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A B S T R A C T

Convolutional neural networks have been widely successful in various
computer vision tasks. However, they lack an explicit representation of
entities, and the loss of spatial information hinders their robustness to
distributional shifts, such as object pose variations. Capsule networks
were introduced to address these limitations, learning object-centric
representations that are more robust, pose-aware, and interpretable.
They organize neurons into groups called capsules, where each capsule
encodes the instantiation parameters of an object or one of its parts.
Moreover, a routing algorithm connects capsules in different layers,
thereby capturing hierarchical part-whole relationships in the data.

This thesis investigates the intriguing aspects of capsule networks
and focuses on three key questions to unlock their full potential. First,
we explore the effectiveness of the routing algorithm, particularly in
small-sized networks. We propose a novel method that anneals the
number of routing iterations during training, enhancing performance
in architectures with fewer parameters.

Secondly, we investigate methods to extract more effective first-
layer capsules, also known as primary capsules. By exploiting pruned
backbones, we aim to improve computational efficiency by reducing
the number of capsules while achieving high generalization. This
approach reduces capsule networks memory requirements and com-
putational effort.

Third, we delve into the exploration of part-relationship learning in
capsule networks. Through extensive research, we demonstrate that
capsules with low entropy can extract more concise and discriminative
part-whole relationships compared to traditional capsule networks,
even with reasonable network sizes.

Lastly, we showcase how capsule networks can be utilized in real-
world applications, including autonomous localization of unmanned
aerial vehicles, quaternion-based rotations prediction in synthetic
datasets, and lung nodule segmentation in biomedical imaging.

The findings presented in this thesis contribute to a deeper under-
standing of capsule networks and highlight their potential to address
complex computer vision challenges.
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1
I N T R O D U C T I O N

Convolutional networks lose the spatial relationships between their
parts because of max pooling layers, which progressively drop spatial
information [1]. Furthermore, convolutional networks do not have an
explicit representation of an entity. Capsule networks were introduced
by Sabour et al. [1] to overcome the shortcomings of convolutional
networks. Capsule networks group neurons into capsules that encode
objects and objects-parts of the entities in the input images. There-
fore, they learn hierarchical structures from data. Thanks to a routing
algorithm that connects capsules in different layers, we can carve
out a parse tree composed of part-object relationships from the net-
work. They are also more robust to viewpoint changes and affine
transformations than traditional convolutional networks.

Despite their potential advantages, capsule networks have not yet
seen widespread adoption in the industry or research community com-
pared to traditional convolutional networks or recently introduced
vision transformers [2, 3]. The lack of standardized architectures and
pre-trained models might be a contributing factor. However, contin-
ued research and advancements in capsule networks are essential to
harness their potential and address their limitations fully.

In this thesis, we delve into the intriguing aspects of capsule net-
works, focusing on three key questions that aim to unlock their full
potential:

• Does the routing algorithm really improve the performance of capsule
networks?

• How can capsule networks learn effective low-level part descriptions?

• Can capsules achieve high generalization ability even when not ac-
counting for the clutter?

The first question addressed in this thesis revolves around the ef-
fectiveness of the routing algorithm. While previous research has
demonstrated the robustness of capsule networks in various tasks,
questions remain regarding the necessity of the routing-by-agreement
mechanism, especially in small-sized networks. Through rigorous ex-
perimentation, we affirm the importance of the routing algorithm in
small-sized networks. We propose a novel method that anneals the
number of routing iterations during training, striking better perfor-
mance, especially for architectures with fewer parameters.

The second question explores methods to extract better first-layer
capsules, often referred to as primary capsules. Convolutional layers

1
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without pooling have been a common choice in capsule networks,
but they might lead to information loss and limited feature repre-
sentation. To address this concern, we investigate the exploitation
of pruned backbones. Promoting sparse topologies, for example, al-
lows the deployment of deep neural networks models on embedded,
resource-constrained devices. We explore sparsity besides capsule
representations to improve their computational efficiency by reduc-
ing the number of capsules. By leveraging this approach, we show
how pruning with capsule network achieves high generalization with
less memory requirements, computational effort, and inference and
training time.

To answer the third question, we delve into the exploration of
part-relationship learning in capsule networks. Understanding how
capsules capture part-whole relationships is crucial in advancing our
comprehension of capsule network dynamics. In this research, we
demonstrate that capsules with low entropy hold the potential to
extract more succinct and more discriminative part-relationships than
traditional capsule networks, even with reasonable network sizes.
These findings shed light on the underlying mechanisms of part-aware
representations and pave the way for more interpretable and effective
capsule networks.

This thesis will focus on answering the previous questions, also
showing how we can exploit capsule networks ability to capture spatial
relationships between features in applications such as autonomous
localization and biomedical imaging.

This thesis is organized as follows:

• in Part i we deepen the limitations of convolutional networks,
providing an overview of the fundamentals on capsule networks.

• in Part ii we tackle the above open questions proposing three
methods: routing annealing, efficient capsule networks with
pruned backbones, and routing entropy minimization.

• in Part iii we show how capsule networks can be applied to more
difficult tasks: localization of autonomous unmanned aerial vehi-
cles, quaternion-based rotations prediction in synthetic datasets,
and segmentation of lung nodules on medical images.



Part I

L E A R N I N G W I T H C A P S U L E N E T W O R K S

This part discusses the drawbacks of convolutional neural
networks in image and object recognition, such as the use
of pooling layers, which can lead to the loss of spatial
relationships between objects that reduce the robustness
of a model to novel viewpoints and affine transformations
of the input. Then we introduce capsule networks, a novel
deep learning architecture proposed by Hinton, which
attempts to solve the problems with these state-of-the-art
methods grouping neurons into vectors called capsules.



2
T H E L I M I TAT I O N S O F C O N V O L U T I O N A L
N E T W O R K S

CNNs have been remarkably successful in the last few years and they
outperform other methods on object recognition tasks. Their main
characteristics are:

1. They use many learned feature detectors with different receptive
fields.

2. Different types of feature detectors are replicated across space.

3. Higher-level feature detector fields have bigger spatial dimen-
sions.

4. Convolutional layers are interleaved with pooling layers that
downsample the input. They combine the outputs of nearby
feature detectors neurons of the same type.

Replicated feature detectors, inspired by the human vision system,
allow recognition of similar textures, shapes and objects in different
locations in the image. Pooling layers give a small amount of transla-
tion invariance at each level and reduce the number of neurons to the
next feature extraction layer. Therefore, CNNs learn multiple types of
features with bigger spatial domains.

However, Hinton et al. [4] argue that pooling is a very inefficient
way of learning. The four arguments against pooling are:

1. It does not fit the psychological reality of part-whole hierarchies
and coordinate frames in human vision.

2. It is better to ask for invariance in the weights and equivariance
in the activities.

3. It fails to use the underlying linear manifold that handles natural
image changes.

4. Pooling is a primitive way to route information to the next layers.

We will deepen these arguments in the following sections.

2.1 coordinate frames

According to the recognition-by-components theory illustrated by Bie-
derman [5], the “preferred” mode of human objects recognition is
to separate them into simple 3D shapes, called geons (blocks, cylin-
ders, wedges, and cones), which are the parts that compose an object.

4
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Biederman [5] suggested that geons can be assembled in various ar-
rangements to form a virtually unlimited number of objects, as shown
in Figure 2.1. Additionally, Hinton [6] presented mental imagery tasks

ObjectsGeons

Figure 2.1: Different arrangements of the same components can produce
different objects.

and perceptual demonstrations to illustrate the involvement of struc-
tural descriptions in the imagination and perception of 3D spatial
structures. These descriptions are hierarchically organized: complex
objects are assigned hierarchical structural descriptions by parsing
into parts, each with a local system of significant directions.

Psychological evidence shows that our visual systems impose co-
ordinate frames for shape recognition [6–9]. Figure 2.2 shows how
coordinate frames are a fundamental aspect of human perception. We
use as an example the rabbit–duck illusion, the famous ambiguous
drawing of the German humor magazine Fliegende Blätter (1892), in
which a rabbit or a duck can be seen. The percept of them is utterly
different depending on which way they are seen. We can explain how
it is possible that people can see both animals using coordinate frames.
So, with the additional information that the front of the animal points
from the center of the page to the left, the reader can recognize a duck.
On the contrary, if the additional information is that the front points
from the center of the page to the right, the reader can now see the
resemblance with a rabbit instead. Therefore, we get a completely
different internal percept depending on what coordinate frame we
impose. However, CNNs recognize objects in a very different way
from people [4]. Given an input image, they have only one percept
for it, and this percept does not depend on imposing different coor-

front

front

Figure 2.2: The same object will look different depending upon the coordi-
nate frame imposed (a duck if the front points to the left, a rabbit
if the front points to the right).
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dinate frames. So CNNs can not explain how the same pixels can be
perceived differently.

These theories lead to the idea that our brain does a sort of inverse
computer graphics transformation to perceive shapes [1]. Computer vi-
sion is inverse computer graphics, so the higher levels of a vision
system should look like the representations used in graphics. Graphics
programs use hierarchical models in which viewpoint invariant matrices
model spatial structure. These matrices represent the transformation
from a coordinate frame (or coordinate system) embedded in the whole
to a coordinate frame embedded in each part. Hierarchical modeling
creates complex real-world objects by combining simple primitive
shapes into more complex aggregate objects. Adopting this represen-
tation, it is easy to compute the relationship between a part and the
retina from the relationship between a whole and the retina. Let’s see
a more formal definition.

We refer to the position and orientation of an object as its pose. Every
time we describe the pose of an object, we must specify its relation
to some coordinate frame. The pose can be described for example
through a rotation and translation transformation, which brings the
object from a reference pose to the observed pose. Affine transformations
are geometric transformations that preserve collinearity; namely, they
map points to points, lines to lines and planes to planes, but not the
origin of the space. An affine transformation f acting on a vector
x can be represented as the composition of a linear transformation
L (a mapping that preserves the operation of addition and scalar
multiplication) and a translation by a vector b:

f (x) = Lx + b. (2.1)

Examples of linear transformations are reflections, scalings, rotations
and shearing. Because matrix multiplication is associative, we can
represent the composition of a sequence of linear transformations more
efficiently with a single matrix. Therefore, we can encapsulate and
store complex transforms in a compact and convenient form. However,
since translation is not a linear transformation, we need a different
representation. We can represent affine transformations in a fully
matrix-multiplication form using homogeneous coordinates to determine
a frame (4D vector [px, py, pz, p0]⊤). With this notation, any point P
can be written uniquely as P = αx px + αy py + αz pz + p0. The standard
convetion sets p0 to 1. Then any sequence of such operations can
be multiplied into a single 4x4 matrix, allowing simple and efficient
processing. The general form of a transformation matrix is defined as:

T =


nx ox ax vx

ny oy ay vy

nz oz az vz

0 0 0 1

 , (2.2)
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Figure 2.3: Example of a scene graph.

where the upper 3x3 matrix defines the linear transformation and the
last column the translation. Note that the columns n, o and a of the
transform matrix specify the coordinates of the x, y and z axes of the
new coordinate frame relative to the old frame; namely, they are unit
vectors. The third column is the origin of the new coordinate frame
concerning the previous frame. For example, in computer graphics
terms, we say that T converts points from the object frame to the camera
frame. The inverse of T takes us from the camera frame to the object
frame. These transformations play an important role in hierarchical
modeling in computer vision. As mentioned before, complex objects
are made up of simpler objects, and simpler objects are made up
of geometric primitives that can be drawn directly. We can think of
these objects as if each has its coordinate system. The components of
a complex scene (for example, an image) can be represented using a
tree-like structure called scene graph (see Figure 2.3). Each node can
contain any number of children and represents either an object or a
part of an object. The root represents the entire scene or the world.
Each connection represents one occurrence of the object in its parent
object, and it can be associated with a transformation.

Therefore, our vision system use rectangular coordinate frames
embedded in objects and it has the notion of a scene graph that
specifies how each node is related to the viewer, namely an hierarchy
of parts exists. CNNs do not use coordinate frames. This is why they
do not explain why we assign intrinsic coordinate frames to objects
and why they have many effects on our perception, namely using a
different frame totally changes the percept.

2.2 invariance and equivariance

CNNs try to make the neural activities invariant to small transforma-
tions thanks to pooling layers (see Figure 2.4). This is motivated by the
fact that in certain tasks, such as image classification, the final label
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needs to be viewpoint invariant. As shown in Figure 2.4, CNNs use
multiple neurons or feature detectors to detect different variants of
the features, namely CNNs realize the face matches a variant that is
rotated 45 degrees.

pooling
face

neuron

pooling
eye

neuron

pooling
nose

neuron

active neuron

Large activation for
 -45° face neuron

Large activation for
 +45° face neuron

-45° rotated input +45° rotated input

pooling
face

neuron

pooling
eye

neuron

pooling
nose

neuron

rotation invariant output

non-active neuron

Figure 2.4: Max-pooling over spatial regions produces invariance to trans-
lation but not to other transformations, such as rotations. If we
pool over the outputs of separately parametrized convolutions,
the features can learn which transformations to become invariant.
Here we show how a CNN can learn rotation invariances thanks
to pooling layers applied to many feature detectors.

However, when we look at a face, we do not merely recognize it,
but we also know its position, orientation, and scale precisely. With
the pooling operation, we loose such information, and it is impossible
to compute precise spatial relationships. In other words, we would
like a model that detects that the face is rotated 45 degrees thanks
to corresponding changes in its activations. This way of learning
representations enables the development of deep learning models that
require fewer trainable parameters and less training data, also avoiding
exhaustive data augmentation with all possible transformations and
viewpoints.

Hinton et al. [4] claim that it is better to aim for equivariant neural
activities: we want representations where changes in viewpoint lead
to corresponding (smoothly) changes in neural activities. There are
some symmetries in our data, for example, in medical images (Fig-
ure 2.5), and building a model that retains the input symmetries in
its outputs can be helpful. Therefore, generating equivariant embed-
dings can help improve the accuracy, robustness, and generalization
of the neural network’s predictions. This is effective for a broader
range of applications, including supervised classification [10, 11] and
segmentation [12, 13] tasks, and self-supervised learning pre-training
procedures [14–16], where sensitivity to transformations is a desirable
property. Furthermore, cognitive scientists discovered that in the in-
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Figure 2.5: Lung nodules in CT scans (left) and histopathology slices (right)
have translation, rotation, reflection, and scaling symmetries.

ferior temporal cortex, the same neurons are selective for edges in
different orientations, scales, positions, colors, textures, or even for
more complex shapes [17, 18]. More formally, we say that a function f
is

• invariant to a transformation T if f (T(x)) = f (x). If the input
changes, the output does not change.

• equivariant to a transformation T if f (T(x)) = T( f (x)). If the
input changes, the output changes in a coordinated way.

Invariance is a special case of equivariance when T is the identity
function. Figure 2.6 shows how rotation invariance and equivariance
work. CNNs are not inherently designed to recognize the same objects
at different rotations without relying on data augmentations and many
feature detectors.

f f

T

f

f T

T

ʺwomanʺ ʺwomanʺ

T

Equivariance

f(T(x)) = T(f(x))
Invariance

f(T(x)) = f(x)

Figure 2.6: Example of invariance and equivariance when T model a +90°
rotation transformation and f is the Sobel filter.

Sabour et al. [1] distinguishes between two types of equivariance.

1. place-coded : A discrete change in a property of a visual
entity leads to a discrete change in which neurons are used for
encoding that visual entity.

2. rate-coded : A real-valued change in a property of a visual
entity leads to a real-valued change in the output of some of



2.3 linear manifold 10

the neurons used for coding that visual entity, but there is no
change in which neurons are used.

In the case of convolution, the particular form of parameter sharing
causes the layer to be naturally place-coded equivariant only to trans-
lation [19]. (see Figure 2.7). A way to achieve rate-coded equivariance

active 
neurons

image

Figure 2.7: Example of place-coded equivariance when translating an image
in a CNN.

is to use a group of neurons that do quite a lot of internal computation
(using non-linear recognition units) and encapsulate the results of this
computation into a low dimensional output [4]. At low levels, there
are small domains, so if a part moves to a very different position,
it will be represented by a different group of neurons (place-coded
equivariance). At higher levels, we have bigger domains so if a part
only moves a small distance, it will be encoded by the same group,
but its activations will change (rate-coded equivariance). Therefore,
we would like that in deep learning models, like in the perceptual
system, viewpoint-invariant knowledge is embedded in the weights,
not in the neural activities, which, in contrast, encode the equivariance
property.

2.3 linear manifold

If humans are presented with an image from a viewpoint different
from the usual one, we do not have difficulty recognizing the object.
Therefore, unlike CNNs, we do not have to see the same object in a
thousand different poses to learn to recognize it. A model is needed
that learns the relationships between the parts so that it is viewpoint
invariant. CNNs with pooling are not built on the manifold hypothesis.
A manifold is a set a of points associated with a neighborhood around
each point and from any given point it locally appears to be an
Euclidean space [19]. According to the manifold hypothesis, valid
high-dimensional input data (such as images) tend to lie near low-
dimensional manifolds. The concept of neighborhood surrounding
each point implies the existence of linear transformations that can be
applied to move on the manifold from one point to a neighboring one.
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For example, in image space we can move on the manifold changing
the lights or rotating the objects.

CNNs do not take advantage of this linear natural manifold that
handles the largest source of variance in images. In order to achieve
high accuracy in shape recognition, they learn different models for dif-
ferent viewpoints and this requires a lot of training data, for example
employing data augmentation methods.

We know that the manifold of images of the same rigid shape
is highly-non linear in the space of pixel intensities. As shown in
Figure 2.8 we want to transform pixel intensities into a space in which
the manifold is globally linear, just like the graphical representation
that uses explicit pose coordinates. Therefore, if we can get pose
coordinates from raw pixels, we can do massive extrapolation of new
poses from this linear manifold by applying linear transformations.
This lead to better generalization over novel viewpoints, training our
network on fewer input data. Generalization is achieved using the

Non-linear pixel manifold Linear latent manifold

f

Figure 2.8: Locally near high-dimensional images lies in a non-linear man-
ifold. If we map their parts into low-dimensional embeddings
in a linear manifold, we can exploit linear transformations as in
computer graphics to generalize on novel viewpoints.

(linear) invariant transformation matrices T described in Section 2.1.
It does not matter how much the pose changes, it is the same matrix
of weights that takes the pose of the part and gives the pose of the
whole, or vice versa. Therefore, with inverse graphics, we mean that
from raw pixels we obtain the poses of the parts (encoded in a bunch
of neurons), we multiply these poses by T to get the pose of the
whole. But can a deep learning model detect objects exploiting this
linear manifold? In Figure 2.9 we can see how a coincidence filtering
mechanism using the linear manifold can detect familiar objects in a
hierarchy of parts. Each part makes a vote for the object: how the pose
of the object will be based on the pose of that part. Then, an object can
be detected by looking for agreement between these votes for its pose
matrix, computed for example with the mean of these predictions.
Finding these agreements is not easy when there are many parts and
objects. We need a more complex operation than pooling over the
lower activations.
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Ti Ti+1

TiTij  

(TiTi,j + Ti+1Ti+1,j)/2 = Tj 

Ti+1Ti+1,j ~~
Tij  Ti+1,j 

Pose of the eye,
i.e. with respect to the camera

(viewpoint equivariant)

Relation between eye and face
(viewpoint invariant)

Pose of the face
based on the pose of the eye

(vote)

Pose of the mouth

Pose of the face,
with respect to the camera

Agreement for the 
pose of the face

Figure 2.9: Coincidence filtering in a two layers hierarchy of parts. Example
of how to compute the pose of a face (i.e., with respect to the
camera) from the poses of an eye and a mouth. There is an
agreement between the predictions of the poses of the eye and
the mouth for the pose of the face, so a face is detected.

2.4 routing

As mentioned in Section 2.1, given an input image, we would like to
carve out a scene graph. Therefore, parts of objects in one layer need
to choose which object in the layer above they belong to. This process
of part-object relationship extraction is called routing. It is based on
the coincidence filtering mechanism when there are many parts and
objects.

CNNs do a basic primitive routing through max-pooling: the pool-
ing unit selects the most active neuron only based on its magnitude.
For complicated shapes, replicating the knowledge across all locations
with a small stride is not a good solution. A good routing principle is
to send the information about a specific part to the object in the layer
above that can account more for it. Routing, as shown in Figure 2.10,
naturally resembles clustering: a higher-layer parent object j (cluster)
comprises many lower-layer child parts predictions. A higher-level
object asks for more feedback from lower-level parts that vote for
its cluster and less feedback from lower-level parts that vote for its
outliers. Finding the best routing is equivalent to parsing the image to
obtain a parse tree where each node has only one parent [1]. The total
weight on the bottom-up inputs supplied by one lower-level part is
1 to satisfy this ”single parent” constraint. The parse tree representa-
tions are similar to scene graphs in computer graphics. So how can
we detect objects without pooling? We can think of this process as an
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Figure 2.10: Routing naturally resembles clustering. Each dot is a lower-level
part prediction for a given higher-layer object. We want to send
more feedback to parts that agree more, namely those in the
same cluster. The final pose of a high-level object will be the
centroid of this cluster.

assembly mechanism that takes as input lower-level parts and outputs
higher-level objects. This process will be deepened in Chapter 3.



3
B A C K G R O U N D O N C A P S U L E N E T W O R K S

3.1 notation

This Section reports the notation used in the following Chapters for
capsule networks. Superscript (ξ) will denote the ξth input example
while superscript [l] will denote the lth capsule layer.

• Ξ input dataset

• x(ξ) ∈ Ξ the ξth input example represented as a feature vector

• Y label dataset

• y(ξ) ∈ Y the corret label for the ξth example

• ŷ(ξ) ∈ Y the predicted label for the ξth example

• Γ label set

• γ ∈ Γ generic label

• T ∈ R4×4 generic affine transformation

• T i,j generic affine transformation between part i and object j

• L number of capsule layers in the network

• Ω[l] set of capsules in layer l ∈ {1, 2, ..., L}

• |Ω[1]| number of primary capsules

• |Ω[L]| number of class capsules

When L = 2, it is possible to denote |Ω[1]| = I and |Ω[L]| = J

• a ∈ R generic activation of a capsule

• u ∈ RD generic D-dimensional feature vector of a capsule

• a[l] generic activation of a capsule in layer l

• u[l] ∈ RD[l]
generic D[l]-dimensional feature vector of a capsule

in layer l

• b[l]i,j log prior probability that capsule i in layer l should be cou-
pled to capsule j in layer l + 1

• U [l] matrix containing all feature vectors of all capsules in layer l

14
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• C[l] matrix containing coupling coefficients between capsules in
layer l and capsules in layer l + 1

• c[l]i,j coupling coefficient between capsule i in layer l and capsule
j in layer l + 1

• c[l](ξ)i,j coupling coefficient between capsule i in layer l and capsule
j in layer l + 1 for the ξth example

• c̃[l]i,j quantized coupling coefficient between capsule i in layer l
and capsule j in layer l + 1

• W [l]
i,j ∈ RD[l]×D[l+1]

trainable weight matrix between a capsule i in
layer l and a capsule j in layer l + 1

• Û [l+1] ∈ R|Ω
[l]|×|Ω[l+1]|×D[l+1]

contains all the votes from capsules
in layer l for capsules in layer l + 1

• û[l+1]
i,j ∈ RD[l+1]

vote of a capsule i in layer l for a capsule j in
layer l + 1

• r[l] number of routing iterations between capsule layers l and
l + 1

When there are only two capsule layers, we can omit the l notation
since i is used for lower-level capsules and j for higher-level capsules.
In this scenario, we also use the index j to denote the j-th class label.
For abuse of notation, we often suppress the index ξ.

3.2 what are capsules

In Chapter 2 we discussed some of the limitations of CNNs, empha-
sizing which are the main characteristics an artificial neural system
should hold to perceive shapes as humans, using less data and param-
eters. We also introduced the notion of parts/children and objects/-
parents when parsing an image and the relationships between them.
How can we encode this idea directly into the architecture of an ANN?
In standard neural networks, there is no explicit notion of an entity.

In 1990, a first attempt to embed structural relations into a general
model of object recognition inspired by inverse computer graphics was
pursued by Zemel et al. [20]. The concept of a capsule was introduced
later in 2011 [4], where a capsule is defined as a group of neurons
within a layer.

Capsules are neurobiologically inspired by the structure of cortical
minicolumns discovered by Mountcastle in 1957, a group of neurons
in the cortex of the brain that encode similar features. Cells in 50 µm
minicolumn all have the same receptive field; adjacent minicolumns
may have different fields. Cortical minicolumns contains from 80 to
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100 neurons and they are organized in macrocolumns. There are nearly
100 minicolumns in a macrocolumn.

1.0

0.5

0.0

Capsule

Probability of 
activation

activation a

features u{
Figure 3.1: Capsule components..

