpart embedding

In our experiments, GAN-DL embedding is compared against several different
counterparts:

• The RxRx19a [59] embedding released by Cuccarese et al. together with
the imaging data and referred to as baseline in this manuscript [66]. It
consists of 1024-dimensional vectors (one vector per image) obtained
using a DenseNet CNN architecture specifically pre-trained for identifying
the different 1,108 genetic perturbations across the four human cell
types gathered in the RxRx1 dataset [59], [60]. Such dataset, which
collects 125,514 high-resolution fluorescence microscopy images with
corresponding labels, is a source annotated dataset with very similar
imaging characteristics to the target one (the RxRx19a [59]). The author
adapted their DenseNet-based network by firstly changing the initial
convolutional layer to accept image input of size 512 × 512 × 5. Like
the original DenseNet model, they used Global Average Pooling to contract
the final feature maps to a vector of length 2,208. Then, instead of following
immediately with a classification layer, the authors added a fully connected
layer of dimension 1,024 used as the embedding of the image. The weights
of the network were learned by adding two separate classification layers
to the embedding layer, one using softmax activation and the other using
ArcFace activation [71], which were simultaneously optimised by training
the network to recognise perturbations in the public dataset RxRx1 [59]
and in a proprietary dataset of immune stimuli in various cell types,
unfortunately not released by the authors. Due to operational constraints,
a modified assay protocol, lacking one image channel, was used for the
live-virus experiments of the RxRx19a dataset [59]. To accommodate this
change, the network was trained on only the five first input channels of
the RxRx1 images [59]. The proprietary model is not publicly released by
the authors.

• The embedding of a DenseNet CNN pre-trained on a source dataset with
completely different imaging characteristics and contents (ImageNet). For
a fair comparison, the backbone of this methodology is a DenseNet, same
as for the baseline solution.
Pre-training a neural network with ImageNet data involves interpreting
images in terms of RGB channels, while cellular images acquired by a
fluorescent staining procedures, as for the generation of RxRx19a [59] and
RxRx1 [60] datasets, are potentially represented by a variable number of
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channels. The staining procedures adopted for the RxRx datasets collection
produced images of 5 channels (RxRx19a [59]) and 6 channels (RxRx1
[60]). To account for this difference, we adopted two different strategies:

– The ImageNet-collapsed strategy, where we introduce a trainable
convolutional layer with a kernel size of 1 at the beginning of the RGB
pre-trained networks, so that the fluorescent images are converted
to 3 channels pseudo-RGB images where each channel is replicated
three times. The weights of such input trainable layer were learnt via
fine-tuning on the given downstream task, leveraging Adam optimiser
with learning rate equal to 0.001. The training lasted only for a
few epochs, since the number of trainable weights is low. We picked
as final model the one giving best accuracy value during training.
The ImageNet-collapsed strategy features the same dimension as the
embedding of Cuccarese et al. [66] since it is based on the same
architecture.

– The ImageNet-concatenated strategy, where each channel is processed
independently and then all the resulting features are concatenated.
This strategy does not require any fine-tuning and produces an
embedding of size 5120 (1024 × 5).

• The embedding of a convolutional auto-encoder (referred to as ConvAE)
trained on the target dataset RxRx19a. For this purpose, we implemented
the method presented by Wallace et al [32], that was demonstrated to be
superior in term of classification accuracy to jigsaw, rotation and instance
discrimination based self-supervised methods on biological images. To
allow the auto-encoder to converge on the higher resolution images we are
evaluating, we modify the original architecture by adding the same residual
connection scheme used in the generator of StyleGAN2 and GAN-DL
and a perceptual loss function obtained using an Imagenet pre-trained
ResNet50 [72]. The embedding, extracted from the last layer of the encoder,
features a size of 1024, same as the baseline and ImageNet-collapsed pre-
trained method.

Note that the embedding size varies across the different counterparts. This is
constrained by the specific architecture the given featurization strategy leverages.
In our GAN-DL, as mentioned in the previous subsection, the latent space we
employ corresponds to the style vector, which has a size of 512.

3.5 Experimental setup

ConvAE

The embedding of the ConvAE was obtained by training the model on the
target dataset RxRx19a [59], employing an NVIDIA TITAN Xp GPU. To ensure
convergence on the high resolution RxRx19a images, we modified the original
auto-encoder architecture presented by Wallace et al. [32] in the following way:
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we employed the same residual connection scheme used in the generator of
StyleGAN2 and GAN-DL and a perceptual loss function obtained using an
Imagenet pre-trained ResNet50 [72]. The learning rate was set to 10−4 and
the training leverages Adam optimiser. Figure 3.3 provides some representative
examples of ConvAE reconstructed images (b), alongside the original inputs (a),
for the RxRx19a [59] dataset. Lastly, Figure 3.3(c) provides the training and
validation trends of the ConvAE’s loss with respect to training epochs.

(a)

(b)

(c)
epochs

Figure 3.3: Illustrative examples of RxRx19a [59](a) and the corresponding
images reconstructed by the ConvAE approach (b). ConvAE’s training and
validation curves (c).

GAN-DL

The StyleGAN2 backbone was trained on the RxRx19a [60] dataset using Adam
optimiser with a learning rate of 10−4, with the same loss as the one described
in the StyleGAN2 paper [58]. No hyper-parameter optimisation was performed.
Conversely, we employed two regularisation terms:

• Generator: Jacobian Regularization, also referred to as Perceptual Path
Length regularisation in [58], Exponential Moving Average of the weights
[73]

• Discriminator: Lipschitz L1 penalty [74], R1 regularisation [70]

For training we employed one TPU v3-8 node with 16GiB of RAM per core.
The original StyleGAN2 took 9 days on 8 Tesla V100 GPUs to train on the
FFHQ dataset [58], while our slimmed and repurposed version required 24 hours
on a TPU v3-8 node or 48 hours on a single Tesla V100 GPU to obtain the
results shown in this chapter. Most of the difference in training time can be
attributed to the lower amount of parameters as well as the vastly different
dataset used.
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Visualizing GAN-DL’s representation learning capability

Our experiments specifically seek an answer to two research questions: (i)
is it possible to learn an accurate and reliable image featurization, able to
encode and describe biological relevant information, leveraging a self-supervised
pretext task?; (ii) up to which extent the learned biological information can be
transferred to a different dataset? To answer such questions, we have put into
effect the properties of GAN-DL featurization in the following experiments.

3.6 Visualizing GAN-DL’s representation learning capability

To characterize the representation capability of the proposed SSRL featurization
methodology, we evaluate GAN-DL on the RxRx19a [59] dataset. We summarize
the screening control samples into two sets of conditions, C+ and C−. C+

represents uninfected samples treated with culture medium or a solvent, and C−

represents samples infected with wild-type SARS-CoV-2 virus. For simplicity
and with abuse of notation, we refer to C+ as positive controls and to C− as
negative controls.

