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Abstract

Deep neural networks have become one of the go-to tools to achieve state-of-the-art
performance for various tasks, such as computer vision, speech recognition, and many
more. Unfortunately, most modern architectures owe their generalization capabilities
to the sheer amount of parameters they possess, with many reaching the order of
millions or even billions, resulting in a significant increase in the resources required
to use such models. This, in turn, impacts the deployability of neural networks on
resource-constrained devices such as smartphones or FPGAs. In this thesis, we will
cover the products of my research on neural network pruning, i.e., removing less
essential elements of the network (single parameters or entire neurons) to reduce
the storage, memory, and computation requirements needed to run the model. We
will explore the design of pruning procedures, the effect of pruning on the features
extracted by the network model, and the practical application of pruned networks on
low-power devices. In this thesis, we present and subsequently employ two pruning
techniques: LOBSTER, an unstructured approach that leverages the sensitivity of
the parameters as a regularizer, and SeReNe, a structured procedure that evaluates
the contribution of the neurons to the output of the network. Neural networks pruned
with LOBSTER and SeReNe have been used to assess the advantages of pruning
when deploying the networks to embedded devices. To this end, we implemented
the Simplify library that removes the zeroed neurons from the architecture. Finally,
we focus on reducing the computational resources required to train a neural network.
Since backpropagation is the more computation-heavy part of the training process,
we defined a technique to disable the computation of the gradients of neurons that
reached equilibrium, effectively pruning the backpropagation graph and decreasing
the number of operations performed during the procedure.
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Chapter 1

Introduction

In the last years, network architectures have become even more powerful and “ex-
pensive”: performing simple inferences requires a lot of computational resources
and training the models even more. For example, cornerstone architectures such
as AlexNet and VGG [1] have a complexity in the order of 60 and 130 million
parameters, soaring to more than 100 billion for models like GPT-3 [2]. This massive
number of parameters poses a significant challenge when working in contexts where
memory, computational power, or storage are limited (e.g., smartphones or FPGAs)
and the provided resources are insufficient to use the network satisfactorily.

For these reasons, many applications opt for a client-server system. Here, the
trained network resides in a server with plenty of resources to satisfy the client’s
requests. While this setup works well overall, it may pose some concerns in some
use cases. For example, transferring private data from the client to the server requires
multiple precautions and safety features, also, the internet connection may not be
available, or the latency between the request and the response may render the service
unusable. Many of these problems could be solved by deploying the neural network
directly on the consumer device, reducing privacy concerns, internet dependency,
and maintenance costs. Unfortunately, as mentioned, most neural networks require
resources that most consumer-grade devices can hardly provide.

Multiple (complementary) approaches are being developed to cope with neural
networks’ memory requirements, inference time, and energy consumption:
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– Re-designing the network topology. Moving from one architecture to another,
possibly forcing precise neuronal connectivity or weight sharing, can reduce
the number of parameters or the complexity of the network [3–5].

– Quantization. Representing the parameters (and activation functions) as fixed-
point digits reduces the memory footprint and speeds up computations [6].

– Pruning. It is well known that many deep architectures are typically over-
parametrized [7, 8], but such redundant parameters can be removed [9–13],
leading to smaller topologies.

This thesis will focus on the topic of neural network pruning, and it will be structured
as follows:

– In Chapter 2, we will present the notation used throughout the thesis.

– In Chapter 3, we will expand on the concept of neural network pruning,
providing an overview of the state-of-the-art and the main differences between
classes of pruning techniques.

– Chapter 4 will present the concept of parameter sensitivity and describe
LOBSTER (LOss-Based SensiTivity rEgulaRization), a pruning technique we
developed that exploits this sensitivity value. This technique enforces sparse
topology during the network training and does not require a pre-trained model.

– In Chapter 5 we will move on to SeReNe (Sensitivity-based Regularization
of Neurons), a structured pruning procedure that leverages on the concept of
neural sensitivity.

– Chapter 6 will present Simplify, a PyTorch compatible library for achieving
effective model simplification. This library tries to bridge the gap between
research and the actual deployment of pruned neural networks by removing
zeroed neurons from the topology. Simplified models benefit from a smaller
memory footprint and a lower inference time, making their deployment to
embedded or mobile devices much more efficient.

– In Chapter 7, we will use Simplify to give practical examples of deployed
pruned neural networks. To this end, we deployed some simplified models to
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both mobile devices and FPGA circuits, validating that pruning can reduce the
resource requirements of modern deep neural networks.

– In Chapter 8, we will analyze the effect of one-shot and gradual pruning on
the resulting model, showing the higher effectiveness of the latter. To this end,
we will introduce and use PSP-entropy to show that gradual pruning allows
access to narrow, well-generalizing minima, typically ignored when using
one-shot approaches.

– In Chapter 9, we will shift the focus from reducing the size and inference
time of the networks to improving the training time. To this end, we propose
NEq, a technique that can prevent the update (and the gradient computation)
for neurons that reached equilibrium.

– Finally, Chapter 10 will draw the conclusions.



Chapter 2

Notation

Let us define a neural network as the function N (X ;Θ), where X represents the
network’s input, and Θ is the set of all the parameters which uniquely identify the
network. The cost function optimized during training is LΘ). As the network model
is composed of N hidden layers, we identify with n = 0 the input layer and n = N
the output layer; other n values indicate the hidden layers. We denote with yyyn the
output vector of layer n. Given that each layer is composed of a set of neurons, for
the i-th neuron of the n-th layer (xn,i), we define:

– yn,i as its output,

– yyyn−1 as its input vector (yyy0 = X ),

– θn,i as its own parameters: wwwn,i the weights and bn,i the bias,

Fig. 2.1 Representation of the neuron xn,i with activation function gn,i.
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To each neuron, we can associate an affine function fn,i(·) (e.g., a convolution or the
dot product) and an activation function gn,i(·) (e.g., the ReLU function). The output
of a neuron is given by

yn,i = gn,i(pn,i), (2.1)

where pn,i is the post-ynaptic potential [14] of xn,i defined as:

pn,i = fn,i(θn,i,yyyn−1). (2.2)

This notation is summarized in Figure 2.1.



Chapter 3

Neural Networks Pruning

Given the neural network N (X ;Θ), a pruning procedure that operates on such a
model will result in a new model N (X ;Θ′) where Θ′ = M⊙Θ with M ∈ {0,1}|Θ|
representing a binary mask responsible for setting some of the parameters to 0 and
⊙ representing the element-wise product operation. Pruning procedures aim to solve

argmin
||Θ′||0

[|L(Θ)−L(Θ′)| ≤ ε] (3.1)

where ||Θ′||0 represents the number of non-zero parameters and ε is a positive and
arbitrarily small number. Figure 3.1 gives a visual representation of the effect of
pruning procedures.

(a) (b)

Fig. 3.1 Representation of the effect of a pruning procedure: (a) dense neural network with all its orig-
inal parameters intact, (b) pruned network (dashed lines represent pruned neurons and connections).
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3.1 State-of-the-art

Algorithm 1 Pseudocode of the procedure proposed by Han et al. [15]
Input: Neural network N , dataset D, pruning iterations N
Output: Pruned network N ⋆

1: procedure PRUNE AND FINE-TUNE(N ,D,N)
2: i← 0
3: N ⋆←N
4: N ⋆← train(N ⋆,D)
5: while i < N do
6: N ⋆← prune(N ⋆)
7: N ⋆← f inetune(N ⋆,D)
8: i← i+1

return N ⋆

Different attempts to reduce the number of parameters have been proposed, with
some even dating to the late 1980s. For example, in 1989, Mozer and Smolensky
proposed skeletonization [16], a technique to identify and remove less relevant
neurons in a trained model by comparing the error of the pruned model to the
original network. Around the same time, LeCun et al. also proposed a work where
they leveraged the information from the second-order derivative of the error function
to rank the parameters of the trained model on a saliency-like basis [9].

In the last few years, thanks to the broad availability of computational resources
and the spread of deeper network models, pruning approaches gained-back popularity
and have become a hot topic in deep learning, with tens of thousands of articles
published each year. In particular, in 2015, Han et al. proposed a procedure that has
become a cornerstone in the pruning literature [15]. The process, summarized in
Algorithm 1, works as follows: first, the network is trained to convergence. Then
each parameter is issued a score and pruned accordingly (for example, prune all
weights with a magnitude lower than some threshold). Lastly, some fine-tuning
iterations are performed to recover the performance lost due to pruning. These last
two steps are often iterated several times to reach the desired sparsity.

Many works that followed proposed variations of this approach. Some em-
ploy a regularization technique designed to push many parameters toward zero:
Wen et al. [17] use group lasso regularization, Louizos et al. [18] employ a proxy
for the L0 regularization, and Tartaglione et al. [19] propose to evaluate the sensi-
tivity of the parameters to the output of the network. Other works add and train
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auxiliary parameters to promote sparsity and use them to decide which weights to
prune [20–22].

Recent works by Frankle et al. [13, 23] show that, given a randomly initialized
neural network, it is possible to extract a subnetwork that, when trained in isolation,
can achieve the accuracy of the original model. These findings fit perfectly with
recent concerns regarding the financial and environmental cost of training modern
neural networks [24]: uncovering these subnetworks in the early stages could allow
us to reduce the cost of training the model. Towards this goal, many strategies have
been proposed; for example, Lee et al. [25] prune weights that less affect the loss
using sensitivity-based saliency metrics, and Wang et al. [26] evaluates the score of
the weights based on the gradient flow. Tanaka et al. [27] propose to use "synaptic
strength" to prune the network iteratively.

3.2 Differences between pruning procedures

All pruning procedures can be categorized based on two key characteristics: the
sparsified layers’ resulting structure and the pruning schedule.

Unstructured vs. structured

Techniques that prune individual parameters without any constraint on the resulting
topology are known as unstructured. These techniques can result in many neurons
with very few non-zero parameters, leading to irregular memory access and impacting
the practical speed-up. This sparsity could be exploited using sparse matrix-vector
product implementation [28, 29]; unfortunately, these still need to be commonly
included in consumer-grade devices. Therefore the (high) sparsity levels achievable
are hardly exploitable. On the other hand, structured pruning removes entire neurons
(or channels).

Figure 3.2 shows the difference between unstructured and structured pruning
procedures. Figure 3.2c and Figure 3.2d provide the matrix representation of the two
hidden layers of the pruned network in Figure 3.2a and Figure 3.2b. Each row of the
matrices correlates with a neuron, and each element represents an inbound connection
to the corresponding neuron; the red squares represent the pruned parameters. We
can see that unstructured procedures lead to sparse matrices without any particular
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(a) (b)

X =

(c)

X =

(d)

Fig. 3.2 Comparison between unstructured and structured pruning procedures. (a) and (b) show a
possible result of unstructured and structured pruning. (c) and (d) show the matrix representation
of the hidden layer (yellow) for each pruned network (the activation function gn,i is omitted); each
row represents a neuron, and each matrix element is a weight of the neurons. Red elements represent
pruned parameters.

pattern and every element is used to define the output vector. On the other hand,
structured approaches result in clear patterns (i.e., where the neuron is pruned, an
entire row is removed from the matrix). This structure in the pruned topology could
be exploited by removing the zeroed neurons from the architecture, resulting in
smaller, dense matrices and a reduction in the resource required to perform inference
on the pruned network.

One-shot vs. gradual

Another difference between pruning procedures is how many steps are used to reach
the desired sparsity level (i.e., how the pruning is scheduled). Some techniques
use a single pruning step to remove all the intended weights at once, sometimes
followed by a few fine-tuning iterations, and take the name of one-shot. Others,
instead, prune some parameters iteratively (either a fixed or a variable amount),
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Training Pruning Fine-tuning

(a)

Training Pruning Fine-tuning

(b)

Fig. 3.3 Comparison between the two pruning schedules: (a) one-shot pruning, (b) gradual pruning.

alternating the pruning step with some training iterations; this can be classified as
gradual approaches. Overall, one-shot methodologies can reach the desired sparsity
faster than gradual procedures, but the latter can achieve higher sparsity and a minor
performance loss. A simple schematic of the two pruning schedules is shown in
Figure 3.3.



Chapter 4

LOBSTER

Many popular pruning procedures, such as those presented in Chapter 3, require
that the model to be pruned has been preliminary trained via standard gradient
descent or introduce some rewinding steps in the training process, which increases
the total learning time. This chapter will tackle this issue by proposing LOBSTER
(LOss-Based SensiTivity rEgulaRization). LOBSTER is an unstructured, gradual
approach that employs local pruning. The method extends the framework presented
in Algorithm 1 of Chapter 3 and uses a novel sensitivity-based regularization to
promote sparsity in the architecture.

In this context, we define the sensitivity of the parameter of a network model as
the derivative of the loss function with respect to the target parameter. Intuitively, low-
sensitivity parameters have a negligible impact on the loss function when perturbed
and are fit to be shrunk without compromising the network performance. In practice,
LOBSTER pushes toward zero parameters with low sensitivity, using a regularize-
and-prune approach, resulting in a sparse network topology. Contrary to other
approaches that require a pre-trained model, this procedure, thanks to its loss-
based sensitivity formulation, allows training a network from scratch. Moreover,
unlike different sensitivity-based approaches, LOBSTER computes the sensitivity
by exploiting the already available gradient of the loss function, avoiding additional
derivative computations [16, 19] or second-order derivatives [9].

We performed multiple experiments over different network topologies and
datasets, showing that LOBSTER outperforms several competitors in various tasks.
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4.1 Proposed Regularization

This section will define the sensitivity measure and illustrate the proposed network
update rule that uses this measure as a regularization term to promote sparsity.

4.1.1 Loss-based Sensitivity

Neural networks are typically trained via gradient-descent-based optimization, i.e.,
minimizing the loss function. Methods based on mini-batches of samples have gained
popularity as they allow better generalization than stochastic learning while also
being memory and time efficient. In such a framework, a network parameter wn,i, j is
updated towards the averaged direction, which minimizes the averaged loss for the
minibatch, i.e., using the well-known stochastic gradient descent or its variations.

Our ultimate goal is to assess to which extent a variation of the value of wn,i, j

would affect the error on the network output yyyN : the parameters not affecting the
network output can be set to zero, i.e., pruned away. We make the first attempt
towards this end by introducing a small perturbation ∆wn,i, j over wn,i, j and measuring
the variation of yyyN as

∆yyyN = ∑
k

∣∣∆yN,k
∣∣≈ ∆wn,i, j ∑

k

∣∣∣∣ ∂yN,k

∂wn,i, j

∣∣∣∣ . (4.1)

where yN,k indicates the k-th output for the output layer.

Unfortunately, evaluating equation 4.1 is computationally expensive, as it would
require a complexity that grows linearly with the number of the output classes [19].
However, we can directly estimate the error function’s variations using some differ-
entiable proxy function, i.e., the loss function L(Θ) (for the sake of simplicity, we
will drop the argument of the loss function from here on out), shifting the focus from
the output to the error of the network

∆L ≈ ∆wn,i, j

∣∣∣∣ ∂L
∂yyyN
· ∂yyyN

∂wn,i, j

∣∣∣∣= ∆wn,i, j

∣∣∣∣ ∂L
∂wn,i, j

∣∣∣∣ . (4.2)

We can now properly define the sensitivity S for a given parameter wn,i, j as
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S(L,wn,i, j) =

∣∣∣∣ ∂L
∂wn,i, j

∣∣∣∣ . (4.3)

Large values of S correspond to a significant variation of the loss function for small
perturbations of wn,i, j.

4.1.2 Update Rule

Given the sensitivity definition in equation 4.3, we can promote sparse topologies
by pruning parameters with both low sensitivity S (i.e., in a flat region of the loss
function gradient, where a small perturbation of the parameter has a negligible effect
on the loss) and low magnitude. Toward this end, we propose the following parameter
update rule to promote sparsity:

wt+1
n,i, j := wt

n,i, j−η
∂L

∂wt
n,i, j
−λwt

n,i, j
[
1−S(L,wt

n,i, j)
]

P
[
S(L,wt

n,i, j)
]
, (4.4)

where

P(x) = Ψ [1−|x|] , (4.5)

Ψ(·) is the one-step function, and η and λ are two positive hyper-parameters.

Plugging equation 4.3 in equation 4.4 we can rewrite the update rule as:

wt+1
n,i, j = wt

n,i, j−η
∂L

∂wt
n,i, j
−λΓ

(
L,wt

n,i, j
)[

1−
∣∣∣∣∣ ∂L
∂wt

n,i, j

∣∣∣∣∣
]
, (4.6)

where

Γ(y,x) = x ·P
(

∂y
∂x

)
. (4.7)

After some algebraic manipulations, we can rewrite equation 4.6 as
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wt+1
n,i, j = wt

n,i, j−λΓ
(
L,wt

n,i, j
)
− ∂L

∂wt
n,i, j

[
η− sign

(
∂L

∂wt
n,i, j

)
λΓ
(
L,wt

n,i, j
)]

.

(4.8)

In equation 4.8, we observe two different components of the proposed regulariza-
tion term:

– a weight decay-like term Γ
(
L,wn,i, j

)
which is enabled/disabled by the magni-

tude of the gradient on the parameter;

– a correction term for the learning rate. In particular, the full learning process
follows an equivalent learning rate

η̃ = η− sign
(

∂L
∂wn,i, j

)
λΓ
(
L,wn,i, j

)
. (4.9)

Let us analyze the corrections in the learning rate. If
∣∣∣ ∂L

∂wn,i, j

∣∣∣≥ 1 (wn,i, j has large

sensitivity), it follows that P
(

∂L
∂wn,i, j

)
= 0 and Γ

(
L,wn,i, j

)
= 0 and the dominant

contribution comes from the gradient. In this case our update rule reduces to the
classical GD:

wt+1
n,i, j = wt

n,i, j−η
∂L

∂wt
n,i, j

. (4.10)

When we consider less sensitive wn,i, j with
∣∣∣ ∂L

∂wn,i, j

∣∣∣< 1, we get Γ
(
L,wn,i, j

)
=

wn,i, j (weight decay term) and we can distinguish two sub-cases for the learning rate:

– if sign
(

∂L
∂wn,i, j

)
= sign

(
wn,i, j

)
, then η̃ ≤ η (Figure 4.1a and Figure 4.1d),

– if sign
(

∂L
∂wn,i, j

)
̸= sign

(
wn,i, j

)
, then η̃ ≥ η (Figure 4.1b and Figure 4.1c).