Parts and objects are indeed visual entities. Each capsule learns to
recognize an implicitly defined visual entity over a limited domain
of viewing conditions and deformations [4]. The neural network will
learn what the entities are and how they interact with each other. A
Capsule Network (CapsNet) consists of several layers l of capsules,
where l ∈ {1, 2, ..., L}. The set of capsules in layer l is denoted as Ω[l].
We will refer to parts as lower-layer capsules i ∈ Ω[l] and to objects as
higher-layer capsules j ∈ Ω[l+1]. For classification tasks, the number
|Ω[L]| of capsules in the last layer is equal to |Γ| output labels.

A capsule in layer l is a set of neurons {a[l], u[l]} where

1. a[l] ∈ R is the activation of the capsule. It is the probability that
an object of that type is present;

2. u[l] ∈ RD[l]
is the feature vector of the capsule. It encodes the

instantiation properties of a multi-dimensional entity of the type
that the capsule detects. These properties can include its pose
(position, size, orientation), deformation, velocity, albedo, hue,
texture, etc.

The matrix U l ∈ R|Ω
[l]|×D[l]

contains all D[l]-dimensional capsule vec-
tors in layer l, the vector a[l] holds the corresponding activations.

As mentioned in Section 2.4, assembling parts to build objects can be
divided into two phases: a voting procedure and a routing procedure.
Similarly, CapsNets use this assemble module to compute higher-layer
capsules j from lower-layer capsules i based on coincidence filtering.
Figure 3.2 gives an overview of this module. Most capsule layers in
the literature share the same voting module and they differ mainly on
how the agreements are found in the routing module.

High-dimensional coincidences do not happen by chance: a higher-
order capsule receives multi-dimensional predictions from capsules
in the layer below on how its pose should be and it looks for a tight
cluster of predictions. If it finds such cluster, namely the predictions
are in strong agreement, then it outputs:

1. A high probability a[l+1]
j that an entity of its type exists in its

domain. We say that the low-level capsules of the cluster are in
the right spatial relationship to activate the high-level capsule j.
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Figure 3.2: The assembly module comprises two sub-modules: 1) the votes
module, which computes the object-capsules predictions from the
input part-capsules, and 2) the routing module, which adjusts the
part-object connections based on the agreements between these
votes to compute the output capsules.

2. The center of gravity of the cluster, which represents the in-
stantiation parameters u[l+1]

j ∈ RD[l+1]
of the high-level capsule

j.

The prediction û[l+1]
i,j , or vote, of a capsule i in a layer l for a capsule j

in layer l + 1 is produced by multiplying its features u[l]
i by a weight

matrix W [l]
i,j ∈ RD[l]×D[l+1]

:

û[l+1]
i,j = W [l]

i,j u
[l]
i . (3.1)

The matrix Û [l+1] ∈ R|Ω
[l]|×|Ω[l+1]|×D[l+1]

contains all the votes of two
consecutive capsule layers. In fully-connected or dense capsule layers
there is a different weight matrix for each possible pair (i, j). We learn
them through backpropagation and we hope that they will be the
invariant viewpoint transformation matrices T i,j seen in computer
graphics. As the viewpoint changes, the poses of the parts and the
whole will change in a coordinated way so that any agreement be-
tween votes from different parts will persist [1]. As we mentioned in
Section 2.2, a capsule works properly when its activation is locally
invariant, and the instantiation parameters are equivariant. The part-
whole relations are modeled by the coupling coefficients c[l]i,j ∈ R,
which are dependent on the input and not learned during backprop-
agation. After the voting procedure, we need to route the votes to
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Extract parse tree

part-object
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part-object
capsules

part 
capsules

object
capsules

Assembly 

Assembly 

Assembly 

ci,j

Figure 3.3: Stacking multiple assembly modules on top of each other create
a deeper hierarchy of objects. For a given input image, we can
extract a parse tree where each node is a part or object capsule,
and each connection is the probability of the part-whole (or child-
parent) relation.

higher-layers to output object-capsules u[l+1]
j and adjust their connec-

tion c[l]i,j based on the agreements. A “routing softmax” determines
the coupling coefficients (single-parent constraint), whose initial logits
b[l]i,j are the log prior probabilities that capsule i should be coupled to
capsule j

c[l]i,j = σ(b[l]
i,: )j =

eb[l]i,j

∑|Ω
[l+1]|

k=1 eb[l]i,k

,
|Ω[l+1]|
∑
j=1

c[l]i,j = 1. (3.2)

During the routing procedure, each c[l]i,j is refined by measuring the

agreement between the output u[l]
j of a capsule j and the prediction

û[l+1]
i,j Therefore, routing finds clusters of agreements between the

predictions to solve the problem of assigning parts to wholes [1].
Routing can be viewed as a parallel attention mechanism that allows
each capsule at one level to attend to some active capsules at the
level below and to ignore others [1]. It is an attention mechanism in
the opposite direction as the competition is between the higher-level
capsules that a lower-level capsule might send its vote to.

At the end of the routing process, we extract a parse tree of the
image using the coupling coefficients. Since we are dealing with deep
learning models, the parse tree representations approximate the scene
graphs in computer graphics. Figure 3.3 shows an example of a parse
tree for a given input image.

Capsules can be implemented in many different ways. In the next
sections we will explore different implementations of capsules and
routing.
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3.3 capsule networks fundamentals

This section gives an overview of a general architecture of a CapsNet.
Then, we review the first routing algorithm proposed by Sabour et
al. [1] and other routing implementations.

3.4 general architecture

A CapsNet is composed of an encoder and a decoder part. The encoder
consists of several capsule layers l stacked on top of a convolutional
backbone. There are three groups of capsule layers: primary capsules
(PrimaryCaps, the first one, built upon convolutional layers), convolu-
tional capsules (ConvCaps, each capsule has its own receptive field),
and fully-connected capsules (FcCaps, each capsule is connected with
all the capsules in the previous layer). Typically, a CapsNet comprises
at least two capsule layers, PrimaryCaps and FcCaps (also called
ClassCaps when it is the last layer, with one output capsule for each
object class). The decoder network is used to reconstruct the input
image from the capsule of the target class (during training) or with
highest activation (during inference) and it is used as a regulariza-
tion that helps the network to encode better the objects instantiation
features. However, many CapsNets implementations rely only on the
encoder part since the decoder improves performances mostly on
simple datasets. Figure 3.4 shows an example of a general CapsNet
architecture. We can see that primary and convolutional capsules are
organized in three dimensions and located in a M[l] × N[l] ×O[l] grid
structure, where O[l] is the number of capsule types. Therefore, in
this scenario, |Ω[l]| = M[l] × N[l] ×O[l]. As shown in Table 3.1, the

l = 2l = 1

PrimaryCaps

Input 

ConvCaps
ClassCaps

Capsule u
Assembly

Reconstrution

Decoder

l = L - 1 l = L

ConvCaps

Backbone

M[l]

N[l]

D[l]
Ol

Figure 3.4: An example of a general CapsNet architecture composed by a
convolutional backbone, a PrimaryCaps layer (which is a convo-
lutional layer with squash activation and then reshaping), several
ConvCaps layers (where a capsule in layer l is computed using
only a subset of capsules in layer l − 1), and a ClassCaps (or
FcCaps, where each capsule in layer l is computed using all the
capsules in layer l − 1) layer. A decoder is used to reconstruct the
input image.

dimensions of the weight matrix W l between capsules in layer l and
capsules in layer l + 1 can vary based on the groups of these two layer.
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3.4.1 Dynamic Routing

In 2017 Sabour et al. [1], Hinton presented the first CapsNet architec-
ture along with the first description of the routing algorithm based on
dynamic agreements (DR-CapsNet) using the scalar product. Due to
its relevance for our work and for sake of simplicity, we will go into
details only for this routing algorithm.

A capsule is implemented as an activity vector u whose overall
length ∥u∥2 represents the probability of existence of the entity and
its orientation represents its instantiation parameters.

The information flow between two capsules is governed by the
iterative routing algorithm described in [1] and shown in Alg. 1.
This procedure is used to dynamically compute the poses u[l+1]

j of

Algorithm 1 Dynamic routing algorithm

1: procedure Dynamic-Routing(Û [l+1], rl)
2: for each capsule i ∈ |Ω1| and capsule j ∈ |Ω1+1|: b[l]i,j ← 0
3: for rl iterations do
4: for each capsule i: c[l]i,: ← σ(b[l]

i,: )

5: for each capsule j: s[l+1]
j ← ∑

i
c[l]i,j û

[l+1]
i,j

6: for each capsule j: u[l+1]
j ← g(s[l+1]

j )

7: for each capsule i and capsule j: b[l]i,j ← b[l]i,j + u[l]
j · û

[l+1]
i,j

8: end for
9: return U l

j
10: end procedure

capsules j in layer l + 1 given the vote matrix Û [l+1], which holds the
predictions û[l+1]

i,j , computed using Equation 3.1. At the beginning of

the routing algorithm (line 2), each logit b[l]i,j is initialized to zero. The
core of the routing algorithm is depicted in lines 3-8. At every iteration,
the routing softmax (line 4, Equation 3.2) is applied to the logits b[l]

i,:

to obtain the corresponding coupling coefficient c[l]i,j . Then, the total

unnormalized input s[l+1]
j of capsule j is computed as the weighted

average of the input predictions (line 5) as

s[l+1]
j ←∑

i
c[l]i,j û

[l+1]
i,j . (3.3)

Each vote û[l+1]
i,j is weighted by the corresponding coupling coefficient

c[l]i,j . The vector u[l+1]
j is the normalized squashed s[l+1]

j (line 6), where
the squashing function g map the magnitude of a vector into the range
[0, 1)

u = g(s) =
∥s∥2

1 + ∥s∥2
s
∥s∥ . (3.4)
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Then, each b[l]i,j is refined by measuring the agreement between the

output u[l]
j of a capsule j and the prediction û[l+1]

i,j (line 7). Therefore,

if there is a strong agreement, the corresponding link strength b[l]i,j
between capsules i and j is increased, decreased otherwise. The agree-
ment is simply the scalar product u[l]

j · û
[l+1]
i,j . Finally, after r[l] iterations

of lines 4-7, the routing algorithm output the final pose u[l]
j for each

digit capsule.
The activity vector of the correct digit capsule is used to reconstruct

the input image. During testing we take the capsule with the highest
magnitude. This capsule is fed into the decoder which consists of
three traditional fully-connected layers. The decoder encourage the
digit capsules to encode the instantiation parameters [1].

Note that this iterative process is executed both on training and
testing time only between two consecutive capsule layers.

In order to train the network, two losses are used: the margin loss
and the reconstruction loss.

The margin loss is based on the idea that the class capsule for a
label γ should have high magnitude if and only if that the object with
label γ is present in the input image. We have a separate margin loss
Mγ for each label γ:

Mγ = Tγmax(0, m+ − ∥u[l]
γ ∥2)

2 + λ(1− Tγ)max(0, ∥u[l]
γ ∥2 −m−)2

(3.5)
where Tγ = 1 if and only if the object of label y is present. The

λ term prevents initial learning from shrinking the lengths of the
capsules of all the classes.

The reconstruction loss R is the sum of squared differences between
the reconstructed image and the original one. It is used a regularization
term during training.

The total margin loss is defined as:

LM = ∑
γ

Mγ + βR (3.6)

DR-CapsNets achieved higher classification performance than the
convolutional baseline on MNIST [21], Fahion-MNIST [22], CIFAR-
10 [23] and SVHN [24] datasets. They also showed more robustness to
affine transformations (affNIST) and novel viewpoints (smallNORB).
Capsules are also very good for dealing with segmentation highly
overlapping digits (MultiMNIST [1]).

3.5 drawbacks

Capsule networks have some limitations.

1. Capsules make a very strong representational assumption [1]: at
each location in the image, there is at most one instance of the
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type of entity a capsule represents. As a matter of fact, the only
thing that binds the instantiation units together is the fact that
they are the pose outputs of the same capsule. Therefore, it is
not possible for a capsule to represent more than one instance of
its visual entity at the same time [1]. This is a serious weakness
because it will always be possible to confound the system by
putting two instances of the same visual entity with slightly
different poses in the same region. This phenomenon is known
as crowding and it occurs also in human vision.

2. Capsules, like other generative models, account for everything
in the image so they have poorer performances when the back-
grounds are too much varied, like in CIFAR10, and the size of
the network is not big enough to model the clutter.

3. Training capsule networks is computationally expensive because
of the large transformation matrices and because of the routing
algorithm which can not benefit from the parallel computation of
modern GPUs, increasing both training and testing time respect
to a standard CNN. This is one of the reason why they have
not been trained yet on datasets with high resolution such as
ImageNet [25].

4. A capsule network has many hyperparameters like the number
of types of capsules, their dimensions in every layer, the shape of
the kernels etc. This could make fine-tuning in capsule network
more difficult than in standard CNNs.

3.6 capsule networks follow-ups

capsule networks architectures Capsule networks were
first introduced by Sabour et al. [1], and since then, much work has
been done to improve the routing stage and build deeper models. Re-
garding the routing algorithm, Hinton et al. [26] replaces the dynamic
routing with Expectation-Maximization, adopting matrix capsules in-
stead of vector capsules. Wang et al. [27] model the routing strategy as
an optimization problem. Li et al. [28] use master and aide branches
to reduce the complexity of the routing process. Peer et al. [29] use
inverse distances instead of the dot product to compute the agree-
ments between capsules to increase their transparency and robustness
against adversarial attacks. Hahn et al. [30] incorporates a self-routing
method such that capsule models no longer require agreements. De
Sousa Ribeiro et al. [31] replace the routing algorithm with a varia-
tional inference of part-object connections in a probabilistic capsule
network, leading to a significant speedup without sacrificing perfor-
mance. Ribeiro et al. [32] propose a new routing algorithm derived
from Variational Bayes for fitting a mixture of transforming Gaussians.
Edraki et al. [33] model entities through a group of capsule subspaces
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without any form of routing. Since the CapsNet model introduced
by Sabour et al. [1] is a shallow network, several works attempted to
build deep CapsNets. Rajasegaran et al. [34] propose a deep capsule
network architecture that uses a novel 3D convolution-based dynamic
routing algorithm to improve the performance of CapsNets for more
complex image datasets. Gugglberger et al. [35] introduce residual
connections to train deeper capsule networks. The above-mentioned
CapsNets architectures rely on the fact that capsules model specific
location-dependent features of objects in the image. However, [36]
claims that it is better to model capsules as set of parts or objects. This
assumption ensures that if the parts can be detected equivariantly,
then the inferences for the objects will also be equivariant [37]. There-
fore, Kosiorek et al. [36] propose an unsupervised stacked capsule
autoencoder (SCAE) consisting of two stages. First, it segments an
image into constituent parts, predicting the presence and poses of
part templates. Then, it tries to organize discovered parts and their
poses into a smaller set of objects, which are then used to reconstruct
part poses. Similarly, Nazabal et al. [37] consider a scene or an image
composed of a set of objects in different poses, which are instations of
affine-transformed fixed templates. They show that the parts detected
in the first stage by SCAE are not equivariant to rotation. Therefore,
they propose a generative model and derive a variational algorithm for
inferring the transformation of each model object in a scene and the as-
signments of observed parts to the objects. The model is interpretable
and admits prior knowledge about an object. Furthermore, their for-
mulation is also composable in that models for individual objects can
be learned separately and then combined together at inference time.
Alternatevely to capsules, other object-centric representation learning
approaches using neural networks exist in the literature, for example,
slot-based models [38]. Slots are “universal” capsules that can bind
to any object in the input; they provide a sort of working memory
with a fixed capacity which can be used to access independent object
representations simultaneously.

Recently, Hinton [39] described how to represent part-whole hier-
archies in neural networks, which attempts to merge the advantages
of capsules, contrastive learning, distillation and transformers into a
single theoretical system (known as GLOM). GLOM aims at mimick-
ing how humans parse visual scenes. Still, these approaches are not
tested on more complicated datasets such as ImageNet, which limits
their use in downstream tasks, and consequently, capsules have not
yet gained widespread adoption in the literature.

sparse capsule networks A naive solution to reduce uncer-
tainty within the routing algorithm is to run more iterations. As shown
by Paik et al. [40] and Gu et al. [41], the routing algorithms tend to
overly polarize the link strengths, namely a simple route in which
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each input capsule sends its output to only one capsule and all other
routes are suppressed. On the one hand, this behavior is desirable
because the routing algorithm computes binary decisions to either
connect or disconnect objects and parts. On the other hand, running
many iterations is computationally expensive, and it is only helpful in
the case of networks with few parameters, as we will see in Chapter 4.
Rawlinson et al. [42] trained CapsNets in an unsupervised setting,
showing that the routing algorithm no longer discriminates among
capsules: the coupling coefficients collapse to the same value. There-
fore, they sparsify latent capsule layers activities by masking output
capsules according to a custom ranking function. Kosiorek et al. [36]
impose sparsity and entropy constraints into capsules, but they do not
employ an iterative routing mechanism. Jeong et al. [43] introduced a
structured pruning layer called ladder capsule layers, which removes
irrelevant capsules, namely capsules with low activities. Kakillioglu
et al. [44] solve the task of 3D object classification on point clouds with
pruned capsule networks. They aimed to compress robust capsule
models to deploy them on resource-constrained devices.

3.7 comparison with vision transformers

In this section, we compare Vision Transformers (ViTs) [2] and Cap-
sNets architectures, focusing on their similarities and differences.

Generate I 
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Figure 3.5: Overview of the ViT architecture illustrated in [2]. Fixed-size
patches are extracted from an input image; then, they are linearly
embedded with the addition of position embeddings to form
tokens, which are then fed to a standard transformer encoder.
Multiple blocks of transformer encoder can be stacked together
for deeper models. An extra learnable classification token is added
to the input sequence. The embedding vector of this token in the
last layer can be seen as a compact representation of the input
image. Therefore, it is fed to a multilayer perceptron network
(MLP) to perform classification. An alternative is to have a global
average pool over all the output embedding vectors.
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Even though capsule networks have been around for a while, they
have not received as much attention as transformers. These networks,
introduced around the same time as CapsNets, have become quite
popular and are widely used in various applications, including large
language models and computer vision. ViTs, which are transformers
designed for computer vision, generally consist of only the encoder
part of a standard transformer. An overview of ViT architecture is
depicted in Figure 3.5, while Figur 3.6 depicts the multi-head attention
layer that extends the idea of single-head attention by performing
self-attention computations multiple times in parallel.

Multi-head
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Figure 3.6: Multi-head attention is a module that runs MLPs and self-
attentions several times in parallel. The independent attentions
computed by different heads are then concatenated and linearly
transformed into the expected dimension. Intuitively, multiple at-
tention heads allow for attending to parts of the input differently.

In this Section, we use the same notation we adopted when de-
scribing capsule network components. For example, we denote with
u[l] ∈ RD[l]

the D-dimensional embedding vectors in layer l, as we
did with a capsule vector. Since we consider only two consecutive
layers, let U [l] = (u[l]

1 , ..., u[l]
I ) denote a matrix of input embedding

vectors in layer l, and U [l+1] = (u[l+1]
1 , ..., u[l+1]

J ) denote a matrix of

output embedding vectors in layer l + 1 (or capsules), with u[l]
i =

(u[l]
1 , ..., u[l]

D[l]) and u[l+1]
j = (u[l+1]

1 , ..., u[l+1]
D[l+1]). We can omit the l notation

since i ∈ {1, 2, ..., I} is used for inputs of the single-head attention and
j ∈ {1, 2, ..., J} for the outputs. We also use D = D[l] and P = D[l+1].

In scaled dot product self-attention [2] and shown in Figure 3.6, I
input embedding vectors U i ∈ RI×D are transformed into query, key
and value matrices for each head h ∈ {1, 2, ..., H} as

ÛQ
h = U iW

Q
h , ÛK

h = U iWK
h , ÛV

h = U iWV
h , (3.7)

where W Q
h , WK

h and WV
h are the trainable D× P transformation ma-

trices. Therefore, ÛQ
h , ÛK

h and ÛV
h are I × P dimensional. Here, we

assume that the new query, key, and value vectors have the same
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dimension as the embeddings (usually, they are smaller). Let be W Q,
WK and WV the weight matrices considering all attention heads, these
are H × D× P dimensional, where usually H < J. Note that typically,
between two consecutive fully-connected capsule layers (so capsules
in these layers are flattened and not organized in a grid, without
weight sharing), as also shown in Table 3.1, the transformation weight
matrix W Q is I × J × D× P dimensional, therefore the vote matrix Û
is I × J × P dimensional. The self-attention mechanism computes the
attention weights ci,j,h (or coupling coefficients in capsules) between
each pair (i, j) of embedding vectors in head h as

ci,j,h = σ

 ÛQ
h ÛK

h
⊤

√
D


ij

,
I

∑
i=1

ci,j,h = 1, (3.8)

where σ is the softmax function. Then, a single output embedding (or
capsule) uj,h in a head h for token j is computed as a weighted average
of the input token vectors

uj,h =
I

∑
k=1

cj,k,hÛV
h,k (3.9)

Note that in ViTs, the number of embedding vectors for the input
tokens is the same in each layer, namely I = J. Therefore we can
rewrite Equation 3.9 as

ui,h =
I

∑
j=1

ci,j,hÛV
h,j (3.10)

Therefore, a significant distinction between capsules and transformer
embeddings lies in how they utilize context. In the case of capsules, to
calculate the vector of an output capsule (and attention weights), all
other output capsules are required as context (remember that in the
vote matrix, there are I × J predictions of the input capsule vectors
for the output capsule vectors). In contrast, in ViTs, the vector of an
output embedding is computed by considering all the other input
embeddings as context (there are three “vote” matrices, query, key
and value, so the total number of votes is I × 3). Note that, in the
language of transformers, the output capsules at iteration r− 1 act as
the query matrix at iteration r, while capsule votes act as the key and
value matrices. See Figure 23 in [45] for comparing capsule routing
and self-attention in Pytorch code.

So far, we have seen that CapsNets and ViTs have a common ground
regarding learned representations. For example, both methodologies
organize neuron activities into vectors to represent concepts, and they
compute the agreement between these vectors as a filtering mechanism
to refine concepts based on global context [32]. Moreover, both models
can be stacked on top of a CNN backbone to build hybrid architectures.
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Note that typically, a ResNet model is preferred since it has only one
max pooling layer, so that the spatial relationships are not completely
lost when going deeper in the network. In the case of a ViT, as an
alternative to raw image patches, the input sequence can be formed
from feature maps of a CNN, and then patches are extracted from
a CNN feature map[2]. This hybrid model inherits, for example, the
ability to learn mutual regions at different scales in a CNN, thanks
to multiple convolutional layers with different kernel sizes. As we
will see in Chapter 5, in the case of a CapsNet, the CNN backbone
(without pooling layers) can help in extracting effective low-level
part descriptions (primary capsules) since CNNs are very good at
learning low-level features, such as edges, corners and basic local
shape information.

However, CapsNets and ViTs have different inductive biases. Recall
that inductive biases in deep learning architectures refer to the implicit
assumptions or constraints that are built into the design of a neural
network model. These biases guide the learning process by favoring
certain types of solutions or representations over others.

locality Primary and convolutional capsule layers are organized
in a 3-dimensional grid, and the sliding window approach (as in
CNNs) assumes that important features are present in small, local
regions of an image and that these features can be detected irrespective
of their position within the image. On the contrary, ViTs do not have
a built-in notion of spatial locality and layers are not organized in a
grid structure. Images are tokenized into smaller patches, which is a
different inductive bias than the sliding window approach. They use
positional embeddings to encode the spatial information of the input
image, and these positional embeddings provide information about
where each token (representing a patch of the image) is located in the
image.

single-parent assumption Both routing and self-attention
compute attention weights between capsules or embeddings. However
the semantics of this attention weights is different. In fact, in Cap-
sNets, since routing is a clustering mechanism, cij is an assignment
probability, namely to what extent object i is part of object j. This is
also known as the single-parent assumption (see the softmax in Equa-
tion 3.2), since the goal of a CapsNet is to build part-whole hierarchies.
While in ViT, cij models how to attend to different parts of the input
and how information from different parts contributes to the updates
of representations. We can see in Figure 3.7 the opposite directions
of the connections in capsules (bottom-up) and token embeddings
(top-down).
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Figure 3.7: In CapsNets, the competition is between capsules in the higher
layer (bottom-up attention), while in ViTs, the competition is
between embeddings in the lower one (top-down attention).

number of objects Figure 3.7 also shows that, when assembling
capsules, we often have a smaller number of output capsules than
input capsules (J < I) because we assume that, in an input image, the
number of objects is lower than the number of parts, since an object
is composed of many parts. This also means that we do not have any
prior assumption on the representations of the higher layer capsules,
what they are supposed to represent is not known in advance. In
contrast, in ViTs, the number of embeddings in each layer is constant
(J = I), corresponding to the number of patches. This is because an
embedding can be considered a contextualized representation of the
same patch in each layer.

capsule types and attention heads Different capsule types
in CapsNets and attention heads in ViTs are akin to the diverse ker-
nels in CNNs. They aim to process lower-layer representations from
multiple viewpoints when computing higher-layer representations. In
CapsNets, different transformation matrices exist between pairs of
capsule types from adjacent layers. This way, each higher-layer capsule
sees the entity in the lower-layer capsule from a different point of view.
Similarly, in ViTs, multiple attention heads employ distinct transforma-
tion matrices to compute key, value, and query projections, allowing
each head to focus on a different perspective of lower-layer represen-
tations. In real implementations1, each head focuses on a different
portion of the input vector, namely D will be split across H heads
(i.e. each head will have dimension D//H). However, the key differ-
ence between the two architectures is that, in the end, in CapsNets,
assignment probabilities for a lower-layer capsule are normalized over
all higher-layer capsules, irrespective of their types, resulting in one
assignment distribution per lower-layer capsule (as seen in Figure 3.7).
In contrast, in ViTs, each attention head independently processes its
input, yielding separate attention distributions for each position in the
higher layer. The attention head outputs are combined in the last step

1 https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.

html

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
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by concatenating and linearly transforming them to compute the final
output of the multi-headed attention block.

invariance and equivariance As explained in Section 2.2
and Section 3.2, CapsNets take advantage of the linear manifold that
handles the source of variance in images thanks to the transformation
matrices Ws used to compute the votes ûs. Therefore, we say that the
vote transformation matrix W is biased towards encoding invariance
to viewpoint transformations, and capsule vectors are biased towards
capturing equivariance of neural activities Ribeiro et al. [45]. In ViTs,
only MLP layers are local and translationally equivariant [2].