In the RxRx19a [59] compound screening setting, only the images that
correspond to positive and negative sets of conditions can be associated with
either live or dead labels, where those labels refer to the viability of the cellular
model imaged in that specific condition. The cellular model viability is unknown
for the remaining part of the samples. In this regard the vast majority of the
dataset is unlabelled. The large amount of unlabelled data, coupled with the
textural and fine-grained aspect of the images, makes RxRx19a [59] a challenging
case-study and a perfect candidate to assess our proposed SSRL methodology.

As Figure 3.2 suggests, GAN-DL embedding consists of a 512-dimensional
features vector. To assess and interpret its inherent capability of learning a
genuine representation, we need to define a projection space able to allow some
degrees of visualization of the data structure. Hence, using the control samples,
we promote the explainability of the projection procedure by defining:

1. The effectiveness-space E2, a two-dimensional space that represents the
treatment effectiveness of the tested compounds on two axes. The On-
perturbation axis captures the difference between uninfected samples C+

and infected samples C−. Intuitively, the screened compounds able
to inhibit SARS-CoV-2 infection should have an On-perturbation value
similar to the C+ set of conditions. The Off-perturbation axis represents
the remaining variability in the samples that cannot be unambiguously
associated to the compound effectiveness.

2. The cell models-space C2, a two-dimensional space that captures the
morphological properties of the two cell models into two dimensions. The
On-perturbation axis projects the differences of the two cell models onto
one direction. Intuitively, all the samples in which VERO cells were used
should have a similar On-perturbation value. The same goes for the samples
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Assessing controls linear separability

in which HRCE cells were used. The Off-perturbation axis represents the
remaining variability that cannot be associated to the cell model differences.

Projecting the data along On-perturbation and Off-perturbation allows us to
visually represent the high-dimensional image embedding obtained by GAN-DL
into two-dimensional plots. To obtain such directions, we leverage a linear
Support Vector Machine (SVM) trained to classify C+ versus C− (E2 space) or
HRCE versus VERO control cells (C2 space). In both the cases, the separation
hyper-plane fitted by the SVM and its normal respectively represent the Off-
perturbation and the On-perturbation axis. As shown later in this section, the
scalar projection of the 512 GAN-DL features on such spaces are exploited on
one hand to provide an effective visual representation of the high-dimensional
data structure through point cloud scatter plots, on the other hand to derive
dose-response curves for the tested compounds. For better readability, the On-
perturbation axis is scaled so that C+ are centered around +1 and C− around
−1 and the Off-perturbation axis is zero-centered.

The plots in the first row of Figure 3.4 compare our GAN-DL’s embedding
(a) with the baseline embedding [66](b) in the E2 projection space, where we
expect a degree of separation between C+ and C−, since such space was spanned
by the SVM trained on the embeddings of the negative and positive controls.
The analysis is performed considering the two sets of conditions grouped by
cell model. Hence, different colors identify C+ and C− for the two distinct cell
models: blue and orange for the C+ of HRCE and VERO cell model, respectively,
green and red for the corresponding C− conditions. As it can be gathered from
the degree of separation between C+ and C− on the E2 projection space, both
the embeddings behave coherently in separating mock-treated samples from
those where the virus was active. A quantitative comparison in terms of degree
of separation between C+ and C− is presented in the following subsection.

The second row of Figure 3.4 shows GAN-DL featurization (c) and the baseline
featurization (d) projected onto the C2 space, where we expect a certain degree
of separation between distinct cell types, irrespective of whether C+ or C− are
considered. Same as in the previous experiment, results are reported separately
for the two cell models. Here HRCE are represented with blue (C+) and green
(C−) colors, while VERO with orange (C+) and red (C−), respectively. Even in
this case, the plots demonstrate that GAN-DL is able to caught the inherent
variability of the two cell models, in a comparable way to the transfer-learning
baseline.

3.7 Assessing controls linear separability

To assess the goodness of our embedding, we try to demonstrate that it is able
to establish a good linear separability of samples on two different downstream
tasks it was not specifically trained for: (i) the categorization of C+ versus C−

and (ii) the classification of HRCE and VERO cells.
For both the tasks, the linear separability is verified by exploiting soft margin

linear SVMs for classification. More specifically, we compare the classification
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(a) GAN-DL’s embedding, E2 space

(c) GAN-DL’s embedding, C2 space

(b) Baseline embedding, E2 space

(d) Baseline embedding, C2 space

Figure 3.4: The left column of the figure shows the scatter plots of GAN-DL’s
embedding of the RxRx19a [59] dataset projected onto the E2(a) and C2(c) axes.
The right column shows the baseline embeddings of the RxRx19a [59] dataset
projected onto the E2(b) and C2(d) axes.

accuracy of a linear SVM built on top of our embedding with the ones obtained
by the other counterpart embeddings: i) the baseline [66], ii) a DenseNet CNN
model pre-trained on ImageNet, respectively with collapsed and concatenated
strategy, iii) a convolutional auto-encoder [32] trained on RxRx19a. All results
presented are obtained using data that was not included in the SVM training
process.

The first two lines of Table 3.1 report the classification accuracy values of the
two classification tasks (for the first one, C+ versus C−, the two cellular models
are merged into the same dataset). From the reported values we can observe that
GAN-DL provides informative features for both C+ versus C− categorization
(91.4% accuracy) and cell models recognition (100% accuracy). The baseline, that
leverages the RxRx1 [60] dataset as transfer learning source domain, outperforms
GAN-DL by just 5% in terms of C+ versus C− classification accuracy, and
is equivalently 100% accurate in the other task. This is a remarkable result
for GAN-DL, given that its embedding is trained on a completely different
pre-text task, which does not require any kind of image annotation. Lastly,
GAN-DL outperforms by a large margin the traditional solutions based on
ImageNet pre-training (respectively, by 26% and 14% for the two tasks with
respect to ImageNet-collapsed solution, and by 11% for the first task with
respect to ImageNet-concatenated solution). Finally, our GAN-based approach
outperforms by a good margin the other SSRL method based on convolutional
auto-encoder, especially in the C+ versus C− task.
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The last two lines of Table 3.1 report the accuracy of the C+ versus C−

categorization task, this time separated by the cellular models HRCE and VERO.
For all the considered embeddings, we can observe that the accuracy is generally
higher when the cell models are separated. Nonetheless, this variation is quite
contained for the SSRL solutions. More specifically, GAN-DL shows an accuracy
of 92.44% and 99.93% for respectively HRCE and VERO, against the 91.4%
obtained with the two models considered together. The baseline, on the other
hand, shows an accuracy of 99.28% and 100% for respectively HRCE and VERO,
against the 95.81% for the two merged cell models. We can again observe that
the ImageNet pre-trained solutions reported a much higher accuracy difference:
84.09% and 84.53% against 65.31% for the ImageNet-collapsed solution, and
90.24% and 99.8% against 79.61% for the ImageNet-concatenated strategy.
Finally, even in this configuration, the embedding based on a convolutional
auto-encoder obtained the lowest accuracy values.