Finally, let us consider the corner case where the network has “fully-converged”
over the training set, i.e.

∣∣∣ ∂L
∂wn,i, j

∣∣∣ = 0 ∀wn,i, j. In this case, the update rule in equa-
tion 4.4 reduces to

wt+1
n,i, j := (1−λ )wt

n,i, j (4.11)
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(a) (b)

(c) (d)

Fig. 4.1 Update rule effect on the parameters. The red dashed line is the tangent to the loss function
in the black dot, in blue the standard SGD contribution, in purple the weight decay while in orange
the LOBSTER contribution. Here we assume P(L,wn,i, j) = 1.

as P[S(L,wt
n,i, j)] = 1. The only term remaining here is a weight decay-like term,

which greedily tends to push the parameters toward zero.

Table 4.1 reports the schematics of all these cases, and Figure 4.1. shows the
possible effects. The contribution from Γ

(
L,wn,i, j

)
aims to minimize the parameter

magnitude, disregarding the loss minimization. If the loss minimization tends
to minimize the magnitude, then the equivalent learning rate is reduced. On the
contrary, when the gradient descent tends to increase the magnitude, the learning
rate is increased to compensate for the contribution coming from Γ

(
L,wn,i, j

)
. This

mechanism allows us to succeed in the learning task while introducing sparsity.

4.1.3 Regularization function minimized

Let us now investigate the objective function we are minimizing more precisely by
imposing the update rule equation equation 4.6.

To this end, we can follow the approach as in [19], and we can compute the
regularization function Ri for the single parameter wn,i, j by solving



16 LOBSTER

P
(

∂L
∂wn,i, j

)
sign

(
∂L

∂wn,i, j

)
sign(w) η̃

η

0 any any 1
1 0 any 1
1 + + ≤ 1
1 + - ≥ 1
1 - + ≥ 1
1 - - ≤ 1

Table 4.1 Behavior of η̃ compared to η (η > 0).

Ri =
∫ (

wn,i, j−wn,i, j

∣∣∣∣ ∂L
∂wn,i, j

∣∣∣∣)Ψ

(
1−
∣∣∣∣ ∂L
∂wn,i, j

∣∣∣∣)dwn,i, j. (4.12)

We rewrite Ri as the L2 regularization followed by a correction term as

Ri = Ψ

(
1−
∣∣∣∣ ∂L
∂wn,i, j

∣∣∣∣)
(

w2
n,i, j

2
+ R̃i

)
, (4.13)

where

R̃i =−
∫

wn,i, j
∂L

∂wn,i, j
sign

(
∂L

∂wn,i, j

)
dwn,i, j. (4.14)

Let us integrate equation 4.14 by parts:

R̃i =−
w2

n,i, j

2
∂L

∂wn,i, j
sign

(
∂L

∂wn,i, j

)
+
∫ w2

n,i, j

2
∂ 2L

∂w2
n,i, j

sign
(

∂L
∂wn,i, j

)
dwn,i, j.

(4.15)

If we integrate a further step, we obtain:

R̃i =−
w2

n,i, j

2
∂L

∂wn,i, j
sign

(
∂L

∂wn,i, j

)
+

w3
n,i, j

6
∂ 2L

∂w2
n,i, j

sign
(

∂L
∂wn,i, j

)
+

−
∫ w3

n,i, j

6
∂ 3L

∂w3
n,i, j

sign
(

∂L
∂wn,i, j

)
dwn,i, j.

(4.16)
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Applying infinite steps of integration by parts we have

R̃i = sign
(

∂L
∂wn,i, j

)
∞

∑
k=1

(−1)k ∂ kL
∂wk

n,i, j

wk+1
n,i, j

(k+1)!
. (4.17)

Overall, the regularization function to minimize at training time, over all the wn,i, j, is

R = ∑
i

Ψ

(
1−
∣∣∣∣ ∂L
∂wn,i, j

∣∣∣∣) ·
·
[

w2
n,i, j

2
+ sign

(
∂L

∂wn,i, j

)
∞

∑
k=1

(−1)k ∂ kL
∂wk

n,i, j

wk+1
n,i, j

(k+1)!

]
.

(4.18)

According to equation 4.13 and, for instance, equation 4.18, we observe that
overall the regularization function we are minimizing is the standard L2 regulariza-
tion, corrected by a loss-dependent term, defined within our proposed LOBSTER
framework.

In the next section, we provide a practical procedure to learn a sparse neural
network topology exploiting the above regularization function at training time,
followed by a pruning stage.

4.2 Training Procedure

This section describes a procedure to train a sparse neural network N leveraging the
sensitivity-based rule above to update the network parameters. We assume that the
parameters have been randomly initialized, albeit the procedure holds if the network
has been pre-trained. The process is illustrated in Figure 4.2 and iterates over two
stages.

4.2.1 Learning Stage

During the learning stage, the network is iteratively trained according to the update
rule equation 4.4 on some training set.

Let j indicate the current learning stage iteration (i.e., epoch) and N j represent
the network (i.e., the set of learnable parameters) at the end of the j-th iteration. Also,
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Fig. 4.2 The complete training procedure of LOBSTER.

let L j be the loss measured on some validation set at the end of the j-th iteration and
L̂ be the best (lowest) loss measured so far on N̂ (network with lowest validation
loss so far). As initial condition, we assume, N̂ =N 0. If L j < L̂, the reference to
the best network is updated as N̂ =N j, L̂= L j. We iterate the learning stage until
the best validation loss L̂ has not decreased for PWE iterations of the learning stage
in a row (we say the regularizer has reached a performance plateau). At such point,
we move to the pruning stage.

4.2.2 Pruning Stage

During the pruning stage, parameters with magnitude below a threshold value T
are pinpointed to zero, eventually sparsifying the network topology, as shown in
Figure 4.3. Namely, we look for the largest T that worsens the classification loss L̂
at most by a relative quantity TWT :

Lb = (1+TWT ) L̂, (4.19)

where Lb is called loss boundary.
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Prune with
threshold   

Get loss    

Fig. 4.3 The pruning stage.

Before the pruning procedure begins, we initialize the threshold T to half of the
maximum magnitude for the parameters in N̂ . We also initialize ∆T to T

2 . Then, we
proceed in the research of T as follows:

1. We prune N̂ with threshold T , obtaining N T ;

2. We compute the loss LT on the validation set:

– if Lb ≥ LT the network tolerates a larger amount of pruned parameters,
so T is increased by ∆T ;

– if Lb < LT , then too many parameters have been pruned. This means
we have to restore the parameters pruned at the previous step. Then, we
decrease T by ∆T .

3. We update ∆T , dividing its value by half;

4. We test over ∆T value:

– if ∆T ≤ ε , where ε is some small value for which LT = LT+ε (typically
10−10), we end our pruning stage;

– otherwise, we go back to point 1.

Once T is found, all the parameters whose magnitude is below T are permanently
set to zero, i.e., they are pruned for good. If at least one parameter has been pruned
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during the last iteration of the pruning stage, a new iteration of the regularization stage
follows; otherwise, the procedure ends by returning the trained, sparse network.

4.3 Results

In this section, we experimentally evaluate LOBSTER over multiple architectures
and datasets commonly used as a benchmark in the literature:

– LeNet-300 on MNIST (Figure 4.4a),

– LeNet-5 on MNIST (Figure 4.4b),

– LeNet-5 on Fashion-MNIST (Figure 4.4c),

– ResNet-32 on CIFAR-10 (Figure 4.4d),

– ResNet-18 on ImageNet (Figure 4.4e),

– ResNet-101 on ImageNet (Figure 4.4f),

– U-Net on ISIC skin lesion segmentation (Table 4.2).

We compare with other state-of-the-art approaches wherever numbers are publicly
available. Besides these, we also perform an ablation study with an L2-based
regularizer and our proposed pruning strategy (as discussed in Section 4.2. We
measure the performance as the achieved model sparsity versus classification error
(Top-1 or Top-5 error). The network sparsity is defined here as the percentage of
pruned parameters in the network model.

Our algorithms are implemented in Python1, using PyTorch 1.2, and we used an
RTX2080 Ti NVIDIA GPU to run the simulations. The validation set size for all the
experiments is 5k images. All the hyper-parameters have been tuned via grid search.
For all datasets, the learning and pruning stages take place on a random split of the
training set, whereas the numbers reported below are related to the test set.

1the source code is available at https://github.com/EIDOSlab/LOBSTER.git

https://github.com/EIDOSlab/LOBSTER.git
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Fig. 4.4 Performance (Top-1 error) vs. ratio of pruned parameters for LOBSTER and other state-of-
the-art methods over different architectures and datasets.
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4.3.1 LeNet-300 on MNIST

As a first experiment, we trained a sparse LeNet-300 [30] architecture consisting
of three fully-connected layers with 300, 100, and 10 neurons, respectively. We
trained the network on the MNIST dataset, composed of 60k training and 10k test
gray-scale 28x28 pixels large images depicting handwritten digits. Starting from
a randomly initialized network, we trained LeNet-300 via SGD with learning rate
η = 0.1, λ = 10−4, PWE = 20 epochs and TWT = 0.05.

The related literature reports several compression results that can be clustered
into two groups corresponding to classification error rates of about 1.65% and 1.95%,
respectively. Figure 4.4a provides results for the proposed procedure. Our method
reaches higher sparsity than the approaches found in the literature; this is particularly
noticeable around the 1.65% classification error (low left in Figure 4.4a), where we
achieve almost twice the sparsity of the second-best method.

LOBSTER also achieves the highest sparsity for the higher error range (right side
of the graph), gaining especially in regards to the number of parameters removed
from the first fully-connected layer (the largest, consisting of 235k parameters), in
which we observe that just the 0.59% of the parameters survives.

4.3.2 LeNet-5 on MNIST and Fashion-MNIST

Next, we experiment with the Caffe version of the LeNet-5 architecture, consisting
of two convolutional and two fully-connected layers. Again, we use a randomly-
initialized network, trained via SGD with learning rate η = 0.1, λ = 10−4, PWE =

20 epochs, and TWT = 0.05. The results are shown in Figure 4.4b. As seen from
the graph, even with a convolutional architecture, we obtain a competitively small
network with a sparsity of 99.57%. At higher compression rates, Sparse VD slightly
outperforms all other methods in the LeNet5-MNIST experiment.

We observe that LOBSTER, in this experiment, sparsifies the first convolutional
layer (22% sparsity) more than the Sparse VD solution (33%). In particular, LOB-
STER prunes 14 filters out of the 20 original filters in the first layer (in other words,
just 6 filters survive and contain all the un-pruned parameters). However, since we
are above 99% of sparsity, the difference between the two techniques is minimal. We
hypothesize that, in the case of Sparse VD and for this particular dataset, extracting
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a wider variety of features at the first convolutional layer both eases the classifica-
tion task (hence the lower Top-1 error) and allows to drop more parameters in the
following layers (a slightly improved sparsity).

To scale up the difficulty of the training task, we experimented on the classifi-
cation of the Fashion-MNIST dataset [31], using LeNet5 again. This dataset has
the same size and image format as the MNIST dataset. However, it contains images
of clothing items, resulting in a non-sparse distribution of the pixel intensity value.
Since the images are not as sparse, such a dataset is notoriously more challenging to
classify than MNIST. For this experiment, we trained the network from scratch using
SGD with η = 0.1, λ = 10−4, PWE = 20 epochs, and TWT = 0.1. The results are
shown in Figure 4.4c. Fashion-MNIST is an inherently more challenging dataset
than MNIST, so the possible sparsity is lower. Nevertheless, the proposed method
still reaches higher sparsity than other approaches, removing a higher percentage
of parameters, especially in the fully connected layers, while maintaining good
generalization. In this case, we observe that the first layer is the least sparsified: this
is an effect of the higher complexity of the classification task, which requires more
features to be extracted.

4.3.3 ResNet-32 on CIFAR-10

To evaluate how our method scales to deeper, modern architectures, we applied
it on a PyTorch implementation of the ResNet-32 network [32] that classifies the
CIFAR-10 dataset.2 This dataset consists of 60k 32×32 RGB images divided in 10
classes (50k training images and 10k test images). We trained the network using
SGD with momentum β = 0.9, λ = 10−6, PWE = 10 and TWT = 0. The full
training is performed for 11k epochs.

Our method performs well on this task and outperforms other state-of-the-art
techniques. Furthermore, LOBSTER improves the network generalization ability
reducing the baseline Top-1 error from 7.37% to 7.33% of the sparsified network
while removing 80.11% of the parameters. This effect is likely due to the LOBSTER
technique, which self-tunes the regularization on the parameters as explained in
Section 4.1.2.

2the source code is available at https://github.com/akamaster/pytorch_resnet_cifar10

https://github.com/akamaster/pytorch_resnet_cifar10
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Table 4.2 Results on the ISIC 2018 Skin Lesion Segmentation using U-Net architecture.

Method Dice score Intersection over Union Sparsity (%)

Baseline 0.8282 0.7073 0
Sparse VD [33] 0.8245 0.7030 32.14

L2+pruning 0.8273 0.7062 79.43
LOBSTER 0.8269 0.7057 82.13

4.3.4 ResNet on ImageNet

Finally, we further scale up the classification problem’s output and complexity,
testing the proposed method on the network over the well-known ImageNet dataset
(ILSVRC-2012), composed of more than 1.2 million train images, for a total of
1k classes. For this test, we used SGD with momentum β = 0.9, λ = 10−6, and
TWT = 0.

The full training lasts 95 epochs. Due to time constraints, we decided to use the
pre-trained network offered by the torchvision library.3 Figure 4.4e shows the results
for ResNet-18 while Figure 4.4f shows the results for ResNet-101.

4.3.5 U-Net on ISIC skin lesion segmentation

Besides classification tasks, we want to show how LOBSTER behaves for different
tasks. Towards this end, we have trained the U-Net architecture [34] to segment skin
lesions [35, 36]. The ISIC skin lesion segmentation dataset consists of 2594 training
images and 100 test images having resolution 1024×768 pixels, in RGB format.
Models are trained with weight decay = 10−4, momentum = 0.9 starting learning
rate η = 0.1. LOBSTER and L2+pruning models were obtained with PWE = 10 and
TWT = 0. For LOBSTER we used λ = 10−4. All the models are trained to minimize
a Jaccard loss function. Results are shown in Table 4.2. Even in segmentation tasks,
LOBSTER can remove many parameters, namely the 82.13%. We observe, however,
that in this specific scenario, the main contribution is given by the pruning algorithm
we propose in Section 4.2, as the sparsity achieved with plain L2 regularization is
not distant though lower than LOBSTER (82.13%) when other techniques which
perform well for classification tasks, like Sparse VD, in this case, can only prune

3https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html
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Dataset Architecture
L2+pruning LOBSTER

Top-1 Sparsity
FLOPs

Top-1 Sparsity
FLOPs

(%) (%) (%) (%)

MNIST
LeNet-300 1.97 97.62 22.31k 1.95 99.13 10.63k

LeNet-5 0.80 98.62 589.75k 0.79 99.57 207.38k

F-MNIST LeNet-5 8.44 93.04 1628.39k 8.43 96.27 643.22k

CIFAR-10 ResNet-32 8.08 71.51 44.29M 7.33 80.11 32.90M

ImageNet
ResNet-18 31.08 25.40 2.85G 30.10 37.04 2.57G
ResNet-101 28.33 78.67 3.44G 26.44 81.58 3.00G

Table 4.3 Comparing LOBSTER against standard L2+pruning as in Figure 4.4 (best sparsity results
are reported).The sensitivity-based regularization term allows higher sparsification rates for improved
accuracy.

32.14% of the parameters. For these cases, proper tuning of the threshold T results
determinant towards achieving high performance with a little performance drop.

4.3.6 Ablation study

As a final ablation study, we replace our sensitivity-based regularizer with a simpler
L2 regularizer in our learning scheme.

Such scheme “L2+pruning” uniformly applies an L2 penalty to all the parameters
regardless of their contribution to the loss. This scheme is comparable with [15],
yet enhanced with the same pruning strategy with adaptive thresholding shown
in Figure 4.3. A comparison between LOBSTER and L2+pruning is reported in
Table 4.3.

In all the experiments, we observed that dropping the sensitivity-based regu-
larizer impairs performance. This experiment verifies the role of sensitivity-based
regularization in the performance of our scheme. Finally, Table 4.3 also reports the
corresponding inference complexity in FLOPs. For the same or lower Top-1 error,
LOBSTER yields benefits as fewer operations at inference time and suggests the
presence of some structure in the sparsity achieved by LOBSTER.
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4.4 Summary

We presented LOBSTER, a regularization method suitable to train neural networks
with a sparse topology without preliminary training.

Unlike L2 regularization, LOBSTER is aware of the global contribution of the
parameters on the loss function and self-tunes the regularization effect depending
on factors like the network’s architecture or the training problem itself. Moreover,
tuning its hyper-parameters is easy, and the optimal threshold for parameter pruning
is self-determined by the proposed approach employing a validation set.

LOBSTER achieves competitive results from shallow architectures like LeNet-
300 and LeNet-5 to deeper topologies like ResNet over ImageNet. In these scenarios,
we have observed the boost provided by the proposed regularization approach towards
less-unaware approaches like L2 regularization in terms of achieved sparsity.



Chapter 5

SERENE

In the previous chapter, we presented LOBSTER, a technique that can reach high
sparsity levels. Still, as mentioned in Chapter 3, the unstructured nature of the
introduced sparsity can limit the practical applications of the pruned networks. To
confront this issue, in this chapter, we propose a structured approach.

SeReNe (Sensitivity-based Regularization of Neurons) is a method for learning
sparse topologies with a structure by exploiting the concept of neural sensitivity as
a regularizer. We define the sensitivity of a neuron as the variation of the network
output with respect to the variation of the neuron’s activity (i.e., the post-synaptic
potential of the neuron), and the lower the sensitivity of a neuron, the less the
network output is perturbed if the neuron output changes. Thanks to this sensitivity
formulation, this procedure can drive all the neuron’s parameters to zero, allowing
learning network topologies that are sparse and have fewer neurons (fewer filters
for convolutional layers). As a side benefit, smaller and denser architectures may
also speed up network execution thanks to better use of cache locality and memory
access pattern.