So, we have seen that ViTs inductive biases are more relaxed com-
pared to CapsNets, or even CNNs. However, inductive biases are
essential because they help neural networks generalize from limited
training data and make predictions in situations they haven’t seen
before. Thus, ViTs do not generalize well when trained on insufficient
amounts of data [2] and must learn all spatial relations between the
patches from scratch. However, when trained on large amounts of data,
large-scale training trumps inductive bias [2]. Recently, Hinton [39][39]
proposed a single theoretical framework (called GLOM), which at-
tempts to merge the advantages of capsules and transformers to parse
visual scenes. However, research is still in the early stages, and as of
now, a high-performing GLOM network pretrained on ImageNet has
not surfaced yet.



Part II

D E M Y S T I F Y I N G C A P S U L E N E T W O R K S
C O M P O N E N T S

This part delves into the intriguing aspects of capsule
networks, focusing on three key aspects that aim to unlock
their full potential:

• Effectiveness of the routing algorithm: We introduce
a novel technique that anneals the number of routing
iterations during training, striking better performance,
especially for architectures with fewer parameters.

• Extraction of low-level part descriptors: We propose
a method to extract better first-layer capsules pro-
moting sparse topologies. We improve their computa-
tional efficiency by reducing the number of capsules.

• Cardinality of part-whole relationships: We show
that capsules with low entropy hold the potential to
extract more succinct and more discriminative part-
relationships than traditional capsule networks. This
can be achieved without accounting for everything in
the input image, even with reasonable network sizes.



4
C A P S U L E N E T W O R K S W I T H R O U T I N G A N N E A L I N G

The research findings and insights presented in this chapter were
originally published in the following work: Renzulli, R. “Capsule
Networks with Routing Annealing.” In: Artificial Neural Networks and
Machine Learning – ICANN 2021. Ed. by Igor Farkaš et al. 2021, pp. 529–
540. isbn: 978-3-030-86362-3.

4.1 introduction

Recently, the contribution of the routing algorithm to DR-CapsNets
generalization ability and robustness to affine transformations has
been questioned [40, 41]. Typically, the number of routing iterations r
is fixed once and for all during training and inference. Paik et al. [40]
highlight that running just one iteration of the routing algorithm
(assigning the connection strengths uniformly or randomly) leads
to better results. This is explained as more iterations of the routing
algorithms do not change the classification result but polarize the link
strengths [40]. Gu et al. [41] mitigate this problem with a simple but
effective solution in which the transformation matrices are shared
between all capsule types. However, these works do not change the
number of iterations during the training process nor the number of
capsule types and their dimensions, which, as we will see, they do have
a strong impact on the number of iterations of the routing algorithm
that achieves better generalization. Therefore, it is unclear whether the
routing algorithm improves the performance of DR-CapsNets and the
optimal number of iterations.

This chapter provides new evidence on the benefits of routing
proposing Routing Annealing (RA), a novel technique where the num-
ber of routing iterations is iteratively found at training time. With RA,
the number of iterations of the routing algorithms increases whenever
the network performance reaches a loss plateau. We observed that,
for the same number of routing iterations, a gradual ramp thereof
allows to reach better minima of the loss function. Our experiments
over multiple datasets show better performance when using RA, es-
pecially when the number of capsules in the network is limited, i.e.
where DR-CapsNets performance is weaker. We also found that the
number of routing iterations depends on the number of capsules, their
dimensions and on the dataset itself.

32
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4.2 methodology

This section first describes the standard methodology training algo-
rithm and Routing Annealing (RA), the routing training technique we
propose in this work, and then discusses its relation with the simulated
annealing. For simplicity of notation, we assume there are only two
capsule layers (primary capsules and class capsules), and we suppress
the index l for capsule vectors u and routing iterations r. However, RA
can be applied to any multilayered CapsNet whose connections are
governed by any iterative routing algorithm and where the number of
routing iterations can vary for different layers.

4.2.1 Training with Fixed Routing

As a reference, Alg. 2 shows the standard strategy for training a
DR-CapsNet. The network parameters are optimized with standard
backpropagation of the error gradients for a number of epochs until
some stop criterion is met. For each epoch, the forward pass (line
5-11) is computed, followed by error gradients backpropagation and
parameter update (line 12). The training procedure ends when the
loss computed over a validation set does not decrease for p epochs
in a row (p is usually termed as patience). The algorithm returns the
network (i.e., the learned parameters set) that yields the lowest loss on
the validation set. In this procedure, as can be noted from line 6 which
refers to Alg. 1, the number of routing iterations r is fixed once for all
(usually, r=3), so we refer to this technique as Fixed Routing (FR). Notice
that when the trained network is deployed for inference, the routing
algorithm is executed for r iterations, as well. A standard procedure
towards optimising the iterations number would be to optimize r with
a grid-search strategy: one runs as many simulations as r values to test,
during which r is kept constant. However, we experimentally show
that this approach leads to sub-optimal performance, which motivates
the design of our routing technique.

4.2.2 Training with Routing Annealing

In this section we propose Routing Annealing (RA), an iterative method
to jointly optimize the number of routing iterations r⋆ and the network
parameters. In a nutshell, RA finds r⋆ adaptively during training for
a given capsule architecture over a given dataset and is described in
pseudo-code as Alg. 3. The algorithm takes as input: r0, the initial
value of r; rT, the maximum value for r; s, the schedule used to increase
r; the patience p, in number of epochs. Let us denote as rk the value
of r at step k: we say that every time r increases, an annealing step
is performed. We denote as L⋆

k and e⋆k the lowest losses achieved so
far and the corresponding epochs for each rk. The main difference
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Algorithm 2 Training with Fixed Routing: learns the network parame-
ters for a fixed number of iterations r.

1: procedure Fixed-Routing(r, p)
2: initialize DR-CapsNet
3: e← 0; L⋆ ← 0; e⋆ ← 0
4: while e− e⋆ < p do
5: compute all primary capsules poses ui and votes ûi,j
6: compute all class capsules poses: uj ← Routing(ûi,j, r)
7: evaluate current loss L on the validation set
8: if L < L⋆ then
9: L⋆ ← L; e⋆ ← e

10: end if
11: e← e + 1
12: backpropagate error gradients and update parameters
13: end while
14: return DR-CapsNet of epoch e⋆ with the best loss value
15: end procedure

between Alg. 2 and 3 lies in line 3 where we loop over the possible
values of r instead over the number of epochs and in line 8 where the
number of routing iterations is increased. In line 5, Alg. 1 is used as
core routing algorithm. At step k, we increase r by s if the validation
loss L⋆

k does not decrease for p epochs (lines 7-8). Every time r is
increased, the training does not start from scratch again. Instead it is
resumed with the network weights with the best loss achieved with
the previous value of r, namely the network at epoch e⋆k−1 (line 9). Here
we assume that we save the network weights for each epoch. When
r reaches the maximum allowed rT, the training procedure ends and
best network obtained during training along with the corresponding
number of routing iterations is returned (lines 16-17). To summarize,
RA increases the value of r when the validation loss does not decrease
for p epochs in a row. As an upper bound for the number of routing
iterations, we stop the training when r reaches its maximum value
rT. When r increases, the training restarts with the weights of the
network with the best validation loss obtained with its previous value.
By comparison, using the standard training procedure mentioned in
Sec. 4.2.1, the weights need to be reinitialize for every simulation with
a a different value for r.

4.2.3 Rationale

RA takes inspiration from the simulated annealing (SA) algorithm, a
probabilistic technique used in combinatorial-optimization problems
to minimize a cost function.
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Algorithm 3 Training with Routing Annealing: learns the number of
iterations r⋆ jointly with the network parameters.

1: procedure Routing-Annealing(r0, rT, s, p)
2: r; r ← r0; L⋆

0 ← +∞; e⋆0 ← 0 , e← 0; k← 0
3: while r ≤ rT do
4: compute all primary capsules poses ui and votes ûi,j
5: compute all class capsules poses: uj ← Routing(ûi,j, r)
6: evaluate loss L on the validation set
7: if (L ≥ L⋆

k ) and (e− e⋆k ≥ p) then
8: k← k + 1; r ← r + s; rk ← r; L⋆

k ← +∞; e⋆k ← 0
9: load DR-CapsNet network of epoch e⋆k−1

10: else if L < L⋆
k then

11: L⋆
k ← L; e⋆k ← e

12: end if
13: e← e + 1
14: backpropagate error gradients and update parameters
15: end while
16: k⋆ ← argmin

k
L⋆; r⋆ ← rk⋆

17: return DR-CapsNet network of epoch e⋆k⋆ and r⋆

18: end procedure

In our approach, we relate the temperature of our system being in-
versely proportional to the number of routing iterations r: the highest
r, the highest the agreement between the capsules and the lowest the
noise.
The number of routing iterations relates to the distribution of the
coupling coefficients ci,j. According to Alg. 1, when r is low, the agree-
ment is low as well. When r = 1, all the coupling coefficients will
have the same value, 1

J . Increasing the routing iterations, a certain
number of coupling coefficients becomes dominant over others, since
Alg. 1 looks for capsule’s agreement. Considering that ci,j are normal-
ized values, we can say that, for the i-th capsule ∑j∈Ji

ci,j → 1 and
∑j∈Ji

ci,j → 0, where Ji is a subset of the J coupling coefficients for
the i-th primary capsule and Ji is its complementary set. When r = 1,
the cardinality of Ji is exactly J, but increasing r, its cardinality drops
to some optimal value J⋆i : this means that the i-th primary capsule
will be coupled to J⋆i digit capsules only, avoiding noisy coupling to
the others (which are J − J⋆i ). A visual representation of this effect
is displayed in Fig. 4.1. As r increases, many coupling coefficients
drop to zero, while others converge to higher coupling values. In this
way, the routing algorithm learns how to build relationships between
primary and digit caps, discarding noisy information, which helps
in improving the generalization of the model. In the next section we
are going to test on-the-field our RA strategy, observing in particular
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Figure 4.1: Routing coupling coefficients between the i-th primary capsule
and J class capsules. The higher the line weight, the higher the cor-
responding coupling coefficient. When r = 1 (left), the coupling
coefficients have all the same value, while increasing r (center),
some of the coupling parameters survive, while the others are
almost zero. When r is high (right), J⋆ = 2 and Ji = {1, J − 1}.

the generalization capability of the RA models compared to the other
state-of-the-art approaches.

4.3 experiments

In this section we compare our proposed Routing Annealing (RA)
method in Alg. 3 against the reference method in Alg. 2. First we
show that, with RA, DR-CapsNet performs better as the number
of routing iterations r improves, whereas this is not the case with
the reference algorithm. Then, we further validate RA on multiple
datasets and settings showing that it delivers best gains especially
where the number of parameters the network can afford is low, i.e.
where DR-CapsNets performance is weaker.

4.4 architecture

Fig. 4.2 shows the DR-CapsNet architecture used in the experiments
in this chapter, consisting of one convolutional layer and two capsule
layers.

Conv1Input

D[2]

PrimaryCaps

ClassCaps

M

N

J

O

9X9

256

D[1]

9X9

Figure 4.2: DR-CapsNet architecture. There are one convolution layer (Conv1)
and two capsule layers (PrimaryCaps and ClassCaps). The dy-
namic routing algorithm controls the information flow between
capsule layers.
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The first layer (Conv1) is a 9× 9 convolutional layer that converts
pixel intensities to the activities that are given in input to the first cap-
sule layer. The PrimaryCaps layer is implemented as a convolutional
layer with 9× 9 filters and O×D[1] channels where O is the number of
primary capsules types and D[1] is the dimension of a capsule vector.
Overall, there are O×M× N primary capsules. Capsule vectors are
normalized with the squashing function defined in Equation 3.4. The
output layer (ClassCaps) comprises J D[2]-dimensional class capsules
uj, one for each output class. The information flow between primary
and class capsules is governed by the dynamic routing described in
Algorithm 1.

4.4.1 Experimental Setup

We experiment with the DR-CapsNet in Fig. 4.2 at classifying natural
images in a fully supervised scenario. We consider the MNIST, Fashion-
MNIST and CIFAR-10 datasets. For all datasets, 5% of the training
set samples are reserved for validation. MNIST and Fashion-MNIST
are composed of 28x28 images; concerning CIFAR-10, we randomly
crop the original 32x32 images into 24x24 patches for training whereas
crops from the image center are used for testing as done in [1]. Our
experiments consider several flavors of the architecture in Fig. 4.2 with
different types O ∈ {1, 2, 4, 8, 16, 32} and dimensions (D[1], D[2]) ∈
{(2, 4), (4, 8), (8, 16)} of capsules. We train the network minimizing a
margin loss [1] with the Adam optimizer [47] with a constant learning
rate equal to 0.001 and a batch size of 128. No weight decay, dropout
or other regularization techniques were used.

Concerning the proposed RA method, we train the network with the
procedure in Alg. 3, with the following configuration: r0 = 1, rT = 50,
s = 1 and p = 10. As we discussed in Sec. 4.2.2, RA can be applied
to any iterative routing algorithm but this work use as base routing
algorithm the one described in Alg. 1.

About the reference method, we use FR which employs the proce-
dure in Alg. 2, i.e. where the number of routing iterations r is fixed
(common values in literature are r = 1 [41] or r = 3 [1]).

4.4.2 Preliminary analysis on MNIST

Preliminary, we assess the effect of the number of routing iterations
r on MNIST for a minimal capsule network where the PrimaryCaps
layer has only O = 1 capsule types and vectors have dimension
D[1] = 2 while the ClassCaps layer vectors have D[2] = 4 elements.
This network has only 65k parameters, which helps isolating the effect
of r, whereas the architecture in [1] has 6M parameters (8.2M with the
decoder).
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In Fig. 4.3 we report the learning curves for FR and RA. For FR, we
train a new DR-CapsNet from scratch for each and every value of r. In
the case of RA, instead, we train one model only, where we gradually
increase the number of routing iterations (when the network loss
reaches a plateau). We plot the best loss and accuracy values for every r.
Fig. 4.3 shows that as r increases, the proposed RA enables decreasing
loss that reflects into higher classification accuracy. Conversely, with
a fixed routing strategy, the loss function diverges as r increases.
We explain the gap between the two loss curves with the following
hypothesis. Each iteration of the routing algorithm strengthens or
weakens the connections between a capsule of the primary layer and
all the capsules of the digit layer. Therefore, imposing high r for all
the training epochs leads the DR-CapsNet to be overconfident on
its predictions on the link strengths, preventing the network form
learning the correct connections between the capsules.
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Figure 4.3: Loss function (left) and classification accuracy (right) on MNIST
test set for a DR-CapsNet with O = 1, D[1] = 2, D[2] = 4 (means
and stds of 5 seeds) as a function of the number of routing
iterations r.

4.4.3 Results

Next, we experiment with the more complex datasets Fashion-MNIST
and CIFAR-10. Fig. 4.3 showed that RA performs better than the fixed
routing reference for large r values. For fixed routing experiments
we only consider r = 1 and r = 3, as done in much of the recent
literature. Fig. 4.4a and 4.4b show that RA performs better than fixed
routing (both r = 1 and r = 3) in all the settings. Such experiments
brought us to the following observations. First, coherently with our
previous findings on MNIST, RA delivers the most appreciable gains
when the network can afford only few learnable parameters. We recall
here that for each capsule we have a matrix of weights W ij and these
matrices have shapes D[1]×D[2], namely the dimensions of the capsule
vectors. This means that the number of capsules types T and their
dimensions, along with the convolutional layers, drive the number of
parameters of the network. This behaviour can be explained observing
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Figure 4.4: Classification accuracy (%) on Fashion-MNIST (a) and CIFAR-
10 (b) test set for different capsule types T and dimensions
(D[1], D[2]). On top of each bar it is shown the number of it-
erations r used during training/inference, for RA it is shown the
median value of r⋆.
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that finding agreements between many high-dimensional capsule is
not trivial. Running more iterations of the routing algorithm tends to
polarize the coupling coefficients, namely the link strengths between
capsules, such that it results in a simple route where each primary
capsule sends its output to only one digit capsule. Therefore, when
there are a lot of capsules, introducing some level of uncertainty with
a low value of r helps the network to not be overconfident on its
predictions and to not overfit on the training data. As a matter of fact,
Fig. 4.4a shows that with 32 capsule types of 8-dimensional primary
capsules and 16-dimensional digit capsules, our proposed method
RA finds r⋆ = 3, namely the value used in the original formulation
of CapsNets in [1]. Second, in high-dimensional settings the same
conclusions about routing as in [41] and in [40] hold for the fixed
routing procedure, which achieves higher accuracy with r = 1 than
r = 3. Nevertheless, RA always achieves better performance in all
cases, sometime even with fewer routing iterations. Third, Fig. 4.4b
shows that r⋆ for CIFAR-10 is not the same as for Fashion-MNIST in
Fig. 4.4a for identical network conditions. This means that despite r⋆

differs from dataset to dataset, nevertheless our method can find it.

4.5 summary

In this chapter we presented a novel training technique for iterative
routing-based CapsNets where the number of iterations is iteratively
found at training time rather than being fixed. We also showed experi-
ments on DR-CapsNets in settings with a different number of capsule
types and their dimensions, namely the network capacity in terms of
trainable parameters, and on several datasets. We showed that this
value depends heavily on the size of the network and the dataset
used. Typically, the smaller the network, the higher the number of
iterations it requires to improve its generalization capability. Given the
potentiality of our technique, in future works, we plan to apply RA
on more complex and sophisticated routing algorithms such as EM
routing [26].
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T O WA R D S E F F I C I E N T C A P S U L E N E T W O R K S

The research findings and insights presented in this chapter were
originally published in the following work: Renzulli, R. “Towards
Efficient Capsule Networks.” In: 2022 IEEE International Conference on
Image Processing (ICIP). 2022, pp. 2801–2805.

5.1 introduction

From the moment NNs dominated the scene for image processing, the
computational complexity needed to solve the targeted tasks skyrock-
eted: against such an unsustainable trend, many strategies have been
developed, ambitiously targeting performance’s preservation. Promot-
ing sparse topologies, for example, allows the deployment of deep
neural networks models on embedded, resource-constrained devices.
As mentioned in previous chapters, CapsNets were proposed to over-
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Figure 5.1: A standard CapsNet with many capsules (top). We exploit struc-
tured pruned features (bottom) to reduce the number of capsules.

come the shortcomings of CNNs. Despite CapsNets being successfully
applied to various tasks [49, 50], the research is still in its early stages
and CapsNets are far from replacing CNNs as state-of-the-art neural
architectures due to their low scalability. Their applicability is limited
because stacking multiple capsule layers increases the computational
effort [51, 52]. Applying CapsNets on high-resolution data with com-
plex backgrounds is also critical: stacking many capsule layers or
adding more capsules can lead to instability during training because

41
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of the delicate routing algorithm [34]. However, the problem of over-
parametrization and the difficulty of deploying networks in scenarios
with limited memory and resources is not peculiar only to CapsNets,
but also to CNNs. To this end, pruning methods (which reduce the
size and complexity of a neural network model) have gained more and
more attention lately [53]. Learning sparse topologies can effectively
reduce the network footprint and speed up execution with negligi-
ble performance loss [54]. So, why not exploit these techniques also
for CapsNets? Reducing their complexity, especially in early layers,
will enable their deployment on complex datasets. In this chapter, we
exploit structured pruning approaches to reduce the complexity of
CapsNets without performance loss and test them on data with non-
straightforward background such as CIFAR-10 and high dimensional
data such as Tiny ImageNet. Fig. 5.1 provides an overall idea of the
functioning of our approach. We show how employing structurally
sparse backbones, extracting features in early layers for CapsNets, af-
fects the number of capsules in the overall network. Our experiments
show that reducing the complexity of the backbone is an effective way
to achieve high generalization with less memory requirements, energy
consumption, training and inference time.

5.2 methodology

In this section, we show first how to extract primary capsules with a
backbone model, then we propose a method to reduce the complexity
of a capsule network with pruned backbones.

5.2.1 Primary capsules extraction

Following the work of [30, 40], we extract I primary capsule activity
vectors by means of a backbone network. With this approach, we can
build deep capsule networks in an efficient way since the input space
of the capsule network is significantly reduced. Fig. 5.2 shows the
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Figure 5.2: The architecture used in this chapter is composed by a backbone
part and a capsule part. Primary capsules space has 8 real dimen-
sions while class capsules are 16-dimensional vectors (D[1] = 8
and D[2] = 16).

architecture used in this chapter. We can build a CapsNet on top of
the backbone by replacing the last two layers by a primary capsule
(PrimaryCaps) and fully-connected capsule (ClassCaps) layers, respec-



5.2 methodology 43

tively. Note that PrimaryCaps is a convolutional capsule layer with I
channels of convolutional D[1] capsules, namely each capsule contains
D[1] convolutional units with a K× K× S kernel. The kernel size used
is wide as the spatial dimensions of the output of the backbone net-
work, which means the number of capsules is dynamically reduced.
In our experiments we use backbones both as fixed feature extractor,
namely we freeze their weights except for the capsule layer, and as
trainable feature extractor, where we finetune all layers.

5.2.2 Effect of pruned backbones to capsule layers

In order to reduce the computational complexity of CapsNets as in
Fig. 5.2, one possible strategy is to deploy pruned backbones. Let us
define the backbone network B(xM, wB) where wB are the backbone
parameters and xM is the input; it produces as output the tensor
xB ∈ RK×K×S. Then, tensor xB is fed into the CapsNet C(xB , wC),
where wC are the capsule parameters. We can concatenate the two
parts expressing the end-to-end model N as

N (xM, wB , wC) = C [B(xM, wB), wC)] . (5.1)

As we saw in Sec. 5.2.1, D[1]-dimensional primary capsules poses ui
are built upon convolutional layers. We define the number of primary
capsules as

I =
⌊

S
D[1]

⌋
. (5.2)

From this, we observe that reducing the complexity of the backbone
would result in the overall reduction of the complexity for the entire
model N , and towards this end pruning has already proved to be an
effective approach [53, 54].
Pruning approaches can be divided into two groups. Unstructured
pruning methods aim at minimizing the cardinality ∥w∥0 of the pa-
rameters in the model, regardless the output topology [55–57]. On
the other hand, structured approaches drop groups of weight connec-
tions entirely, such as entire channels or filters, imposing a regular
pruned topology [53, 58]. As an effect, they minimize the cardinality
of some i-th intermediate layer’s output ∥xi∥0. Bragagnolo et al. [59]
showed that structured sparsity, despite removing significantly less
parameters from the model, yields lower model’s memory footprint
and inference time. When pruning a network in a structured way, a
simplification step which practically reduces the rank of the matrices
is possible; on the other side, encoding unstructured sparse matrices
lead to representation overheads [54].
Considering the structure of the primary capsules layer, we are inter-
ested in the reduction of the cardinality for the input of the primary
capsules xB . Indeed, as we can see in equation 5.2, the minimization of
∥xB∥0 results in a proportional reduction of S, which in turn reduces I,
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resulting in a reduction of the votes and the complexity of the routing
algorithm.

5.3 experiments

We performed several experiments with different backbones on CIFAR-
10 and Tiny ImageNet. We choose ResNets and MobileNets models
since they are used as common baselines in traditional computer vision
tasks. In fact, they offer a good compromise between both efficiency
and performance. As CapsNet architecture, we employed DR-CapsNet
introduced in [1]. Furthermore, they are mainly composed of convolu-
tional layers so it is easy to replace the first convolutional layer in a
DR-CapsNet with these models.