Table 3.1: Classification accuracy on the downstream tasks.
GAN-DL Baseline [66] ImageNet-collapsed ImageNet-concatenated ConvAE

C+ vs C− 91.4 % 95.81 % 65.31% 79.61% 64.50%
HRCE vs VERO 100.0 % 100.0 % 85.52% 100.0% 99.80%

C+ vs C- (HRCE only) 92.44 % 99.28 % 84.09 % 90.24% 68.41%
C+ vs C- (VERO only) 99.93 % 100 % 84.53 % 99.8% 82.89%

3.8 Automatically deriving dose-response curves from
image data

In this section, we exploit the GAN-DL’s featurization projected onto the On-
perturbation axis of the E2 space, defined in section Visualizing GAN-DL’s
representation learning capability, to automatically derive the dose-response of
all the 1,672 screened compounds in RxRx19a [59] dataset. Even in this case,
the featurization is the one obtained from the image generation pre-text, which
did not exploit any task-specific annotation.

As the figures of merit we propose: (i) the embedding distributions, in the
form of a scatter plot at varying concentrations, of Remdesivir and GS-441524,
two compounds proved to be effective on SARS-CoV-2 in vitro in both the cell
models, and of Polydatin, a compound that is known to be ineffective [66], [75]
(see Figure 3.5). These compounds are shown as representative examples for
both our embedding (a) and the baseline embedding (b); (ii) the dose-response
curves of a number of other compounds, obtained by reporting the corresponding
mean efficacy score at each concentration (see Supplementary Material).

From Figure 3.5, we can draw a number of considerations. For the effective
compounds Remdesivir and GS-441524, it is possible to see that progressively
higher drug concentrations (corresponding to progressively darker red points in
the scatter plots) tend to cluster towards positive values of the On-perturbation
axis in the E2 space, closer to the region associated to the C+group: the higher
the concentration, the higher the On-perturbation value. This is generally true
for both the GAN-DL and the baseline embedding (see sections (a) and (b) of
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(a) GAN-DL (b) Baseline

Figure 3.5: Drug effectiveness as a function of concentration, obtained using our
GAN-DL (a) and the baseline embedding (b).
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the figure, respectively), meaning that GAN-DL is equally able to represent the
concentration-dependent ability of an active compound to preserve cell viability
and inhibit SARS-CoV-2 infection.

Differently from the effective compounds, the ineffective ones should
reasonably behave the same in terms of SARS-CoV-2 inactivation, independently
of their concentration. When looking at the plot of Polydatin (a compound with
no known effect on the virus in vitro), the values cluster towards the left side of the
on perturbation axis where C− samples are located and do not show any specific
color-pattern at increasing values of dose concentration. This demonstrates that,
same as for the baseline, with GAN-DL embedding the ineffective compounds do
not show any specific dose-dependent behaviour. Accordingly, very few values
of the ineffective compounds are located in the positive On-perturbation space
(slightly greater then zero), suggesting no inactivation effect for SARS-CoV-2
infection in vitro.

3.9 Zero-shot representation learning

In this section we try to assess the generalization capabilities of the proposed
embedding technique in a zero-shot representation learning experiment, that
consists in a categorization problem where a classifier observes samples described
by a featurization learnt not only on a different pretext task, but even on a
different dataset.

For this purpose, we exploit the RxRx1 [60] image collection, a non-SARS-
CoV2 related dataset consisting in 125,510 fluorescent microscopy images
featuring human liver cancer cells (HEPG2), human umbilical vein endothelial
cells (HUVEC), retinal pigment epithelium cells (RPE) and human bone
osteosarcoma epithelial cells (U2OS). For the sake of channels compatibility, to
perform a zero-shot inference on the RxRx1 [60] dataset we removed the channel
corresponding to the MitoTracker, a dye that stains mitochondria, that is not
present in the five-staining protocol of RxRx19a [59].

We exploit a soft margin linear SVM built on top of our GAN-DL embedding
to categorize the four different cell models included in the RxRx1 [60] benchmark.
We show the corresponding results in the form of a confusion matrix in
Figure 3.6(a). From this matrix we can see that, despite the fact that the
RxRx1 [60] cell models are totally new for GAN-DL, they can be linearly
separated in the feature space with a mean accuracy of 92.68%.

For comparison, we show the results obtained by: (i) a DenseNet CNN
model pre-trained on ImageNet, respectively with collapsed and concatenated
strategy; (ii) a convolutional auto-encoder [32] trained on RxRx19a. As shown
in the confusion matrices of Figure 3.6, both the DenseNet-based classifiers
(ImageNet-collapsed and ImageNet-concatenated) and the convolutional auto-
encoder (ConvAE) obtained an accuracy at least 5% lower than our GAN-DL.
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(a) GAN-DL (b) ImageNet-collapsed

(c) ImageNet-concatenated (d) ConvAE

Figure 3.6: Confusion matrix of the cell classification task on the RxRx1 [60]
dataset.

3.10 Discussion

In contexts where dataset annotation is costly, like medical and computational
biology domains, the current standard, for the application of deep learning models
on image data, involves the use of a ImageNet-pretrained CNN model [22], [37]. If,
in general, SSRL seems a promising solution for those scenarios suffering a paucity
of labelled data, the recent work by Wallace et al.[32] has shown how traditional
SSRL featurization methodologies fail in several biological downstream tasks.
This is mainly imputed on the difficulty in defining a pretext task which can be
exploited by traditional contrastive SSRL.

On top of these considerations, in this chapter we propose GAN-DL, a
fully SSRL method leveraging the representation learning acquired by the
discriminator of a StyleGAN2 model [58]. Our GAN-DL does not require any
task-specific label to obtain the image embedding, as the StyleGAN2 backbone
is trained on a generative task based on the competition of a generator and of a
discriminator, that is completely independent on the downstream task. By doing
so, we address the problem of lack of annotated data, that is instead necessary
for conventional CNN-based transfer learning methods. We demonstrated the
goodness of our featurization methodology in two downstream supervised tasks:
the classification of different cellular models (HRCE versus VERO cells) and
the categorisation of positive versus negative control groups in the RxRx19a
[59] benchmark. For this purpose, we trained a simple linear SVM on top of
the self-supervised GAN-DL embedding, which does not require a large number
of annotated data. Furthermore, we compared our solution with a baseline
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state-of-the-art DenseNet model, pre-trained on the RxRx1 dataset [60] (the
corresponding embedding is released together with the imaging data by [66]).

On the one hand, the baseline embedding is generally more accurate than
GAN-DL in the downstream classification tasks, even though by a small margin.
On the other hand, the baseline is pre-trained on a very large annotated dataset
(RxRx1[60] dataset, consisting of 296 GB of fluorescent microscopy images), while
training GAN-DL does not require any task-specific image annotations. This is
indeed a major advantage for the re-usability of our method in different contexts
where annotated data from a similar domain are few or even not available at all,
which is a frequent challenge of many biological applications [22], [32].