We experimentally show that SeReNe outperforms state-of-the-art references
over multiple learning tasks and network architectures. We observe the benefit of
structured sparsity when storing the neural network topology and parameters using
the Open Neural Network eXchange (ONNX) format [37], with a reduction of the
memory footprint.
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5.1 Sensitivity-based Regularization for Neurons

In this section, we first formulate the network’s sensitivity with respect to a neuron’s
post-synaptic potential. Then, we derive a general parameter update rule which relies
on the proposed sensitivity term. As a reference scenario, we considered a multi-class
classification problem with C labels; however, our strategy can be extended to other
learning tasks, e.g., regression, in a straightforward way.

5.1.1 Neuron Sensitivity

Let us assume that our method is applied to a pre-trained network. To estimate the
relevance of neuron xn,i for the task upon which the network was trained, we evaluate
the neuron contribution to the network output yyyN . To this end, we first provide
intuition on how slight variations of the post-synaptic potential pn,i of neuron xn,i

affect the k-th output of the network yN,k. By a Taylor series expansion, for minor
variations of pn,i, let us express the variation of yN,k as

∆yN,k ≈ ∆pn,i
∂yN,k

∂ pn,i
(5.1)

where yN,k indicates the k-th output for the output layer. In the case ∆yN,k→ 0,∀k,
for small variations of pn,i, yN,k does not change. Such a condition allows driving
the post-synaptic potential pn,i to zero without affecting the network output yN,k

(and, for instance, its performance). Otherwise, if ∆yN,k ̸= 0, any variation of pn,i

might alter the network output, possibly impairing its performance. We can now
properly quantify small changes’ effect on the network output by defining the neuron
sensitivity.

We define the sensitivity of the network output yyyN with respect to the post-
synaptic potential pn,i of neuron xn,i as

Sn,i(yyyN , pn,i) =
1
C

C

∑
k=1

∣∣∣∣∂yN,k

∂ pn,i

∣∣∣∣ (5.2)

where yyyN ∈ RC and Sn,i ∈ [0;+∞). Intuitively, the higher Sn,i, the higher the fluctua-
tion of yyyN for small variations of pn,i.
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Before moving on, we would like to clarify our choice of leveraging the post-
synaptic potential pn,i rather than the neuron output yn,i in the equation above. In
order to understand our choice, we re-write equation 5.2 using the chain rule:

Sn,i(yyyN , pn,i) =
1
C

C

∑
k=1

∣∣∣∣∂yN,k

∂yn,i
· ∂yn,i

∂ pn,i

∣∣∣∣ . (5.3)

Without loss of generality, let us assume ∂yN,k
∂yn,i
̸= 0 and gn,i(·) corresponds to the well

known ReLU activation function. Under the hypothesis that pn,i < 0, ∂yn,i
∂ pn,i

= 0 for
the considered ReLU activation. Had we written equation 5.2 as a function of the
neuron output yn,i, the vanishing gradient ∂yn,i

∂ pn,i
= 0 would have prevented us from

estimating the neuron sensitivity. This consideration applies beyond ReLU to any
activation function except for the identity function, for which yn,i = pn,i.

5.1.2 Bounds on Neuron Sensitivity

Here we provide two computationally-efficient bounds to the sensitivity function.
Popular neural network training frameworks rely on differentiation frameworks, such
as autograd, for automatic variable differentiation along computational graphs. Such
frameworks take as input some objective function J and automatically compute all
the gradients along the computational graph. In order to get Sn,i as an outcome from
the differentiation engine, we define

Sn,i(yyyN , pn,i) =
∂J

∂ pn,i
(5.4)

where J is a proper function. Such function turns out to be:

J =
1
C

C

∑
k=1

∫ ∣∣∣∣∂yN,k

∂ pn,i

∣∣∣∣d pn,i (5.5)

therefore, computing the sensitivity in equation 5.2 requires C calls to the differentia-
tion engine. In the following, with some little algebra, we derive a lower and upper
bound to equation 5.2 that we show to be particularly useful from a computational
perspective.
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Let the objective function to differentiate be

Jl =
1
C

C

∑
k=1

yN,k. (5.6)

The automatic differentiation engine called on Sl will return

∂Jl

∂ pn,i
=

1
C

C

∑
k=1

∂yN,k

∂ pn,i
. (5.7)

According to the triangle inequality, a lower bound to the sensitivity in equation 5.2
can be computed as

Sl
n,i =

1
C

∣∣∣∣∣ C

∑
k=1

∂yN,k

∂ pn,i

∣∣∣∣∣≤ 1
C

C

∑
k=1

∣∣∣∣∂yN,k

∂ pn,i

∣∣∣∣ (5.8)

Sl
n,i can be conveniently evaluated differentiating over equation 5.6 (and taking

the absolute value) with a single call to the differentiation engine. As shown in
equation 5.8, this gives us a lower bound estimation over the neuron sensitivity.

In order to estimate an upper bound to Sn,i, we rewrite equation 5.2 as

Sn,i =
1
C

C

∑
k=1

∣∣∣∣∣ ∂yN,k

∂yyyN−1
·

N−1

∏
l=n+1

∂yyyl

∂yyyl−1
·δδδ n,i

∂yn,i

∂ pn,i

∣∣∣∣∣ (5.9)

However, ∀k we have in common the term

ΓΓΓn,i =
N−1

∏
l=n+1

∂yyyl

∂yyyl−1
·δδδ n,i

∂yn,i

∂ pn,i
≤

N−1

∏
l=n+1

∣∣∣∣ ∂yyyl

∂yyyl−1

∣∣∣∣ ·δδδ n,i

∣∣∣∣ ∂yn,i

∂ pn,i

∣∣∣∣= ΓΓΓ
u
n,i

where δδδ n,i is a one-hot vector selecting the i-th neuron at the n-th layer and | · | is an
element-wise operator. Hence, we rewrite equation 5.9 as

Su
n,i =

1
C

(
C

∑
k=1

∣∣∣∣ ∂yN,k

∂yyyN−1

∣∣∣∣
)
·ΓΓΓu

n,i ≥ Sn,i. (5.10)
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Thus, we have shown that Su
n,i is an upper bound to the sensitivity in equation 5.2.

Upper and lower bounds are obtained here for two main reasons: computational
efficiency and relaxing/tightening conditions on the sensitivity itself. We will see in
Section 5.3.1 a typical population distribution of the sensitivities on a pre-trained
network, comparing equation 5.2, equation 5.8 and equation 5.10. In the following
sections, we exploit the formulation of the sensitivity function equation 5.2 and its
two bounds equation 5.8, equation 5.10 to define a parameter update rule.

5.1.3 Parameters Update Rule

As hinted before, if the sensitivity Sn,i of neuron xn,i is small, i.e., Sn,i→ 0, then
neuron xn,i yields a small contribution to the i-th network output yN,i; its parameters
can be moved towards zero with little perturbation to the network’s output. To this
end, we define the insensitivity function Sn,i as

Sn,i = max{0,1−Sn,i}= (1−Sn,i) ·Ψ(1−Sn,i) (5.11)

where Ψ(·) is the one-step function. The higher the insensitivity of neuron xn,i (i.e.,
Sn,i→ 1 or equivalently Sn,i→ 0), the less the neuron affects the network output.
Therefore, if Sn,i→ 1, then neuron xn,i contributes little to the network output and
its parameters wn,i, j can be driven towards zero without significantly perturbing the
network output. Using the insensitivity definition in equation 5.11, we propose the
following update rule:

wt+1
n,i, j = wt

n,i, j−η
∂L

wt
n,i, j
−λwt

n,i, jSn,i (5.12)

where

– the first contribution term is the classical minimization of a loss function L,
ensuring that the network still solves the target task, e.g., classification;

– the second one represents a penalty applied to the parameter wn,i, j belonging
to the neuron xn,i, which is proportional to the insensitivity of the output to its
variations.
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Finally, since

∂ pn,i

∂yn−1, j
= wn,i, j (5.13)

we rewrite equation 5.12 as

wt+1
n,i, j = wt

n,i, j−η
∂L

wt
n,i, j
−λ Ṡn,i, j (5.14)

where

Ṡn,i, j =

[
wn,i, j−

sign(wn,i, j)

C

C

∑
k=1

∣∣∣∣ ∂yN,k

∂yn−1, j

∣∣∣∣
]
·Ψ(1−Sn,i) (5.15)

From equation 5.15 we can better understand the effect of the proposed penalty term:
as expected by our discussion above, Ṡn,i, j is inversely proportional to the impact on
the output for variations of the input for the neuron xn,i.

5.1.4 Local neuron sensitivity-based regularization

We propose now an approximate formulation of the sensitivity function in equa-
tion 5.2 based only on the post-synaptic potential and output of a neuron that we will
refer to as the local sensitivity. Let us recall that, for each neuron xn,i, the sensitivity
provided by equation equation 5.2 measures the overall impact of a given neuron xn,i

on the network output while taking into account all the following neurons involved
in the computation.

The local neuron sensitivity of the output yn,i with respect to the post-synaptic
potential pn,i of the neuron xn,i is defined as

S̃n,i =

∣∣∣∣ ∂yn,i

∂ pn,i

∣∣∣∣ . (5.16)

In the case of ReLU-activated networks, it simply reads

S̃n,i = Ψ(pn,i). (5.17)
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Fig. 5.1 High-level view of the SeReNe procedure.

Under this setting, the update rule equation 5.14 simplifies to

wt+1
n,i, j = wt

n,i, j−η
∂L

wt
n,i, j
−λwt

n,i, jΨ(−pn,i), (5.18)

i.e., the penalty is applied only in case the neuron stays off. While local sensitivity is
a looser approximation of equation 5.2, it is far less complex to compute, especially
for ReLU-activated neurons.

5.2 The SeReNe procedure

This section introduces a practical procedure to prune neurons from a neural network
N leveraging the sensitivity-based regularizer presented above.

Let us assume N has been preliminary trained at some task over the dataset D,
achieving performance (e.g., classification accuracy) A. We do not put any constraint
over the actual training method, training set, or network architecture. Algorithm 2
summarizes the procedure in pseudo-code. In a nutshell, the procedure consists in
iteratively looping over the Regularization and Thresholding procedures.
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At the beginning of the loop, dataset D is split into disjoint subset V (used for
validation purposes) and U (to update the network). At line 5, the regularization
procedure (summarized in Algorithm 3) trains N over D according to equation 5.12
driving towards zero parameters of neurons with low sensitivity. The loop ends
if the performance of the regularized network falls below threshold A. Otherwise,
the thresholding procedure sets to zero parameters below threshold T and prunes
neurons such that all parameters are equal to zero. The procedure’s output is the
pruned network, i.e., with fewer neurons, N ⋆. The Regularization and Thresholding
procedures are detailed in the following. A high-level graphical representation of
SeReNe is also displayed in Figure 5.1.

Algorithm 2 The SeReNe procedure
Input: Trained network N , dataset D,
Target performance A, PWE, TWT
Output: Pruned network N ⋆

1: procedure SERENE(N ,D,A,PWE,TWT )
2: N ⋆←N
3: while true do
4: U,V ← RANDOMSPLIT(D)
5: N ← REGULARIZATION(N ,U,V,PWE)
6: if PERFORMANCE(N ,V )< A then
7: break
8: N ⋆←N
9: N ← THRESHOLDING(N ,V,TWT )

return N ⋆

5.2.1 Regularization

This procedure takes in input a network N and returns a regularized network accord-
ing to the update rule equation 5.12. Namely, the procedure iteratively trains N on
U and validates it on V for multiple epochs. Let N r represent the best regularized
network found at a given time according to the loss function. For each iteration,
the procedure operates as follows. First (line 5), N is trained for one epoch over
U : the result is a regularized network according to equation 5.12. Second (line 6),
this network is validated on V . If the loss is lower than the loss of N r over V , then
N takes the place of N r (line 7). If N r is not updated for PWE (Plateau Waiting
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Epochs) epochs, we assume we have reached a performance plateau. In this case, the
procedure ends and returns the sensitivity-regularized network N r.

Algorithm 3 The regularization procedure
Input: Model N , data sets V and U, PWE
Output: The sensitivity-regularized network N r

1: procedure REGULARIZATION(N ,U,V,PWE)
2: N r←N ▷ N r is best regularized network on V
3: epochs← 0
4: while epochs < PWE do
5: N ← TRAIN(N ,U) ▷ 1 train epoch on U
6: epochs++
7: if LOSS(N ,V )< LOSS(N r,V ) then
8: N r←N
9: epochs← 0

return N r

5.2.2 Thresholding

The thresholding procedure is where the parameters of neurons with low sensitivity
are thresholded to zero. Namely, parameters whose absolute value is below threshold
T are pruned as

wn,i, j =

{
wn,i, j

∣∣wn,i, j
∣∣> T

0 otherwise.
(5.19)

The pruning threshold T is selected so that the performance (or, in other words,
the loss on V ) worsens at most of a relative value we call thresholding worsening
tolerance (TWT ) we provide as hyper-parameter. We expect the loss function to be
locally a smooth, monotone function of T for small values of T . The threshold T can
be found using linear search-based heuristics. We can, however, reduce this using a
bisection approach, converging to the optimal T value in log-time steps. Because
of the stochasticity introduced by mini-batch-based optimizers, parameters pruned
during a thresholding iteration may be reintroduced by the following regularization
iteration. To overcome this effect, we enforce that pruned parameters can no longer
be updated during the following regularizations (we term this behavior as parameter
pinning). To this end, the update rule equation 5.12 is modified as follows:
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wt+1
n,i, j =

{
wt

n,i, j−η
∂L

wt
n,i, j
−λwt

n,i, jSn,i wt
n,i, j ̸= 0

0 wt
n,i, j = 0

(5.20)

We have noticed that without parameter pinning, the compression of the network may
remain low because the noisy gradient estimates in a mini-batch keep reintroducing
previously pruned parameters. On the contrary, by adding equation 5.20, a lower
number of epochs is sufficient to achieve much higher compression.

5.3 Results

In this section, we experiment with our proposed neuron pruning method, comparing
the four sensitivity formulations we introduced in the previous section:

– SeReNe (exact) - the exact formulation in equation 5.2;

– SeReNe (LB) - the lower bound in equation 5.8;

– SeReNe (UB) - the upper bound in equation 5.10;

– SeReNe (local) - the local version in equation 5.16;

– L2 + pruning - is a baseline reference where we replace our sensitivity-based
regularization term with a standard L2 term (all the rest of the framework is
identical).

We experiment with different combinations of architectures and datasets commonly
used as benchmarks in the relevant literature:

– LeNet-300 on MNIST (Table 5.1 and Table 5.2),

– LeNet-5 on MNIST (Table 5.3),

– LeNet-5 on Fashion-MNIST (Table 5.4),

– VGG-16 on CIFAR-10 (Table 5.5 and Table 5.6),

– ResNet-32 on CIFAR-10 (Table 5.7),
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– AlexNet on CIFAR-100 (Table 5.8),

– ResNet-101 on ImageNet (Table 5.9).

Notice that the VGG-16, AlexNet and ResNet-32 architectures are modified to fit the
target classification task (CIFAR-10 and CIFAR-100). The validation set (V ) size
for all experiments is 10% of the training set. The pruning performance is evaluated
according to multiple metrics.

– The compression ratio, i.e., the ratio between the number of parameters in the
original network and the number of remaining parameters after pruning (the
higher, the better).

– The number of remaining neurons (or filters for convolutional layers) after
pruning.

– The size of the networks when stored on disk in the popular ONNX for-
mat [37] (.onnx column). ONNX files are then losslessly compressed using
the Lempel–Ziv–Markov algorithm (LZMA) [38] (.7z column).

In our experiments, we compare all available references for each combination of
architecture and dataset. For this reason, the reference set may vary from experiment
to experiment. Our algorithms are implemented in Python, using PyTorch 1.5, and
simulations are run on an RTX2080 NVIDIA GPU with 8GB of memory.1

5.3.1 Preliminary experiment

First, we plot the sensitivity distribution for a LeNet-5 network trained on the MNIST
dataset (SGD with learning rate η = 0.1 weight decay 10−4). This network will also
be used as the baseline in Sec. 5.3.3. Figure 5.2 shows SeReNe (exact) (red), SeReNe
(LB) (green), and SeReNe (UB) (blue); the vertical bars represent the mean values.
As expected, SeReNe (LB) and SeReNe (UB) under-estimate and over-estimate
SeReNe (exact), respectively. Interestingly, SeReNe (UB) sensitivity values lie in the
range [10−4;10−2] while both for SeReNe (exact) and SeReNE (LB) show a longer
trail towards smaller figures, whereas all distributions look similar.

1the source code is available at https://github.com/EIDOSlab/SeReNe.git

https://github.com/EIDOSlab/SeReNe.git
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Fig. 5.2 Population of sensitivities S and relative lower Sl and upper Su bounds for a LeNet-5
architecture pre-trained on MNIST. Vertical bars indicate relative mean values.

5.3.2 LeNet-300 on MNIST

As a first experiment, we prune a LeNet-300 architecture consisting of three fully-
connected layers with 300, 100, and 10 neurons, respectively, trained over the
MNIST dataset. We pre-trained LeNet-300 via SGD with learning rate η = 0.1 and
PWE = 20 epochs with λ = 10−5, TWT = 0.3 for SeReNe (exact), SeReNe (LB)
SeReNe (UB) and λ = 10−5, TWT = 1 for SeReNe (local). The related literature
reports mainly i) results for classification errors around 1.65% (Table 5.1) and ii)
results for errors in the order of 1.95% (Table 5.2). For this reason, we trained for
about 1k epochs to achieve a 1.95% error rate and other 2k epochs to score a 1.65%

Table 5.1 LeNet-300 trained on MNIST (1.65% error rate).

Approach
Remaining parameters (%) Compr. Remaining Network size [kB] Training time Top-1

FC1 FC2 FC3 ratio neurons .onnx .7z (s/epoch) (%)

Baseline 100 100 100 1x [300]-[100]-[10] 1043 → 933 3.65 1.44
Han et al. [12] 8 9 26 12.2x - - - 1.6

Tartaglione et al. [11] 2.25 11.93 69.3 27.87x [251]-[88]-[10] - - 1.65

ℓ2+pruning 2.44 15.76 68.50 23.26x [212]-[82]-[10] 723 → 64 3.65 1.66

SeReNe (exact) 1.42 9.54 60.9 42.55x [159]-[75]-[10] 538 → 46 13.25 1.64

SeReNe (UB) 22.45 60.81 87.75 3.71x [295]-[92]-[10] 1016 → 324 5.13 1.67

SeReNe (LB) 1.51 10.05 60.53 39.79x [164]-[78]-[10] 557 → 55 4.88 1.65

SeReNe (local) 3.85 32.53 73.49 13.81x [251]-[86]-[10] 859 → 119 3.83 1.64
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Table 5.2 LeNet-300 trained on MNIST (1.95% error rate).