5.3.1 Experimental Setup

We resized CIFAR-10 images to 64 × 64 resolution so as to add a
deeper backbone network as in [34]. We used the 5% of the training
set as validation set for hyper-parameters tuning. We also run experi-
ments on Tiny Imagenet (224× 224 images, 200 classes). Here we used
10% of the training set as validation set and the original validation set
as test set. Our experiments consider several flavors of the architecture
in Fig. 5.2 with different number of primary capsules I, backbones
(ResNet-50 e MobileNetV1) and training methods (whether the back-
bone is finetuned or not). We train all the networks minimizing a
margin loss [1] with the Adam optimizer and a batch size of 128. The
experiments were run on a Nvidia Ampere A40 equipped with 48GB
RAM, and the code uses PyTorch 1.10. We also used PyNVML library
to compute the GPU memory consumption. As pretrained pruned
backbones, we have used both ResNet-50 and MobileNetV1 pruned
with EagleEye [58]. EagleEye is a state-of-the-art, open-source, struc-
tured pruning strategy which identifies relevant features at the level
of intermediate outputs xi.

5.3.2 Results and discussion

The main results are shown in Fig. 5.3. Each configuration differs from
the dataset used, percentage of pruned parameters in the backbone
network (which affects the number of primary capsules), and training
method (backbone finetuned or not). In Fig. 5.3 we report the accuracy
as a function of the total number of FLOPS (of both backbone and
capsule part) for training the network. We can see that when the
backbone is freezed (in red) the networks achieve poor performances,
but as the number of pruned backbone FLOPS decreases, namely the
number of primary capsules is higher, the accuracy increases. The
poor performance can be explained by the fact that the output features
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Figure 5.3: Accuracies using ResNet-50 and MobileNetV1 as backbones for
CIFAR-10 (left) and Tiny ImageNet (right) with several pruned
FLOPS configurations.

xB of the backbone are not directly optimized to represent objects
poses. Therefore, they can not be used directly as input to capsule
layers. To overcome such a drawback, we can either add more primary
capsules or train the whole network. In fact, when the backbone is
finetuned (in blue) the performance is higher since the backbone is
able to map more suitable features to the capsules space. We can see
in this case that adding more capsules does not always lead to an
improvement in the classification accuracy. In Tab. 5.1 the performance
for Tiny ImageNet with a pretrained ResNet-50 backbone is reported.
Employing a backbone with 50% of pruned FLOPS yields similar
accuracy as with a full backbone, with less GPU memory consumption
and training time. With 25% of pruned FLOPS we can even improve
the accuracy compared to the unpruned one. The partial improving
in the performance in a low pruning regime, despite being at a first
glance surprising, is not new to the literature and it is twofold. First,
Rajasegaran et al. [34] shows that building too many capsules inhibits
learning because the coupling coefficients are too small, preventing the
gradient flow. Furthermore, Han et al. observed such a phenomenon
for unstructured pruning [55]. Recently, it has been showed that the
average entropy in the bottleneck layer for pruned backbones (in our
case, xB) is higher than in non-pruned ones [60]: this results in the
propagation of less specific and more general information, which
prevents features overfit, on top of which capsules layers can extract
much more accurate information.
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Backbone
pruned FLOPS (%)

Bottleneck
size

Primary
caps

Total
FLOPS (B)

GPU memory
consumption (GB)

Training time
(epoch, s)

Accuracy

0 2048 256 12.9 47.02 462 0.78

25 1970 246 9.8 43.50 450 0.80

50 1947 243 6.7 39.42 410 0.78

75 944 118 3.2 20.11 214 0.74

Table 5.1: Performances using ResNet-50 as backbone (finetuned, TinyIma-
geNet).

5.4 summary

In this chapter, we presented a method to improve the scalability and
reduce the computational effort of CapsNets on complex datasets
deploying backbones with structured sparsity. CapsNets with many
capsules are difficult to train: in such a scenario, the routing algorithm,
a key mechanism for CapsNets, struggles to find the necessary agree-
ments between capsules. Therefore, employing pruned backbones
(so fewer capsules) for high-resolution datasets leads to competitive
results with no performance loss. We also showed how extracting
features in early layers with sparse networks improves the efficiency,
memory consumption, inference, and training time of the overall Cap-
sNet. Therefore, this chapter opens the way to apply CapsNets on
resource-constrained devices. Future works involve specific methods
concerning pruning capsule layers in a structured way.
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C A P S U L E N E T W O R K S D O N O T N E E D T O M O D E L
E V E RY T H I N G

The research findings and insights presented in this chapter are cur-
rently under review: Renzulli, R. “Capsule Networks Do Not Need to
Model Everything.” Submitted to the AAAI Conference on Artificial
Intelligence. 2024.

6.1 introduction

As mentioned in the previous chapters, CapsNets can learn hierar-
chical representations from the input images thanks to a routing
algorithm, which carves out a parse tree composed of part-object rela-
tionships. They are also more robust to viewpoint changes and affine
transformations than traditional CNNs.

L
ow

 entropy

Parse trees with REM

ci,j~

ci,j~

H
igh entropy

Parse trees

ci,j

ci,j

Figure 6.1: A hierarchy of parts (parse tree) is carved out of a CapsNet, like a
sculpture is carved from a rock. REM enriches a CapsNet with
pruning and quantization. REM, with low entropy configurations,
reduces modeling noisy backgrounds and extracts more discrimi-
native features.

This chapter explores a drawback of CapsNets identified by Sabour
et al. [1]: these networks perform better when they can model all
elements present in an image; therefore, larger network sizes are
required to handle image clutter, such as intricate backgrounds or
complex objects. Therefore, the entropy of the connections of the
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parse trees is high. Recently, many pruning methods were applied
to CNNs to reduce the complexity of the networks, enforcing sparse
topologies [56, 62, 63]. These considerations lead us to the following
question: is it possible to tailor pruning and quantization approaches to not
only reduce the size of CapsNets but aid the extraction of more discriminative
features (namely fewer parse trees)?

Here we introduce REM (Routing Entropy Minimization), which
moves some steps toward extracting more succinct relationships from
CapsNets with negligible performance loss and fewer parameters.
To encourage this, as shown in Figure 6.1, we impose sparsity and
entropy constraints. In low pruning regimes, noisy couplings cause the
entropy to increase considerably. By contrast, in high sparsity regimes,
pruning can effectively reduce the overall entropy of the connections
of the parse tree-like structure encoded in a CapsNet. We collect
the coupling coefficients studying their frequency and cardinality,
observing lower intra-class conditional entropy: the pruned version
adds a missing explicit prior in the routing mechanism, grounding the
coupling of the unused capsules and disallowing fluctuations under
the same baseline performance on the validation/test set. This implies
that the parse trees are significantly less, hence more stable for the
pruned models, focusing on more relevant features (per class) selected
from the routing mechanism. We also introduce two visualization
methods of the parse trees based on the type of last capsule layer.

The rest of the chapter is organized as follows: in Section 6.2 we
describe our technique REM, in Section 6.3 we show the effectiveness
of our approach on many datasets and finally we discuss the summary
of the proposed approach.

6.2 methodology

The coupling coefficients computed by the routing mechanism model
are the part-whole relationships between capsules of two consecutive
capsule layers. Assigning parts to objects (namely, learning how each
object is composed) is challenging. One of the main goals of the routing
algorithm is to extract a parse tree of these relationships. For example,
given the ξ-th input of class j, an ideal parse tree for a capsule i
detecting one of the discriminative parts of the entity in the input ξ

would ideally lead to
c[L−1](ξ)

i,: = 1ŷ(ξ) , (6.1)

where 1ŷ(ξ) is the one-hot encoding for the target class y(ξ) of the ξ-th
sample. This means that the routing process can carve a parse tree
out of the CapsNet which explains perfectly the relationships between
parts and wholes. One of the problems of this routing procedure is
that there is no constraint on how many parse trees there should be.
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Figure 6.2: Pipeline of REM. After the learning stage, the coupling coefficients
of the CapsNet are quantized, and the obtained parse trees are
collected in a dictionary.

In this section, we present our technique REM, first showing how
to extract a parse tree and then how to extract fewer parse trees. The
pipeline of our method is depicted in Figure 6.2.

6.2.1 Parse Trees Extraction

Once we have a trained CapsNets model, to analyze the routing mech-
anism, we extract all the possible routing coupling coefficients and
build a parse tree. Towards this end, we want to define a metric that
helps us decide if the relationships captured by the routing algorithm
resemble a parse tree or not. Therefore, we organize the coupling
coefficients into associative arrays so that we can compute the number
of occurrences of each coupling sequence to measure the entropy of
the whole dictionary. We refer to this entropy as the simplicity of the
parse tree. In other words, we refer to the number of keys in the
dictionary as the number of unique parse trees that can be carved out
from the input dataset. In the following paragraphs, we explain how
to generate these sequences by discretizing the coupling coefficients
and how to create the dictionary.

Quantization. During the quantization stage, we first compute the
continuous coupling coefficients c[l](ξ)i,j for each ξ-th input example. It
should be noted that these are the coupling coefficients obtained after
the forward pass of the last routing iteration. Then, we quantize them
into K discrete levels through the uniform quantizer qK(·), obtaining

c̃[l](ξ)i,j = qK(c
[l](ξ)
i,j ). (6.2)

We choose the lowest K such that the accuracy does not deteriorate.
Here, we will refer to CapsNet+Q as trained CapsNet where the
coupling coefficients are quantized.

Entropy. Given the quantized coupling coefficients of a CapsNet+Q,
we can extract the parse tree (and create a dictionary of parse trees) for
each class j, where each entry is a string composed of the quantization
indices of the coupling coefficients c̃[L−1](ξ)

:,j . Given a dictionary for the
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Figure 6.3: Extraction of a saliency map.

coupling coefficients of a CapsNet+Q, we can compute the entropy for
each class as

Hj = −∑
ξ

{
P
(
c̃[L−1](ξ)

:,j | y(ξ) = j
)
· log2

[
P(c̃[L−1](ξ)

:,j | y(ξ) = j)
]}

,

(6.3)
where P(c̃[L−1](ξ)

:,j | y(ξ) = j) is the frequency of occurrences of a

generic string ξ for each predicted class y(ξ). When stacking multiple
capsule layers, we apply the quantization stage to each layer and
compute the entropy values on the last layer L. Finally, the entropy of
a dictionary for a CapsNet+Q on a given dataset is the average of the
entropies Hj of each class

H =
1
J ∑

j
Hj. (6.4)

Intuitively, the lower Equation 6.4, the fewer the number of parse trees
carved out from the routing algorithm.

6.2.2 Parse Trees Visualization

As mentioned in Section 3.4, there are three types of capsule layers. Pri-
mary capsules and convolutional capsules have a spatial connotation,
while fully-connected capsules do not. We describe here two different
visualization methods of the extracted parse trees based on the type
of the capsules in layer L− 1. In both scenarios, we follow only the
connections starting from the capsule representing the predicted object
label, we refer to this method as “backtracking”.

Primary and convolutional capsules. In Figure 3.4, we see that
primary and convolutional capsules are organized in three dimensions
and located in a M× N ×O grid structure. Therefore, in this scenario,
we exploit the coupling coefficients c[L−1]

i,j for the predicted class j as
visual attention built-in explanation to carve out the part structure
discovered by a capsule model. We say built-in explanation because we
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rely only on the forward pass of the network. While Grad-CAM [64]
weighs neurons activations by gradients computed in the backward
pass, we weigh each capsule activation by the corresponding coupling
coefficient. We refer to u(ξ)

(m,n,o) to indicate the pose of the capsule in

position (m, n, o) for a given input ξ. With c̃[L−1](ξ)
(m,n,o),j , we refer to the

quantized coupling coefficient between a capsule in position (m, n, o)
of layer L− 1 and the predicted capsule-class j of layer L for a given
input ξ. We denote with E(ξ) the saliency map for a given input ξ. We
follow [65], where the coupling coefficients of the predicted class j
of a trained model for a given input are used as an attention matrix.
Unlike [65], we also weight each coupling coefficient by the activity of
capsule i. Therefore, each element of the saliency map is computed as

E(ξ)
(m,n) =

1
O ∑

o
(∥u[L−1](ξ)

(m,n,o) ∥ · c̃
[L−1](ξ)
(m,n,o),j ). (6.5)

Then we upsampled the saliency map to the input size with the bilinear
method. Figure 6.3 depicts our method’s visualization of extracting a
saliency map from an input image given a CapsNet model.

Fully-connected capsules. CapsNets can also be organized in fully
connected capsule layers. The saliency map method can not be em-
ployed in this scenario, as capsules in layer L− 1 do not have a spatial
connotation. Therefore, similarly to Mitterreiter et al. [66], we propose
a different visualization of the parse tree. Each capsule is a node where
the color is its activation probability, and the strength of the connection
is depicted with fuzzy edges of different strokes. We also denote with
deg−(uj) the indegree of a capsule j in layer l, which is the number
of coupling coefficients starting from capsules i in layer l − 1 that are
above some threshold. We only show the connections from capsule j
to capsules k in layer l + 1 if deg−(uj) is at least 1.

6.2.3 Unconstrained Routing Entropy

In this subsection, we are going to more-formally analyze the distribu-
tion of the coupling coefficients

ci,j =
ebi,j+∑

rT
r=1 u(r)

j uiW i,j

∑k ebi,k+∑
rT
r=1 u(r)

k uiW i,k

, (6.6)

where rT indicates the target routing iterations. We suppress the
indices ξ and l for abuse of notation. Let us evaluate the ci,j over a
non-yet trained model: as we also saw in Section 6.2.1, we have

ci,j ≈
1
J
∀i, j. (6.7)

When updating the parameters, following [41], we have

∂L
∂W i,j

=

[
∂L
∂uj

∂uj

∂sj
· ci,j +

M

∑
m=1

(
∂L
∂um

∂um

∂sm
· ûi,m

∂ci,m

ûi,m

)]
· ui, (6.8)
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where we can have the gradient for W i,j ≈ 0 in a potentially-high
number of scenarios, despite ci,j ̸= {0, 1}. Let us analyze the simple
case in which we have perfect outputs, matching the ground truth.
Hence we are close to a local (or potentially the global) minimum of
the loss function: ∥∥∥∥ ∂L

∂um

∥∥∥∥
2
≈ 0 ∀m. (6.9)

Looking at Equation 3.2, we see that the right class is chosen, but
given the squashing function, we have as an explicit constraint that,
given the j-th class as the target one, we require∥∥uj

∥∥
2 ≫ ∥um∥2 ∀m ̸= j (6.10)

on the W i,j, which can be accomplished in many ways, including:

• having sparse activation for the primary capsules ui: in this case,
we have constant W i,j (typically associated with no-routing based
approaches); however, we need heavier deep neural networks
as they have to force sparse signals already at the output of the
primary capsules. In this case, the coupling coefficients ci,j are
also constant by definition;

• having sparse votes ûi,j: this is a combination of having both
primary capsules and weights W i,j enforcing sparsity in the votes
and the typical scenario with many routing iterations.

Having sparse votes, however, does not necessarily result in having
sparse coupling coefficients. According to Equation 3.4.1, the cou-
pling coefficients are multiplied with the votes, obtaining the output
capsules. The distribution of the coupling coefficients requires Equa-
tion 6.10 to be satisfied only: if W i,j is not sparsely distributed, we can
still have sparse votes. However, this is the main reason we observe
high entropy in the coupling coefficient distributions: as the votes,
ûi,j are implicitly sparse (yet also disordered, as we are not explicitly
imposing any structure in the coupling coefficients distribution), the
model is still able to learn, but it finds a typical solution where ci,j
are not sparse. However, we would like sparsely distributed, recur-
rent couplings to the same j-th output caps c:,j, establishing stable
relationships between the features extracted at the primary capsule
layer.

Minimizing explicitly the entropy term in Equation 6.3 is an in-
tractable problem due to the non-differentiability of the entropy term
and the quantization step (in our considered setup) and due to the
huge computational complexity to be introduced at training time.
Hence, we can try to implicitly enforce routing entropy minimization
by forcing a sparse and organized structure in the coupling coefficients.
Towards this end, one efficient solution is to enforce sparsity in the
W i,j representation by compelling a vote between the i-th primary
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capsule and the j-th output caps to be exactly zero for any input,
according to Equation 6.6

ci,j =
1

∑k ebi,k+∑t
r=1 u(r)

k uiW i,k

. (6.11)

In this way, having a lower variability in the ci,j values (and hence
building more stable relationships between primary and output cap-
sules), straightforwardly, we are also explicitly minimizing the entropy
of the quantized representations for the coupling coefficients. In the
following subsection, we will tailor a sparsity technique to accomplish
such a goal.

6.2.4 Enforcing REM with Pruning

CapsNets are trained via standard back-propagation learning, min-
imizing some loss functions like margin loss. Our ultimate goal is
to assess to what extent a variation of the value of some parameter
θ would affect the error on the network output. In particular, the
parameters not affecting the network output can be softly pushed to
zero, meaning we can apply an L2 penalty term. Several approaches
have been proposed, especially in recent years [63, 67, 68]. One recent
state-of-the-art approach, LOBSTER [57] proposes to penalize the pa-
rameters by their gradient-weighted L2 norm, leading to the update
rule

θt+1 =θt − ηG
[

∂L
∂θt

]
− λθtReLU

[
1−

∣∣∣∣ ∂L∂θt

∣∣∣∣] , (6.12)

where G
[

∂L
∂θt

]
is any gradient-based optimization update (for SGD it

is the plain gradient, but other optimization strategies like Adam can
be plugged) and η, λ are two positive hyper-parameters.

Such a strategy is particularly effective on standard convolutional
neural networks and easy to plug into any back-propagation-based
learning system. Furthermore, LOBSTER is a regularization strategy
that can be plugged at any learning stage, as it self-tunes the penalty
introduced according to the learning phase. This non-intrusiveness in
the complex and delicate routing mechanism for CapsNets resulted in
a suitable choice to enforce REM.

6.3 experiments and results

This section reports the experiments and results we performed to test
REM. We first show the effects on the MNIST dataset with dynamic
routing CapsNets (DR-CapsNets), reporting how the entropy and the
accuracy values change during training. Then, we test REM on more
complex datasets such as Fashion-MNIST, CIFAR-10, SVHN, Dogs vs.
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Model Accuracy Entropy

DR-CapsNet1+Q 97.53 1.83

DR-CapsNet190+Q 99.55 9.41

Table 6.1: Classification results (%) and entropy of two DR-CapsNets+Q at
epochs 1 and 190 on MNIST (test set).

Cats [69] and Imagenette [70]. We used the same architectures con-
figurations and augmentations described in Sabour et al. [1]. We also
conducted experiments applying our technique to γ-CapsNets [29],
DeepCaps [34], Eff-CapsNets [71] to test the efficacy of REM to some
other variants of capsule models, including different architectures,
routing algorithms, and the number of trainable parameters. We used
a custom architecture called Eff-ConvCapsNet for higher-resolution
images such as Dogs vs. Cats and Imagenette. This model has three
capsule layers (primary, convolutional and fully-connected) and shares
a backbone network similar to Eff-CapsNets. We trained all models
with five random seeds. We report the classification accuracy (%) and
entropy (averages and standard deviations), the sparsity (percentage of
pruned parameters, median), and the number of keys in the dictionary
(median).

6.3.1 Ablation Study

To assess our REM technique, we analyze in-depth the benefits of
pruning towards REM on the MNIST dataset. Despite its outdatedness,
MNIST remains an omnipresent benchmark for CapsNets [1, 36, 41,
42, 72].

Choice of quantization levels. The routing algorithms used in the
models employed in this paper are performed between two consec-
utive capsule layers. As we can see in Figure 6.4, the choice of the
number of quantization levels K for the coupling coefficients computed
by a routing algorithm of a DR-CapsNet affects the performance of the
network. We select the value for K that achieves the best accuracy value
with relatively low entropy. In this case, when K=11, DR-CapsNet+Q
achieves 99.47% accuracy and 9.32 entropy, while DR-CapsNet+REM
achieves 99.57% accuracy and 4.40 entropy.

Entropy at different epochs. Let us now generate the parse trees on
the CapsNet model trained on the MNIST dataset, investigating their
evolution during training. To this end, we compute the distribution
of the coupling coefficients on the test set for two models: the model
trained after the first epoch and the one that achieved the lowest loss
value on the validation set. Fig. 6.5 shows the distributions for the two
models and Table 6.1 reports the corresponding accuracy and entropy
values. We can observe that after the first epoch, DR-CapsNet is far
from optimality, both in terms of performance (accuracy of 97.4%) and
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DR-CapsNet+REM
DR-CapsNet+Q

Figure 6.4: Entropy and accuracy for DR-CapsNet+Q and DR-CapsNet+Q
with different quantization levels on MNIST (test set).
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Figure 6.5: Coupling coefficients distributions for each class of two DR-
CapsNets+Q at epochs 1 and 190 on MNIST (test set).
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Figure 6.6: Accuracy and entropy vs. pruned parameters on MNIST (test set).

parse tree discriminability: indeed, all coupling coefficients are almost
equal to the value selected for initialization, i.e., 1/J, where J is the
number of output capsules. On a given dataset, we target a model
with high generalization but low entropy, namely a low number of
extracted parse trees. Figure 6.6 shows how the entropy (red line)
and classification accuracy (blue dotted line) change as the sparsity
increases during training. At the beginning of the training stage, we
can see that the entropy is low (1.83) because the routing algorithm
has not yet learned to correctly discriminate the relationships between
the capsules (97.53% accuracy). This effect is almost the same when
we train a DR-CapsNet with t = 1 as Gu et al. [41], where its entropy
is zero, but capsules are uniformly coupled. However, at the end
of the training process, we can get a model trained with REM with
higher performances (99.60% accuracy) and still low entropy (4.31).
Figure 6.7 illustrates the distributions of the coupling coefficients for
a DR-CapsNet+Q and a DR-CapsNet+REM following the method
described in Section 6.2.1. We can see that the distributions of the DR-
CapsNet+REM model are sparser than those for the DR-CapsNet+Q
model.

Number of parse trees. Figure 6.8 shows the number of intra-class
parse trees (collected in a dictionary) for DR-CapsNets+REM and a DR-
CapsNets+Q, namely a DR-CapsNet where the quantization is applied
without pruning the network during training. We can see that the
number of keys in the dictionary for DR-CapsNets+REM is lower than
the one for DR-CapsNets+Q for each class. Also, the entropy measure
for DR-CapsNets+REM is lower than DR-CapsNets+Q; namely, REM
has successfully extracted fewer parse trees on the MNIST test set.

Decoder. A CapsNet is typically composed of an encoder and a
decoder part, where the latter is a reconstruction network with three
fully connected layers [1]. In the previously-discussed experiments,
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Figure 6.7: Coupling coefficients distributions on MNIST (test set).
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Figure 6.8: Number of keys for each class on MNIST (test set).

we have removed the decoder. One limitation of our work arises when
computing the entropy of CapsNets trained with the decoder. Tables
6.2 and 6.3 report the classification results and entropies values when
we trained the encoder and the decoder part together. We observed that
the entropy of a DR-CapsNets+REM is almost the same as that of a DR-
CapsNet+Q. Indeed, when the decoder is used, the activity vector of
an output capsule encodes richer representations of the input. Sabour
et al. [1] introduced the decoder to boost the routing performance on
MNIST by enforcing the pose encoding a capsule. They also show
that such perturbation affects the reconstruction when a perturbed
activity vector is fed to the decoder. So capsule representations are
approximately equivariant, meaning that even if they do not come with
guaranteed equivariances, transformations applied to the input can
still be described by continuous changes in the output vector. To verify
if output capsules of a trained DR-CapsNet+REM without the decoder
(so with low entropy) are still approximately equivariant, we stacked
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on top of it the reconstruction network, without training the encoder.
The MNIST dataset’s decoder comprises three fully connected layers
of 512, 1024, and 784 neurons, respectively, with two RELU and a final
sigmoid activation function. This network is trained to minimize the
Euclidean distance between the image and the output of the sigmoid
layer. We can see in Figure 6.9 that DR-CapsNets+REM with low
entropy are still approximately equivariant to many transformations.

Width and translation

Rotation

Localized skew

Localized part

Figure 6.9: MNIST perturbation reconstructions of a frozen DR-
CapsNet+REM.

Model MNIST F-MNIST CIFAR-10

DR-CapsNet+Q 99.58±0.03 92.57±0.39 72.40±0.54

DR-CapsNet+REM 99.63±0.02 92.76±0.38 76.00±0.63

Table 6.2: Classification results with the decoder on MNIST, Fashion-MNIST,
CIFAR-10 (test set).