We furthermore compare our GAN-DL with ImageNet-pretrained models,
traditionally exploited as fixed feature extractor for biological images [22], as
well as with an other SSRL method based on convolutional auto-encoder. We
found our GAN-DL superior to both the ImageNet-based strategies and to the
convolutional auto-encoder, the latter resulting less accurate with respect to
ImageNet-based strategies by a narrow margin. We believe that the quality of
representations extracted by the convolutional auto-encoder approach is less
competitive than the ImageNet-based methods due to the limited capability
of the auto-encoder in generating high-quality images (see some illustrative
examples in the supplementary materials). The goodness of the results obtained
by our GAN-DL, whose backbone is StyleGAN2 [58], state-of-the-art technology
in image generation, corroborates the insight that the SSRL adversarial pretext
task of learning to generate high-quality synthesised images allows to extract
an SSRL representation featuring inherent relations that are not captured by
previous techniques.

We speculate that our GAN-DL embedding, leveraging as pre-text task the
generation of plausible and high resolution images through the adversarial game
between the generator and the discriminator, proficiently learns an unbiased
image featurization able to describe the fine-grained patterns that are typical
of biological applications. This leads to an improved capability of separating
multiple unrelated features along different axis of the latent space, which should
be ultimately helpful to address any downstream tasks requiring knowledge of
the salient attributes of the data [76]. To demonstrate our claim, we put this
capability of GAN-DL into effect in a number of different applications: (i) the
classification of active and inactive compounds against SARS-CoV-2 infection
in two different cell lines; (ii) the generation of dose-response curves for the
large scale molecule screening of RxRx19a [59], without the need of any training
on purposely labelled data; (iii) the zero-shot representation learning of four
different cell lines included in the RxRx1 [60] dataset.

In conclusion, the satisfactory results obtained in all the presented scenarios
on the one hand demonstrate the goodness and generalisation capability of our
approach, on the other hand legitimise the future exploitation of generative
SSRL even in other biological applications, where the collection of annotated
images is typically a cumbersome task.
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Chapter 4

Development of a visual
opsono-phagocytosis screening
assay for monoclonal antibodies
against Neisseria gonorrhoeae
Note: this Chapter is part of a manuscript in preparation.

Monoclonal antibodies (mAbs) can fight infectious diseases caused by pathogenic
bacteria by exerting different functions, such as bactericidal activity, enhance-
ment of phagocytosis or inhibition of adhesion [77]. In this chapter we present a
high-throughput screening assay that identifies functional monoclonal antibodies
(mAbs) against bacterial pathogens using fluorescent microscopy images. In
particular we identify mAbs that promote phagocytosis of bacterium Neisse-
ria gonorrhoeae by macrophages in single-point dilution experiments. In the
preceding chapter, we illustrated the feasibility of conducting high-throughput
compound screening through the use of fluorescent microscopy images and
generative deep learning, enabling the derivation of a score that quantifies
eukaryotic cell viability. In this chapter, we extend and refine this technology to
create an opsono-phagocytosis assay that utilizes confocal microscopy and image
analysis to measure the influence of monoclonal antibodies on the phagocytosis
of Neisseria gonorrhoeae bacteria by macrophages. In particular, we fine-tuned
a Dense Convolutional Network (DenseNet)[78] to classify images of positive
and negative controls, and, as described in Chapter 3, used a simple linear
Support Vector Machine (SVM) to quantify mAbs phagocytosis promoting
activity by the Phagocytic score value. We named the proposed approach,
presented in this chapter, visual opsono-phagocytosis assay (vOPA). Comparing
the vOPA with the conventional protocol based on CFU counting, we observed,
in a concentration-response experiments, that the results for the assays positive
an negative controls were in agreement and that the variability we measured in
EC50 estimation was one order of magnitude lower for the proposed assay. We
have then used the vOPA as high-througput single point dilution "hits" selection
assay to screen 96 human monoclonal antibodies that target N. gonorrhoeae and
rank the best candidate mAbs based on their Phagocytic score. Furthermore,
the flexibility of the staining protocol and the advantage of the deep-learning
approach in utilising weakly labels derived from the experimental protocol,
indicate the potential for expanding the assay to other bacterial species and cell
lines to investigate mAbs against additional bacterial pathogens.
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Figure 4.1: The vOPA schematic representation. (1) N. gonorrhoeae
is engineered to express GFP and mAbs are expressed. Each mAb is then
incubated with the fluorescent N. gonorrhoeae and used to infect differentiated
THP-1. (2) The mAb/bacteria mixture is transferred into a 96-well plate for
fluorescent imaging and used to infect pre-seeded THP-1 cells. Following staining
and fixation, images are acquired with the Opera Phenix microscope and (3)
analysed fine-tuning a CNN model to classify experimental positive and negative
controls. The obtained score is used to quantify the phagocytic activity of cells
in presence or absence of mAbs. Ultimately, the most prominent candidates are
selected. Image created with BioRender.com

4.1 Introduction and motivation

Antimicrobial resistance (AMR) refers to the ability of microorganisms, primarily
bacteria, viruses, fungi, and parasites, to survive exposure to drugs developed to
kill them or limit their growth. As a result of AMR, standard treatments become
less effective, and infections may become harder or impossible to control and
more expensive to treat, thus increasing the risk of spread of disease and death.
AMR is estimated to cause 33,000 deaths annually in the European Union and
European Economic Area, at least 23,000 deaths annually in the United States
[79]. Unfortunately, estimates suggest that AMR could cause 28 million people
to fall into poverty worldwide due to an increase in healthcare costs of up to
US$ 1 trillion globally by 2050 [80].

Addressing AMR involves various approaches. Some potential solutions
include: effective implementation of administration principles and reduction
of unnecessary or excessive uses of antibiotic, employing advanced diagnostic
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tools, and promoting proper sanitation and hygiene, particularly in low-to-
middle income areas, developing new antibiotics and alternative treatments like
monoclonal antibodies. While these methods hold promise, tackling antimicrobial
resistance requires an integrated approach since one solution on its own is
unlikely to adequately mitigate this increasingly pressing public health concern
[81]. Scientists have primarily focused on small-molecule drugs in their attempts
to tackle AMR. However, recently, attention has shifted towards exploring
biological approaches. A particularly effective strategy to fight against AMR
is the identification of natural, human mAbs from patients that survived a
specific infection, accelerating the discovery, reducing the risks of side-effects
and increasing access to the therapy [13]–[15]. Key to this strategy is an
effective high-throughput screening technology, to quickly identify those few, most
potent natural monoclonal antibodies among the many thousands potentially
isolated from each patient. The screening should identify monoclonals for their
ability to confer disease protection. mAbs exert different modes of action
when facing bacterial infections: they can trigger the complement cascade,
induce agglutination of pathogens or, in the presence of specialised immune cells
like macrophages or neutrophils, can enhance their intrinsic opsono-phagocytic
activity [77]. Phagocytosys is defined as cellular uptake of particulates (>0.5
µm) within a plasma-membrane envelope. In particular, antibody mediated
phagocytosis is the process by which a pathogen is marked for ingestion and
eliminated by a phagocyte. The Fab region of the antibody binds to the antigen,
whereas the Fc region of the antibody binds to an Fc receptor on the phagocyte,
facilitating phagocytosis [82].