Approach
Remaining parameters (%) Compr. Remaining Network size [kB] Training time Top-1

FC1 FC2 FC3 ratio neurons .onnx .7z (s/epoch) (%)

Baseline 100 100 100 1x [300]-[100]-[10] 1043 → 933 3.65 1.44
Sparse VD [20] - - - 68x - - - 1.92

SWS [39] - - - 23x - - - 1.94

Tartaglione et al. [11] 0.93 1.12 5.9 103x [179]-[88]-[10] - - 1.95

DNS [40] 1.8 1.8 5.5 56x - - - 1.99

ℓ2+pruning 1.22 8.77 61.10 41.95x [167]-[76]-[10] 566 → 42 3.65 1.97

SeReNe (exact) 0.76 5.85 49.77 66.28x [148]-[70]-[10] 498 → 38 13.25 1.93

SeReNe (UB) 13.67 50.76 84.47 5.47x [293]-[91]-[10] 1008 → 240 5.13 1.95

SeReNe (LB) 0.75 5.79 49.3 66.41x [146]-[70]-[10] 492 → 37 4.88 1.95

SeReNe (local) 1.7 19.94 63.59 25.07x [192]-[83]-[10] 656 → 70 3.83 1.93

error rate. SeReNe outperforms the other methods in terms of compression ratio
and the number of pruned neurons. SeReNe (exact) achieves a compression ratio of
42.55×, and the number of remaining neurons in the hidden layers drops from 300 to
159 and from 100 to 75, respectively. SeReNe (LB) enjoys comparable performance
to SeReNe (exact) despite the lower computational cost.
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Fig. 5.3 Parameters distribution in FC1 of LeNet-300 trained on MNIST from Han et al. (top), and he
proposed SeReNe (bottom). In black are the remaining parameters.
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For the 1.95% error band (Tab. 5.2), SeReNe (LB) performs more effectively at
pruning parameters than SeReNe (exact), allowing lower error. In this case, SeReNe
(LB) achieves comparable compression to other state-of-the-art approaches, except
for Tartaglione et al. [11]. However, when we compare the final architecture, we
see that [11] prunes fewer neurons than SeReNe, despite a higher compression ratio.
Evidently, [11] enhances unstructured sparsity, while SeReNe exploits structured
sparsity, resulting in more entirely-removed neurons. Serene (LB) prunes more
parameters than SeReNe (UB), we hypothesize because equation 5.10 overestimates
the sensitivity of the parameters and prevents them from being pruned. On the other
side, SeReNe (LB) underestimates the sensitivity; however, small λ values set this
off. SeReNe (local) prunes fewer parameters than the other SeReNe formulations
as it relies on a locally computed sensitivity formulation despite lower complexity.
Concerning training time (second column from the right), SeReNe (local) is the
fastest and introduces very little computational overhead, SeReNe (UB) and SeReNe
(LB) have comparable training times, and the slowest is the SeReNe (exact), approx-
imately 2.7x slower than its boundaries. In light of the excellent trade-off between
the ability to prune neurons, error rate, and training time of SeReNe (LB), we will
restrict our experiments to this sensitivity formulation in the following.

Figure 5.3 (bottom) shows the location of the parameters not pruned by SeReNe
(exact) in LeNet-300’s first fully-connected layer (black dots). For comparison, we
report the equivalent image from Figure 4 of [12] (top). Our method yields blank
columns in the matrix that can be represented in memory as uninterrupted sequences
of zeroes. When stored on disk, LZMA compression (.7z column) is particularly
effective at encoding long sequences of the same symbol, which explains the 10x
compression rate it achieves (from 538 to 46 kB) over the .onnx file.

Finally, we perform an ablation study to assess the impact of a simpler L2-
only regularization, i.e., classical weight decay, in place of our sensitivity-based
regularizer. Towards this end, we retrain LeNet-300 with λ = 0 and a weight decay
set to 10−4 in its place (line L2+pruning in the tables above). We point out in
equation 5.12 that the sensitivity can be interpreted as a weighting factor for the
L2-regularization. Using weight decay is equivalent to assuming all the parameters
have the same sensitivity. For this experiment, we used η = 0.1, PWE = 5 and
TWT = 0 (TWT > 0 significantly and uncontrollably worsens the performance).
Table 5.1 shows that such a method is less effective at pruning neurons than SeReNe
(LB), which removes 15% more neurons. Similar conclusions can be drawn if a
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Table 5.3 LeNet-5 trained on MNIST.

Approach
Remaining parameters (%) Compr.

Neurons
Network size [kB] Top-1

Conv1 Conv2 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 1x [20]-[50]-[500]-[10] 1686 → 1510 0.68
Sparse VD [20] 33 2 0.2 5 280x - - 0.75

Han et al. [12] 66 12 8 19 11.9x - - 0.77

SWS [39] - - - - 162x - - 0.97

Tartaglione et al. [11] 67.6 11.8 0.9 31.0 51.1x [20]-[48]-[344]-[10] - 0.78

DNS [40] 14 3 0.7 4 111x - - 0.91

ℓ2+pruning 60.20 7.37 0.61 22.14 72.3 [19]-[37]-[214]-[10] 577 → 46 0.8

SeReNe (LB) 33.75 3.25 0.27 10.22 177.05x [11]-[26]-[113]-[10] 208 → 19 0.8

Table 5.4 LeNet-5 trained on Fashion-MNIST.

Approach
Remaining parameters (%) Compr.

Neurons
Network size [kB] Top-1

Conv1 Conv2 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 1x [20]-[50]-[500]-[10] 1686 → 1510 8.1
Sparse VD [20] - - - - 6.98x - - 8.53

Tartaglione et al. [11] 76.2 32.56 6.5 44.02 11.74x [20]-[47]-[470]-[10] - 8.5

ℓ2+pruning 85.80 34.13 4.57 55.24 14.36x [20]-[50]-[500]-[10] 1496 → 197 8.44

SeReNe (LB) 85.71 32.14 3.63 52.03 17.04x [20]-[49]-[449]-[10] 1494 → 46 8.47

higher error is tolerated, as in Table 5.2. The L2+pruning has been performed for
comparison in all following experiments in the paper, yielding the same results.

5.3.3 LeNet5 on MNIST and Fashion-MNIST

Next, we repeat the previous experiment over the LeNet-5 [41] architecture, pre-
liminarily trained as for the LeNet-300 above, yet with SGD with learning rate
η = 0.1 and PWE = 20 epochs. We experiment with SeReNe (LB) with parameters
(λ = 10−4, TWT = 1.45). Our method requires about 500 epochs for this architec-
ture to achieve the same error range as other state-of-the-art references. According
to Table 5.3, SeReNe (LB) approaches the classification accuracy of its competitors
outperforms the considered references in terms of compression ratio and pruned
neurons. In this case, the benefits of the structured sparsity are evident: the uncom-
pressed network storage footprint decreases from 1686 kB to 208 kB (-90%), which
after lossless compression further decreases to 19 kB with a 0.12% performance
drop only.

Then, we experiment with the same LeNet-5 architecture on the Fashion-MNIST [42]
dataset. Fashion-MNIST has the same size as the MNIST dataset, yet it contains
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Table 5.5 VGG-like architecture with 1 fully connected layer (VGG-1) trained on CIFAR-10.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 ratio .onnx .7z (%)

Baseline 100 100 100 100 100 - 1x 57.57 → 51.51 7.36
[64] [128] [256] [512] [512] [10]

[64] [128] [256] [512] [512]

[256] [512] [512]

ℓ2+pruning 11.86 15.07 6.59 0.36 0.11 66.70 88.84x 13.58 → 1.14 7.79

[23] [126] [250] [406] [60] [10]

[64] [123] [251] [108] [81]

[250] [128] [398]

SeReNe (LB) 10.18 11.68 4.73 0.20 0.05 61.11 124.82x 11.56 → 0.97 7.8

[23] [126] [250] [382] [65] [10]

[64] [123] [251] [93] [76]
[250] [136] [373]

natural images of dresses, shoes, etc., so it is harder to classify than MNIST since
the images are not as sparse as MNIST digits. In this experiment, we used SGD with
learning rate η = 0.1 and PWE = 20 epochs. For SeReNe (LB) we used λ = 10−5

and TWT = 1 for about 2k epochs. Unsurprisingly, the average compression ratio is
lower than for MNIST: since the classification problem is much harder than MNIST
(Sec. 5.3.3), more complexity is required and SeReNe, in order not to degrade the
Top-1 performance, is not pruning as much as it did for the MNIST experiment.
Most importantly, the SeReNe (LB) compressed network is 46 kB only, despite the
higher number of pruned parameters.

5.3.4 VGG on CIFAR-10.

Next, we experiment with two popular implementations of the VGG architecture [43].
We recall that VGG consists of 13 convolutional layers arranged in 5 groups of 2,
2, 3, 3, and 3 layers, with 64, 128, 256, 512, and 512 filters per layer, respectively.
VGG-1 is a VGG implementation widespread in CIFAR-10 experiments that includes
only one fully-connected layer as the output layer and is pre-trained on ImageNet.2

VGG-2 [20] is similar to VGG-1 but includes one hidden fully connected layer
with 512 neurons before the output layer. We experiment over the CIFAR-10
dataset, which consists of 50k 32×32, RGB images for training, and 10k for testing,

2https://github.com/kuangliu/pytorch-cifar

https://github.com/kuangliu/pytorch-cifar
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Table 5.6 VGG-like architecture with 2 fully connected layers (VGG-2) trained on CIFAR-10.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 100 100 100 1x 58.61 → 52.44 6.16
[64] [128] [256] [512] [512] [512] [10]

[64] [128] [256] [512] [512]

[256] [512] [512]

Sparse-VD [20] - - - - - - - 48x - 7.3

ℓ2+pruning 27.62 30.74 13.67 0.88 0.24 1.88 70.78 40.96x 34.42 → 2.86 7.21

[44] [126] [247] [498] [409] [367] [10]

[60] [120] [247] [463] [417]

[243] [79] [461]

SeReNe (LB) 25.9 26.38 9.75 0.48 0.15 1.24 70 57.99x 29.41 → 2.47 7.25

[44] [126] [247] [498] [354] [367] [10]

[60] [120] [247] [433] [366]
[243] [65] [459]

distributed in 10 classes. For both VGG-1 and VGG-2, we have used SGD with
learning rate η = 0.01 and PWE = 20 epochs. For the SeReNe (LB), we used
λ = 10−6 and TWT = 1.5. Both architectures were pruned for approximately 1k
epochs, and Tables 5.5 and 5.6 detail the pruned topologies. For each architecture,
we detail the number of surviving filters (convolutional layers) or neurons (fully
connected layers) for each layer within square brackets. The tables show that
SeReNe introduces a significantly structured sparsity for both VGG-1 and VGG-2
and outperforms Sparse-VD [20] in terms of compression ratio. We can prune a
significant number of filters also in the convolutional layers; as an example, the three
layers in block Conv4 are reduced to [382]-[93]-[136] for VGG-1 and [498]-[433]-
[65] for VGG-2. This positively impacts the network’s footprint: VGG-1 memory
footprint drops from 57.57 MB to 11.56 MB for the pruned network, while the 7zip
compressed representation is 0.97 MB only. VGG-2’s memory footprint decreases
from 58.61 MB to 29.41 MB, while the compressed file representation amounts to
2.47 MB.

5.3.5 ResNet-32 on CIFAR-10

We then evaluate SeReNe over the ResNet-32 architecture [3] trained on the CIFAR-
10 dataset using SGD with learning rate η = 0.001, momentum 0.9, λ = 10−5,
TWT = 0 and PWE = 10. Table 5.7 shows the resulting architecture. Due to the
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Table 5.7 ResNet-32 trained on CIFAR-10.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1

Conv1 Block1 Block2 Block3 FC1 ratio .onnx .7z (%)

Baseline 100 100 100 100 100 1x 1.84 → 1.63 7.36
[64] [160] [320] [640] [10]

Sparse VD [20] - - - - - 2.5x - 8.16

ℓ2+pruning 65.97 33.30 33.41 26.32 88.75 3.51x 1.82 → 0.54 8.08

[14] [157] [319] [633] [10]

SeReNe (LB) 60.19 24.52 24.14 17.84 81.88 5.03x 0.87 → 0.37 8.09

[12] [93] [203] [364] [10]

Table 5.8 AlexNet trained on CIFAR-100.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1 Top-5

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 FC3 ratio .onnx .7z (%) (%)

Baseline 100 100 100 100 100 100 100 100 1x 92.31 → 79.27 45.58 20.09

[64] [192] [384] [256] [256] [4096] [4096] [100]

Sparse VD [20] - - - - - - - - 26.45x - 49.62 20.93

ℓ2+pruning 75.00 21.95 5.21 3.65 5.59 0.62 0.17 6.44 114.45x 60.88 → 3.56 46.43 19.91

[64] [192] [384] [256] [256] [4094] [2180] [100]

SeReNe (LB) 79.05 20.33 5.72 3.33 2.23 0.18 0.04 2.77 179.52x 43.80 → 2.47 44.99 17.88
[64] [191] [384] [256] [256] [3322] [1310] [100]

number of layers, we represent the network architecture in five different blocks:
the first corresponds to the first convolutional layer that takes in input the original
input image, and the last represents the fully-connected output layer. The other three
blocks in the middle represent the rest of the network, based on the number of output
channels of each layer: block1 contains all the layers with an output of 16 channels,
block2 contains all the layers with an output of 32 channels and block3 collects the
layers with an output of 64 channels. ResNet is an already optimized architecture, so
it is more challenging to prune compared to, e.g., VGG. Nevertheless, SeReNe can
still prune about 40% of the neurons and 70% of the parameters over the original
ResNet-32. This is reflected in the size of the network, which drops from 1.84 MB
(1.63 MB compressed) to 0.87 MB (0.57MB compressed).

5.3.6 AlexNet on CIFAR-100

Next, we upscale the output dimensionality of the learning problem, i.e., in the
number of classes C, testing the proposed method on an AlexNet-like network over
the CIFAR-100 dataset. Such a dataset consists of 32× 32 RGB images divided
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Table 5.9 ResNet-101 trained on ImageNet.

Approach
Remaining parameters (%) [neurons] Compr. Network size [kB] Top-1 Top-5

Conv1 Block1 Block2 Block3 Block4 FC1 ratio .onnx .7z (%) (%)

Baseline 100 100 100 100 100 100 1x 174.49 → 156.67 22.63 6.44
[64] [1408] [3584] [36352] [11264] [1000]

Sparse VD [20] - - - - - - 2.48x - 35.76 13.45

ℓ2+pruning 53.12 25.42 25.57 13.71 17.74 51.94 5.75x 172.94 → 32.93 28.33 9.18

[49] [1241] [3280] [33278] [11250] [1000]

SeReNe (LB) 55.36 24.27 23.79 11.24 14.81 40.82 6.94x 172.15 → 27.84 28.41 9.45

[49] [1197] [3142] [31948] [11249] [1000]

into 100 classes (50k training images, 10k test images). In this experiment, we
use SGD with learning rate η = 0.1 and PWE = 20 epochs. Concerning SeReNe
(LB), we used λ = 10−5 and TWT = 1.5 and the pruning process lasted 300 epochs.
Table 5.8 shows compression ratios over 179x, whereas the network size drops from
92.31 MB to 43.80 MB and further to 2.47 MB after compression. We hypothesize
that the larger number of target classes to discriminate prevents pruning neurons in
the convolutional layers. Yet, it allows the pruning of a significant number of neurons
from the hidden, fully connected layers. Contrarily from the previous experiments,
the top-5 and the top-1 errors improve with respect to the baseline.

5.3.7 ResNet-101 on ImageNet

As a last experiment, we test SeReNe on ResNet-101 trained over ImageNet (ILSVRC-
2012), using the pre-trained network provided by the torchvision library.3 Due to the
long training time, we employed a batch-wise heuristic such that, instead of waiting
for a performance plateau, the pruning step is taken every time a fifth of the train set
(around 7.9k iterations) has been processed. We trained the network using SGD with
a learning rate η = 0.001 and momentum 0.9; for SeReNe (LB), we used λ = 10−6

and TWT = 0. Table 5.9 shows the result of the pruning procedure with the layers
grouped in blocks similarly as for the ResNet-32 experiment. Despite the complexity
of the classification problem (1000 classes) that make it challenging to prune entire
neurons, we prune around 86% of the parameters and obtain a smaller network,
especially when compressed, going from 156.67 MB to only 27.84 MB. Comparing
SeReNe (LB) to L2+pruning, we observe a boost in the performance when using
SeReNe, but not as wide as in previous results. If the classification task to solve is

3https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html
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complex (as for ImageNet), the sensitivity of many neurons will be high (because we
need more neurons to solve the task). If many neurons have a comparable sensitivity,
then SeReNe’s regularization naturally reduces to L2 regularization. This is one of
the major benefits of SeReNe, which self-tunes the penalty to the neurons according
to the model’s complexity and the complexity of solving the target task.

5.4 Summary

In this work, we have proposed a sensitivity-driven neural regularization technique.
The effect of this regularizer is to penalize all the parameters belonging to a neuron
whose output is not influential in the output of the network. We have learned that
evaluating the sensitivity at the neuron level (SeReNe) is extremely important to
promote a structured sparsity, obtaining a smaller network with minimal performance
loss. Our experiments show that the SeReNe strikes a favorable trade-off between
the ability to prune neurons and computational cost while controlling the impairment
in classification performance. Our sensitivity-based approach introduced a structured
sparsity while achieving state-of-the-art compression ratios for all the tested archi-
tectures and datasets. Furthermore, using cross-validation, the designed sparsifying
algorithm guarantees minimal (or no) performance loss, which the user can tune via
a hyper-parameter (TWT).



Chapter 6

Simplify

As seen throughout this thesis, modern pruning techniques allow for an impressive
theoretical reduction in both memory requirements and inference time for state-of-
the-art neural network architectures. However, these procedures are usually limited
to only identifying which portion of the weights can be set to zero, offering little
to no practical advantages when the model is deployed to resource-constrained
devices such as mobile phones or embedded systems. While most of the pruning-
related works report some form of theoretical speedup, either in terms of Floating
Point Operations (FLOPs) or inference speed [44], this does not always reflect the
achievable performance gain, and it is usually overestimated.