Model MNIST F-MNIST CIFAR-10

DR-CapsNet+Q 9.88±0.06 8.49±1.50 4.55±1.13

DR-CapsNets+REM 9.40±0.55 6.15±2.32 3.85±0.54

Table 6.3: Entropies for models trained with the decoder on Fashion-MNIST
and CIFAR-10 (test set).

Other networks Table 6.4 shows the performances on MNIST of DR-
CapsNets, γ-CapsNets, DeepCaps and Eff-CapsNets. We notice that
γ-CapsNet and γ-CapsNet+REM have the lowest entropy values since
γ-CapsNets employ a scaled-distance-agreement routing algorithm
that enforces the single parent constraint. With our technique REM we
can successfully lower the entropy even more.

6.3.2 Experiments

Considering the broad heterogeneity of proposed architectures and
the adaptability of REM to other architectures and datasets, we have
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Model Parameters Accuracy (%) Sparsity (%) Entropy

DR-CapsNet+Q 6.8M 99.56±0.03 − 9.53±0.54

DR-CapsNet+REM 0.9M 99.56±0.02 85.53 4.16±1.59

γ-CapsNet+Q 7.7M 99.50±0.07 − 1.87±1.38

γ-CapsNet+REM 0.8M 99.50±0.05 89.71 1.34±1.09

DeepCaps+Q 8.4M 99.51±0.24 − 5.26±2.00

DeepCaps+REM 2.4M 99.61±0.23 71.73 3.10±1.07

Eff-CapsNets+Q 161k 99.55±0.31 − 4.38±1.59

Eff-CapsNets+REM 43k 99.58±0.64 73.15 2.60±1.72

Table 6.4: Results for DR-CapsNets, γ-CapsNets, DeepCaps and
Eff-CapsNets on MNIST (test set).

chosen to test DR-CapsNets γ-CapsNets, DeepCaps, Eff-CapsNets and
Eff-ConvCapsNets to other datasets other than MNIST.

Datasets. We trained and tested CapsNets on: i) Fashion-MNIST,
28×28 grayscale images (10 classes); (ii) SVHN, 32×32 RGB images
(10 classes); iii) CIFAR-10, 32×32 RGB images (10 classes); (iv) Dogs vs.
Cats (images resized to 128×128); (v) Imagenette, a subset of 10 classes
from the Imagenet dataset resized to 128×128. For MNIST, Fashion-
MNIST, and CIFAR-10, we used 5% of the training set as a validation
set. For Dogs vs. Cats, Imagenette and Tiny Imagenet, we used 10%
of the training set as validation set. To test the robustness of novel
azimuths on smallNORB, we train all models on 1/3 of the training
data with azimuths of 0, 20, 40, 300, 320, and 340 degrees and test
them on 2/3 of test data with remaining azimuths never seen during
training. To test the robustness of our technique on novel elevations,
we trained models on 1/3 of the training data with elevations of 30, 35,
and 40 degrees from the horizontal. We tested on 2/3 of the test data
with the remaining elevations. Finally, to test the robustness to affine
transformations, we used expanded MNIST training and validation
sets (40×40 padded and translated MNIST images) and the affNIST
test set, in which each example is an MNIST digit with a random
small affine transformation.

Model architectures. All models employed in this work were tested
using the same architectures (number of layers, capsule dimensions,
number of routing iterations, etc.) presented in the original papers.
Therefore, for DR-CapsNets, γ-CapsNets, DeepCaps and Eff-CapsNets
we used the same architectures configurations as in Sabour et al. [1],
Peer et al. [29], Rajasegaran et al. [34], and Mazzia et al. [71] respec-
tively. Eff-ConvCapsNet consists of three capsule layers stacked on top
of a backbone network similar to Eff-CapsNets. We use the notation
Conv(output-channels, kernel, stride) for standard convolutional layers.
For convolutional capsule layers, the notation is ConvCaps(output-
capsule-dimension, output-capsule-types, kernel, stride). For fully-connected
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capsule layers, we use FcCaps(output-capsule-dimension, output-capsule-
types). The backbone network utilizes four standard convolutional
layers Conv(32,5,2), Conv(64,3,1), Conv(64,3,1), and Conv(256,3,2), fol-
lowed by a fifth depthwise convolutional layer Conv(256,3,1) to extract
16 primary capsule types of dimension 16. Then, a convolutional cap-
sule layer ConvCaps(16,16,3,2) is stacked on top of primary capsules.
Finally, a fully-connected capsule layer FcCaps(16, 10) (FcCaps(16, 2)
for Dogs vs. Cats) with shared transformation matrices is stacked
to output the class capsules. We used the dynamic routing method
introduced by Sabour et al. [1].

To visualize the parse trees in multilayer DR-CapsNets, we stacked
five capsule layers, 16 capsules for the primary capsule layer, 16 cap-
sules for the three hidden layers and ten capsules for the last layer.
Each capsule is composed by 8 neurons.

Training. For models without REM, we take the checkpoint that
achieved the lowest loss on the validation set, while for models with
REM we take the model on the last epoch. We checked the loss on
the validation set and used an early-stop of 200 epochs. The models
were trained on batches of size 128 using Adam optimizer with its
PyTorch 1.12 default parameters, including an exponentially decaying
learning rate factor of 0.99.

Quantization levels We used γ-CapsNets with 3 capsule layers as
in Peer et al. [29]. For γ-CapsNets+Q and γ-CapsNets+REM we found
K = 11 for the first two capsule layers and K = 6 for the last two. For
DeepCaps+Q and DeepCaps+REM we used K = 11 for all the capsule
layers where the number of routing iterations is greater than one. For
Eff-CapsNets+Q and Eff-CapsNets+REM we also used K = 11. For
Eff-ConvCapsNets+Q and Eff-ConvCapsNets+REM we used K = 21
on Dogs vs. Cats and Imagenette.

Generalization ability. As shown in Tables 6.5, a CapsNet+REM
has a high percentage of pruned parameters with a minimal per-
formance loss. So this confirms our hypothesis that CapsNets are
over-parametrized. We also report the entropy of the dictionary of the
last routing layer for the quantized models. The entropy is success-
fully lower for all datasets when REM is applied to all architectures,
even with fewer parameters than CapsNets, such as Eff-CapsNets.
Compared to other models, Eff-CapsNets have lower entropy since, in
the original implementation, the kernel size for the PrimaryCaps has
the same dimension as the backbone output, namely PrimaryCaps,
in this case, has no spatial resolution. Furthermore, we noticed that
apart from simple datasets such as MNIST or Fashion-MNIST, the
coupling coefficients distributions collapse to similar values, namely
the non-iterative self-attention mechanism does not build a proper
parse tree.

Robustness to affine transformations. To test the robustness to
affine transformations of DR-CapsNets+REM, we used expanded
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Dataset Architecture
Vanilla Quantized (Q) REM

accuracy entropy accuracy entropy accuracy sparsity

Fashion-MNIST

DR-CapsNet 92.76±0.2 8.64±1.2 92.46±0.2 4.80±1.7 92.62±0.1 80.71

γ-CapsNet 92.59±1.1 3.98±0.8 92.43±1.1 1.45±0.7 93.01±1.1 87.07

DeepCaps 92.36±0.2 7.15±1.3 92.33±0.2 6.08±1.3 94.61±0.1 83.29

Eff-CapsNet 93.31±0.2 3.88±1.1 93.22±0.2 1.10±0.5 92.98±0.4 63.29

SVHN

DR-CapsNet 93.30±0.2 7.13±1.2 92.20±0.2 5.23±0.7 91.71±0.5 74.40

γ-CapsNet 89.02±0.1 7.15±0.9 87.42±1.2 5.65±1.2 88.36±0.2 73.89

DeepCaps 93.32±0.3 11.06±0.6 93.20±0.4 3.97±1.5 93.06±0.2 80.50

Eff-CapsNet 93.64±0.1 0.53±0.6 93.62±0.1 0.24±0.4 93.12±0.1 47.80

CIFAR-10

DR-CapsNet 79.93±0.2 6.26±0.6 78.42±2.1 4.15±0.6 79.25±0.6 81.17

γ-CapsNet 74.02±0.3 3.67±0.70 73.08±0.48 3.22±0.7 74.89±0.2 74.89

DeepCaps 90.80±0.1 8.99±0.5 90.47±0.1 7.07±1.1 90.35±0.1 46.83

Eff-CapsNet 81.53±0.6 0.25±0.3 81.51±0.5 0.005±0.1 81.49±0.5 53.79

Dogs vs. Cats Eff-ConvCapsNet 97.74±0.3 4.05±0.3 99.2±0.3 2.03±0.7 99.1±0.6 71.92

Imagenette Eff-ConvCapsNet 83.11±0.1 7.63±0.5 82.98±0.6 5.85±0.3 83.02±0.8 63.52

Table 6.5: Accuracy (%), entropy and sparsity on Fashion-MNIST, SVHN,
CIFAR-10, Dogs vs. Cats and Imagenette (test set).

MNIST: a dataset composed of padded and translated MNIST, in
which each example is an MNIST digit placed randomly on a black
background of 40×40 pixels. We used the affNIST dataset as a test
set, in which each example is an MNIST digit with a random small
affine transformation. We tested an under-trained DR-CapsNet with
early stopping which achieved 99.22% accuracy on the expanded
MNIST test set as in Sabour et al. [1] and Gu et al. [41]. We also
trained these models until convergence. We can see in Table 6.6 that
the under-trained network entropies are high. Instead, a well-trained
DR-CapsNet+REM can be robust to affine transformations and have
low entropy.

expanded MNIST affNIST affNIST affNIST

Model Accuracy (%) Accuracy (%) Sparsity (%) Entropy

DR-CapsNet+Q 99.22 77.93±0.55 0 8.64±1.15

DR-CapsNet+REM 99.22 81.81±0.81 71.26 8.45±1.10

DR-CapsNet+Q 99.36±0.05 83.14±0.24 0 8.45±0.99

DR-CapsNet+REM 99.48±0.02 85.23±0.11 87.32 5.93±1.39

Table 6.6: Results on affNIST test set for under-trained and well-trained
models.

Robustness to novel viewpoints. CapsNets are well known for their
generalization ability to novel viewpoints [1, 26]. We conducted further
experiments on the smallNORB dataset to test the robustness of novel
viewpoints of our technique. We employed Eff-CapsNets, as they are
the state-of-the-art models on this dataset with few trainable param-
eters. We used K = 11 quantization levels for Eff-CapsNets+Q and
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Eff-CapsNets+REM. In Table 6.7, we can see that Eff-CapsNets+REM
are indeed robust to novel viewpoints with low entropy. Notice that
even if our work does not target state-of-the-art generalization, with
REM, we manage to achieve a maximum value of accuracy of 86.99%
with only 27k trainable parameters on novel elevations (98.43% for
familiar elevations) and 90.37% with only 37k trainable parameters on
novel azimuths (97.53% for familiar azimuths).

Model
Familiar Novel

Sparsity
Accuracy Entropy Accuracy Entropy

DR-CapsNet+Q (ϕ) 90.51±0.29 6.25±1.15 77.40±0.64 5.01±1.45 0

DR-CapsNet+REM (ϕ) 90.38±0.53 3.35±1.18 76.98±0.45 2.47±0.96 50.13

DR-CapsNet+Q (ψ) 87.44±0.51 5.42±1.34 72.29±0.57 5.02±1.07 0

DR-CapsNet+REM (ψ) 87.35±0.58 3.38±1.35 71.89±0.65 2.75±1.44 58.61

γ-CapsNet+Q (ϕ) 89.62±0.51 1.78±0.82 75.54±0.52 2.72±1.08 0

γ-CapsNet+REM (ϕ) 89.34±1.53 1.46±0.75 74.40±0.62 2.05±0.80 47.50

γ-CapsNet+Q (ψ) 85.98±0.43 1.87±0.58 71.33±1.22 2.55±0.89 0

γ-CapsNet+REM (ψ) 85.26±1.24 1.52±0.42 71.12±0.025 2.17±1.61 49.61

DeepCaps+Q (ϕ) 95.01±0.58 7.32±1.18 83.18±1.61 7.28±1.66 0

DeepCaps+REM (ϕ) 94.62±0.52 6.75±1.41 82.49±1.53 6.12±1.91 34.45

DeepCaps+Q (ψ) 90.16±0.27 6.53±1.77 79.36±0.76 5.14±1.45 0

DeepCaps+REM (ψ) 90.13±0.13 5.55±1.49 78.66±1.21 3.92±1.36 36.06

Eff-CapsNet+Q (ϕ) 97.81±0.45 1.10±0.42 85.03±1.01 1.33±0.53 0

Eff-CapsNet+REM (ϕ) 98.08±0.25 0.26±0.14 86.50±0.31 0.25±0.11 75.09

Eff-CapsNet+Q (ψ) 97.07±0.52 1.69±0.28 87.95±1.67 1.71±0.34 0

Eff-CapsNet+REM (ψ) 97.31±0.31 0.38±0.15 88.48±1.38 0.33±0.12 68.85

Table 6.7: Accuracy (%) and entropy values on the smallNORB test set on
familiar and novel viewpoints (elevations ϕ and azimuths ψ) seen

and unseen during training respectively.

We also show in Table 6.8 the performances of these networks with-
out quantization. All the models are trained with our implementations
when the source code is unavailable.
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Model Familiar Novel Sparsity

DR-CapsNet (ϕ) 90.62±0.21 77.51±0.43 0

DR-CapsNet (ϕ) 90.51±0.45 77.03±0.38 50.13

DR-CapsNet (ψ) 87.90±0.50 72.37±0.43 0

DR-CapsNet (ψ) 86.81±0.61 71.99±0.66 58.61

γ-CapsNet (ϕ) 90.15±0.39 75.89±0.53 0

γ-CapsNet (ϕ) 89.92±0.91 74.96±0.71 47.50

γ-CapsNet (ψ) 86.11±0.63 72.55±0.83 0

γ-CapsNet (ψ) 85.35±0.61 71.35±1.31 49.61

DeepCaps (ϕ) 95.32±0.48 83.13±0.91 0

DeepCaps (ϕ) 94.48±0.31 82.42±1.53 34.45

DeepCaps (ψ) 91.11±0.27 79.53±0.78 0

DeepCaps (ψ) 90.15±0.91 78.83±1.12 36.06

Eff-CapsNet (ϕ) 97.83±0.41 85.04±1.06 0

Eff-CapsNet (ϕ) 98.10±0.33 86.50±0.35 75.09

Eff-CapsNet (ψ) 97.07±0.52 87.98±1.64 0

Eff-CapsNet (ψ) 97.29±0.34 88.54±1.35 68.85

Table 6.8: Accuracy (%) on the smallNORB test set on familiar and novel
viewpoints (elevations ϕ and azimuths ψ) for DR-CapsNets,

γ-CapsNets, DeepCaps and Eff-CapsNets without quantization.

Improved visualizations with REM. Figures 6.10a and 6.10b show
the saliency maps overlayed on Dogs vs. Cats and Imagenette images.
We chose these datasets for the saliency maps visualization method
since the images come with higher resolution and more variation
than the other datasets. When REM is applied (second rows), we
can see that the network predominantly concentrates on the object
of interest, dismissing extraneous background noise or irrelevant
objects. This characteristic of REM leads to the extraction of more
concise part-whole hierarchies. As illustrated in Figure 6.10a, only
the discriminative features specific to a cat or a dog are prominently
highlighted in red. In contrast, features corresponding to people or
cages play a diminished role in the classification process. Similarly,
in Figure 6.10b, the model focuses mostly on the tench, the cassette
player, the chain saw, the French horn, and the golf ball, disregarding
trees, headphones, hands, the man, and grass.

In Figures 6.11 and 6.12 we show the saliency maps for smallNORB
when tested on novel azimuths and elevations, respectively. We used
the method described in Appendix 6.2.2. We show one object instance
for each category. We can see from these visualizations on smallNORB
that the differences between saliency maps of REM and without REM
are less prominent. This is because smallNORB is less complex than
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Figure 6.10: Saliency maps for Eff-ConvCapsNets without and with REM,
first and second rows, respectively.

Fashion-MNIST or CIFAR-10. However, we can still notice that some
of the saliency maps extracted with REM are more prominent and
consistent between each category.

Figure 6.13 shows the parse trees extracted from a fully-connected
DR-CapsNet for some CIFAR-10 images of the test set. We can see
that fewer capsules are part of the parse tree extracted with REM: the
network relies on fewer object parts to detect the objects.

6.4 summary

This paper introduced REM, a technique that drives the model pa-
rameters distribution toward low entropy configurations. With REM,
capsule networks do not need to model irrelevant objects or noise in
the images to achieve high generalization. Therefore, even a reasonable
sized capsule network can now learn more discriminative features.
A novel visualization method for capsule networks is employed to
show which features play a major role in the classification process.
Extensive experiments on different datasets and architectures confirm
the effectiveness of the proposed approach. Recent works show that
capsule networks do not scale [66] and suffer vanishing activations
when adding many capsule layers [73], leading to poor performance.
Therefore, carving out an ideal parse tree from complex images with
perfectly interpretable capsules is not possible with capsule networks,
yet. However, REM opens research pathways toward the distillation
of parse trees and model interpretability, including the design of a
pruning technique specifically designed for capsules.
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Figure 6.11: Saliency maps for smallNORB for DR-CapsNet+Q and DR-
CapsNet+REM (novel azimuths).
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Figure 6.12: Saliency maps for smallNORB for DR-CapsNet+Q and DR-
CapsNet+REM (novel elevations).
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Figure 6.13: Parse trees for some CIFAR-10 test images for multilayered DR-
CapsNet and DR-CapsNet+REM with backtracking.



Part III

C A P S U L E N E T W O R K S A P P L I C AT I O N S

In the previous parts, we presented the fundamentals of
capsule networks along with their extensions, primarily
focusing on image classification. However, it’s important
to note that the utility of capsule networks extends well
beyond image classification. Indeed, their versatile architec-
tures can be adapted to tackle various tasks, such as image
similarity matching and segmentation. This part delves
into the applications of capsule networks beyond the realm
of image recognition. Specifically, we will delve into the
following intriguing applications of capsule networks:

1. Localization of unmanned aerial vehicles without
GPS reliance: By harnessing satellite and drone im-
ages, capsule networks can play a pivotal role in ex-
tracting feature vectors that facilitate the verification
of whether a pair of satellite and drone images share
the same geographical region. This innovation offers a
novel unmanned aerial vehicle localization approach
that doesn’t rely on traditional GPS systems.

2. Encoding rotations of synthetic datasets with quater-
nions: Many applications such as robot grasping need
to know the exact position and orientation of an object.
However, real-world datasets do not always include
these informations. We generate Blender images of
various meshes displayed from different angles, la-
beled with object classes and rotations represented
using quaternions, which offer advantages over rota-
tion matrices. We explore the idea of using capsule
networks to encode quaternions, building on previ-
ous work that combined quaternions and capsules to
capture object poses effectively. The ultimate goal is to
leverage synthetic datasets annotated with quaternion
labels to generalize to real-world datasets.
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3. Lung nodules segmentation: Capitalizing on the in-
herent strengths of capsule architectures, it becomes
feasible to expand them into both encoder and de-
coder components. This extension proves invaluable
in the task of lung nodule segmentation. The archi-
tecture can classify each pixel within an image, dif-
ferentiating between regions belonging to a nodule
and those not. This advancement holds substantial
promise for enhancing medical imaging diagnostics
and analysis.

Incorporating capsule networks into these diverse applica-
tions underscores their adaptability and potential to rev-
olutionize various fields beyond the confines of image
classification.



7
L S V L : L A R G E - S C A L E S E A S O N - I N VA R I A N T V I S UA L
L O C A L I Z AT I O N F O R UAV S

The research findings and insights presented in this chapter are the
results of a visiting period at Aalto University (Helsinki, Finland),
supervised by Prof. Ville Kyrki. The collaboration led to the following
publication: Kinnari, J. “LSVL: Large-scale season-invariant visual
localization for UAVs.” In: Robotics and Autonomous Systems (2023),
p. 104497. issn: 0921-8890.

7.1 introduction

The ability of a Unmanned Aerial Vehicle (UAV) to robustly estimate
its position is one of the basic requirements of autonomous flight. In
missions in which the UAV needs to collaborate with other agents
operating in the same environment, information of position in a shared,
global frame of reference is needed.

There are several possible ways to estimate position. A localization
solution can rely on infrastructure built for this purpose. In outdoor
UAV operations, by far the most common is to rely on Global Navi-
gation Satellite Systems (GNSS). In ideal conditions, GNSS receivers
provide measurements of position. However, GNSS, as well as other
radio beacon systems, are susceptible to spoofing and jamming attacks
[75, 76], which may be used for denying operation of UAVs in an area.

A sensor system commonly carried by UAVs is the combination of
a camera and an Inertial Measurement Unit IMU. Several works have
focused on using this sensor combination for resolving the position
of the UAV by tracking the difference to a known starting position
by methods of VIO [77]. As VIO implementations integrate noisy
signals, they suffer from drift over long flights [78]. Simultaneous
Localization and Mapping (SLAM) methods [79] can help in partially
compensating for this drift by detecting loop closures, but only if
the mission contains reentry to a previously visited area. In addition,
visual-inertial odometry VIO and SLAM approaches are not robust
to random failures in position tracking; temporary failures may lead
to loss of position information in the global frame with only a small
chance of recovery.

If a map is available, matching camera images acquired by a UAV to
the map allows compensating for drift induced by odometry methods
and provides an estimate of position with respect to the map. This
approach is called visual localization [80, 81]. Using a georeferenced
map allows, in principle, finding the position of a UAV with respect

70
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to the map, even in the case of no prior information on position at
start of mission or after random failures in positioning.

There are, however, multiple challenges in visual localization. Ap-
pearance difference between the UAV image and the map may be
significant due to changes in season — an image acquired by a UAV in
winter looks very different from a satellite image acquired in summer.
Moreover, the environment in which the UAV is operating may be
naturally ambiguous, e.g., when flying over vast areas of forests. In
order for the localization solution to support recovery from random
localization failures, the size of the map must correspond to the oper-
ating area of the UAV. This means that the localization solution must
be computationally efficient enough to run on an onboard computer
even on large maps, and it must tolerate the natural ambiguity.

In this work we propose LSVL, which addresses all of the above
mentioned challenges of robust visual localization at large scale. The
main contributions of this work are:

1. We propose an approach for localizing a UAV which is able
to handle natural ambiguities and determine the location of
the UAV even when no prior information is available about
its starting pose over very large areas. Our extensive testing
demonstrates that, starting from an uncertainty corresponding
to 100 km2 area, our approach can converge to an average trans-
lation error of 12.6–18.7 m after no more than 23.2–44.4 updates
using UAV camera observations, under significant seasonal ap-
pearance difference between UAV observation and map, when
flying over terrains containing natural ambiguity. Importantly,
our approach does not rely on a digital elevation model and can
operate effectively using only 2D maps.

2. We propose a UAV image to map matching solution based on
compact descriptors learned in a manner that provides invari-
ance to seasonal appearance difference. We train the descriptor
networks using only satellite images, without requiring any la-
beled data such as semantic classification of the terrain. The
use of compact descriptors enables fast computation of a large
number of hypotheses.

3. We present the problem of UAV visual localization as state esti-
mation utilizing a point mass filter, and integrate it to our map
matching approach. This combination allows running our algo-
rithm in real time, with constant time and memory consumption
onboard a UAV at sufficiently large scale for UAV missions.

4. We explore different architecture choices for image description,
vector dimensionality, and likelihood computation, and evaluate
their impact on probability to convergence, time to convergence
and positioning error after convergence. We compare our solu-
tion to two state-of-the-art approaches for UAV localization, and
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demonstrate the operation of our localization solution in real
time onboard a commercial UAV.

5. We present a simple method allowing online assessment of in-
tegrity of pose estimate, enabling self-diagnostics of the local-
ization solution, which is a key component in the robust global
localization problem.

We believe this is the first work in the visual localization area that
is able to find true position of the UAV, starting from a scale of
uncertainty of 100 km2, over ambiguous terrains, under significant
seasonal appearance change. A block diagram of our algorithm is
shown in Figure 7.1.

The paper is structured as follows. Section 7.2 goes over related
work. Section 7.3 defines preliminaries of the localization problem.
We introduce our method in Section 7.4 and detail a vital part of
the solution, map matching, in Section 7.5. Section 7.6 describes our
localization experiments and we conclude the paper with discussion
and conclusions in Section 7.7 and Section 7.8, respectively.

7.2 related work

Visual localization of UAVs is a topic which has attracted interest espe-
cially over past few years. The state-of-the-art is covered by relatively
recent surveys [80, 81]. Within the area of visual localization, most
works are limited by one or more of the following assumptions: accu-
rate initialization is required [82–85], the size of the operating area is
limited [86, 87], the movements of the UAV are constrained to specific
paths [84], the operation takes place in conditions that are very close
to map in terms of appearance [82, 86], the map resolution and detail
requirement is significant, such as requiring a topography map [87],
or a very high flying altitude is required for successful georeferencing
[88]. The following overview of related work focuses on the works
that—similarly to LSVL—do not require of knowledge of initial pose
and that use an easily obtainable planar 2D map for localization.