Unfortunately, currently available phagocytosis assays have limitations; they
are low-throughput, requiring two-days procedures to screen mAbs [83], suffer
from significant variability as most cellular assays, and require a unique setup
specific to each pathogen species, which cannot be generalised across different
microbes. Here we demonstrate that high-throughput fluorescent microscopy
and deep-learning based image analysis enable the screening of a large number of
candidates mAbs for opsonophagocytosis, reducing the variability of cell-based
assay and potentially allowing the proposed set-up to be reused for other cell lines
and other pathogens. To exemplify its effectiveness we focus on N. gonorrhoeae,
the causative agent of Gonorrhea, the sexually transmitted infection that affects
more than 100 million people annually, has remained a major global public
health and AMR concern [84]. In fact, no vaccine against N. gonorrhoeae is
currently available, and vaccine development has proven complicated in the past
few decades [85]. Moreover, N. gonorrhoeae, has seen an alarmingly high number
of resistant cases being reported [86], [87]. To limit the rising threat posed by
N. gonorrhoea as an AMR pathogen, in spite of the lack of licensed vaccine
for Gonorrhea prevention, we developed a functional high-throughput screening
assay for the evaluation of antibody activity in host-pathogen interaction setting.
In fact, the opsono-phagocytosis-promoting activity is considered as a major
predictor of antibody protective efficacy [88] and an important feature of a
candidate mAb for therapeutic use. Recently, the interactions of N. gonorrhoeae
with two human monocytic cell lines, THP-1 and U937, differentiated into
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Bacteria Cellular DNA

External bacteria Plasma membrane

Figure 4.2: The vOPA assay in THP-1 cells infected with N.gonorrhoeae.
The small pictures display the four channels imaged in the vOPA assay protocol as
imaged using the Opera Phanix microscope: sfGFP, expressed by N.gonorrhoeae
(green), DAPI, to stain the nuclei and bacterial DNA, (blue), Alexa 568
conjugated secondary antibody for immunostaining (orange) and CellMask
Deep Red, to stain cell membranes, (red). Scale bar is 50 µm.

macrophages, were reported in [89]. Authors described the bacterial survival
assays they used to quantify the number of macrophage internalised bacteria,
released after cell lysis. The described approach, based on colony forming
units (CFU) counts, was used to describe the interaction of the bacterium and
macrophages alone, without the evaluation of compounds able to modulate that
interaction.

In this chapter we adapt the methodology developed in [89] to quantify
the phagocytosis promoting activity of mAbs against Neisseria gonorrhoeae.
The adapted methodology relies on confocal microscopy and image analysis to
overcome the long incubation time otherwise necessary using the CFU counting
assay.

4.2 Methods

4.2.1 High throughput mAbs expression using TAP

To produce the anti-Neisseria gonorrhoeae monoclonal antibody, expression
vectors containing the genes for its heavy and light chains were utilised in
Transcriptionally Active Polymerase Chain Reaction (TAP)[46] to generate
linear DNA fragments. These fragments were subsequently employed to
conduct transient transfections of Expi293F cells, ensuring that there was a
1:2 ratio between the heavy and light chains. This procedure continued for six
days, undergoing incubation at 37°C with 8% CO2, and consistent with the
manufacturer’s guidelines(Thermo Fisher Scientific, US). Following completion
of the transfection period, the cultures were subject to centrifugation at 4,500 x g
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Table 4.1: vOPA infection condition set-up. Median and standard deviation
for the number of internalised bacteria per infected cells for the 2C7 and Unrelated
mAbs are reported.

MOI Infection time mAb Median Std
20 30 min 2C7 2.84 0.22

Unrelated 1.0 0.18
20 1 h 2C7 4.04 0.52

Unrelated 1.85 0.18
40 30 min 2C7 4.7 0.44

Unrelated 1.38 0.19
40 1 h 2C7 7.36 0.72

Unrelated 2.83 0.23

and kept static for 15 minutes at 4°C, allowing them to settle. Post-centrifugation,
only the cellular supernatants were retained and saved for later use.

4.2.2 Conventional mAbs expression and purification procedure

To achieve conventional medium-level expression and purification of the anti-
Neisseria gonorrhoeae monoclonal antibody, the necessary heavy and light chain
genetic sequences were inserted into expression vectors which were then used
in transient transfection of Expi293F cells within a final volume of 60 ml. The
subsequent antibody molecules were purified by affinity chromatography on
protein G columns performed on an AKTA-Go system supplied by GE Healthcare
Life Sciences.

4.2.3 vOPA experimental protocol

For our protocol, we engineered the N.gonorrhoeae strain FA1090 to constitutively
express fluorescent protein GFP (FA1090::sfGFP). Then the THP-1 cells were
seeded and differentiated into 96-well microplates for confocal imaging. After 5
days of differentiation, dTHP-1 cells were infected with FA1090::sfGFP grown
to mid- logarithmic phase and pre-incubated with mAb supernatants diluted 1:5
in RPMI medium. After 30 minutes of pre-incubation, the mixture composed
of mAbs and bacteria was added onto dTHP-1. To study in-vitro the antibody
mediated enhancement of phagocytosis two crucial factors must be meticulously
calibrated: the number of bacteria used to infect the target cell line and the
time of infection. The number of bacteria is conventionally quantified by the
multiplicity of infection (MOI) as the ratio of the number of bacteria to the
number of target cells present in the well. To select the best conditions and
observe antibody mediated phagocytosis in our set-up, we tested different MOIs,
20 and 40, and time of infections, 30 minutes and 1 hour.

According to the data shown in Figure 4.3 and Table 4.1, we found that MOI
of 40 and duration of infection of 30 minutes yielded the optimal conditions
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Figure 4.3: Evaluation of two mAbs activity at different MOIs and times
of infections. The graphs reports the number of internal bacteria per infected
cell for the conditions MOI 20 and MOI 40, and at two different infection time,
30 minutes and 1-hour. The 2C7 and the unrelated monoclonal were purified and
tested at a concentration of 10µg/ml. For each condition 9 technical replicates
were performed.

needed for this assay setup. At these settings, we could effectively amplify assay
range and keep variability levels low enough without disrupting normal biological
variations in uninfected test samples.

4.2.4 Gentamicin protection assay (classical OPA assay)

THP-1 cells were seeded in 96-well tissue culture plates at 40,000 cells per well
and subjected to the differentiation and infection protocol as described above.
For determining the amount of pathogens internalised by the cells, extracellular
bacteria were washed away three times with RPMI medium and gentamicin (100
µg/ml) was added for 30 minutes to kill adherent bacteria. Subsequent to the
elimination of surface bound bacteria, the cells were lysed with 0.5% saponin
for 5 minutes, permitting release of intra-cellular microbes. Dilutions from
this suspended mixture were dispersed onto solid media (GC agar) to facilitate
visualisation and counting of colony forming units, with incubation at optimal
temperature ranges for subsequent 24 hours - 48 hours prior to enumerating
counts.