We try to fill this gap and propose Simplify1. This PyTorch-compatible simpli-
fication library allows obtaining a smaller model in which the pruned neurons are
removed and do not weigh on the size and inference time of the network. This
technique can be used to correctly evaluate the actual impact of a pruning proce-
dure when applied to a given network architecture. Moreover, Simplify allows the
application of the simplification process, even at training time, in conjunction with
pruning techniques, thus reducing the required time for pruning and fine-tuning
neural networks. Since our proposed library removes the pruned neurons from the
network, we will focus on models pruned using structured techniques. A high-level
representation of the pruning and simplification pipeline is given in Figure 6.1.

Various hardware and software accelerators for sparse neural networks have been
proposed [45–48]. The main downside of this kind of solution is the requirement

1the source code is available at https://github.com/EIDOSlab/simplify

https://github.com/EIDOSlab/simplify
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(a) (b) (c)

Fig. 6.1 Overview of the simplification procedure: (a) dense network (b) pruned network (dotted lines
represent pruned neurons and connections) (c) simplified network in which the pruned neurons are
removed from the architecture.

for specific hardware or software that can hardly be applied to standard consumer
devices. Also, they are designed to apply inference-time acceleration using the zero-
filled model instead of building an optimized structure, thus precluding the ability
to train a pruned neural network. Simplify solves these issues by extracting the
remaining structure from a pruned model and removing all the zeroed-out neurons
from the network. This allows for obtaining a model that can be saved, shared,
and used without special hardware or software. While, at first glance, this may
seem a straightforward procedure, the removal of zeroed neurons poses some hidden
challenges, like the presence of bias in said neurons or some constraints in the
output’s dimensions due to skip or residual connections. Even though the interest of
the deep learning community on the matter seems to be quite strong [49–52], very
few approaches and libraries for simplifying pruned models have been proposed.
Moreover, they are usually limited to simpler architectures such as VGG [1], and
their usage is restricted to deploying an already pruned model. On the other hand,
with Simplify, we provide a way to:

1. Optimize more complex network architectures (e.g., ResNet [3], DenseNet [53]
and so on), and, in general, custom architectures, without constraints given by
the connectivity patterns (i.e., residual connections);

2. Optimize models during training: this allows for speedups in the time required
for training a model and reduces the memory occupation when applied together
with an iterative pruning technique.
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6.1 Challenges of neural network simplification

In this section, we will highlight the main challenges we faced while developing
Simplify; mainly, we will cover: Batch Normalization fusion, bias propagation, and
channel removal.

6.1.1 Batch Normalization fusion

A vast amount of modern neural networks use Batch Normalization (from here on
out, BatchNorm) as a way to improve generalization. Given an input x, we can define
the output of BatchNorm as:

y = γ
x−µ√
σ2 + ε

+β (6.1)

where γ and β represent the weights and bias of the layer and are learned using
standard backpropagation procedures; µ and σ2 represent the mean and variance
computed over the batch. During training, this layer keeps running estimates of
its computed mean and variance, which are then used for normalization during
evaluation. Let us denote this approximations as µ̂ and σ̂2. Notice that each
parameter is defined for each channel of the input feature map; we will denote them
as γc, βc, µ̂c and σ̂2

c for a given channel c. Once a neural network is trained to
completion, all the parameters of its layer can be considered frozen, i.e., no longer
updated from further training. Also, in standard network architectures, it is possible
to identify pairs of Convolutional and BatchNorm layers whose output is the same
size. In such conditions is possible to reduce the network complexity by fusing these
two layers into a single one. Note that this operation is only applicable if there is no
non-linearity between the two layers.

Let us consider a generic BatchNorm’s output

y = γc
x− µ̂c√
σ̂c

2 + ε

+βc (6.2)

this can be rewritten as
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y =
γc√

σ̂c
2 + ε

x− γc√
σ̂2 + ε

µ̂c +βc (6.3)

since this BatchNorm layer is preceded by a Convolutional layer, xc can be defined
as

x =Wc · z+bc (6.4)

where z is the input of the Convolutional layer, Wc are its weights and bc its bias.

We can now express the BatchNorm output as a function of the Convolutional layer,
substituting equation 6.4 in equation 6.3.

y =
γc√

σ̂c
2 + ε

(Wc · z+bc)−
γc√

σ̂c
2 + ε

µ̂c +βc (6.5)

Leveraging on equation 6.5, we can finally fuse the Convolutional and the BatchNorm
layer in a single Convolutional layer whose weights and bias are defined as

Wf use = γc
Wc√

σ̂c
2 + ε

(6.6)

b f use = γc
bc− µ̂c√
σ̂c

2 + ε

+βc (6.7)

and the output y is therefore

y =Wf use · z+b f use (6.8)

6.1.2 Bias propagation

This step is necessary if biases are present in the model’s hidden layers or are
introduced by the fusion of batch normalization layers. Neurons with zeroed-out
channels might have non-zero bias so that they will fire a constant output value.
Hence, a neuron cannot immediately be removed if the corresponding bias is non-
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zero. These values, however, can be propagated and accumulated into the biases of
the next layer. This operation can be repeated until all biases have been propagated
to the final layer of the network. After a bias has been propagated, it can then be set
to zero in the original neuron, allowing the removal of the whole weight channel.

Linear layers

We denote as ℓ1 = ⟨A,a⟩ and ℓ2 = ⟨B,b⟩ two sequential linear layers. A and a denote
the weight matrix and bias vector of ℓ1, of size N×M and N respectively. B and b
denote the weight matrix and bias vector of ℓ2 of size T ×N and T respectively. We
also denote as f the activation function (e.g., ReLU). A forward pass for ℓ1 consists
in:

y = f (xAT +a) (6.9)

where x represents an input vector of size M and for ℓ2:

z = yBT +b. (6.10)

Focusing on equation 6.9, we can visualize the vector-matrix product:

y =


x0

x1

. . .

xM


T

·


A0,0 A1,0 . . . AN,0

A0,1 A1,1 . . . AN,1
... . . . ...

A0,M A1,M . . . AN,M

+


a0

a1
...

aN


T

=


xAT

0 +a0

xAT
1 +a1

...
xAT

N +aN


T

We suppose that some output channel of A has been zeroed-out after applying
some pruning criterion, e.g., every element of the column A1 is zero. The multiplica-
tion becomes:
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y =


x0

x1

. . .

xM


T

·


A0,0 0 . . . AN,0

A0,1 0 . . . AN,1
...

... . . . ...
A0,M 0 . . . AN,M

+


a0

a1
...

aN


T

=


xAT

0 +a0

a1
...

xAT
N +aN


T

We now focus on the forward pass of ℓ2. As an example, we analyze what
happens with the first neuron B0. If we rewrite equation 6.10 focusing on B0 we
obtain:

z0 = f (xAT
0 +a0)B0,0 + fff (((aaa111)))BBB0,1 + · · ·+ f (xAT

N +aN)B0,N +b0. (6.11)

The term f (a1)B0,1 is a constant which can be accumulated into b0. The same
reasoning can be extended to all neurons in ℓ2 by adding f (a1) multiplied by the
respective incoming weight to the neuron bias. The new set of biases b̂ for the layer
can be written as:

b̂ =


b0 + f (a1)B0,1

b1 + f (a1)B1,1
...

bT + f (a1)BT,1


T

and the original bias a1 can be set to zero in ℓ1, resulting in â = [a0,0,a1, . . . ,aN ].
This procedure can be applied when multiple neurons are pruned in ℓ1, and the
general rule to obtain the updated biases b̂ is as follows:

b̂ =


b0 +∑i f (ai)B0,i

b1 +∑i f (ai)B1,i
...

bT +∑i f (ai)BT,i


T

where i represents the indices of zeroed channels in ℓ1. After the bias propagation
procedure, the layers ℓ1 and ℓ2 can be replaced by ℓ̂1 = ⟨A, â⟩ and ℓ̂2 = ⟨B, b̂⟩
respectively.
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Convolutional layers

Similar reasoning can be applied to Convolutional layers. However, the propagation
process must consider whether the convolution employs zero padding on the input
tensor.

For the sake of simplicity, using the same notation of Section 6.1.2, let us consider
two sequential convolutional layers ℓ1 = ⟨A,a⟩ and ℓ2 = ⟨B,b⟩. We also assume that
ℓ1 has one input channel and two output channels (A has shape 2×1×H1×W1 and
a is a vector of length 2), while ℓ2 has two input channels and one output channels (B
has shape 1×2×H2×W2, and b is a vector of length 1). The forward pass for ℓ1 is:

y =

([
x∗A0

x∗A1

]
+

[
a0

a1

])T

=

([
F0

F1

]
+

[
a0

a1

])T

=

[
F0 +a0

F1 +a1

]T

where ∗ represents the convolution operation and x is a properly sized input. In this
context, the addition operation + between the resulting feature map F i = x∗Ai and
the corresponding bias value ai will perform a shape expansion of ai to match the
feature map shape, for example:

F i +ai =


F i

0,0 . . . F i
0,Hout

... . . . ...
F i

Wout ,0 . . . F i
Wout ,Hout

+
ai . . . ai

... . . . ...
ai . . . ai


We assume that the second channel A1 of ℓ1 has been zeroed out after the

application of some pruning criterion, hence if we consider F1 +a1, we obtain:

F1 +a1 =

0 . . . 0
... . . . ...
0 . . . 0

+
a1 . . . a1

... . . . ...
a1 . . . a1

=

a1 . . . a1
... . . . ...

a1 . . . a1


Thus, y becomes:

[
F0 +a0

a1

]T
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where · denotes that the element shape has been expanded. We can now analyze
what happens with ℓ2. For the sake of simplicity, we assume that Wout = Hout = 3,
that W2 = H2 = 2, and that every value of B is equal to 1. We also consider a stride
value of 1 for ℓ2.

Convolution without padding (or “same” padding): This is the more straight-
forward case, and it is similar to the linear layers (Section 6.1.2). The forward pass
of ℓ2 can be expressed as follows:

z = f (F0 +a0)∗B0,0 + fff (((a1)))∗∗∗BBB0,1 +b0. (6.12)

The factor f (a1)∗B0,1 is constant and can be accumulated into b0. Visualizing it,
we obtain:

b̂0 =

 f (a1) f (a1) f (a1)

f (a1) f (a1) f (a1)

f (a1) f (a1) f (a1)

∗[1 1
1 1

]
+b0 =

[
4 f (a1) 4 f (a1)

4 f (a1) 4 f (a1)

]
+b0. (6.13)

In this case, the updated bias can be converted as a scalar replacing the original value
b0. Given that the resulting matrix is constant, we can directly factor out 4 f (a1) and
set a1 to 0 in ℓ1, obtaining a new bias b̂0 = 4 f (a1)+ b0 which will be used from
now on in ℓ2

2. The same reasoning can be extended to the case of multiple neurons
in the convolution layer and multiple pruned channels in the preceding layer: each
bias value will be updated according to the rule in equation 6.13. The general rule to
obtain the new bias vector b̂ can be expressed as follows:

b̂ =


b0 +∑i f (ai)∗B0,i

b1 +∑i f (ai)∗B1,i
...

bCout +∑i f (ai)∗BCout ,i

 (6.14)

where i represents the indices of the zeroed output channels in ℓ1.

2Notice that this can be applied for every choice of values for B. Of course, the resulting bias
factor will change accordingly
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Convolution with zero padding If the Convolution applies zero padding to the
input values, then the bias cannot be accumulated into a scalar, as the resulting matrix
will not be constant. To show this, we rewrite equation 6.13, applying a zero padding
of size one along each dimension of the input tensor:

b̂0 =


0 0 0 0 0
0 a′ a′ a′ 0
0 a′ a′ a′ 0
0 a′ a′ a′ 0
0 0 0 0 0

∗
[

1 1
1 1

]
+b0 =


a′ 2a′ 2a′ a′

2a′ 4a′ 4a′ 2a′

2a′ 4a′ 4a′ 2a′

a′ 2a′ 2a′ a′

+b0 (6.15)

where a′ = f (a1) for brevity. In this case, the new bias value needs to be maintained
in a matrix form, i.e.:

b̂0 =


a′+b0 2a′+b0 2a′+b0 a′+b0

2a′+b0 4a′+b0 4a′+b0 2a′+b0

2a′+b0 4a′+b0 4a′+b0 2a′+b0

a′+b0 2a′+b0 2a′+b0 a′+b0


To obtain the updated biases in case of multiple neurons and multiple channels, the
same rule of equation 6.14 can be applied, keeping in mind that in this case, it will
result in a tensor of shape Cout ×Hout ×Wout instead of a vector. This introduces
a constraint on the feature map size; hence the model can only be used at a fixed
input size. However, given that the whole simplification procedure is executed on
an already trained model before deploying to production, it should not represent a
significant issue.

Residual connections

While the above process works fine for simple feed-forward models, special care
must be taken to handle residual connections. As an example, let us consider the case
of two linear layers ℓ1 = ⟨A,a⟩, and ℓ2 = ⟨C,c⟩, whose outputs y and t are summed
together in a residual connection, followed by another layer ℓ3 = ⟨B,b⟩:
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y+ t =




xAT

0 + a0

0 + a1
...
0 + aN−1

xAT
N + aN

+


0 + c0

x̂CT
1 + c1

...
0 + cN−1

x̂CT
N + cN





T

(6.16)

where 0 denotes that a channel was pruned. The residual (sum) operation introduces
a new constraint: only biases corresponding to matching pruned channels in ℓ1 and
ℓ2 can be propagated to the next layer. To see why, we can rewrite equation 6.16 as
equation 6.11 and obtain:

z0 = f (xAT
0 +a0 + c0)B0,0 + f (a1 + x̂CT

1 + c1)B0,1 + · · ·+
+ fff (((aaaN−1 +++ cccN−1)))BBB0,N−1+

+ f (xAT
N +aN + x̂CT

N + cN)B0,N +b0

(6.17)

It is clear that even if multiple channels are pruned from ℓ1 and ℓ2, only the factor
f (aN−1+cN−1)B0,N−1 becomes a constant. In this case, we opt not to propagate any
bias and employ an expansion scheme (Section 6.1.3) to speed up the convolution
operations.

6.1.3 Channels removal

Once the biases have been propagated and removed from the hidden layers, the
weight matrices corresponding to zeroed channels can be removed. The process,
which we call simplification, is quite simple. For each layer L, we denote with W L

the corresponding weight tensor, with shape N× I×W ×H for convolutional layers
and N× I for linear layers. The simplification consists of two steps:

1. Remove all the input channels corresponding to zeroed channels in the previous
layer (none if it is the input layer):

Ŵ L =
[
W ℓ

0,i,W
ℓ
1,i, . . . ,W

ℓ
N,i

]
(6.18)



6.1 Challenges of neural network simplification 57

(a) (b) (c)

Fig. 6.2 Pruned weight matrices: a dotted line indicates a zeroed channel (a) simplified weight
matrices (b) expanded weight matrices: black slices mean that the channel is a zero matrix (c).

where i is the indices of the remaining output channels in W L−1. The resulting
weight tensor will be of shape N× Is×W ×H for convolutional layers and
N×Is for linear layers, where Is≤ I is the number of remaining output channels
in the previous layer L−1.

2. Remove all the output channels corresponding to zeroed neurons:

W̃ L =
[
Ŵ ℓ

j

]
∀ j∈J

(6.19)

where J is the set of indices corresponding to the remaining output channels,
the resulting tensor will be of shape Ns× Is×W ×H for convolutional layers
and Ns× Is for linear layers, where Ns ≤ N is the number of remaining (non-
zero) output channels of L.

Residual connections

Residual or skip connections introduce a constraint on the output size of a layer. A
residual connection consists of the sum of the output of two layers ℓ1 and ℓ2. As
an example, we assume ℓ1 and ℓ2 to be convolutional layers, with their respective
output Z1 and Z2 being of size C1×H ×W and C2×H ×W (ignoring the batch
size). To compute Z1 +Z2, C1 must be equal to C2. However, after the simplification
step, the output sizes may differ, depending on whether some output channels in ℓ1

and/or ℓ2 were removed. Many works that propose a solution to channel removal
face issues when applied to residual connections. For example, He et al. [54], or
Kruglov [55] use some approximation and need to resort to finetuning to recover
the lost performance. Others, like Hu et al. [56], ignore residual networks without
proposing any solution.
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We perform an expansion operation on the output tensors to address this issue.
Assuming the original size (before the simplification) was C, then Z1 and Z2 are
expanded to the original number of channels before performing the addition. The
process is illustrated in Figure 6.2. After the expansion step, we sum the layer’s
biases (which were not propagated as explained in Section 6.1.2). While it is true that
the expansion operations introduce a computational overhead in the model inference,
the speedups achieved by the simplified convolutions compensate for it when using
the model for inference. However, given that the time required by the indexing
operations employed in the expansion scheme depends on the given batch size, we
opt not to adopt this scheme when using Simplify in training mode. In this case, we
do not remove any output channel in the weight tensor.

6.2 Software Description

The Simplify library leverages on the main PyTorch packages and is composed of
three main modules that, even if designed to function in a predefined order, can
be used independently based on the user requirements. We now provide a brief
overview of each module functionalities and purpose. A more detailed explanation
of the maths involved in each module is provided in the Appendix.

Fuse First, we have the fuse module. Here we perform a non-mandatory optimization
of the model by merging, in a single Convolutional layer, pairs of consecutive
Convolutional and Batch Normalization layers. This process is known as Batch
Normalization fusion or folding. This step can be ignored if the presence of Batch
Normalization layers in the network is required, i.e. for further training of the
simplified model. This step is not needed to define the simplified model, but provides
inference-time and memory usage advantages, especially when deploying a trained
model to production, thanks to an optimization of the model architecture.

Propagate The second module is called propagate. With this module we solve the
problem of non-zero bias in zeroed neurons mentioned in Sec. ??. It is possible that
some pruned neuron retain non-zero bias; in such situation it would be impossible to
remove the neuron without losing the bias contribution. To solve this problem, in the
propagate module, we essentially treat such neurons as a constant signal that can
then be absorbed by the next layer, making the zeroed neuron removable.
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Table 6.1 Inference time for different dense, pruned, and simplified torchvision models.