A common choice in UAV localization is to detect semantic features
such as roads and intersections [88–91] or buildings [92]. Choi et al.[92]
proposed a method where the UAV image is semantically segmented
to find buildings in the camera view. Based on detected buildings, a
rotation invariant descriptor, building ratio map (BRM), is computed
from the proportion of building pixels visible in camera view, and
a precomputed map with similar descriptors is used for localization.
The authors demonstrated convergence of position estimate on a 6.17

km2 map after 27 updates with 25 meters of translation between each
update, with 12.01 m root-mean-square (RMS) error after convergence.
The demonstration flight takes place over a residential area. The main
drawback of this approach is the requirement that features of a specific
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Figure 7.1: Block diagram of proposed localization solution. We train a neural
network that computes embedding vectors. We precompute a
map of embeddings offline for a grid of position and orientation
hypotheses that cover the full considered state space. During
flight, we run a localization algorithm that tracks UAV egomotion
by VIO and computes an embedding of an orthoprojected section
of the UAV image. We predict belief over time steps in accordance
with VIO, and update belief based on likelihood computed from
distance in embedding space between image observation and
map hypotheses. We optionally include heading measurements.
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semantic class (i.e., buildings) are required for successful localization,
which may be unavailable when flying over natural environments.

Mantelli et al. [93] demonstrate localizing a UAV on a map of size
1.34 km2 using a particle filter, where particle likelihood is determined
based on a handcrafted descriptor called abBRIEF. The authors ini-
tialize the particle filter with 50 000 particles and show robustness
of their localization solution in comparison to BRIEF [94] descriptors
on trajectory lengths up to 2.4 km, showing convergence in less than
50 m to an average translation error of 17.78 m. The descriptor is
developed such that it is tolerant to illumination changes and allows
fast computation of particle likelihood over a large number of pose
hypotheses.

We evaluate against BRM and abBRIEF and show superior perfor-
mance.

We build on the idea of compressing UAV camera observation into
a compact embedding space, to allow fast testing of pose hypotheses
on a large map. This has been proposed recently by e.g., Bianchi et al.
[84] who use a bottleneck autoencoder approach to compress visual
observations to descriptor vectors of dimension 1000. Also Samano
et al. [95] and Couturier et al. [96] train Resnet models [97] to project
map tiles and UAV images to a low-dimensional (16D) embedding
space. Only Samano et al.[95] allow movements of the UAV outside
precomputed paths by precomputing a grid of embedding vectors, on
which hypothesis testing is performed by interpolating a vector from
this grid by each pose hypothesis and measuring distance of observed
image descriptor to interpolated descriptor vector in embedding space.
Authors of [95] demonstrate with simulated flight experiment the
convergence of pose estimate to less than 95 m translation error in
78.2% of simulated flights by 200 updates. We take a similar approach
but forgo interpolation in embedding space, to avoid unjustified im-
plicit assumption of smoothness of embedding space, and explore
other learned descriptor architectures. Compared to [95], we show
significantly faster convergence, tolerance to seasonal variation and
we demonstrate performance with real experiments.

The topic of localization over large areas under visual appearance
change occurs also under the topics of visual place recognition (VPR)
[98] and SLAM (e.g., Naseer et al. [99]). In VPR, the problem of local-
ization is commonly solved as an image retrieval task (e.g., Hausler
et al. [100]) or as refinement with respect to a preconstructed Structure-
from-Motion (SfM) map of an area [101]; in SLAM, the sensor system
of the robot is used for building the map. In contrast, we propose a
localization solution that does not require having previously visited
or acquired imagery in the area of operation. Instead, we focus on
the problem of localization with respect to an orthophoto map. In
this way, using only low-cost orthoimage maps, the size of the region
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of operations is not constrained by cost of data acquisition for map
building.

Some variations due to weather can be removed by denoising [102,
103]. Our work does not target removal of effects of adverse weather
on the imaging process, but methods of denoising could be combined
as a preprocessing step to our work.

7.3 preliminaries

We want to resolve the pose of an UAV using measurements available
at the UAV during flight, with no dependency on localization or
communication infrastructures. Formally, we define the pose of the
UAV pose in a common, global reference frame as the state

Xk =
[

xk yk θk

]T
(7.1)

where x, y, and θ represent longitude, latitude, and heading, respec-
tively, in a Cartesian coordinate system and k is index for time. We
consider localization of the UAV in a limited region in longitude and
latitude: we assume xk ∈ [xmin, xmax], yk ∈ [ymin, ymax], θk ∈ [0, 2π).
The localization problem is to compute the marginal posterior distri-
bution p(Xk|Y1:k,M) of state Xk, given history of measurements Y1:k
and mapM.

In this work, we concentrate on the wake-up robot problem, i.e., at the
start of a flight, we assume an uniform prior distribution p(X0) over
all values of xk and yk, across all values of heading. This represents a
situation where the only initial information about the UAV position is
that it is located within the area of a map defined over a rectangular
area in latitude and longitude. Our formulation allows inclusion of
more informed initialization.

We take the typical approach of considering localization on preac-
quired map as a Bayesian filtering problem (see e.g., [104]). This
amounts to maintaining a representation of belief of current state
and updating that representation when new measurements are avail-
able. At each time step k, we obtain three types of measurements from
the onboard sensors of the UAV: an odometry measurement uk, an
heading measurement vk, and an image from the UAV camera Ik to
be used for map matching. Given the measurment Yk =

{
uk, vk, Ik

}
,

at each sampling time k, we first perform a prediction step based on
the odometry measurement:

p(Xk|uk, Y1:k−1) =
∫

p(Xk|uk,Xk−1)p(Xk−1|Y1:k−1)dXk−1 (7.2)

We then use the heading and map matching measurements as our
observation model:

p(Xk|Y1:k,M) =
1
ηk

p(Xk|uk, Y1:k−1)p(vk, Ik|Xk,M) (7.3)
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where ηk is a normalizing constant. The heading and map matching
measurements are considered independent, and likelihood of heading
measurement is not conditional on map:

p(vk, Ik|Xk,M) = p(vk|Xk)p(Ik|Xk,M) (7.4)

7.4 method

In order to find the pose on a large map in presence of matching
ambiguities presented in the introduction, a method is needed for
utilizing a sequence of as many UAV images as needed in order to
converge to a single, correct pose estimate. We propose a recursive
localization method consisting of the following components, illustrated
in Figure 7.1. We use an odometry measurement for predicting belief
of state X̄k,xyθ at time k based on state Xk−1 at previous time instant
k− 1. We use a map matching measurement for computing likelihood of
pose hypotheses WM,k based on a single UAV image and, optionally, a
heading measurement for computing the likelihood of pose hypotheses
WH,k based on a compass heading measurement. The localization
method updates belief of state using all the measurements, providing
Xk, belief of state at time k.

In this section we describe each of these components in detail,
putting particular attention in describing how the proposed solu-
tions target the complexity that arises from both dealing with a large
map and with considerable appearance change, central limitations
of current methods that we address in this work. Section 7.4.1 lists
all measurements we use, and Section 7.4.2 specifies our localization
method.

7.4.1 Measurements

7.4.1.1 Odometry measurement

We assume that the UAV is running a VIO algorithm which provides
a measurement of incremental motion in six degrees of freedom. We
marginalize over roll and pitch, which are directly observable in the
global frame [105], and altitude, which we abstract with the map
matching approach presented in Section 7.5. The odometry algorithm

provides, at time k, the measurement uk =
[
uk,x uk,y uk,θ uk,o

]T
, a

measurement of translation, rotation and distance traveled since time
k− 1. uk,x and uk,y are translation since time instant k− 1 in x and y
coordinates, respectively, with respect to pose at time k− 1. Similarly,
uk,θ is rotation around vertical axis. uk,o is the integral of distance
traveled since instant k− 1 according to odometry. The measurements
are visualized in Figure 7.2a.
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We approximate the odometry pose uncertainty with a multivariate
normal distribution. We further assume the covariance of pose is
isotropic in x, y directions and that rotation noise is independent from
translation noise. More formally, we approximate the posterior density
with a multivariate normal distribution with covariance Σu. This gives
the motion model

xk+1

yk+1

θk+1

 =

xk

yk

θk

+

cosθk −sinθk 0

sinθk cosθk 0

0 0 1

 ūk +N (0, Σu(uk,o)) (7.5)

where the mean of the measurement ūk =
[
ūx ūy ūθ

]T
is specified

in the odometry frame at time k and Σu(uk,o) specifies the covariance
of the measurement, and Σu(t) is a diagonal matrix:

Σu(t) = diag(σu,xy(t)2, σu,xy(t)2, σu,θ(t)2). (7.6)

While the isotropic noise for translation and independent noise in
heading are simplified approximations of the true distribution [106],
we consider this a sufficient upper bound approximation to the odom-
etry noise. This approximation enables a computationally fast method
of prediction as elaborated in Section 7.4.2.3.

In addition, we assume the movements of the UAV produce suf-
ficient IMU excitation to make scale observable or that the UAV is
equipped with additional sensors with which scale can be resolved.

7.4.1.2 Map matching measurement

The purpose of map matching is to provide a means for verifying or
disputing pose hypotheses, given camera image Ik and map M. A
method for computing the likelihood p(Ik|Xk,M) is thus needed. Our
work focuses especially on finding means for computing the likelihood
that work well over ambiguous terrains under significant seasonal
appearance difference, in a computationally efficient way. Since the
method used for map matching and likelihood computation based on
a UAV image is a considerable part of our contribution, a separate
section (Section 7.5) has been given to the detailed description of this
component.

7.4.1.3 Heading measurement

We assume the UAV is equipped with an heading ref- erence system
(AHRS), relying on fusion of a compass and an IMU, which provides
a measurement of heading, θ, with respect to map East, corrupted by
Gaussian noise nθ ∼ N (0, σ2

v ):

vk = v(tk) = θ(tk) + nθ (7.7)
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7.4.2 Localization method

We have to consider how to formulate the pose estimation problem in
a computationally feasible way. In choosing the estimation approach,
we need to consider characteristics of the problem. Specifically, as we
start from a very uninformed state and expect natural ambiguities in
the environment we are operating in, it is expected that we need to be
able to track a large number of multiple hypotheses before converging
to the correct pose, and before convergence, the state is expected to
not conform to a parametric probability distribution model. This leads
us to consider nonparametric Bayesian filtering approaches, and in
the localization context, two commonly used solutions are particle
filtering and point mass filtering [104].

7.4.2.1 Choosing representation for state

The use of a particle filter in UAV localization is a common choice
[86, 93, 95]. However, in cases of very uninformed initialization, a risk
exists that a particle is initially not placed in vicinity of the true pose,
leaving the probability of converging on the correct pose over time
to chance. Furthermore, during a flight, it is possible that the close
proximity of true state is left without sufficient particle density in cases
such as when flying for long periods of time over ambiguous areas, or
in case of large but local map inconsistencies (e.g. forest clearcutting
having taken place between map acquisition and flight), leading to
divergence in a poorly predictable way. Since the particle filter is
stochastic, different instantiations of the filter using the same data
may provide different results and, depending on selected resampling
scheme, computation time may vary.

Instead of representing belief through the use of particles, we choose
to use a point mass filter and compute the belief on a discrete grid.
This selection ensures coverage of full state space throughout the
mission, at the resolution specified by our choice of grid, and of-
fers deterministic performance and constant computational time and
memory requirement. Early adaptations of point mass filtering-based
approaches on 2D robot localization include the work by Burgard et al.
[107] and in terrain navigation of flying platforms by Bergman [108].

7.4.2.2 Definition of state using point mass filter

We approximate belief p(X ) on the continuous state space of X by
decomposing it into a grid of regions of equal size with resolution
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rx = ry = rxy in translation and rθ in heading. Each region is a voxel

s(i, j, l) =
[
sx(i), sy(j), sθ(l)

]
in the state space with bounds

sxv(i) ≤ sx(i) < sxu(i)

syv(j) ≤ sy(j) < syu(j)

sθv(l) ≤ sθ(l) < sθu(l)

(7.8)

with lower bound sbv(i) = bmin + i × rb and upper bound sbu(i) =

sbv(i) + rb for each axis b ∈ {x, y, θ} and i, j, l ∈N such that the whole
state space is covered.

We approximate belief over state at time instant k as a piecewise
constant probability matrix Xk ≈ p(Xk) where each element of matrix
Xk[i, j, l] assigns a probability to each voxel s(i, j, l) in state space.

7.4.2.3 Using odometry measurement for prediction

To approximate the prediction step equation 7.2 with our state rep-
resentation, using the VIO measurement model presented in Sec-
tion 7.4.1.1, we formulate a method in which the probability mass
contained in a voxel in Xk−1 is projected to other voxels in the be-
lief grid at time k as dictated by the odometry measurement. We
repeat this operation for each voxel in the belief grid. An example
visualization is shown in Figure 7.2. Isotropic (x, y) odometry noise
and independent θ odometry noise enable us to run the prediction
computationally efficiently as three consecutive 1D convolutions.

We compute offsets ox(α), oy(α), oθ and kernel vectors ˇθ , ˇx(α) and
ˇy(α) such that for a given initial heading α in the global frame, the
kernels span a region of at least four standard deviations around mean.
We then perform prediction by running 1D convolutions in sequence:

X̄k,x[i, j, l] =
qx

∑
h=1

Xk−1[i− ox(s̄θ(l))− h, j, l]ˇx(s̄θ(l))[h] (7.9a)

X̄k,xy[i, j, l] =
qy

∑
h=1

X̄k,x[i, j− oy(s̄θ(l))− h, l]ˇy(s̄θ(l))[h] (7.9b)

X̄k,xyθ [i, j, l] =
qθ

∑
h=1

X̄k,xy[i, j, l − oθ − h]ˇθ [h] (7.9c)

Here, s̄θ(l) returns the centerpoint of the angle corresponding with
index l in X. Note that the offsets and convolution kernel vectors
in x and y direction depend on the value of α, i.e., probability mass
is shifted in the direction defined by the heading value, using the
nominal value of that cell. At the edges of state space, equation 7.9a
and equation 7.9b are filled with zero for values outside state space
and equation 7.9c is wrapped around to the opposite edge.

The end result of this step is X̄k,xyθ , which states how Xk−1 shifted
and spread according to odometry measurement and odometry noise
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from time k− 1 to k. A clarifying visualization can be found in Fig-
ure 7.2.

7.4.2.4 Weighing belief with heading measurement

We approximate the circular Gaussian presented in Section 7.4.1.3 by
von Mises distribution and we compute a weight matrix WH,k for all
grid indices:

WH,k(i, j, l) = ΦV (sθu(l), vk, 1/σ2
v )−ΦV (sθv(l), vk, 1/σ2

v ) (7.10)

where ΦV (t, θ, 1/σ2) is the cumulative density function of von Mises
distribution with parameters θ, 1/σ2 evaluated at t.

7.4.2.5 Weighing belief with map matching measurement

For all grid indices, we compute a weight matrix WM,k, from likelihood
of the observation Ik representing the voxel sx(i), sy(j), sθ(l), given
mapM:

WM,k(i, j, l) = p(Ik|sx(i), sy(j), sθ(l),M) (7.11)

The likelihood computation methods are described in detail in Sec-
tion 7.5.4.

7.4.2.6 Updating with all measurements

Our updated state estimate is computed as

Xk,u = X̄k,xyθ ⊙WH,k ⊙WM,k, (7.12)

where ⊙ is elementwise multiplication, and finally normalized:

Xk =
Xk,u

∑i,j,l Xk,u(i, j, l)
(7.13)

The end result is a recursive discrete approximation of equation equa-
tion 7.3.

7.4.2.7 Interval for running algorithm

Our localization algorithm is run at fixed intervals of travel, when the
UAV has traveled more than a specified distance ul since the latest
update. The amount of travel since latest update is approximated by
odometry. The value for ul can be chosen to balance computational
load, ensure enough movement with respect to to selected grid size,
and have independence between UAV images used in map match-
ing. In general, smaller ul is preferred. The lower limit for ul comes
from the requirement of independence of consecutive observations in
the Bayesian filter and thus ul should be approximately equal to the
dimension of the image used in map matching, which in our experi-
ments is 100 m and 40 m for convergence experiments and real-time
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(a) Odometry measurements are stated with respect to frame at
previous update, {Cl,k−1}. uk,o states distance traveled since pre-
vious update, according to odometry.
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(b) Part of X after marginalizing different axes individually. Two voxels at
(100, 100, 45°) and (300, 300, 90°) representing belief before prediction are shown
in red. Voxels highlighted in green and yellow represent belief after prediction.
White arrows show how prediction using these odometry measurements with the
assumed noise shifts and smooths X according to the measurement, and that shifts
are performed in direction determined by odometry measurement and voxel’s θ

value.

Figure 7.2: Example of prediction based on odometry. In this example, uk,x =
100 m, uk,y = 10 m, uk,θ = 30°, σu,xy = 10 m, σu,θ = 5°. Figure 7.2a
visualizes odometry measurements between times k − 1 and k.
Figure 7.2b visualizes how odometry measurements are used in
prediction.
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experiments, respectively. Increasing ul leads to less updates per dis-
tance traveled and therefore slower convergence, but allows allocating
more time for running the localization algorithm. Between updates, a
location estimate in navigation frame is tracked using odometry.

7.5 map matching

Our formulation this far has considered how to fuse odometry, heading
and map matching measurements using a point mass filter. We have
still to define how to compute the likelihood p(Ik|Xk,M), i.e., assess
how well the observed UAV image Ik supports each possible value of
state Xk, when using mapM.

Instead of detecting image features and using them as landmarks as
done in e.g., [109], we prefer an area-based approach, i.e., using a large
part of the observed image for discriminating between plausible and
incorrect poses. The main motivation for this choice is that feature-
based approaches require detection of spatially local features, which
may be very sparsely detectable when flying over ambiguous terrains,
especially across significant seasonal change (e.g., after accumulation of
snowfall) and when image footprint on ground is small. Using a large
section of UAV image allows us to assess plausibility of matching with
respect to a map even if locally distinct features cannot be detected.

Besides the targeted robustness when flying in ambiguous terrains,
there are a number of other desirable characteristics for a map match-
ing method. The method should work in matching patches of ground
that are of a reasonable size; we should not develop a solution which
requires a very large observed ground footprint and thus a high fly-
ing altitude in order for the solution to work. As we don’t want to
restrict the UAV trajectories, it is desirable to have a map matching
method that is tolerant to viewpoint change (especially camera pitch
and roll) and works at different flight altitudes and across a range of
camera intrinsics. In addition, in developing a map matching approach
trained with data samples, we cannot assume that a large amount of
UAV imagery containing all types of expected variability (seasonal
apperance change, camera angle with respect to ground and camera
intrinsics, flight altitudes) is available for this purpose. Finally, the
approach should be such that it works in the targeted scale and is
computationally feasible for an onboard deployment. As a synthesis
of all these needs, we propose an approach that splits the problem in
two.

We first perform a rudimentary orthoprojection of the observed UAV
image such that a section of the image that corresponds to a patch
on ground of a specific size, at specific ground sampling distance, is
generated (see Figure 7.3). This acts as a means for abstracting away
the flight altitude, camera intrinsic parameters and camera orientation
with respect to ground and renders the problem of likelihood compu-
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tation into that of finding likelihood between patches of orthoimages.
This is beneficial also in training deep learning-based matching meth-
ods that are robust against seasonal variance as we demonstrated in
earlier work [110], since our method abstracts away parameters that
are irrelevant for the map matching problem (i.e., camera intrinsics
and altitude differences) and, unlike UAV image datasets, satellite
images containing seasonal variation are plentiful.

As a second step, we compute a compact descriptor vector from the
UAV image patch. We compute likelihood of each pose hypothesis
by comparing that descriptor vector to a set of descriptor vectors that
have been precomputed from mapM. Likelihood estimation is done
by computing distance in the embedding space spun by the descriptor
vectors. The choice of operating on compact descriptor vectors instead
of template matching individual pose hypotheses as e.g., in previous
work [110] is a key enabler for fast likelihood estimation over a large
map, but raises the question of how to engineer a descriptor vector
computation method in a way that allows as small vector size as
possible while enabling robust localization.

In this section, we first introduce the orthoprojection method, af-
ter which we describe the methods of computing descriptor vectors,
precomputing a map and finally computing the matching likelihood.

7.5.1 Orthoprojecting UAV image

The map matching measurement is generated based on the view from
a single UAV image, which may be tilted from nadir and thus contains
perspective difference with respect to top-down view. To reduce the
impact of this perspective change, we orthoproject the UAV image and
make the assumption that the ground beneath the UAV is planar. Our
approach resembles earlier work [111] with a few key differences and
we report an overview of the full approach for completeness.

Based on direction of gravity estimated by AHRS, we first define
local frame {Cl,k} for image sampled at time tk whose origin is at the
origin of the UAV camera frame, z axis points in opposite direction
to gravity, and the component of camera image plane horizontal axis
perpendicular to z is aligned with y axis.

Our localization approach is based on using an orthoprojection of
the camera view of the UAV. We detect image feature points using
Shi-Tomasi detector [112] and track movement of the features across
a batch of ten consecutive camera image frames around keyframe
sampled at tk using a pyramidal Lucas-Kanade tracker [113]. Besides
image sampled at tk, the batch consists of four images prior to the
image corresponding with time tk and five after. We estimate the 3D
locations of tracked feature points in frame {Cl,k} using the linear
triangulation method in [114], using relative pose transformations
between frames in batch that we compute from ground truth data.
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(a) Original UAV image Ik
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(c) Coordinate frame {Cl,k}, points tracked
in VIO (cyan dots), square lying on
plane fit to VIO landmarks and trans-
formation Ts,k

l,k to {Cs,k}

Figure 7.3: Example of UAV image (100m by 100m area used for orthoprojec-
tion highlighted in red), its orthoprojection, and a visualization
of the coordinate frames.

Exploration of VIO frontends is beyond the focus of this work and
we believe the use of noiseless relative transformations is a sufficient
approximation of a generic VIO algorithm over the sequence of ten
frames.

We then find the best-fitting plane whose normal is aligned with
z axis; i.e., we assume the ground below the UAV is planar and
horizontal. We find a square with size 100m by 100m lying on the
best-fitting plane that is closest to nadir and fully visible in the camera
image Ik. We project the cornerpoints of this square into the image
plane of Ik and, by homograpy, transform the pixels corresponding
with the square in Ik to an 100px by 100px image at 1 m/px resolution
which we call Ik. Ik is the observation we use in map matching. We also
compute Ts,k

l,k , a transformation from frame {Cl,k} to a frame centered
in the middle of the square, which we label {Cs,k}. There is no rotation
between {Cl,k} and {Cs,k} and translation is defined such that {Cs,k}
is at the center of the square. An example of one orthoprojected
UAV image and a visualization of the coordinate frames is shown in
Figure 7.3.

The presented approach enables us to consider the motion of a
UAV as a sequence of 2D translations and rotations while allowing
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extraction of observation Ik at correct scale independent of fight alti-
tude, while Ts,k

l,k contains information about position of its centerpoint
relative to camera, including estimated ground plane altitude.

7.5.2 From orthoimage patch to descriptor vector

Inspired by other works projecting the UAV observation into a single
compact descriptor vector [84, 95, 96], to provide a fast way to com-
pare an observation to a large number of pose hypotheses, our map
matching method is based on transforming both UAV observations
and a reference map into a suitable descriptor space, and computing
probability of pose hypotheses using descriptor vector values. Based
on image Ik, we compute a descriptor vector wk using function fi:
wk = fi(Ik). This function fi is composed of a deep neural network
backbone b such as Resnet [115] followed by a projection module m.
Therefore fi(Ik) = mi(bi(Ik)). The projection module is stacked on top
the ResNet model where the the last average pooling and final fully
connected layer specified in [115] are removed. The last layer of the
projection module has D neurons in order to compute D-dimensional
l2-normalized descriptor vectors. The projection model thus produces
vectors in unit D-sphere. Therefore, f : Rh×w×c → RD, where h, w and
c are the height, width and channels dimensions of the input image Ik.

7.5.2.1 Projection modules

In order to extract D-dimensional embedding vectors, we used two
different types of projection modules: one composed only of fully
connected layers, mFCN , and one composed by a Capsule Network
(CapsNets) model [1], mCAP. We refer to fFCN and fCAP as the models
where the ResNet backbone is followed by mFCN and mCAP, respec-
tively.

Inspired by the architecture choices proposed by [95, 96], the mFCN
module is composed by two fully connected layers, one with N neu-
rons and one with D outputs. A visualization of the network structures
is shown in Figure 7.4a.