4.2.5 vOPA stainings

In Figure 4.2 we show a representative example of the images we generated for
the vOPA assay. In particular we used four fluorescent stainings to identify the
whole bacteria population, the internalised bacteria, cellular DNA and plasma
membrane. Extracellular FA1090::sfGFP bacteria were stained with primary
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antibody 2C7, at final concentration of 3 mg/ml , for 1h at RT, followed by
secondary goat anti- Human IgG Alexa Fluor 568 (Thermo Fisher, A-21090)
diluted 1:2,000 at RT for 30 minutes. CellMaskTM Deep Red stain (Invitrogen)
was used to stain the cell membrane, providing a means to delineate the cell
boundary, and DAPI to stain cell nuclei and bacterial DNA.

4.2.6 Confocal microscopy image acquisition

96-well plates were imaged with the microscope Opera Phenix High-Content
Screening System (PerkinElmer) using the 40x water objective (numerical
aperture 1.1). In each well, 16 images were acquired in different locations
to account for minor variability in the sample. Moreover in each location, 13
images on the vertical dimension were acquired to form a z-stack.

4.2.7 vOPA image dataset

The vOPA image dataset consists of 9.048 4-channel images generated in 13
different experiments performed in 96-well imaging plates. A single dataset’s
image corresponds to the maximum projection performed over the 13 images
acquired on the vertical dimension. The raw images, with full resolution and
original colour depth (one TIFF file per channel, 16 bit grayscale, lossless
compression) and shape of 2160x2160 pixels (px), were transformed into 8 bit
images of size 512x512 px to be processed with the Convolutional neural network
(CNN) and derive the corresponding Phagocytic score, as described in the next
section.

4.2.8 Deep Learning model and phagocytic score

We downloaded and fine-tuned a DenseNet161[78] model from the pytorch[90]
hub repository. The fine-tuning was performed as a binary classification task on
the images acquired at the Opera Phenix, where the two classes were represented
by cropped images from positive and negative controls respectively. To process
the 4-channels vOPA images, we added a convolutional layer at the top of
the pre-trained model. As optimizer we used SGD with 0.001 learning-rate
and 0.9 momentum. We trained the model for 15 epochs. No hyperparameter
optimization was performed. For the training we used 1 NVIDIA A100 40GB
GPU. To increase the amount of training data for our DenseNet model, we
employed a data augmentation technique that involves cropping the input image.
Specifically, we used a patch size of one half and a stride of one fourth of the input
image respectively, generating with this process nine cropped images. These
augmented images were then used to fine-tune the model. After training we
exploited a simple soft margin linear SVM on top of the DenseNet last layer
embeddings to derive a two-dimensional space to capture the differences between
mAbs promoting phagocytosis and unrelated mAbs. The direction orthogonal
with respect to the separating hyperplane fitted by the linear SVM was named
Phagocytic score (Figure 4.4).
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Figure 4.4: Phagocytic score using linear SVM on networks embedding.
1. Derive the separating direction (dashed line) of a binary classifier tasked to
recognise positive and negative controls. 2. Compute the orthogonal direction
with respect to the separating direction. This results in being the Phagocytic
direction (red dashed line). 3. Testing a new monoclonal, the blue dot, we obtain
the Phagocytic score measuring the orthogonal projection on the phagocytic
direction.

4.2.9 Harmony software image analysis

We used the Harmony High-Content Imaging and Analysis Software version 4.9
to quantify the number of internalised bacteria per infected cells used to set-up
the vOPA infection conditions. In a first phase, dTHP-1 cells were detected by
analysing the combined signal of DAPI (nuclei) and CellMask (membrane) In a
second phase, bacteria were localised and segmented by combining the DAPI
and GFP signals. Bacteria that overlapped with the image regions segmented as
cells were identified as infecting bacteria and further distinguished as internalised
if they were negative for the immunostaining and adherent if they were positive
for the immunostaining used in the vOPA staining protocol. Ultimately, cells
that contain infecting bacteria were considered as infected cells.

4.3 Results

4.3.1 The phagocitic score separates positive and negative
controls with TAP-expressed mAbs, achieving acceptable Z’
assay value

In order to assess the ability of the vOPA phagocitic score defined in Section 4.2.8
to distinguish positive and negative control samples, we tested 18 replicates for
three conditions, the two controls (2C7 and unrelated mAb) and the condition
without any mAb (no-mAb), to account for possible variability of the mAbs
in TAP expression procedure. Figure 4.5 reports on the y axis the value of
the Phagocytic score that clearly separetes the positive 2C7, in red, from the
unrelated mAb and the no mAb conditions, in blue and gray respectively. The
corresponding statistical difference was quantified using the Student’s t-test,
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the p-values significance are reported on the corresponding boxes, where ∗ ∗ ∗∗
represent a p-value < 0.001 and ns a non-statistically significant difference. As
no statistical difference was observed for the Unrelated and No mAb conditions,
the vOPA resulted to be a specific assay to quantify antibody mediated N.
gonorrhoeae phagocytosis in THP-1 cell line.

Figure 4.5: Control separability for non-purified mAbs. 2C7, Unrelated
mAbs and No mAb condition were tested in 18 technical replicates. The
phagocytic score is reported on the x-axis. On the graph the unpaired non-
parametric t-test (Mann-Whitney test) p-value significance are reported.

Furthermore, we quantified the validity of vOPA as single point screening
assay, by computing the Signal window and Z’ performance measures. In
Table 4.2, we report measures results and corresponding acceptance ranges, as
described in [91]. We observed that, the measured values for the assay Signal
window and Z’ were in the recommended and acceptable range respectively,
demonstrating that vOPA can be used to screen monoclonal antibodies for their
phagocytosis-promoting activity in single point dilution experiments.

4.3.2 The vOPA Phagocytic score is linearly correlated with the
cOPA CFU counts

To further explore a biological interpretation of the Phagocytic score, in Figure
4.6, we show that the score has a linear correlation with the phagocytosis assay
based on CFU counting in dose-dependent experiment. In particular, we quantify
the 2C7 phagocytosis-promoting activity in two dose-dependent experiments. In
one case we quantify the mAbs phagocytic effect by the vOPA and in the other
case by the classic OPA (cOPA), described in Method section 4.2.4 The 2C7
mAb was expressed, purified and starting from a concentration of 50µg/ml was
diluted 1:10 for 5 steps. We verified that the vOPA Phagocytic score is linearly
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Table 4.2: Controls separability performance measures. Phagocytic score
separation measured between positive (2C7) and negative (Unrelated mAb)
controls.

Assay performance
measures Value Acceptance Range [91]

Signal
window 6.23

Recommended > 2
Acceptable > 1

Unacceptable < 1

Z’ factor 0.3
Excellent > 0.5

Acceptable 0 < Z’ < 0.5
Unacceptable < 0

Signal 0.63
2C7 std 0.09

Unrelated mAb std 0.06

Figure 4.6: Linear correlation for the 2C7 values measured in vOPA
and cOPA. The values in the two assay result to be linearly correlated with a
significant p-value of p=0.007.

correlated with the cOPA CFU count by computing the Pearson correlation
coefficient of the 2C7 values. We obtained an R squared value of 0.866 with a
significant p-value of 0.007.