Architecture Inference Time (ms)
Dense Pruned Simplified

AlexNet [57] 7.58 ± 0.29 7.55 ± 0.28 2.95 ± 0.02
DenseNet-121 [53] 36.41 ± 4.88 34.31 ± 3.85 21.87 ± 1.45
GoogLeNet [58] 15.44 ± 3.19 13.68 ± 0.09 10.31 ± 0.82
InceptionV3 [59] 25.29 ± 7.31 21.68 ± 2.90 13.22 ± 2.23
MNASNet [60] 17.66 ± 0.57 13.64 ± 0.13 11.59 ± 0.07
MobileNetV3 [4] 13.74 ± 0.67 12.18 ± 0.46 11.95 ± 0.21
ResNet-50 [3] 24.39 ± 4.48 26.19 ± 5.84 18.21 ± 1.98
ResNeXt-101 [61] 76.11 ± 15.79 77.35 ± 20.04 65.68 ± 16.41
ShuffleNetV2 [62] 18.07 ± 2.23 14.32 ± 0.21 13.06 ± 0.08
SqueezeNet [63] 4.50 ± 0.06 4.39 ± 0.05 4.09 ± 0.50
VGG-19 [1] 40.41 ± 12.13 38.56 ± 10.72 12.39 ± 0.19
WideResNet-101 [64] 79.40 ± 25.57 82.86 ± 22.47 60.16 ± 10.77

Remove Lastly, with the remove module we perform the actual simplification of
the model, removing the zeroed-out neurons. Here we make sure that the output
and input dimensions of adjacent layers correspond, while also taking into account
architecture constraints such as the presence of skip connections.

6.3 Illustrative Examples

This section provides an overview of the usage for Simplify. We also illustrate the
results obtained for the two use cases discussed, namely optimization for model
deployment and optimization during training. Please note that our experiments
were performed on different image classification networks, made available by the
Torchvision library3. Such models are defined for the ImageNet [65] dataset and
therefore expect an input of size B×3×224×224, where B represents the batch
size.

6.3.1 Optimization for deployment

This is the most common use case. Here, the simplification procedure is applied to an
already trained model on which a pruning criterion has been previously applied. In
most cases, a one-line call to the simplify method is sufficient: the library performs

3https://pytorch.org/vision/stable/models.html#classification

https://pytorch.org/vision/stable/models.html#classification
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all three steps autonomously and takes care of different architectural patterns, such
as residual connections. This is the most common use case. Here, the simplification
procedure is applied to an already trained model on which a pruning criterion has
been previously applied. Below, we provide a sample code snippet.

1 # Load a pruned model c h e c k p o i n t
2 model = t o r c h . l o a d ( . . )
3

4 # Apply s i m p l i f i c a t i o n .
5 model . e v a l ( )
6 s i m p l i f y ( model , t o r c h . z e r o s ( 1 , 3 , 224 , 224) )

As shown in the code snippet, the simplify function takes as argument the model to
be simplified and a tensor representing an input image, filled with zeros, with a batch
size of 1 (in this case, we’re working with models build for ImageNet, therefore,
is of size 1×3×224×224). It is important to note that the model has to be set to
evaluation mode before the simplification procedure so that the automatic update of
parameters (such as for Batch Normalization) is disabled. The simplification of the
model happens in place.

Table 6.1 shows the inference times (in milliseconds) of different Torchvision
models. In this table, we compare the inference speed of the dense models (i.e.,
models that have not been pruned), the resulting pruned architectures (random,
structured pruning with 50% probability), and the simplified model obtained with
our proposed library. The benchmarks are run on an Intel(R) Core(TM) i9-9900K
CPU, with a batch size of 1, to simulate a one-shot inference of a deployed model.
The results are averaged across 1000 different runs for each architecture. It’s easy to
see that, thanks to Simplify, the resulting model is faster and can leverage the applied
pruning while remaining a fully-fledged PyTorch network. We can see that, for most
network families, Simplify allows for a decrease in the actual inference time. It is
essential to point out that for some architectures, like MobileNet or SqueezeNet, the
library may not lead to significant speed-up as they are already very optimized.
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6.3.2 Optimization for training

Most modern network architectures employ Batch Normalization as a way to improve
generalization. To avoid losing the Batch Normalization contribution, we provide
the ability to prevent the fusion step so that these layers are retained. To further
enhance training time, enabling a training mode for simplify is possible, which
helps decrease inference time. Below, we provide a sample code snippet.

1 f o r s t e p in range ( epochs ) :
2 model . t r a i n ( )
3 model = . . . # t r a i n model and a p p l y p r u n i n g
4

5 # Apply s i m p l i f i c a t i o n
6 model . e v a l ( )
7 s i m p l i f y ( model ,
8 t o r c h . z e r o s ( 1 , 3 , 224 , 224) ,
9 f u s e _ b n = F a l s e ,

10 t r a i n i n g =True )

Figure 6.3a shows the reduction in allocated GPU memory for different pruning
ratios. While overhead is introduced at low pruning percentages, a reduction in the
required memory for performing an optimization step is achieved when pruning a
sufficient amount of neurons. In Figure 6.3b, we show the decrease in time required
by a network training loop’s forward and backward pass. The benchmarks are run
on an NVIDIA RTX 2080Ti GPU with an Intel(R) Core(TM) i9-9960X CPU, using
a batch size of 64.

6.4 Summary

We propose the PyTorch-compatible library Simplify, with the aim of providing a
simple-to-use set of procedures to remove zeroed neurons from a neural network
architecture. The proposed library solves different issues in the creation of simplified
models, such as the propagation of the bias of pruned neurons and the shape constraint
of skip connections. The library is composed of three modules that, while designed
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Fig. 6.3 Simplification during training: (a) Allocated GPU memory for a forward/backward pass of
different pruned models (b) Total time for a forward and a backward pass of different pruned models.

to work together, can be used independently from one another according to the
required functionality for a specific setting.

In the next chapter, we will use Simplify to provide empirical evidence on the
advantages of structurally-pruned models when deployed on resource-constrained
devices, without the need for ad hoc hardware or software support.



Chapter 7

On the Role of Structured Pruning for
Neural Network Compression

In Chapters 3, 5, and 6, we mentioned that structured pruning procedures could
provide better practical benefits when deploying a pruned model on low-power
devices without the need for specific software or hardware; this, however, is true
if the model is correctly processed (i.e., the zeroed neurons are not involved in the
model inference). In Chapter 6, we proposed a library that enables us to remove the
pruned neurons from the architecture, reducing the resources required to perform
inferences. In this chapter, we will provide tangible results to these speculations. We
will compare the performance of models pruned with LOBSTER (Chapter 4) and
SeReNe (Chapter 5), deployed on a variety of devices. To this end, we will consider
two use cases:

– First, we will investigate the benefits of structured pruning approaches within
the MPEG-7 Part 17 neural network compression pipeline. Evaluating how
structured pruning can benefit quantization, entropy coding, and inference
time.

– Second, we will present HLSinf, an open-source framework for developing
custom neural network accelerators for FPGAs that provides efficient support
to quantized and pruned neural network models.
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Pruning Entropy Coding Bit streamSimplification Decompression

Fig. 7.1 Our experimental setup; the parts within the dashed box are the object of the MPEG-7 part
17 standard.

7.1 Purning in the MPEG-7 Part 17 pipeline

The need for compressing deep neural networks prompted the Moving Pictures
Experts Group (MPEG) of the International Organization for Standardization (ISO)
to define the upcoming MPEG-7 Part 17 standard Compression of neural networks
for multimedia content description and analysis [66]. The MPEG neural network
compression pipeline includes three stages. First, the number of parameters in the
neural network is preliminarily reduced, e.g., pruning away disposable parameters
and yielding a sparse network topology. Second, the parameters that survived prun-
ing are quantized over a finite set of values. Third, the quantized parameters are
entropy coded with context adaptive arithmetic coding [67], producing a compressed
bitstream. Experiments show that a favorable trade-off between compression ef-
ficiency and performance could be stricken [68]. While quantization and entropy
coding has received more attention, the role of parameter pruning has not been fully
explored and the effect of the pruning scheme and the resulting tensor structure on
the efficiency of a complete neural network compression pipeline is not understood.

This section will investigate the benefits of structured pruning approaches within
the MPEG neural network compression pipeline. We experimentally show that, while
the structured approach achieves a lower pruning ratio, it yields better end-to-end
compression efficiency. As a bonus, the network topology is also easier to represent
in memory once the network is decompressed. Also, inference time is lower as
entire operations among tensors are avoided, as we show experimenting on Android
devices. We hypothesize that the structured topology of the pruned neural network is
the key to the higher efficiency of the entropy coder.
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Table 7.1 Experimental results for different network architectures and pruning strategies. Left:
percentage of pruned parameters, size of the simplified network topology, and size of the compressed
bitstream. Right: inference time on different embedded devices: Raspberry Pi 3B (RPi 3B), Huawei
P20 (P20), Xiaomi MI 9 (MI9), and Samsung Galaxy S6 lite (S6L).

Dataset Architecture Pruning
Pruning Simplified Compressed Inference time [ms]
ratio [%] topology [MB] bitstream [MB] RPi 3B P20 MI9 S6L

CIFAR-10

VGG-16
No pruning - 60.0 3.6 647 204 153 251
LOBSTER 92.44 58.61 1.61 610 191 146 242

SeReNe 47.16 31.02 0.34 594 99 85 106
No pruning - 2.0 0.30 580 32 30 31

ResNet-32 LOBSTER 81.19 1.96 0.12 545 32 26 30
SeReNe 52.80 1.0 0.09 536 25 17 25

CIFAR-100 AlexNet
No pruning - 94.6 10.1 246 131 84 168
LOBSTER 98.90 48.84 0.40 224 95 67 120

SeReNe 59.87 37.07 0.20 186 75 53 96

ImageNet ResNet-101
No pruning - 178.4 26.24 11919 958 416 1008
LOBSTER 87.39 173.87 9.24 11879 956 403 985

SeReNe 1.09 172.53 7.51 11699 929 371 974

7.1.1 Proposed compression pipeline

In this section, we describe a neural network compression pipeline as specified in
[66] and as illustrated in Figure 7.1 (also including a non-normative evaluation part).

Parameter Pruning

During pruning, some network parameters are removed from the connections graph.
We will consider two different pruning strategies: as an unstructured pruning strategy,
we use LOBSTER as presented in Chapter 4; as a structured approach, we will use
SeReNe, presented in Chapter 5.

Topology Simplification

After pruning, the network undergoes simplification: in this stage, arcs corresponding
to neurons without incoming and/or outgoing connections are removed from the
topology. Simplification is primarily effective when the network has been pruned
with SeReNe. We perform the simplification step using Simplify (Chapter 6).
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Quantization and Coding

Finally, the remaining parameters undergo quantization and entropy coding, yield-
ing a compressed bitstream. We rely on scalar quantization of parameters and
DeepCABAC [67, 68] for entropy coding, in accordance with the MPEG-7 part
17 standard. DeepCABAC represents an evolution of the context-adaptive binary
arithmetic coding used in videos, including model quantization, binarization, and
arithmetic coding.1

7.1.2 Experimental results

Table 7.1 shows the results of our experiments with the popular VGG-16, ResNet,
and AlexNet architectures for image classification over the CIFAR-10, CIFAR-100,
and ImageNet datasets. All the architectures are compressed according to the scheme
described in the previous section, i.e., we alternatively prune the networks with
LOBSTER and SeReNe. The size of the simplified networks refers to the case
where the parameters are represented over 32-bit floating-point values, compliant
with the IEEE 754 standard. All results are obtained with a fixed quantization
step equal to 2−15. As expected, LOBSTER yields the highest compression ratio,
i.e., removes more parameters from the network, whereas SeReNe results in more
compact simplified topologies. Of course, the more general the task, the least
the parameters/neurons to be removed without performance loss (for example, on
ImageNet, the parameters removed in proportion are less than for other architectures).
Figure 7.2 shows the parameter pruning map for the first convolutional layer of VGG-
16 trained over CIFAR-10 (64 convolutional neurons, three filters sized 3 × 3 per
neuron) for both LOBSTER (Figure 7.2a) and SeReNe (Figure 7.2b). Here, black
lines represent neurons for which SeReNe pruned all parameters and thus are not
represented altogether in the simplified topology, yielding reduced-size simplified
networks. As a result, structured pruning always produces the best end-to-end
compression efficiency in terms of compressed bitstream size. In particular, for
VGG-16 trained on CIFAR-10, the SeReNE-pruned network bitstream is about five
times smaller than the LOBSTER reference.

To guarantee optimal encoding into the final bitstream, one needs not only to
reduce the number of parameters in the network but also that their entropy is low.

1https://github.com/fraunhoferhhi/DeepCABAC

https://github.com/fraunhoferhhi/DeepCABAC
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Fig. 7.2 Representation of the first convolutional layer for VGG-16 trained on CIFAR-10: unstructured
pruning LOBSTER (a) and structured pruning SeReNe (b). Black pixels are pruned parameters.

Our experiments highlight that SeReNe is very effective also in terms of parameters
entropy or compressibility. To spot this effect, let us observe the compression ratio Cp

achieved by DeepCABAC after simplification, measured as the ratio between the final
compressed bitstream size and the simplified floating-point network. In the VGG-16
case, we get Cp = 0.0275 for unstructured and Cp = 0.011 for structured pruning:
the parameters retained with SeReNe can be compressed about three times more.
To summarize, unstructured pruning effectively sets the largest possible amount
of parameters to zeros, but the corresponding network tensors are sparse, and the
remaining parameters are costly to represent. On the other hand, structured pruning
provides a counter-intuitive behavior since one gets more non-zeros parameters, but
their structure can be exploited for better compression. Not only can the tensor be
trivially simplified (e.g., by altogether dropping some dimensions), but the entropy
of the symbols to be encoded with DeepCABAC turns out to be lower. This result is
likely due to the excellent interplay between the neural sensitivity regularizer and the
context modeling in DeepCABAC: indeed, SeRene amounts to imposing a constraint
onto a set of weights in the context of a given neuron; DeepCABAC can exploit the
same regularity to represent the same context jointly. On the contrary, unstructured
regularization behaves independently on every weight, with lower chances of creating
homogeneous contexts for the following entropy coder. Finally, Figure 7.3 shows
the compression-accuracy tradeoff for VGG-16 over CIFAR-10 dataset for different
DeepCABAC quantization steps q ∈

[
2−15;1

]
range. SeReNe’s structured pruning
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Fig. 7.3 Classification accuracy vs. compression rate for VGG-16 on CIFAR-10 for different pruning
strategies. The compression rate is the ratio between the model’s size after DeepCABAC and the
original size. A lower compression rate means better compression efficiency.

yields comparable accuracy at a far lower encoded bitstream rate, outperforming by
a large margin LOBSTER.

Inference Time

Table 7.1 also shows the inference time when the decompressed simplified architec-
ture is deployed on embedded devices. The experiments have been worked on the
following devices:

– Raspberry Pi 3B (RPi 3B): Quad Core 1.2GHz Broadcom BCM2837 64bit
CPU, 1GB RAM;

– Huawei P20 phone (P20): 4x2.36 GHz Cortex-A73 + 4x1.84 GHz Cortex-A53
processors, 4GB RAM;

– Xiaomi MI 9 phone (MI9): 1x2.84 GHz Kyro 485 + 3x2.42 GHz Kyro 485 +
4x1.80 GHz Kyro 485, 6GB RAM;

– Samsung Galaxy S6 lite tablet (S6L): 4x2.3 GHz Cortex-A73 + 4x1.7 GHz
Cortex-A53, 4GB RAM.

Structured sparsity always yields lower inference time as a side benefit of the more
compact representation of the network into the device memory and the fewer matrix-
vector multiplication required at inference time.
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Fig. 7.4 HLSinf architecture. Modules are represented as boxes, and streams as arrows. Modules can
be placed in any order.

7.2 Structured pruning for FPGAs

In the context of the “Deep-Learning and HPC to Boost Biomedical Applications for
Health” (DeepHealth) project funded by European Union’s Horizon 2020 program
(grant agreement No 825111), we collaborated with the Universitat Politècnica de
València to evaluate the effect of structured pruning approaches on FPGA devices.
To perform this evaluation, we used HLSinf: an open-source platform to develop
customized FPGA accelerators specifically tailored for pruned and quantized models.
This platform, developed by the team of the Universitat Politècnica de València,
enables optimal adaptation of the data precision format used in the quantization
process. It takes into account the pruning process to flexibly adapt the needed
resources on the FPGA to the final accelerator implementation. HLSinf can deploy
final implementations with different performances, and various neural network layers
support, thus, suiting additional neural network model requirements. Furthermore,
we adapted the accelerators to the EDDL (European Distributed Deep Learning)
library [69]. EDDL is an open-source platform developed during the DeepHealth
project that enables the definition, training, and inference of neural networks on
CPUs and GPUs. Thanks to our adaptation, EDDL can now natively support FPGAs
with the HLSinf accelerators. Our evaluation demonstrates that quantized and pruned
models can primarily benefit performance when combined with HLSinf. Specifically,
results show that up to 90x speed up can be achieved on typical medical image-based
applications using neural network models on FPGAs.

HLSinf 2 is developed in High-Level Synthesis (HLS). HLS reduces the pro-
gramming hurdle of FPGAs and enhances productivity. It enables easier adoption
and reduces the need for excellent technical skills to develop accelerator instances.

2Source code at https://github.com/PEAK-UPV/HLSinf

https://github.com/PEAK-UPV/HLSinf
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The main goal of HLSinf is to enable customized accelerators for varying types
of operations and data formats, mainly focused on quantized models. Figure 7.4
shows the baseline architecture design, which follows the dataflow model where
data flows through the different modules in a streamlined fashion. Arrows represent
streams, and boxes represent modules. The modules can be added or removed at
design time, thus adapting the accelerator to the chosen neural network model. Read
modules take data from the external FPGA memory and feed data into the accelerator
through data streams. Data is then processed, and output is produced and written
back into memory. Internal buffer modules are used to reduce memory access. The
module-based design allows a pipeline of additional operations performed in NNs:
activation functions such as ReLU, pooling operations, or other tasks that may be
needed. Each module has a stream-based interface.