CapsNets have gained great attention recently since they form
more stable and robust representations with respect to input per-
turbations [4]. Compared to convolutional neural networks (CNNs),
CapsNets also achieve greater generalization with fewer trainable pa-
rameters [1, 26]. Their main innovation lies in two major distinctions
from CNNs: (i) the encoding of object poses (position, size, orientation)
and visual attributes (e.g., color, texture, deformation, hue) into groups
of neurons called capsules (ii) the routing-by-agreement mechanism,
which models the connections between capsules of different layers.
Namely, it models the part-whole relationships among objects without
losing spatial information.
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FC + l2 norm   FC + batch norm + ReLU

ResNet

wkIk

(a) fFCN

FC + l2 normPrimaryCapsCapsule LinearCaps

ResNet

wkIk

Assembly

(b) fCAP

Figure 7.4: Architectures for fully connected and capsule networks

Before this work, the seasonal invariance property of CapsNets had
not been tested. But since CapsNets are well known for being robust to
affine transformations, novel viewpoints, and lighting conditions [4],
we investigated the potentials of CapsNets to learn season invariant
features. Furthermore, in the literature [30, 65], capsule layers have
been widely stacked on top of ResNet backbones instead of traditional
fully connected layers to achieve better performance. Owing to these
properties, extracting descriptor vectors using fCAP can help to solve
the UAV localization task described in this work. A visualization of
fCAP is shown in Figure 7.4b.

7.5.3 Precomputing descriptors for map

We precompute offline a map around the expected operating region.
The map holds descriptor vector values that have been computed
from a georeferenced orthophoto RGB bitmap M. For each map
coordinate Xh = (xh, yh, θh), we crop a w m by w m square image
IM,h, translated from origin by (xh, yh) in map coordinates and rotated
by θh, from the map image M. We then compute an embedding
vector wh = fi(IM,h). We compute these embedding vectors using
the centerpoint coordinate of each voxel in X. This process yields a
precomputed map M(i, j, l) ∈ RD where indices i, j, l correspond
with indices of grid cells in our belief representation X. We compute a
separate map for each tested network architecture. Dimensions of the
image in pixels, as well as chosen resolution of images, are a design
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parameter that can be selected based on expected use case. In the
experiments section in this work we use either w =100 m or w=40

m, as reported in each experiment, and scale each image to 1 m/px
resolution.

7.5.4 Determining map matching likelihood

To assess whether a UAV observation corresponds with a state hy-
pothesis, we approximate

p(Ik|sx(i), sy(j), sθ(l),M) ≈ p(wk|i, j, l, M) (7.14)

and compute WM,k, which contains the weight for each state space
element on the chosen voxel grid.

WM,k(i, j, l) = p(wk|i, j, l, M) (7.15)

We compare two solutions for this. The first one, labeled linear, is
similar to the choice in [95]. It assumes that Euclidean distance between
the embedding obtained from the UAV and from the map ck(i, j, l) =
∥wk−M(i, j, l)∥2 is inversely proportional to the probability of correct
pose:

WM1,k(i, j, l) =
2− ck(i, j, l)

2
(7.16)

The second one is the method for computing importance factor
presented in earlier work [110], where we estimate the probability
density of distances in Euclidean space for true and false matches from
satellite image data and compute the probability that the observation
is from "match" class, for each element in Xk individually. We label
this weighing method bayesian and we name weight matrix WM2,k.

7.6 experiments

7.6.1 Overview of experiments

We experiment the performance of our solution with respect to base-
line methods on real-world datasets. We evaluate probabillity of con-
vergence, time to convergence and localization error after convergence
with flights taking place in two areas in Sweden. In both areas, we
experiment with the problem of localization starting from 100 km2

uncertainty. In addition, we experiment with real-time implementation
on a UAV onboard computer.

For evaluating the critical design choices in our map matching
approach, we vary the projection module type (fully connected or
capsule network), likelihood vector dimensionality D (8, 16, 32 or
128) and likelihood conversion method (linear or bayesian), evaluate
the impact of these choices on probability of convergence, time to
convergence and mean localization error after convergence.
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We evaluate localization performance by the criteria defined in
Section 7.6.2. The datasets we use for experimentation and model
training are described in Section 7.6.3. Training methods are outlined
in Section 7.6.4.1, baseline methods are described in Section 7.6.5,
followed by evaluation of localization performance in Section 7.6.6
and learnings from real-time experiments in Section 7.6.7.

7.6.2 Evaluation criteria in localization experiments

7.6.2.1 Translation error

We compute the estimated (x, y)-coordinates and heading using
equation 7.17a and equation 7.17b, respectively.

X̂xy
s,k = ∑

i,j,l
X(i, j, l)

[
s̄x(i) s̄y(j)

]T
(7.17a)

X̂θ
k = atan2(∑

i,j,l
X(i, j, l)sin(s̄θ(l)), ∑

i,j,l
X(i, j, l)cos(s̄θ(l))) (7.17b)

Here, s̄x(i), s̄y(j) and s̄θ(l) are the centerpoint coordinates of voxel
corresponding to indices (i, j, l) and atan2 is the 2-argument arctan-
gent. We then transform these estimates from X̂xy

s,k to drone-centric
coordinates X̂xy

k .
We compute the Euclidean distance to ground-truth (x, y)-coordinates

Xxy
k,gt:

X̃xy
k = ∥X̂xy

k − Xxy
k,gt∥2 (7.18)

We also compute σx̂y, the weighted standard deviation of Euclidean
distances to X̂xy

k in (x, y) plane, weighing with Xk. We claim that σx̂y
is a suitable measure of convergence of the localization solution, and
a large spread of uncertainty signals the need for re-initialization of
the estimator.

7.6.3 Datasets

7.6.3.1 Satellite images

We trained our networks on 100m by 100m samples at 1 m/pixel
randomly drawn from Google Earth satellite images of size 4800 by
2987 meters collected from 9 regions, in arbitrarily selected places
in southern Finland that cover urban and non-urban areas. For each
region, 4 to 15 satellite images collected from the same area at differ-
ent times, containing seasonal variation, are used. The Google Earth
datasets are the same as in an earlier work [110].
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8

Figure 7.5: Example images from datasets. Note difference in seasonal ap-
pearance.

7.6.3.2 UAV images

Our experiments are run on datasets that have been collected with a
UAV in two locations in Sweden at different times1. The dataset con-
tains a sequence of posed images sampled at 10 Hz. Ground-truth cam-
era trajectory is collected with a real-time kinematic (RTK)-corrected
global positioning system (GPS) in uninterfered conditions. The use
of RTK-GNSS ensures position precision in the centimeter range. A
listing of the flight experiments is given in Table 7.1. A representative
image of each dataset is shown in Figure 7.5 and flight trajectories
over an orthophoto map are shown in Figure 7.6. The flights take place
over terrains with forest areas, a lake, agricultural fields and some
residential areas. At the time of running this experiment, IMU data
was not available.

7.6.3.3 Maps used for localization

Each original map M is an orthophoto bitmap constructed from
aerial images taken over the operating area in summer 2021. We use
orthophoto bitmaps with an original ground sampling distance of 0.16

m/px provided by a local map information supplier2.

7.6.4 Training descriptor generator networks

7.6.4.1 Training details

We trained the models fFCN and fCAP only on satellite images.3 At
each epoch, 45k training satellite samples are generated from the 9

areas. Each sample represents a location and orientation on a map. We

1 Data provided by Saab Dynamics Ab.
2 © Lantmäteriet, https://www.lantmateriet.se/.
3 We acknowledge the computational resources provided by the Aalto Science-IT

project.

https://www.lantmateriet.se/
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1
2

(a) Kisa

3
4-8

(b) Klockrike

Figure 7.6: Flight trajectories of each dataset. Grid spacing 200 m. Datasets
4-8 have same trajectory with varying altitude and season.

Table 7.1: Characteristics of flight datasets. Trajectory lengths are computed
along (x, y) plane, and camera angles between nadir and camera
principal axis. Altitude is with respect to starting position.

# Area Date Traj.
length
(km)

Alt.
(m)

Median camera an-
gle [range] (◦)

1 Kisa 2019-11-07 4.1 91 59.0 [56.9 . . . 67.7]

2 Kisa 2019-11-07 6.1 92 52.1 [49.8 . . . 56.0]

3 Klockrike 2019-10-18 6.8 92 51.2 [49.9 . . . 53.9]

4 Klockrike 2020-04-29 4.8 53 59.3 [57.8 . . . 60.5]

5 Klockrike 2020-04-29 4.8 92 59.9 [58.4 . . . 61.3]

6 Klockrike 2021-01-19 4.9 54 58.9 [58.0 . . . 60.4]

7 Klockrike 2021-01-19 4.7 71 58.7 [57.7 . . . 60.0]

8 Klockrike 2021-01-19 4.9 84 58.4 [56.9 . . . 60.9]
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draw 5 images corresponding with each location and orientation. For
each batch, we randomly select 10 locations. As deep metric learning
for encoding the images into low dimensional vectors, we employed
the triplet loss [116] with batch-all strategy and margin 0.2, using
vectors representing the same location and orientation as positive
samples, and vectors representing other locations and orientations
in the batch as negative samples. In addition to random selection of
locations and orientations, we add a random translation offset of 0 to
35 meters with uniform distribution to each location, with the intent to
add robustness for observations that do not align perfectly on the map
grid. With similar motivation, we add normally distributed random
rotations with standard deviation of 6 degrees to the orientation of
each sample before extracting the image patch from the satellite image.
In addition to these, we augment the samples with Gaussian noise,
motion blur, random brightness and contrast changes, and hue and
saturation changes to add tolerance for changes in imaging conditions.
We used Adam optimizer [47] with learning rate 10−6. We found
empirically that low triplet loss on satellite data leads to low loss
on UAVs images and better localization performance. Therefore, we
exploit the loss of the network as a proxy for localization performance
during training. We let the network train for 500 epochs and employed
descriptors of the model that reached the lowest loss on the validation
satellite images.

7.6.4.2 Architecture details of neural networks

We employed a Resnet-50 model implemented in PyTorch 1.8.0 as
backbone b. This network is pretrained on Places365 dataset [117]. As
regards the projection module mFCN , we used a fully connected layer
of sizes 1024 and D, respectively. We experiment with vector length
D ∈ {8, 16, 32, 128}. On the other hand, with regards to the module
mCAP, the PrimaryCaps layer is a capsule layer with 64 types of 16-
dimensional capsules, which are obtained from a convolutional layer
of 1024 1× 1 kernel size filters. The LinearCaps layer consists of 32

32-dimensional capsules extracted running 3 iterations of the routing
algorithm. We stacked on top of the LinearCaps layer a fully connected
layer of size D. With the capsule projection module, we explore D ∈
{8, 16, 32}. For both projection modules, the D-dimensional output of
the last layer is used to produce the l2-normalized embedding vectors.

7.6.5 Comparison methods

We implement two methods to work as comparison methods of map
matching for our approach. To provide comparable results, we uti-
lize the same point mass filter implementation, same odometry mea-
surements, prediction method, heading weighing method and same
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measurement images Ik for all methods and only replace the map
matching solution with their approach.

As baseline methods for map matching, we use the solution by
Mantelli et al. [93], whose formulation is scalable to large maps. To
provide comparable results, we compute the descriptor vectors wk =

fi(Ik) such that wk is the abBRIEF descriptor. In a similar manner,
we precompute a grid of abBRIEF descriptors fromMb, using equal
grid spacing as with our methods, and with abBRIEF, we compute
similarity as specified in Mantelli et al. [93] and label this similarity
computation method mantelli.

To provide a reference to a method that operates on semantic maps
and allows very compact map representation over large areas, we
implement the map matching solution proposed by Choi et al. [92].
We trained a U-Net [118] network on the Massachusetts Buildings
Dataset [119] to segment buildings in the input images. We employ
this network to extract the invariant feature descriptors introduced by
Choi et al. [92] on satellite and UAVs images: in this setting the feature
vectors wk are built upon building ratio information.

7.6.6 Localization performance

7.6.6.1 Experimental setting

We perform all localization experiments on datasets that contain im-
ages collected with a UAV. In all experiments, we update our belief
after at least ul = 50 m of travel have occurred since the previous
update, and the amount of travel after most recent update is estimated
from odometry. In all experiments, we use a map grid with resolution
rxy = 10 m, rθ = 6°.

7.6.6.2 AHRS and VIO measurements

The datasets used in experiments do not contain IMU or magnetome-
ter measurements and thus we have to simulate them. We simulate
odometry measurements by random sampling from distribution equa-
tion 7.5. The translation standard deviation σu,xy is approximated as
0.05 m per meter of travel and heading standard deviation σu,θ as
0.15° per meter of travel, which approximately correspond with the
performance of VIO algorithms reported in literature [78].

For heading, we sample from the distribution specified in equa-
tion 7.7. Manufacturers of compact commercial AHRS sensors typi-
cally report RMS error of 2° in heading [120, 121]. In all experiments
with AHRS, we simulate the heading measurement from ground-truth
orientation data and assume σv = 3°.
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Table 7.2: Probability of convergence pc, time to convergence k̄c and mean
localization error after convergence ¯̃X

xy
c when using our methods

with various design choices and when comparing to reference
method.

Model type Likelihood
conversion

pc k̄c
¯̃X

xy
c (m)

Ours, Caps, D=8 Linear 0.875 60.9 15.7

Ours, Caps, D=16 Linear 0.875 56.3 13.3

Ours, Caps, D=32 Linear 0.875 58.9 13.9

Ours, FCN, D=8 Linear 0.75 65.2 21.1

Ours, FCN, D=16 Linear 0.875 61.1 13.9

Ours, FCN, D=32 Linear 0.875 63.1 12.9

Ours, FCN, D=128 Linear 0.875 62.3 11.2

Ours, Caps, D=8 Bayesian 1.0 44.4 18.3

Ours, Caps, D=16 Bayesian 1.0 35.2 12.8

Ours, Caps, D=32 Bayesian 1.0 30.8 15.0

Ours, FCN, D=8 Bayesian 0.875 43.0 18.7

Ours, FCN, D=16 Bayesian 1.0 36.1 14.6

Ours, FCN, D=32 Bayesian 1.0 33.2 15.7

Ours, FCN, D=128 Bayesian 1.0 23.2 12.6

BRM Linear 0.0 N/A N/A

BRM Bayesian 0.0 N/A N/A

abBRIEF Mantelli 0.625 63.8 4112.2

abBRIEF Bayesian 0.0 N/A N/A

7.6.6.3 Evaluating localization performance

We evaluate localization performance for each step k after completing
prediction, map matching and AHRS update at that step. We define
that a localization solution has converged when the translation stan-
dard deviation σx̂y is less than 100 m. We compute the mean number
of updates to convergence k̄c and mean translation error in converged
state, ¯̃X

xy
c , for each tested model and likelihood conversion method.

We compute the proportion of flights where each compared solution
converges, pc, and tabulate results in Table 7.2. In addition, we visual-
ize the translation error and standard deviation of (x, y) translation in
each case in Figure 7.7.

7.6.6.4 Statistical significance testing

To explore what significance our results show in the various parame-
ters we have used in the experiment configurations, we run a type II
analysis of variance test on time to convergence and on localization
error after convergence. We consider the embedding dimension (8,
16, 32, 128), projection module type (fully connected or capsules) and
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(h) Dataset 8

Figure 7.7: Translation error |X̃xy
k | and standard deviation of translation σx̂y

as function of update index k in different datasets using all meth-
ods. Line color represents descriptor computation method, line
style (dashed, dotted, solid) represents likelihood computation
method. Logarithmic scale. Updates are made approximately ev-
ery 50 meters of travel.

likelihood computation method (linear or bayesian) and combinations
of these parameters. We use p = 0.05 as limit for significance.

For time to convergence, we reject null hypothesis that chosen
likelihood method is not significant (p = 4.2 ∗ 10−16). For localization
error after convergence, we reject null hypothesis that the parameter is
not significant for embedding dimension (p = 2.5 ∗ 10−14), projection
module type (p = 2.1 ∗ 10−2), likelihood method (p = 3.7 ∗ 10−4)
and combination of embedding dimension and projection module
type (p = 5.0 ∗ 10−5) and combination of embedding dimension and
likelihood method (p = 1.3 ∗ 10−2).
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7.6.7 Real-time experiment

To understand the applicability of our solution to an embedded system,
we implemented a version of our algorithm running in real time on
an embedded computer on an example UAV. We use the Nokia Drone
Networks drone (see Figure 7.8) carrying a camera gimbal. The drone
was equipped with an NVidia Jetson Nano computer on which the
localization algorithm was run. The algorithm was implemented in
Python and we used ROS [122] for inter-process communication. To
accommodate the smaller observable ground footprint due to the
narrower field of view of the drone camera at the selected flight
altitude and observation parameters (50 m altitude at 45 degree camera
pitch), we retrained a model with Resnet50 + FCN, D=16 architecture
to work on 40m by 40m images at 1 m/px resolution. The size of
the operating region and map was 1.62 km by 3.82 km. We used
VINS-Mono [123] as the VIO algorithm. We used the output of a non-
GNSS-corrected AHRS algorithm implemented on the drone flight
controller for heading updates.

The mean network inference time (run on CPU) was 1.02 s, mean
prediction time was 0.83 s, map matching took 1.18 s and AHRS
update took on average 0.12 s, and all steps took on average 3.15 s.
The algorithm was configured to perform an update every 40 meters of
travel, while the drone was flying at 5 m/s. There is room for speedup
by proper parallelization of the algorithm. The algorithm was run
fully onboard the UAV.

Some localization errors appeared over terrain patches with very
uniform colouring due to scale drift and rotation estimation errors
of the VIO algorithm which are not considered in our odometry
noise model. In addition, the AHRS heading estimate from the flight
controller appeared to contain non-Gaussian heading errors up to 15

degrees; to accommodate this, we used σv = 60° in this experiment.
The memory footprint of the precomputed map in this experiment

was 460.8 MB. On a 100 km2 map, the precomputed map memory
requirement for D=8, D=16, D=32 and D=128 are 3.5 GB, 7.0 GB, 14.0
GB and 55.9 GB, respectively, setting further practical constraints for
embedded implementation at very large scale.

This experiment shows that the algorithm can be run in real time
on an embedded computer carried by a drone in an operating region
of typical size for drone operations.

7.7 discussion

To solve the wake-up robot problem at the presented scale, we derived
a solution based on a recursive point mass filter instead of the more
common particle filter approach. We believe this avoids issues with
particle depletion, which is important in cases of significant initial
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Figure 7.8: UAV used in real time experiment

uncertainty, ambiguity of terrain and potential intermittent but not
random correspondence mismatches between observations and maps.

An architecture where an image observation is projected into an
embedding space, with a major reduction in data dimensionality, is a
key enabler for fast and memory-efficient similarity comparisons over
a large number of hypotheses. Our approach for projecting data from
different source domains (i.e., UAV camera images and orthophoto
maps or satellite images) into a common domain enables the use
of learned descriptors. With our approach, extensive training data
covering all expected variation is required in only one source domain
without need for labeling of data. Our approach of using a learnable
embedding appears to be efficient for localization over large areas
containing natural and built environments, in scenarios where also
significant seasonal appearance change occurs between flights. Other
existing methods, e.g., a handcrafted descriptor approach (abBRIEF)
or learned description trained to detect pre-specified semantics (BRM),
do not converge at this scale.

Bayesian likelihood conversion showed the greatest effect in time to
convergence, in comparison to the more common linear approximation.
The results in Table 7.2 appear to hint at the possibility that increasing
embedding dimensionality leads to faster convergence, but further
experimentation would be required to verify statistical significance.
For localization error afer convergence, embedding dimensionality
was found to be one of the statistically significant parameters. Results
tabulated on Table 7.2 and error plots in Figure 7.7 seem to suggest
that there may be a lower bound on localization error that appears
independent from dimensionality and is most likely a result of other
design choices and the characteristics of the operating environment.
In other words, it appears that low-dimensionality descriptors are
an efficient way of expressing what is important for localization and
dimensionality of description is not the main hindering factor, what
comes to localization error.
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In order to extract low-dimensionality descriptors, we tested both
traditional fully connected and capsule layers. Our hypothesis was
initially that capsule layers would improve localization performance,
extracting better encodings thanks to their ability to model part-whole
relationships and robustness to novel viewpoints. Employing cap-
sule layers lead to a slight improvement in error after convergence
in comparison to fully connected layers while using less trainable pa-
rameters, as also stated in [1]. In fact, for 16-dimensional embeddings,
with fully connected layer, the network has 57M trainable parameters,
while with capsule layers, it has 42M trainable parameters. Since
this improvement is only marginal, we did not conduct experiments
with 128-dimensional capsule embeddings, as CapsNets are also well
known to be computationally very demanding in terms of memory
consumption, training and inference times.

Experiments demonstrate that the proposed approach is suitable
for real time implementation on a flying platform at a typical scale
of UAV operations. Tailoring design parameters allows the imple-
mentation of the solution on a very resource-constrained platform
and running it in real time together with an odometry system. Fu-
ture work for reductions in computational requirements may include
e.g., North-aligning UAV observations before map matching and pre-
diction, thereby removing the need for heading estimation from the
filtering problem, which would significantly (60-fold) reduce compu-
tational and memory requirements of map matching and prediction.
However, in this approach, a dependable heading estimation method
would be required at all times. For reducing running time of forward
pass of the neural network during flight, pruning and quantization
strategies can be considered.

Our work focuses on the UAV application context. In considering
applicability of the proposed approach to ground vehicular applica-
tions, it is likely that a more elaborate means for orthoprojecting the
camera observations into a top-down view is required, since the sim-
ple assumption of planar ground will lead to severe slanting of objects
protruding from terrain, if the camera is moving very close to ground.
However, we postulate that the concept of separating the problem
of geometric appearance change due to difference in viewpoint and
visual appearance change due to natural changes in environment ap-
perance, and solving those problems in sequence, enables projecting
the latter of the two problems into a domain where training data
for learning-based approaches are plentiful across natural apperance
change. In the traditional VPR problem setting, current solutions focus
on solving both of these subproblems simultaneously, inescapably
leading to the costly need to collect extensive datasets that contain
both these variation types. We postulate our two-step approach, given
a more roubst novel view synthesis method, would be an efficient
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method in extreme cross-view localization cases in ground vehicular
applications, and consider this a potential future research direction.

To enable error recovery, the solution provides a measure of position
uncertainty by computation of standard deviation. Upon detection
of prolonged high standard deviation, this enables the triggering of
reinitialization of the pose estimator. The ability to detect localization
failures and recover from the loss of location information on a large
scale paves way for a failure-aware, failsafe UAV localization system.

7.8 summary

We have shown that the approach utilizing our map matching method
together with a point mass filter is able to resolve UAV pose even in the
case of highly uninformed initialization, in conditions of significant
seasonal appearance change between UAV image and map, even
when flying over areas with natural ambiguity. We experiment with
a map size of 100 km2 where the proposed solution converges to
a localization error of 12.6–18.7 m on average in 23.2–44.4 updates,
depending on the chosen architecture, while reference methods are
not able to converge to the correct pose under the same circumstances.
All of these contributions show that real-time localization is possible
on a large scale. Going beyond the demonstrated 100 km2 will require
being able to represent even larger hypothesis spaces. Addressing this
challenge will potentially require future work in hierarchical models
in order to retain the favorable characteristics of high spatial accuracy,
extreme initial uncertainty, and complete coverage of the hypothesis
space.
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E N C O D I N G R O TAT I O N R E P R E S E N TAT I O N S O F
S Y N T H E T I C D ATA S E T S I N Q UAT E R N I O N S - B A S E D
D E E P L E A R N I N G M O D E L S

This chapter represents the initial stages of our research, and it has
been a collaborative effort with Alessandro Grassi, an undergraduate
student. This chapter marks the beginning of our pursuit to achieve
more robust and generalized results, bridging the gap between syn-
thetic and real-world datasets.

8.1 introduction

Over recent years, although artificial intelligence research has been pro-
pelled by the continuous development of novel models and advanced
algorithms, one challenge remains: data. In fact, neural networks still
need a massive amount of training data to generalize to new patterns,
and finding suitable datasets is not trivial, assuming they are available
at all. To address this issue, we leverage computer graphics techniques
to generate synthetic datasets containing images of different meshes
displayed in thousands of views. Each image is labeled with the object
class and rotation using quaternions.

When representing rotations, employing quaternions offers several
advantages over using rotation matrices. Firstly, unlike rotation ma-
trices, Euler angles, and exponential maps, quaternions do not suffer
from gimbal lock [124, 125]. Secondly, to properly represent a rotation,
rotation matrices must be orthogonal, and quaternions must be unit
vectors. However, neither of these properties can be guaranteed to be
maintained after weight updates. At this juncture, maintaining orthog-
onality in rotation matrices becomes more challenging, while normaliz-
ing quaternions proves to be a better approach. Furthermore, previous
research has demonstrated the success of quaternions in restoring
spatial relationships [126] and extracting them from images [127, 128].
Lastly, using quaternions reduces the number of parameters required
to represent a 3D rotation from 9 to 4.