4.3.3 The phagocytic score of the vOPA assay show the same
dose-response trend of the cOPA CFU counts

To further conferm the Phagocytic score interpretability as an opsonization assay,
we compare 2C7 and Unrelated mAb functionality in vOPA and cOPA. Both
the 2C7 and the unrelated antibody were tested at a starting concentration of
50 µg/ml and diluted 1:10 for 5 steps. The results are reported in Figure 4.7. We
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Figure 4.7: 2C7 and unrelated mAb dose response in vOPA and cOPA.
The two antibodies were tested in a 10-fold dilutions experiment. The vOPA
read-out is the phagocytic score obtained with the CNN approach described in
the method section(left y-axis), the cOPA read-out is the number of internalised
bacteria (right y-axis). Concentrations are shown on the x-axis.

can appreciate that the 2C7 and the unrelated mAb displayed similar trends in
cOPA, red lines, and vOPA, blue lines. In particular, a dose-dependent promotion
of opsono-phagocytosis by 2C7 and no effect mediated by the unrelated antibody
were observed.

4.3.4 The vOPA assay with positive control mAb shows ten times
higher repeatability than cOPA

To get an estimate of the repeatability of our assay, we evaluated the variability
of EC 50 computing the coefficient of variation. By fitting a three-parameter
sigmoidal dose-response function to the data shown in Figure 4.7, we obtained the
potency (EC50) of the 2C7 measured by the two assays. We report the complete
results in Table 4.3. We observe a difference in the EC50 estimate in two assay,
in particular vOPA estimate a lower EC50. However, considering the confidence
intervals obtained for the estimates, the EC50 values for the two assays are
largely compatible. It is worth noting that the confidence intervals associated
with determining EC50 values through cOPA procedures appear substantially
broader than their counterparts obtained employing vOPA approaches.
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Table 4.3: EC50 estimation and precision measures for vOPA and
cOPA. The EC50 for the two assay has been derived by fitting a three-parameter
sigmoidal dose-response function to the 2C7 data. Based on EC50 confidence
intervals we derived the coefficient of variation for the 2C7 EC50 in the two
assays as a measure of precision.

Measure 2C7 (vOPA) 2C7 (cOPA)
EC50 Coefficient
of variation 2.31% 20.0%

EC50 0.06 µg/ml 2.031 µg/ml
EC50 95% CI min 0.025 µg/ml 0.032 µg/ml
EC50 95% CI max 0.165 µg/ml 40.66 µg/ml

4.3.5 High-throughput screening of 96 TAP-expressed mAbs
shows phagocytic score values spanning uniformly the
assay range

We then leveraged the high-throughput image acquisition capability of the Opera
Phenix system to screen an array of human mAbs for their ability to promote
phagocytic activity against N. gonorrhoeae. In this experiment, the mAbs,
expressed as recombinant protein, were not further purified after supernatant
collection, , according to the high-throughput procedure described in 4.2.1. Data
generation required five hours, one for sample preparation and infection, three
for the image acquisition and one for the analysis. An array of 96 human
recombinant anti-N. gonorrhoeae mAbs of unknown concentration was tested,
at single dilution, to select positive hits. In Figure 4.8, we report the vOPA
Phagocytic score for the 96 mAbs and 6 replicates of the positive and negative
controls. Based on the assay signal (Table 4.2), we separated the Phagocytic
score range in three intervals of equal amplitude representing low-, moderate-
and high-phagocytosis-promoting monoclonals. Out of 96 tested mAbs, 51%
were low, 38% moderate and only the 11% of the tested mAbs showed high-
phagocytosis-promoting activity.

4.3.6 Dose-response curves from purified mAbs support the use
of vOPA as a high-throughput screening assay

Based on the Phagocytic score we selected two candidates mAbs, one from the
high-phagocytosis promoting group, and one from the moderate phagocytosis-
promoting group. Both mAbs were expressed as purified proteins and tested
in a 10-fold dilution experiment starting from a concentration of 5 µg/ml to
confirm their activity. In Figure 4.9 we report the Phagocytic score value for
the high and moderate phagocytosis promoting mabs as red and green dots
respectivly, the 2C7 and the unrelated mAb Phagocytic score values are reported
as red and blue squares respectively. We observed a concentration-dependent
effect for the two selected mAbs and the 2C7. For the two selected mAbs
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Figure 4.8: Screening of 96 mAbs using vOPA. Each mAb was tested at
one single dilution, on the y-axis the corresponding phagocytic score is reported.
Colours represent groups of phagocytosis-promoting activity, in white no/low
activity, in green moderate activity and in red high phagocytosis promoting
activity respectively. The groups where defined based on phagocytic score range
reported in table 4.2. The negative (Unrelated mAb) and positive (2C7) controls
phagocytic scores, reported on the right part of the graph, are coloured according
to their phagocytosis-promoting activity.

Table 4.4: EC50 and Span values for 2C7, high- and moderate-
phagocytosis promoting mAbs.

2C7 High Moderate
EC50 0.049 µg/ml 0.041 µg/ml 0.029 µg/ml
Span 0.905 0.757 0.430

and the 2C7, a 3-parameter sigmoidal dose-response function was fitted to the
Phacocytic score values, reported on the y-axis to quantify the difference in the
phagocytic-promoting activity in terms of EC50 and Span. The values of EC50
and spans, reported in Table 4.4 supports the groups defined in Section 4.3.5
and Figure 4.8.

4.3.7 vOPA can be used in combination with TAP expression to
screen mAbs concentrated as low as 0.5 mug/ml

Figure 4.9 shows that the Phagocytic score is capable of distinguishing active
from unrelated mabs, as well as moderate from high-phagocytosis-promoting
mAbs, for concentrations as low as 0.05 µg/ml. For lower concentrations, our
score may not be able to discriminate. Figure 4.10 shows that 88 (92%) of
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Figure 4.9: Candidate mAbs dose response evaluation. 2C7, high- and
moderate-phagocytosis promoting mAbs were tested in 1:10 serial dilution
experiment, from 5µg/ml for 5 steps. A 3-parameter sigmoidal dose-response
function was fitted to the Phacocytic score values, reported on the y-axis. The
resulting EC50 and Span is reported in table 4.4.

the TAPs tested had a concentration higher than 0.05 µg/ml, supporting the
use of the Phagocytic score as a high-throughput screening indicator of human
monoclonal antibody mediated phagocytosis activity.

Figure 4.10: Concentration quantification for the 96 anti-gonococcus
mAbs. The mAbs Phagocytic score is reported on x-axis, and the concentration,
measured via quantitative ELISA is reported on the y-axis.
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4.4 Discussion

4.4.1 Using high-througput microscopy is possible to reduce the
conventional procedure from two days to 5 hours

In this chapter we presented the development and validation of the vOPA, an
assay to quantify the opsonophagocytosis-promoting activity of monoclonal
antibodies against N. gonorrhoeae from fluorescent images. The staining panel,
the infection protocol, the image acquisition strategy and the image analysis
pipeline were successfully optimised and used for single point dilution screening
of human monoclonal antibodies in 96-well format. Using vOPA in combination
with an automated confocal microscopy platform, i.e. Opera Phenix, is possible
to prepare a 96-well plate of mAbs and acquire the images in less than four
hours. We do not have a direct comparison for the CFU based assay (cOPA),
in fact we used the cOPA for two monoclonals, the 2C7 and the Unrelated
mAb. However, CFU counting is not a one-day procedure, in fact, in case of
N. gonorrhoeae, the colonies were counted after 24–48 h of incubation time. In
this sense, the vOPA is a faster procedure with respect to the conventional CFU
counting approach, resulting suitable for high-throughput single point evaluation
of human monoclonal antibodies.