The platform is designed around the channel-slicing concept. Indeed, the main
operation performed by the accelerator is the 2D convolution operation. This opera-
tion takes as an input a set of input channels (feature maps from previous layers) and
produces a set of output channels (output feature maps). The accelerator handles, in
parallel, a group of input channels (CPI, channels per input) and produces a set of
output channels (CPO, channels per output). Both CPI and CPO parameters can be
instantiated at design time, enabling the implementation of accelerators of different
sizes and performances. The accelerator is designed to process CPI input pixels and
produce CPO output pixels per clock cycle. All the datapaths within the accelerator
can be customized and adapted to the target model. When working with quantized
models (which employ different data precision formats for activations, weights, and
bias), the HLSinf platform can be parametrized to use either 32-bit floating-point or
both fixed-point and integer data types with a specific number of bits.

The most compute-demanding operation in image-based neural networks is the
2D convolution. HLSinf convolution module can be customized in the type of
convolution to perform. Currently, direct convolution, Winograd’s algorithm [70],
and DepthWise Separable convolutions [71] are supported. Figure 7.4 shows the case
for the direct 2D convolution. The module is composed of different sub-modules
connected through streams. At its input, the module receives bias, filters, and data.
Bias values are grouped in consecutive blocks of CPO bias values. For the filters,
the convolution operation receives filters of size CPO×CPI×KH×KW , where
KH and KW represent the filter height and width, respectively. Thus, CPI filters
are provided for each output feature map. For the input data, the module receives
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input pixels from CPI channels (a group of channels) in an interleaved manner (one
pixel from each channel). The input data is pre-processed with the padding and cvt
modules. The first one pads the input pixels with horizontal and/or vertical padding
(zero-value pixels) and forwards the padded image in cut-through mode; the cvt
module is in charge of generating frames. A frame is defined as a piece of the input
data of size KH×KW where the convolution has to be performed. This module
forwards CPI frames of KH×KW size on every clock cycle.

Pre-processed data and filters arrive at the mul module to perform the convolution
operation with CPO blocks of multipliers. Each block multiplies CPI input frames
(each one of size KH×KW ) by a set of CPI filters (each of size KH×KW ). Each
block has KH×KW multipliers and adders. Each block then reduces the output
data obtaining one output pixel. On every clock cycle, the module produces and
forwards CPO pixels. Figure 7.5 shows the convolution operation. The number of
MAC (multiply and accumulate) units used is CPI×CPO×KH×KW . Therefore,
its computing capabilities depend mainly on CPI and CPO parameters.

Fig. 7.5 2D convolution operation performed in the mul module on every clock cycle.

Finally, the add module is responsible for accumulating the output feature maps
and adding the bias to each output channel. To do this, the module provides an
output buffer of size H×W ×CPO, where H and W are the height and width of the
feature map, respectively. Once all input iterations have been performed, the module
forwards the output buffer to the next layer and ultimately for storage in memory.

With this design and enough memory bandwidth available at the accelerator’s
input and output, we can determine the execution time of the accelerator when
performing a 2D convolution. Assuming an input of I×H×W and O feature maps,
its execution time will be I

CPI ×H×W × O
CPO clock cycles. The additional layers

will add a constant delay in the form of a few cycles (the design is pipelined).
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7.2.1 EDDL-HLSinf Support

HLSinf can be designed to run specific compute-intensive tasks on the FPGA.
However, not all the layers of a neural network model are suitable or worth being run
on such a system. This is the case for lightweight layers (e.g., softmax). Moreover, a
fine-grained HW/SW co-design is needed in specific embedded systems. For these
reasons, we need a method to perform the inference process in a combined way
between the CPU and the FPGA and, simultaneously, adapt a Deep Learning library
to use the HLSinf accelerator effectively. To this end, we have selected the EDDL
(European Distributed Deep Learning) library 3. EDDL defines a set of layers as
C++ classes and allows the end-user to build a model by connecting layers with
a net class. Each layer class provides methods for each possible tensor operation.
To allow for an effective HW/SW co-design, we have implemented a new layer in
EDDL called HLSinf, which encapsulates all the functionalities of the accelerator.
The EDDL engine will run each model layer, and each one will use the target device,
either CPU/GPU for regular layers or FPGA for the HLSinf layer. Data transfers
between the FPGA and the CPU/GPU memories are performed transparently when
needed.

Model Adaptation

EDDL allows training neural network models or loading them using ONNX [72]. To
use our HLSinf accelerator, we have designed a new functionality in EDDL, which
transforms an input model into a new one with added HLSinf layers where needed.
Indeed, the new toFPGA() EDDL method enables three transformations of input
models. First, layers in the original model are merged into a single one if the HLSinf
accelerator can perform all those layers simultaneously. Second, data transformation
is implemented when a layer that runs on the CPU/GPU feeds a layer running on
the FPGA and vice-versa. For such purposes, a Transform layer is implemented.
Figure 7.6 shows part of the VGG16 network adapted with the toFPGA() method.
Finally, weights are adjusted, and tensors are reorganized as needed by the HLSinf
accelerator. All tensors required by the FPGA device are stored in its memory.

3Source code at https://github.com/deephealthproject/eddl

https://github.com/deephealthproject/eddl
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Fig. 7.6 VGG16 model mapped on FPGA. Blocks perfectly match the HLSinf accelerator. A transform
layer is added for data movement between the CPU and FPGA.

7.2.2 Experiments

Hardware support

We run our experiments on an Intel i7-7800-X CPU at 3.45GHz and a Xilinx ALVEO
U200 FPGA board. FPGA results use a single core to offload computations to the
ALVEO board attached to this CPU. The CPU-only results use all the 12 threads
available in the machine.

Target models

We considered two use cases to evaluate HLSinf, combining pruning and quantization.
The ISIC dataset for skin lesion [73] is used for classification and segmentation for
melanoma diagnosis. VGG16 [74] and SegNet [75] were used for classification and
segmentation, respectively.
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Pruning

We use SeReNe as a pruning procedure, and the resulting models are then processed
with Simplify. During the pruning phase, we used a validation set to monitor the
performance of the pruned network. For our test, we produced two models for the
classification task and one for the segmentation problem. The two classification
models are characterized by different accuracy and compression: for the first, called
HA (high-accuracy), we target the preservation of the performance of the dense
model at the cost of pruning ratio; the second, HCR (high compression), aims
at maximizing the removed neurons, allowing for a lower, albeit still acceptable,
performance.

Quantization

Alongside pruning, quantization is one of the most widely adopted compression
methods. It reduces the necessary amount of memory to store the network’s parame-
ters and enables the deployment of a larger model in the same initial memory for
better accuracy. Using 8-bit integer (INT8) instead of 32-bit floating-point (FP32)
parameters enables performance gains in many fields: 4x reduction in model size,
2-4x reduction in memory bandwidth, and 2-4x faster inference due to faster comput-
ing with integer arithmetic. This is usually achieved at the cost of a slight decrease
in accuracy. Quantization methods can be roughly divided into two categories [76]:
Quantization Aware Training (QAT) and Post-Training Quantization (PTQ). PTQ
quantizes both weights and activations for faster inference without re-training the
model. QAT models quantization during training, which provides higher accuracy
than PTQ schemes. The open-source N2D2 framework [77] was used as a quantiza-
tion tool in this study. PTQ was chosen [78]: it takes a model trained using FP32
and directly quantizes it to INT8 without re-training or fine-tuning. As such, the
overhead of PTQ is negligible. In N2D2, the post-training quantization algorithm is
done in 3 steps:

– Weights normalization: All weights are rescaled in the range [−1.0,1.0].

– Activations normalization: Activations at each layer are rescaled in the range
[−1.0,1.0] for signed outputs, and [0.0,1.0] for unsigned outputs.



7.2 Structured pruning for FPGAs 75

– Quantization: Inputs, weights, biases, and activations are quantized to the
desired precision Nbits. Conversion ranges from [−1.0,1.0] and [0.0,1.0] to[
−2Nbits−1−1,2Nbits−1−1

]
and

[
0,2Nbits−1

]
taking into account all depen-

dencies.

Results

Table 7.2 shows some details of the models used in our experiments. Table 7.2a
summarises the pruned models in terms of performance (classification error for
VGG and Dice score for SegNet) and percentage of remaining neurons. Table 7.2b
shows the results of PTQ applied to the original VGG model for Nbits = 8. Using
both pruning and quantization brings a 100x reduction in memory requirement with
less than 2% performance reduction (HA network) and close to 1000x with a 15%
performance drop (HCR).

Pruning
Model Performance Remaining neurons
VGG16-HA 22.84 % 36.19 %
VGG16-HCR 35.66 % 11.64 %
SegNet-Pruned 0.83 59.76 %

(a) Pruned models

FP32 PTQ
Network Memory Error (%) Memory Error (%)
VGG16 524 583 21.06 131 146 21.06
VGG16-HA 18 692 22.84 4 673 23.76
VGG16-HCR 2 268 35.66 567 35.86

(b) Quantized models (memory in kB)

Table 7.2 Employed models. a) Pruned models, performance is expressed as classification error
for VGG16 and as Dice score for SegNet. b) Quantized models, classification error, and memory
footprint.

Table 7.3 shows the inference time of a single 224×224 input image on different
models and devices for the skin lesion segmentation and classification problems.
Focused on classification, the time needed when running the model on CPU and using
the full model (VGG16 network) with 32-bit floating-point arithmetic is 1430.29
ms. Notice the performance improvement when using the FPGA instead. Execution
time is reduced by a factor of 2.59 (inference in 552.28 ms). The accelerator is
implemented with CPI and CPO factors of 4 and uses 32-bit floating-point precision
arithmetic. If we either quantize the model or prune the model, we achieve further
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Classification
Model Device Inf. time (ms) FPS Speedup
VGG16 CPU 1430.29 0.70 -
VGG16 FPGA 552.28 1.81 2.59×
VGG16-Quantized FPGA 229.93 4.35 6.22×
VGG16-HA FPGA 99.33 10.07 14.40×
VGG16-HCR FPGA 15.09 66.25 94.76×

Segmentation
Model Device Inf. time (ms) FPS Speedup
SegNet CPU 3165.97 0.32 -
SegNet FPGA 757.22 1.32 4.18×
SegNet-Pruned FPGA 282.23 3.54 11.22×

Table 7.3 Inference time, FPS, and speedup for ISIC classification and segmentation models for CPU
and FPGA.

enhancements when targeting the FPGA device. In particular, the quantized model
requires 8-bit integer weights and 32-bit integer activations and bias. The accelerator
has been implemented with the specific integer data types, and the result can be
seen in the table. The execution time is reduced by a factor of 6.22 (229.93 ms for
inference). The improvement comes from a lower data precision format increasing
the accelerator parallelism (CPI and CPO) to a factor of 8. The table also shows
the benefit of running pruned models on the FPGA. Inference time is, in this case,
significantly reduced. 32-bit floating-point precision and CPI and CPO parameters
to 4 have been used. The pruned models fit perfectly on the target accelerator,
and inference time is reduced by a total factor of 14.4 and 94.8 for both models,
respectively (inference time lower than 100 ms in both cases). We can see the same
performance trend for the skin lesion segmentation problem. As we move to FPGA,
the inference time is reduced by a factor of 4.2. Also, when using the pruned model,
the inference time is further decreased by a factor of 11.2.

7.3 Summary

In this chapter, we presented practical applications of pruned network models, which
show empirically that pruned and simplified models can achieve significant gain
concerning their resource requirements (e.g., lower inference time). We evaluated the
role of unstructured and structured parameter pruning approaches in a standardized
neural network compression pipeline. The surprising result of our experiments is
that structured pruning enables better end-to-end compression despite lower pruning
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ratios. We explain this finding in part with the structure of the pruned network
that is easier to simplify dropping entire elements of the tensors and in part with
the lower entropy of the residual symbols processed by the DeepCABAC encoder.
To ease the deployment of pruned and quantized models on embedded systems,
we introduced HLSinf, an open-source platform for neural network accelerators in
FPGAs. The platform has been integrated into the EDDL library, an open-source
library for deploying neural network models on CPUs and GPUs. Quantization
and pruning techniques have been incorporated in the design, thus exploiting the
efficiency of the FPGA resources and optimizing performance compared to CPUs.
Results demonstrate the approach’s effectiveness and suggest new deployments and
support in the platform for combined pruning and quantization strategies.



Chapter 8

Pruning artificial neural networks: a
way to find well-generalizing,
high-entropy sharp minima

In the previous chapters, we primarily focused on the structure of sparsification
procedures. However, another interesting way to classify pruning procedures is
gradual or one-shot: gradual methods slowly remove parameters over multiple
iterations and can achieve higher sparsity, while one-shot techniques greedily remove
the targeted amount of parameters in a single step. We feel that an exploration of the
potential properties of such procedures has been overlooked, especially: are one-shot
strategies enough to match gradual pruning approaches? Is there a specific reason
we can prune many parameters with minimal or no generalization loss? Is there any
hidden property behind these sparse architectures?

In this chapter, we will shed some light on these topics, comparing one-shot
pruning strategies to their gradual counterparts, and investigating the benefits of
having a much more computationally-intensive sparsifying strategy. Furthermore,
we will highlight some local properties of minima achieved using the two pruning
strategies. To this end, we propose PSP-entropy, a measure of the state of ReLU-
activated neurons, to be used as an analysis tool to better understand the obtained
sparse network models.
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8.1 Local properties of minima

Throughout this thesis, we have encountered different pruning strategies that rely on
state-of-the-art optimization strategies: applying very simple optimizing heuristics to
minimize the loss function (e.g., SGD [79, 80]), it is nowadays possible to succeed
in training neural networks on massive datasets. These problems are typically over-
parametrized, and the dimensionality of the deep model trained can be efficiently
reduced with almost no performance loss. Furthermore, minimizing non-convex
objective functions is generally supposed to make the trained architecture stuck
into local minima. However, the empirical evidence shows that something else
is happening under the hood: understanding it is generally of interest to improve
learning strategies.

Goodfellow et al. observed no loss barrier between a generic random initial-
ization for the neural network model and the final configuration [81]. Such a
phenomenon has also been observed on larger architectures by Draxler et al. [82].
These works are the basis for the Lottery Ticket Hypothesis. However, a secondary
yet relevant observation in [81] stated that there is a loss barrier between different
neural network configurations showing similar generalization capabilities. Later, it
was revealed that typically a low loss path between well-generalizing solutions to
the same learning problem could be found [83]. This brief discussion shows that a
general approach to better characterizes such minima has yet to be found.

Keskar et al. showed why we should prefer small batch methods to large batch
ones: they correlate the stochasticity introduced by small-batch methods to the
sharpness of the reached minimum [84]. They generally observe that the larger the
batch, the sharper the minimum. Also, they observe that the sharper the minimum,
the worse the generalization of the neural network model. In general, many works
support the hypothesis that flat minima generalize well, and this has also been the
strength for a significant part of the current research [85, 84]. However, this does
not necessarily mean that no sharp minimum generalizes well, as we will see in
Section 8.3.2.
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8.2 Towards a deeper understanding: an entropy-
based approach

In this section, we propose PSP-entropy, a metric to evaluate the dependence of the
output for a given neuron on the target classification task. The proposed measure
will allow us to understand the effect of pruning better.

8.2.1 Post-synaptic potential

As introduced in Chapter 3, we can define the post-synaptic potential of the i-th
neuron of the n-th layer as

pn,i = fn,i(θn,i,yyyn−1) (8.1)

and its output as

yn,i = gn,i(pn,i). (8.2)

Typically, deep models are ReLU-activated: here on, let us consider the activation
function for all the neurons in hidden layers as gn,i(·) = ReLU(·). Under such an
assumption, it is straightforward to identify two distinct regions for neuron activation:

– pn,i ≤ 0: the output of the neuron will be exactly zero;

– pn,i > 0: there is a linear dependence of the output to pn,i.

Hence, let us define

g′n,i(pn,i) =

{
0 pn,i ≤ 0
1 pn,i > 0

(8.3)

Intuitively, we understand that if two neurons belonging to the same layer, for the
same input, share the same g′(p), then they are linearly mappable to one equivalent
neuron:
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– pn,i ≤ 0, pn, j ≤ 0: one of them can be simply removed;

– pn,i > 0, pn, j > 0: they are equivalent to a linear combination of them.

In the next section, we will formulate a metric to evaluate the degree of disorder
in the post-synaptic potentials. Such a measure will aim to have an analytical tool to
give us a broader understanding of the behavior of the neurons in sparse architectures.
We are not interested in using this approach toward structured pruning in this work.

8.2.2 PSP-entropy for ReLU-activated neurons

In the previous section, we recalled the concept of post-synaptic potential. Some
interesting concepts have also been introduced for ReLU-activated networks: we can
use its value to approach the problem of binning the state of a neuron, according
to g′(pn,i). Hence, we can construct a binary random process that we can rank
according to its entropy. To this end, let us assume we set as input of our neural
network model two different patterns, µc,1 and µc,2, belonging to the same class c
(for those inputs, we aim at having the same target at the output of the neural network
model). Let us consider the PSP pn,i:

– if g′(pn,i|µc,1) = g′(pn,i|µc,2) we can say there is low PSP-entropy;

– if g′(pn,i|µc,1) ̸= g′(pn,i|µc,2) we can say there is high PSP-entropy.

We can model an entropy measure for PSP:

H(pn,i|c) =− ∑
t={0,1}

√
[
g′(pn,i) = t|c

]
· log2

{
√
[
g′(pn,i) = t|c

]}
(8.4)

where √[g′(pn,i) = t|c] is the probability g′(pn,i) = t when presented an input be-

longing to the c-th class. Since we typically aim at solving a multi-class problem,
we can model an overall entropy for the neuron as

H(pn,i) = ∑
c

H(pn,i|c) (8.5)
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It is essential to separate the contributions of the entropy according to the c-th
target class since we expect the neurons to catch relevant features highly correlated
to the target classes. Equation equation 8.5 provides us with critical information: the
lower its value, the more it specializes for some specific classes. The formulation
in equation 8.5 is very general, and it can be easily extended to higher-order entropy,
i.e., the entropy of sets of neurons whose state correlates for the same classes. We
are ready to use these metrics to shed further light on the findings in Section 8.3.

8.3 Experiments

For our test, we have decided to compare the state-of-the-art one-shot pruning
proposed by Frankle and Carbin [13] to our technique from Chapter 4, LOBSTER.
Towards this end, we first obtain a sparse network model using LOBSTER; the
non-pruned parameters are then re-initialized to their original values, according to
the lottery ticket hypothesis [13]. We aim to determine whether the lottery ticket
hypothesis applies to the sparse models obtained using high-performing gradual
pruning strategies.