Since we are dealing with rotation representations and capsule net-
works can capture spatial relationships and poses of objects, one ques-
tion arises: can we exploit capsule vectors to encode quaternions? Özcan
et al. [129] incorporated the aforementioned properties of quaternions
and capsules, constraining the pose representation to 3D rotations
between capsules since convolutional connections are translation in-
variant. In the object coordinate system, the intrinsic rotations between
parts and whole are constant from any viewpoint. Thus, they ex-

99



8.2 background on quaternions 100

ploit this rotation to achieve better generalization to novel viewpoints.
Furhermore, Zhao et al. [130] built a capsule network that disentangles
geometry from pose, paving the way for more informative descriptors
and a structured latent space. They architecture allows joint object
classification and orientation estimation without explicit supervision
of rotations. In contrast with these works, our final goal is to exploit
synthetic datasets annotated with quaternion labels to generalize to
real-world datasets. This chapter is the first preliminary step towards
achieving this goal, where we present a method to modify network
architectures to predict rotations encoded as quaternions.

This chapter compares the performances and the limitations of
several neural network architectures, including multilayer perceptrons,
convolutional and capsule networks, in predicting both the orientation
of rendered objects and their labels. This is achieved by grouping
output neurons to encode the probability of existence for each class
and a valid quaternion (unit length quaternion so that it represents a
valid rotation).

8.2 background on quaternions

Quaternions were developed in 1843 by William Rowan Hamilton and
used to represent rotations and orientations. Even if Euler angles are
more human-understandable, quaternions are computer-efficient and
resolve several problems like Gimbal lock and ambiguity. Hamilton’s
quaternions have many applications besides computer graphics. For
example, they are widely used in spacecraft and computer graphics.

Quaternions use complex numbers that can be interpreted as unit-
vectors. A quaternion q is a 4-dimensional vector that can be written
as

q = xi + yj + zk + w (8.1)

where x, y, z, and w are real numbers, and i, j, and k are three
imaginary axes.

According to Hamilton’s famous expression:

i2 = j2 = k2 = −1, (8.2)

ij = −ji = k, k = −kj = i, ki = −ik = j. (8.3)

Quaternions are also represented as an ordered pair

q = [s, v] (8.4)

where s is the scalar part and v is the vector part.
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8.3 methodology

8.3.1 Datasets

Each dataset was generated with Blender through a Python script that
takes as input a configuration file that determines the composition of
the scene. The configuration file is responsible for defining parameters
such as:

• Background — Color, transparency

• Render — Engine, CUDA, and resolutions

• Camera — Name, location, and rotation

• Lights — Energy, location, rotation, type, energy, and color

• Meshes — Start location, start rotation, and object directory

In this work, each 3D model is rotated on each axis of 20 degrees,
for a total of 6859 images on each object. Each image has a resolution
of 128× 128 pixel with a black background, and it is paired with a file
that contains the rotation of the object expressed in quaternions.

Blender’s fixed scene for generating datasets includes the following
details: a camera in position (x = 4, y = 0, z = 0) pointing to (x =

0, y = 0, z = 0); a first point light in position (x = 6, y = 6, z = 4)
with 1000 energy; a second light point in position (x = 0, y = 0, z = 0)
with 1000 energy. All renderings are made with the EEVEE rendering
engine integrated into Blender to significantly increase performance at
the expense of a slight loss of detail, such as the absence of advanced
ray tracing techniques.

8.4 cubes and tetrahedrons

To verify our method, we first built a dataset with simple shapes, such
as the cube and the tetrahedron. Table 8.1 shows some details of this
dataset.

CubeTetrahedron

Resolution 128 × 128 × 3

Classes 2

Objects per class 1

Images per objects 6859

Total images 13718

Table 8.1: Details of the CubeTetrahedron dataset.

However, predicting rotations on the x-axis when the model shows
to the camera only one face (Figure 8.1) is impossible because multiple
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solutions can exist. For this reason, we enriched the model faces with
visual information about the adjacent faces, as shown in Figure 8.2.

Figure 8.1: Some images of the CubeTetrahedron dataset without borders,
on the left the cube, and on the right the tetrahedron.

Figure 8.2: Some images of the CubeTetrahedron dataset with borders.

With this solution, a neural network can predict the rotation of a
single face in a deterministic way.

8.5 tinyshapenet

The main dataset of this chapter is partially based on the ShapeNet
[131] dataset. It is a richly-annotated, large-scale dataset of 3D objects
developed by researchers from Stanford University. The repository
contains over 300 million models, with 220,000 classified into 3,135

classes. However, we used a small subset of ShapeNet with 60 objects
divided into 6 classes: airplanes, cars, chairs, guitars, and laptops.
Table 8.2 shows some details of this dataset, while Figure 8.3 shows
some samples.

The models used were adjusted with Blender to achieve a more or
less uniform size across all models, large enough not to lose detail and
to fit the entire object into the scene. Also, each model was modified to
get the same default pose across all meshes of the same class. However,
no objective definition of “default pose” applies to every object, so a
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subjective interpretation was given based on the class of the objects in
question.

TinyShapeNet

Resolution 128 x 128 x 3

Classes 6

Objects per class 10

Images per objects 6859

Total images 411540

Table 8.2: Details of the TinyShapeNet dataset.

Figure 8.3: Some samples taken from the TinyShapeNet dataset.

For this work, the dataset was also generated at 1024 × 1024 × 4

resolution, which is a high-resolution version with an alpha channel
(transparency) to take advantage of data augmentation.

8.5.1 Training

Neural networks employed in this chapter are trained by means of
two losses: spread loss and render loss. The spread loss is the classifi-
cation loss, used to predict the object class. The render loss is used to
compute the similarity between the target and predicted quaternions.
In fact, each network outputs J 4-dimensional vectors that represent
the predicted quaternions (one for each object label j) along with the
class probabilities.

The total spread loss S is computed as the sum of the spread loss Sj
for the j-th class

S = ∑
j
Sj where Sj = (max(0, m− (at − aj)))

2, (8.5)
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aj represents the activation of the capsule of class j and at the activation
of the target class. If the margin between the true label and the wrong
class is smaller than m, we penalize it by the m− (at − aj) square.

The render loss is used to compare quaternions. To check if two
quaternions represent the same orientation (namely, the object would
be facing the same way) we define the render loss

R = 1− |⟨uj, q⟩|, (8.6)

where uj is the prediction for the class capsule j and q the target
quaternion. Since q and −q represent the same orientation and they
are unit vectors, we compute the absolute value of their product to
make sure they are the same rotation.

The total loss is defined as

L = S + λR. (8.7)

8.5.2 Architectures

Here, we describe the neural network architectures used in this chapter,
namely, multilayer perceptron (MLP), convolutional neural network
(CNN), and capsule network with Expectation-Maximization rout-
ing [26] (EM-CapsNet).

The EM routing algorithm computes the activation and pose of the
capsules in layer l + 1, finding a cluster of similar votes of capsules in
layer l using the Expectation-Maximization algorithm. In our case, we
apply a l2 normalization to the class capsules vectors to compute the
predicted quaternions. We use directly the activations computed by
the EM routing as class probabilities. For a more detailed explanation
of using EM routing instead of other routing algorithms, see Sec-
tion 8.5.5. Besides, for the MLP and ConvNet architectures, given the
embedding of the last layer, we apply l2 normalization to determine
the quaternion and the squash function described in Equation 3.4 to
shrink the embedding so that its norm determines the class activation.

8.5.3 Multilayer perceptron

The multilayer perceptron is the simplest network of the three used in
the experiments. As shown in Table 8.3, our implementation for the
TinyShapeNet dataset involves an input of 28 × 28 × 3, a first hidden
layer of 1024 neurons connected to a second layer of 512 neurons,
which is in turn connected to a third layer of 256 neurons. Then,
ending with 24 (4 × 6 classes) outputs.

For the CubeTetrahedron dataset test, we used an MLP with a
simpler structure, with 300 neurons at the first hidden layer, and 100

neurons at the second.
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Layer Size Act./Norm.

Input Image 28×28×3 -

1 Hidden 1024 ReLU

2 Hidden 512 ReLU

3 Hidden 256 ReLU

Output FC 4 × 6 classes squash & l2

Table 8.3: The multilayer perceptron architecture (TinyShapeNet) with cor-
responding layer type, tensor size, activation and normalization
functions.

8.5.4 Convolutional network

As shown in Table 8.4, the architecture of the convolutional network is
composed of a convolutional layer of size 20×20, with 256 channels, a
9×9 filter, and a stride of 1. Then, the result of the first layer passes to
a second convolutional layer of size 6×6, consisting of 128 channels,
with a kernel size of 9×9 and a stride of 2.

Layer Size Ch. Kernel Stride Act./Norm.

Input Image 28×28 × 3 - - - -

1 Convolution 20×20 256 9×9 1 ReLU

2 Convolution 6×6 128 9×9 2 ReLU

3 Avg. Pooling 1×1 - - - -

Output FC 4×6 classes - - - squash & l2

Table 8.4: The architecture of the convolutional network (TinyShapeNet) with
corresponding layer type, tensor size, activation and normalization
functions.

8.5.5 Capsule network

Table 8.5 depicts the architecture used in this work for the CapsNet
model. In this model, a capsule is implemented as a 4-dimensional
vector to match the quaternion dimension. The first layer is a tra-
ditional ReLU convolutional layer with a size of 20×20, a kernel of
9×9 and stride of 1. Then, the result of the kernel is passed to the
PrimaryCaps layer, which is responsible for computing both the poses
and the activations of the primary capsules. This layer applies two
convolutional layers (one for the poses and one for the activations)
and a reshape operation to convert neurons into capsule-quaternions.
Then, the primary capsules are given as input to the CapsClass layer,
where, thanks to the EM routing algorithm, it outputs the quaternions
predictions for each class and the corresponding probability values.
We chose the EM routing instead of the dynamic routing (Algorithm 1)
because, in the latter one, the activation of a capsule is computed using
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the squash function, which normalizes the vector to a length between
0 and 1. However, in our case, since we are dealing with quaternions
that are unit vectors, a separation between class prediction and quater-
nion prediction is needed to model the additional complexity of the
proposed dataset. A visual representation of the architecture is shown
in Figure 8.4

Layer Size Ch. Kernel Stride Act.

Input Image 28×28×3 - - - -

1 Convolution 20×20 256 9×9 1 ReLU

2 PrimaryCaps (activations) 32×6×6 32 9×9 2 sigmoid

3 PrimaryCaps (poses) 4×32×6× 6 128 9×9 2 l2
Output CapsClass (activations) 6 classes - - - EM

Output CapsClass (poses) 4×6 classes - - - EM

Table 8.5: The architecture of the capsule network with corresponding layer
type, tensor size, activation and normalization functions.
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Figure 8.4: Visual representation of capsule network architecture, where a
capsule encodes a quaternion representation. This model com-
prises a convolutional layer, a PrimaryCaps layer, which maps
neurons to quaternions, and a ClassCaps layer, which outputs a
capsule-quaternion for each class. The spread loss is computed
using all the class capsule activations, while the render loss only
considers the capsule with the highest activation, whose vector
represents the predicted quaternion.

8.6 experiments

This section shows the experimental results achieved on CubeTetra-
hedron and TinyShapeNet datasets. Each network uses Adam as an
optimization algorithm, with a learning rate of 0.001. The hyperparam-
eter m of the spread loss starts as 0.2 and linearly increases by 0.1 after
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each epoch training. It stops growing after reaching the maximum of
0.9. Starting at a lower margin helps the training to avoid too many
dead capsules during the early phase [26]. We weight the render loss
by λ = 0.1. We rescaled the images to a 28 × 28 × 3 resolution to
dramatically decrease training times at the expense of a small loss of
detail.

The training was executed on an Nvidia GTX 1080 GPU.

8.6.1 Cube and tetrahedron

We used CubeTetrahedron as a toy dataset to evaluate the feasibility
of our method. We trained an MLP model on the dataset without and
with faces. Each face enriches the cube or tetrahedron with visual
information about the adjacent face. In Figure 8.5 we can see that the
network, when given as input the face additional information, is able
to match the ground truth quaternion better.

Figure 8.5: Visual differences in predicted quaternions between the two ver-
sions of the CubeTetrahedron dataset.

8.6.2 TinyShapeNet

As mentioned above, no data augmentation was used for this work, but
each image in the dataset was rescaled to decrease network training
times. All models were trained for a maximum of 1000 epochs using
Early Stopping with a patience of 50, monitoring the validation score.
Experimental results are shown in Table 8.6. We can see that the MLP
network achieves the best performance in terms of test loss, while the
ConvNet and CapsNet achieve the best accuracy values. Figure 8.6
shows some visual comparisons of the networks obtained feeding to
Blender as input the predicted quaternions.

8.7 summary

In this chapter, we showed how to generate a simple synthetic dataset
with quaternions and how to modify the architecture of neural net-
works to handle rotation predictions.
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MLP ConvNet CapsNet

Accuracy 0.99984 1.0 1.0

Loss 0.00182 0.00384 0.00416

Training time 4d 5h 2d 1h 9d 5h

Table 8.6: Experimental results on TinyShapeNet test set for the multilayer,
convolutional and capsule networks.

Despite the limited complexity of the architecture used, the convo-
lutional network still proved to be state-of-the-art regarding image
recognition, both for accuracy and for very low training times.

Instead, the multilayer perceptron showed several limitations due
to too high training times and a training subject to many fluctuations.
Despite this, the accuracy does not differ much from the other results,
and render loss is better minimized than other networks. Capsule
networks appear promising but still immature architecture for object
recognition. Its training was very time-consuming, especially when
compared to the convolutional model. The slowness of capsule net-
works is mainly due to the iterative nature of the dynamic routing
algorithm and the high number of hyperparameters. Further research
needs to be done to optimize hyperparameters to improve render
loss. However, despite all these problems, capsules provide a differ-
ent and successful approach for dealing with generalization on new
viewpoints compared to other networks.

In the future, it would be interesting to continue this research by
testing more complex architectures. Then, to evaluate the goodness of
the networks more objectively, it is necessary to increase the dataset’s
size, also through data augmentation. In addition, another good option
to apply is to use uniformly distributed random rotations, rather than
20-degree steps, for the generation of the object pose. Finally, splitting
the data into mutually exclusive object classes for training and testing
could help evaluate the architectures.
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Figure 8.6: Visual comparisons of network predictions (MLP, ConvNet, and
CapsNet) on TinyShapeNet.
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L U N G N O D U L E S S E G M E N TAT I O N W I T H C A P S U L E
N E T W O R K S

During my Ph.D. studies, I worked on the EU-funded DeepHealth
project1, which focuses on applying deep learning and high-performance
computing to biomedical image processing. In this context, we released
the UniToChest dataset2, a collection of anonymized chest CT scan
slices coupled with the proper lung nodule segmentation map. This
chapter marks the beginning of our pursuit to improve lung nodule
segmentation, requiring less data using capsule networks. It represents
the initial stages of our research, and it has been a collaborative effort
with Paolo Peretti, a graduate student.

9.1 introduction

In recent years, medical imaging has undergone a revolutionary trans-
formation, primarily attributed to the remarkable progress of deep
learning techniques. Deep learning has demonstrated exceptional ca-
pabilities in various domains, and its application to medical imaging
has opened up new avenues for accurate and efficient diagnosis, prog-
nosis, and treatment planning. With the ever-increasing complexity
and volume of medical data, traditional image analysis methods have
faced limitations in extracting meaningful insights. In contrast, deep
learning models, fueled by their ability to automatically learn intricate
features from data, have shown unparalleled potential in enhancing
the accuracy, speed, and precision of medical image interpretation.

Lung nodules are an early indicator of lung cancer, which remains
one of the most prevalent and deadly forms of cancer worldwide. With
such a low survival rate of 14-15% at late stages of lung cancer, early
detection and accurate diagnosis are crucial for improving patient
outcomes and survival rates [132]. Deep learning models such as con-
volutional networks have shown tremendous promise in enhancing
the accuracy and efficiency of lung cancer detection and diagnosis.
Most common tasks include nodule detection [133–135], segmenta-
tion [136–139] and malignancy prediction [140–142] in chest radio-
graphs and computed tomography (CT) scans. Despite the remarkable
achievements, the application of deep learning in lung cancer imaging
presents certain challenges. Images and relative annotations in fact
often lack in terms of quality or quantity or both, due to the cost
of acquiring and annotating the images by a radiologist. Therefore,

1 https://deephealth-project.eu/

2 https://zenodo.org/record/5797912
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Figure 9.1: CT image of lungs with an annotated nodule segmentation mask.

industry, academia, and health organizations work together to collect
and publicly release new datasets with marked-up annotated lesions
such as LIDC-IDRI [143] or UniToChest [144] datasets.

Encoder-decoder models based on CNNs such as U-Net [118] are
the most commonly applied to the medical image segmentation task,
where the goal is to identify the pixels of organs or lesions. Though
CNNs are popularly used, they have limitations due to poor robustness
to affine transformations and lack of instantiation parameters (e.g.,
precise location information, pose, deformation, etc.). Therefore, many
capsule-based models were introduced, such as SegCaps [145], Matwo-
CapsNet [146], 3D-UCaps [147] and OnlyCaps-Net [148]. Capsules
should be able to generalize to unseen images even when the number
of images with different views used to train the networks is very
low. However, to the best of our knowledge, no study has shown
this property for lung nodules segmentation. To overcome this issue,
this chapter aims to present a preliminary investigation on whether
capsule-based methods can perform better compared to U-Net-based
models in fewer data scenarios for segmenting lung nodules.

9.2 methodology

This section describes our method to segment lung nodules, including
the preprocessing stage and the architecture of CNN-based (U-Net)
and capsule-based (SegCaps) networks we rely upon.
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9.2.1 Dataset and preprocessing

The Lung Image Database Consortium image collection [143] (LIDC-
IDRI) consists of diagnostic and lung cancer screening thoracic CT
scans with marked-up annotated lesions. This dataset contains more
than 1000 cases (1018 cases). Each subject includes many images from
a clinical thoracic CT scan and an associated XML (eXtensible Markup
Language) file that records the results of the image annotation process
performed by experienced radiologists, particularly by a maximum of
four experienced radiologists.

Since original CT scans are in DICOM format, we preprocessed
each slice, converting pixel intensity values in Hounsfield Units (HU)
and then applying a windowing operation. Since this is preliminary
work, we decided not to consider all the lungs but only a portion
of the image of interest. Specifically, we extract several regions of
interest (ROIs) of size 128× 128, including a nodule, from each scan.
We applied random data rotations and horizontal flips during training.

9.2.2 Architectures

In our experiments, we tested U-Net and SegCaps architectures, shown
in Figure 9.2.

U-Net consists of a contracting path (downsampling) to capture
context and a symmetric expansive path (upsampling) to generate ac-
curate segmentation maps. U-Net is known for its "U" shape and skip
connections, aiding in preserving spatial information and enabling
precise object boundary localization. We chose this network because it
is still widely used in biomedical image analysis and has been influ-
ential in various computer vision applications. However, the number
of trainable parameters of U-Net is very high (31M). Therefore, [145]
introduced SegCaps, the first neural network architecture with fewer
parameters (1.4M) that employs capsule networks for image segmenta-
tion. Capsules capture spatial hierarchies and object poses, enabling a
better understanding of object structures and context and potentially
improving segmentation accuracy and generalization. Within SegCaps,
a distinct collection of capsules is established for every pixel (x, y)
present in either the image or intermediate layers. The projected seg-
mentation label for a given location (x, y) corresponds to the identifier
of the capsule from the final layer that exhibits the highest activation.
SegCaps architecture is inspired by the U-Net architecture, therefore it
comprises an encoder-decoder structure and skips connections. In the
encoder part, convolutional capsule layers with kernel size 5× 5 are
stacked on top of a standard 5× 5 convolutional layer to reduce the
size of the input. SegCaps employ a novel dynamic routing algorithm,
called locally-connected routing, where (i) children are only routed
to parents within a defined spatially-local window and (ii) transfor-
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(a) U-Net architecture.

(b) SegCaps architecture.

Figure 9.2: U-Net and SegCaps are the architectures used to segment lung
nodules.
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mation matrices are shared for each member of the grid within a
capsule type. In the decoder part, SegCaps introduces the concept of
deconvolutional capsules (with kernel size 4× 4), which operate using
transposed convolutions, routed by the locally-connected routing. The
network outputs both the segmentation mask of the object and the
masked reconstruction of the positive input class. In our implementa-
tion, we removed the latter because we focus only on the lung nodule
and not on the lung itself.

For a fair comparison between U-Net and SegCaps regarding the
number of trainable parameters, we also tested smaller versions of
U-Net with four and three layers in the encoder part. Note that the
original U-Net has five layers.

9.3 results

We report in Table 9.1 the results on the LIDC-IDRI test set for U-Net
and SegCaps with different numbers of layers and percentages of
training samples. We can see that the highest dice score is obtained
by the original U-Net model with five layers when trained with 100%
of the training data. As mentioned before, since the number of train-
able parameters of this network is very high, we choose to compare
SegCaps with shallower U-Net models. We can see that in these cases,
SegCaps performs better than U-Net models with the same number
of layers or lower, when trained with the full training set and even on
subsets containing 10% or 50% of the training data.

Model Layers Training samples (%) Dice score Parameters (M)

U-Net
5

100 0.81

31U-Net 50 0.79

U-Net 10 0.78

U-Net
4

100 0.74

7.6U-Net 50 0.71

U-Net 10 0.68

U-Net
3

100 0.72

1.8U-Net 50 0.69

U-Net 10 0.66

SegCaps
4

100 0.79

1.4SegCaps 50 0.77

SegCaps 10 0.76

Table 9.1: Dice score results for U-Net and SegCaps with different numbers
of layers and percentages of training samples (LIDC-IDRI test set).



9.4 summary 115

9.4 summary

This chapter briefly investigated whether capsule-based networks can
achieve better results for the lung nodules segmentation task. We
showed that, despite the model with the highest performance being
the original U-Net model with 31M of parameters, a SegCaps model
with only 1.4M parameters shows promising results compared to
smaller U-Nets with 7.6M and 1.8M parameters. These results are also
confirmed in low training data scenarios. This suggests that capsule-
based networks have the potential to better segment lung nodules
with fewer parameters and training samples. In the future, we will
also test other 2D and 3D capsule-based networks, such as 3D-UCaps
and OnlyCaps.
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C O N C L U S I O N

This thesis has delved into the intriguing theory and applications of
capsule networks, aiming to unlock their full potential in computer
vision tasks. This thesis has been organized into three parts: Part i
provided an overview of capsule network fundamentals, Part ii ad-
dressed some of capsule networks limitations with novel proposed
methods, and Part iii demonstrated capsule network applications in
real-world scenarios. We began with Chapter 2 by highlighting the lim-
itations of traditional convolutional networks, which often lose spatial
relationships due to max pooling layers and lack of an explicit entity
representation. Chapter 3 offered an overview of capsule networks,
deep learning models emerged as a promising solution, offering hier-
archical object and part encoding, robustness to viewpoint changes,
and improved feature preservation.

Despite their promise, capsule networks have not seen widespread
adoption compared to traditional convolutional networks or vision
transformers, possibly due to the lack of standardized architectures
and pre-trained models. However, this work underscores the impor-
tance of continued research and advancements in capsule networks to
fully harness their potential and address their limitations.

Throughout the thesis, we focused on three key questions to enhance
our understanding and utilization of capsule networks:

1. The routing algorithm: In Chapter 4, we investigated the effec-
tiveness of the routing algorithm and its necessity, especially in
small-sized networks. Our experiments confirmed the impor-
tance of the routing algorithm. We introduced a novel method
for annealing the number of routing iterations during training,
yielding improved performance in architectures with fewer pa-
rameters.

2. Learning effective part descriptions: In Chapter 5, to enhance
primary capsule representations, we explored the use of pruned
backbones, promoting sparsity to improve computational effi-
ciency and reduce memory and training time requirements. This
approach demonstrated high generalization ability with resource
savings.

3. Part-whole relationships learning: Understanding how cap-
sules capture part-whole relationships is crucial. In Chapter 6,
we revealed that capsules with low entropy can extract more
concise and discriminative part-relationships, shedding light on
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the mechanisms of part-aware representations and paving the
way for more interpretable and effective capsule networks.

Additionally, we showcased the practical applications of capsule
networks in autonomous localization (Chapter 7), quaternion-based
rotation prediction in synthetic datasets (Chapter 8), and lung nodule
segmentation in medical images ((Chapter 9), highlighting their ability
to capture spatial relationships in various domains.

Therefore, this work contributes to advancing our understanding
of capsule networks and their potential for revolutionizing computer
vision tasks across diverse domains.

In closing, Jaini et al. [149] recently showed intriguing emergent
properties of generative classifiers such as human-like shape bias in
object recognition. They also understand certain perceptual illusions
like those presented in Figure 2.2. It will be interesting to study how,
and to what degree, diffusion and large language vision models exhibit
object-centric hierarchical representations in zero-shot recognition.
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