4.4.2 The phagocytic score is derived with deep learning and
information from the experimental protocol, resulting in an
analysis package easy to adapt to new pathogens

For the vOPA we have developed two analysis approaches, one based on
segmentation building blocks, available in the Harmony software package, and a
second based on fine-tuning a convolutional neural network. Both demonstrated
acceptable control separability, as shown in Figure 4.3 and 4.5 respectively.
However, the set-up of the segmentation pipeline requires careful parameter
setting and adjustment, validated by visual evaluation from the human-user.
This strategy is heavily dependent on the image quality and even small sample
impurities can alter the segmentation step of bacteria. On the other hand, to
fine tune the CNN we only employ the information reported in the experimental
protocol, i.e. the label of the sample tested in the well and corresponding
concentration, if available. Those two information were used to define the label
used to fine-tune the Densenet and train the SVM model used to derive the
Phagocytic score. The two analysis approaches can serve also different needs,
the deep-learning is more flexible and require less human intervention to obtain
a reliable score, however has to be performed with a sufficient number of images
at disposal. The segmentation based, if not accurately tuned, would result in a
raw estimate of the phagocytosis but can be suitable to visually evaluate images
during the image generation process, and early assessing issues during image
generation.

Overall, the vOPA assay could be the starting point for image-based high-
throughput approaches to investigate the activity of mAbs against bacteria
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pathogens. Furthemore, given the feasibility of the staining protocol proposed,
and the flexibility of the deep-learning analysis approach, we argue that the
assay can be easily extended to other bacterial species and thus identify new
mAbs against other bacterial pathogens.

4.4.3 Limitations and further developments

The proposed novel vOPA assay possesses significant biological interpretable
features. We first confirmed the previously documented enhancement of pathogen
uptake by the 2C7 monoclonal antibody. Furthermore, a positive association
between the derived Phagocytic score and the CFU counts supports the reliability
of this assay. While this discovery represents substantial progress, expanding
upon it by investigating nonlinear relationships or variations unaccounted for in
the present analysis may improve future applications. In addition, we obtained
the Phagocytic score using all the data from the experiments detailed in Section
4.2.7. Investigation of the contributions made by individual fluorescent channels
to the final Phagocytic score could aid our comprehension of the functions played
by the stainings utilized within the assay. Additionally, results from such research
could point towards ways to optimise or reduce the complexity of the labelling
process.
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Chapter 5

Conclusions
This thesis discusses two main topics. Firstly, the genetic features of a collection of
monoclonal antibodies isolated from convalescent patience and able to neutralise
the SARS-CoV-2 virus in vitro are described. Secondly, two computational
approaches for extracting important features from biological images are presented.

In the second chapter we described a systematic genetic characterisation of
human monoclonal antibodies against SARS-CoV-2. Most potently neutralizing
antibodies are extremely rare and recognize the RBD, followed in potency by
antibodies recognizing the S1 domain, the trimeric structure and the S2 subunit.
We and others found that the antibody repertoire of convalescent patients is
mostly germline-like. A potential issue associated with the use of human mAbs
against viral pathogens is the potential selection of escape mutants. This is usually
addressed by using a combination of antibodies directed against non-overlapping
epitopes. While this is an ultimate clear solution, it increases the complexity
of development, costs of production, drug availability, and affordability. In our
case, we believe that selection of escape mutants upon treatment with a single
mAb may be quite difficult as the SARS-CoV-2 RNA-dependent polymerase
possesses a proofreading machinery, and the epitope recognized by the antibodies
herein described overlaps with the region necessary to bind the hACE2 receptor.
In this regard, it took more than 70 days of continuous co-culture of the virus
in presence of the antibodies before we were able to detect the first emergence
of escape mutants of the WT SARS-CoV-2 (data not shown). The nucleotide
and amino acidic sequences of all SARS-CoV-2-neutralising antibodies were
deposited in the Italian patent applications n. 102020000015754 filed on June
30th 2020 and 102020000018955 filed on August 3rd 2020.

In the third chapter we presented a self-supervised representation learning
method for large scale drug screening initiative. If, in general, SSRL seems a
promising solution for those scenarios suffering a paucity of labelled data, the
recent work by Wallace et al.[32] has shown how traditional SSRL featurization
methodologies fail in several biological downstream tasks. This is mainly imputed
on the difficulty in defining a pretext task which can be exploited by traditional
contrastive SSRL. On top of these considerations, we have developed GAN-DL,
a fully SSRL method leveraging the representation learning acquired by the
discriminator of a StyleGAN2 model. Our GAN-DL does not require any task-
specific label to obtain the image embedding, as the StyleGAN2 backbone is
trained on a generative task based on the competition of a generator and of
a discriminator, that is completely independent on the downstream task. By
doing so, we address the problem of lack of annotated data. We demonstrated
the goodness of our featurization methodology in two downstream supervised
tasks: the classification of different cellular models (HRCE versus VERO cells)
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and the categorisation of positive versus negative control groups in the RxRx19a
benchmark. For this purpose, we trained a simple linear SVM on top of the
self-supervised GAN-DL embedding, which does not require a large number of
annotated data. The satisfactory results obtained in all the presented scenarios
on the one hand demonstrate the goodness and generalisation capability of our
approach, on the other hand legitimise the future exploitation of generative
SSRL even in other biological applications, where the collection of annotated
images is typically a cumbersome task.

In the fourth chapter we presented the development and validation of
the vOPA, an assay to quantify the opsonophagocytosis-promoting activity
of monoclonal antibodies against N. gonorrhoeae from fluorescent images. The
staining panel, the infection protocol, the image acquisition strategy and the
image analysis pipeline were successfully optimised and used for single point
dilution screening of human monoclonal antibodies in 96-well format. The image
analysis consist in fine-tuning a convolutional neural network on the image of
positive and negative controls, the 2C7 and the Unrelated mAbs respectively.
Therefore, to fine tune the CNN we only employ the information reported in
the experimental protocol, i.e. the label of the sample tested in the well and
corresponding concentration, if available. Those two information were used to
define the label used to fine-tune the Densenet and train the SVM model used to
derive the Phagocytic score. As a result, the deep learning based score is flexible
and require very limited human intervention to obtain a reliable Phagocytic
score. Overall, the vOPA assay could be the starting point for image-based
high-throughput approaches to investigate the activity of mAbs against bacteria
pathogens. Furthemore, given the feasibility of the staining protocol proposed,
and the flexibility of the deep-learning analysis approach, we argue that the
assay can be easily extended to other bacterial species and thus identify new
mAbs against other bacterial pathogens.
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