As a second experiment, we want to test the effects of different random initial-
ization while keeping the achieved sparse architecture. According to Liu et al., this
should lead to similar results to those obtained with the original initialization [86].
Towards this end, we tried 10 different new starting configurations. As a last ex-
periment, we want to assess how important is the structure originating from the
pruning algorithm in reaching competitive performances after re-initialization. For
this purpose, we randomly define a new pruned architecture with the same number
of pruned parameters as those found via LOBSTER. Again, 10 different structures
have been tested.

We decided to experiment with different architectures and datasets commonly
employed in the relevant literature: LeNet-300 and LeNet-5-Caffe trained on MNIST,
LeNet-5-Caffe trained on Fashion-MNIST [31] and ResNet-32 trained on CIFAR-
10.1 For all our training, we used the SGD optimization method with standard
hyper-parameters and data augmentation, as defined in the papers of the different
compared techniques [13, 86].

1https://github.com/akamaster/pytorch_resnet_cifar10

https://github.com/akamaster/pytorch_resnet_cifar10
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8.3.1 One-shot vs. gradual pruning

In Figure 8.1, we show, for different percentages of pruned parameters, a comparison
between the test accuracy of models pruned using the LOBSTER technique and the
models retrained following the approaches we previously defined. We can identify
a low compression rate regime in which the re-initialized model can recover the
original accuracy, validating the lottery ticket hypothesis. On the other hand, when
the compression rate rises (for example, when we remove more than 95% of the
LeNet-300 model’s parameters, as observed in Figure 8.1a), the retraining approach
strives to achieve low classification errors.

As one might expect, other combinations of datasets and models might react
differently. For example, LeNet-300 can no longer reproduce the original perfor-
mance when composed of less than 5% of the initial parameters. On the other hand,
LeNet-5, when applied on MNIST, can achieve an accuracy of around 99.20% even
when 98% of its parameters are pruned away (Figure 8.1b). This does not happen
when applied on a more complex dataset like Fashion-MNIST, where removing 80%
of the parameters already leads to performance degradation (Figure 8.1c). Such a
gap becomes exceptionally evident when we re-initialize an even more complex
architecture like ResNet-32 trained on CIFAR-10 (Figure 8.1d).

From the reported results, we observe that the original initialization is not always
necessary: the error gap between a randomly initialized model and a model using
the initial weights’ values is minor, with the latter being slightly better. Furthermore,
they both fail to recover the performance for high compression rates.

8.3.2 Sharp minima can also generalize well

To study the sharpness of local minima, let us focus, for example, on the results
obtained on LeNet-5 trained on MNIST. We choose to focus our attention on this
particular neural network model since, according to the state-of-the-art and coherently
to our findings, we observe the lowest performance gap between gradual and one-
shot pruning (as depicted in Figure 8.1b); hence, it is a more challenging scenario
to observe qualitative differences between the two approaches. However, all the
observations for such a case also apply to the other architectures/datasets explored in
Section 8.3.1.
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Fig. 8.1 Test set error for different compression rates: LeNet-300 trained on MNIST (a), LeNet-5
trained on MNIST (b), LeNet-5 trained on Fashion-MNIST (c) and ResNet-32 trained on CIFAR-
10 (d).
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Fig. 8.2 Results of LeNet-5 trained on MNIST with the highest compression (99.57%): (a) plots the
loss in the training set and (b) plots the magnitude of the top-5 largest hessian eigenvalues. G is the
solution with gradual learning, while 1-S is the best one-shot solution (Frankle and Carbin).

To obtain the maps in Figure 8.2, we follow the approach proposed by [81], and
we plot the loss for the neural network configurations between two reference ones: in
our case, we compare a solution found with gradual pruning (G) and one-shot (1-S).
Then, we take a random orthogonal direction to generate a 2D map. Figure 8.2a
shows the loss on the training set between iterative and one-shot pruning for the
highest compression rate (99.57% of pruned parameters as shown in Figure 8.1b).
According to our previous findings, we see that iterative pruning lies in a lower loss
region. Here, we also show the plot of the top-5 Hessian eigenvalues (all positive)
in Figure 8.2b, using the efficient approach proposed in [87]. Interestingly, we
observe that the solution proposed by iterative pruning lies in a narrower minimum
than the one found using the one-shot strategy, despite generalizing slightly better.
With this, we do not claim that narrower minima generalize well: gradual pruning
strategies enable access to a subset of well-generalizing narrow minima, showing
that not all the narrow minima generalize worse than the wide ones. This finding
raises warnings against second order optimization, which might favor the research of
flatter, wider minima, ignoring well-generalizing narrow minima. These non-trivial
solutions are naturally found using gradual pruning and cannot be found using one-
shot approaches, which focus their effort on larger minima. In general, the sharpness
of these minima explains why, for high compression rates, retraining strategies fail
in recovering the performance, considering that it is in general harder to access this
class of minima.
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Fig. 8.3 L2 norm of PSP values for LeNet-5 trained on MNIST with 99.57% of pruned parameters.

8.3.3 Study on the post-synaptic potential

In Section 8.3.2, we have observed that, as a result, iterative strategies focus on
well-generalizing sharp minima. Is there something else yet to say about those?

Let us inspect the average magnitude values of the PSPs for the different solutions:
towards this end, we plot the average of their L2 norm values (g2). As a first finding,
gradually-pruned architectures naturally have lower PSP L2-norm values, as shown
in Figure 8.3. None of the pruning strategies explicitly minimize the term in g2: they
naturally drive the learning toward such regions. However, the solution showing
better generalization capabilities shows lower g2 values. Of course, there are regions
with even lower g2 values; however, according to Figure 8.2a, they should be
excluded since they correspond to high-loss values (not all the low g2 regions are
low-loss).

If we look at the PSP-entropy formulated in equation 8.5, we observe something
interesting: gradual and one-shot pruning show comparable first-order entropies,
as shown in Figure 8.4a.2 It is interesting to see that there are also lower entropy
regions which however correspond to higher loss values, according to Figure 8.2a.
When we move to higher-order entropies, something even more interesting happens:
gradual pruning shows higher entropy than one-shot, as depicted in Figure 8.4b
(displaying the second-order entropy). In such a case, having a lower entropy means
having more groups of neurons specializing in specific patterns which correlate to the
target class; on the contrary, having higher entropy yet showing better generalization
performance results in having more general features, more agnostic towards a specific
class, which still allow a correct classification performed by the output layer. This

2the source code is available at https://github.com/EIDOSlab/PSP-entropy.git

https://github.com/EIDOSlab/PSP-entropy.git
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Fig. 8.4 Results on LeNet-5 trained on MNIST with 99.57% of pruned parameters. (a) plots the first
order PSP-entropy, while (b) shows the second-order PSP entropy.

counter-intuitive finding has potentially-huge applications in transfer learning and
domain adaptation, where it is critical to extract more general features not very
specific to the originally-trained problem.

8.4 Summary

In this chapter, we have compared one-shot and gradual pruning on different state-
of-the-art architectures and datasets. In particular, we have focused our attention
on understanding the potential differences and limits of both approaches toward
achieving sparsity in neural network models.

We have observed that one-shot strategies are very efficient to achieve moderate
sparsity at a lower computational cost. However, there is a limit to the maximum
achievable sparsity, which can be overcome using gradual pruning. The highly-
sparse architectures, interestingly, focus on a subset of sharp minima which are able
to generalize well, which poses some questions to the potential sub-optimality of
second-order optimization in such scenarios. This explains why we observe that
one-shot strategies fail in recovering the performance for high compression rates.
More importantly, we have observed, contrary to what could be expected, that highly-
sparse gradually-pruned architectures are able to extract general features non-strictly
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correlated to the trained classes, making them unexpectedly, potentially, a good
match for transfer-learning scenarios.

Future works include a quantitative study on transfer learning for sparse architec-
tures and PSP-entropy maximization-based learning.



Chapter 9

To update or not to update? Neurons
at equilibrium in deep models

Many works of the last two years have received inspiration from the Lottery Ticket
Hypothesis in the quest to determine the early lottery tickets. This is, however, a
challenging task to solve: Frankle et al. [23] shows that there is a region, at the very
early stages of learning, where the lottery tickets identified with iterative pruning
are “not stable” (meaning that tickets extracted at different moments of this early
stages are essentially different). This suggests that, in the very first epochs, the neural
network evolves in very different states, making the problem of a priori identifying
winning tickets hard [88]. Other works also endorse this, including [89, 90]. On
the other hand, different approaches reduce the overall complexity of the iterative
training by drawing early-bird tickets [91] (meaning that they learn the lottery tickets
when the model has not yet reached full convergence), even reducing the training
data [92] or moving the first steps towards structurally-sparse winning tickets, yet
still at iterative fashion, applying similar concept as Frankle and Carbin to entire
neurons and channels [93]. Unfortunately, training a sparse network with standard
optimizers leads to subpar results [94] or the final result does not differ much from
magnitude pruning at the end of the training [95]. The causes for such behaviors are
still a matter of debate among the community [94, 95].

Taking inspiration from this line of research, in this chapter, we shift the focus
from the single parameter to the entire neuron. We propose NEq, an approach to
evaluate whether a given neuron is at equilibrium for the learning dynamics. If the
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neuron is in such a state, its parameters have already reached a target configuration
and do not require a further update. Unlike many other recent approaches, NEq
disables entire neurons (hence, in a structured way), does not require prior knowledge
of the specific task (e.g., by first training a model to convergence), and automatically
self-adapts to the particular learning policy deployed. Unlike pruning techniques,
NEq does not remove the neurons’ contribution to the output; instead, it only prevents
unnecessary updates to their weights: as a result, we reduce the number of operations
performed by the back-propagation algorithm and the optimizer.

With NEq, we learn the essential lessons related to the lottery ticket hypothe-
sis, targeting the reduction of computational complexity at training time without
exploiting knowledge of pre-training models or rewinding. Hence, we do not target
the achievement of sparse architectures. Still, we aim to determine when a whole
neuron must be updated or when the computation of the gradient for its parameters
is unnecessary. As such, the comparison with the other presented approaches will
be unfair, as they require a much greater computational complexity for training
because of unstructured sparsity (which introduces an overhead in the representation
of the tensors) and the iterative strategies. Furthermore, along the training process,
we will observe the possibility that some neurons, already kept in a “frozen” state,
might unfreeze, requiring additional update steps. Although resource reallocation
has been exploited before [96, 97], our unfreezing is different as it involves learning
of a specific target function by the neuron and not learning new ones through their
reallocation.

9.1 Neurons at equilibrium

This section will treat the problem of determining when a given neuron and the
learning dynamics are at equilibrium. Towards this end, we define yt

n,i,ξ as the output
of the i-th neuron when the input ξ is fed to the whole model trained after t epochs.
Given a set of inputs ξ ∈ Ξval (where Ξval is the validation set), it is possible to
compare each m-th element yt

n,i,m,ξ
with yt−1

n,i,m,ξ
, for the same model’s input: what

changes are the parameters of the model. Figure 9.1 provides an overview of the
nomenclature used: in the rest of the section, we will see how to determine when a
neuron is at equilibrium.



9.1 Neurons at equilibrium 91

Model at time

Model at time Model at time

co
nc

at
en

at
ed

 a
nd

 n
or

m
al

iz
ed

concatenated and norm
alized

Fig. 9.1 For a given time t, the model (either in blue or orange) receives samples from the validation
set (in red or green). The output of the i-th neuron (whose cardinality is Ni) depends on the model’s
parameters and the specific sample on the validation set. These outputs are squeezed, concatenated
and the obtained vector (of size Ni · ∥Ξval∥0, being ∥Ξval∥0 the cardinality of the validation set) is
then normalized, obtaining ŷt

i .

9.1.1 Neuronal equilibrium

In this section, we are interested in evaluating when the relationship between the
input of the model and the output of the i-th neuron is modified. When this happens,
the neuron is at non-equilibrium, meaning that its learned function, in the whole
picture (or in other words, taking into account the evolution of the neurons in the
previous layers as well), is still “evolving”. We are interested in identifying the
scenarios where the neuron is at equilibrium at the net of the interactions with the
other neurons. To assess it, let us define the cosine similarity between all the outputs
of the i-th neuron at time t and at time t−1 for the whole validation set Ξval as

φ
t
i = ∑

ξ∈Ξval

Mi

∑
m=1

ŷt
n,i,m,ξ · ŷt−1

n,i,m,ξ
. (9.1)

Here, we can determine that, when φi = 1, the i-th neuron produces the same
(eventually scaled) output between the evaluation at time t and at time t−1 for the
same input ξ of the model. We say the i-th neuron reaches equilibrium when we
have

lim
t→∞

φ
t
i = k, (9.2)

where k ∈ [−1;+1] is some constant value. We can have the following scenarios:
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– k = 1. In this case, the two outputs are perfectly correlated, meaning that the
relationship bounding the input of the whole model ξ and the output of the
specific i-th neuron is maintained.

– k ∈ (0;1). The outputs correlate, but we are in an oscillatory behavior (in the
sense that the cosine similarity varies by a constant value between consecutive
evaluations). This effect can be caused by stochastic effects like high learning
rate/regularization, small batch size, or a combination of them.

– k ∈ [−1;0]. Also, in this case, we are in the presence of oscillatory behavior,
but the outputs are anti-correlated or de-correlated.

9.1.2 Neuron dynamics evaluation

To assess the convergence to equilibrium for equation 9.2, it is essential to evaluate
the variation of the similarities φ t

i over time. Towards this end, let us introduce the
variation of similarities

∆φ
t
i = φ

t
i −φ

t−1
i . (9.3)

According to the analysis in Sec. 9.1.1, in this case, we say we reach equilibrium
when ∆φ t

i → 0. Hence, it is useful to keep track of the recent evolution over the
similarity scores in the model: towards this end, we can introduce the velocity of the
similarity variations:

vt
∆φi

= ∆φ
t
i −µeqvt−1

∆φi
, (9.4)

where µeq is the momentum coefficient. We can rewrite equation 9.4 making the
similarity scores explicit, obtaining

vt
∆φi

=

 φ t
i +

t
∑

α=1
(−1)α

[
(µeq)

α−1 +(µeq)
α
]

φ
t−α

i µeq ̸= 0

φ t
i −φ

t−1
i µeq = 0,

(9.5)

where (·)α indicates power of α . If we assume φ t ∈ [0;1]∀t (which is the case of
ReLU-activated neurons), to prevent equation 9.5 from exploding, we need to set
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µeq ∈ [0;0.5]. We can extend this setup to any layer if we assume that the neurons in
the trained model will not reach equilibrium with anti-correlated outputs.

9.1.3 Selection of trainable neurons at non-equilibrium

To evaluate when a given neuron has reached equilibrium, exploiting equation 9.2,
we can say that the i-th neuron is at equilibrium when it can satisfy

∣∣∣vt
∆φ

∣∣∣< ε, ε ≥ 0. (9.6)

It is essential to notice that once equation 9.6 is satisfied for a specific t, in case
something changes in the learning dynamics (for example, the learning rate is re-
scaled), there may exist some t ′ > t such that the constraint is not satisfied anymore.
When this happens, it means that the neuron is driven towards new states and is no
anymore at equilibrium. Hence, it requires to be updated again.

9.1.4 Overall training scheme

Training 
set

Training  
(1 epoch) 

YES

BEGIN

NO Neuron dynamics 
evaluation 

Validation 
set

END
End of

training? 

Trainable neurons
at non-equilibrium

Learning steps Identification of neurons at equilibrium 
(NEq) 

Fig. 9.2 Overall training scheme. In orange is the standard training part, and in blue is the neuron
equilibrium evaluation and selection stages (we name this part NEq).

The overall training scheme is summarized in Figure 9.2. The model is trained for
one epoch, after which neurons at equilibrium are identified. We split this into two
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phases: in the first (neuron dynamics evaluation), the velocity of the similarities is
evaluated according to equation 9.4, while in the second (trainable neurons at non-
equilibrium), the hidden neurons at non-equilibrium, which will be trained for the
next epoch, are identified according to equation 9.6. All the neurons are considered
at non-equilibrium by default for the first epoch. The evaluation of neurons at
equilibrium is agnostic to the general training strategy, which can include arbitrary
re-scaling for the learning rate/hyper-parameters or the most common optimizers.
The following section will test this procedure on different architectures, tasks, and
learning strategies.

9.2 Experiments

This Section reports the experiments supporting the approach as presented in Sec-
tion 9.1.4. First, we will perform an ablation study, analyzing single contributions for
the introduced hyper-parameters and providing an overview of neuronal equilibrium
along the training process; then, we will test the proposed technique on state-of-
the-art network architectures, datasets, and learning policies. All experiments were
performed using 8 NVIDIA A40 GPUs, and the source code uses PyTorch 1.10.1

9.2.1 Ablation study

We performed our ablation study training a ResNet-32 [32] model on CIFAR-10 [98].
Unless differently specified, following the hyper-parameters setup of [64], the model
is trained using SGD as an optimizer, with a starting learning rate η = 0.1 and
momentum µopt = 0.9 and a weight decay of 5×10−4 for 250 epochs. The learning
rate is decayed by a factor of 10 after 100 and 150 epochs, using the formulation as
in equation 9.4, with ∥Ξval∥0 = 50, µeq = 0.5, and ε = 0.001.

SGD vs Adam

To show that our technique automatically self-adapts to the training policy, we
compare the evolution of the FLOPs required for a back-propagation step and the
number of updated neurons of two different training of the ResNet-32: one using

1the source code is available at https://github.com/EIDOSLAB/NEq.

https://github.com/EIDOSLAB/NEq
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(a) ResNet-32 trained with SGD.
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(b) ResNet-32 trained with Adam.

Fig. 9.3 Back-propagation FLOPs (left, orange), updated neurons (center, green), and classification
accuracy (right, red) for ResNet-32 trained on CIFAR-10.

the SGD optimizer with µopt = 0.9, and the other using the Adam optimizer. For
Adam, we leave the hyper-parameters to their default values (η = 0.001, β1 = 0.9,
and β2 = 0.999) and use the same weight decay as for SGD (5×10−4). Figure 9.3
shows the trends for the two training procedures. In the first phase of the train,
where η is high, the amount of the trained neurons (and the FLOPs required for
the backward pass) is higher. This is related to the general lack of equilibrium
in the network’s neurons: at high learning rates, the configuration of the neurons’
parameters is subjected to high stochastic noise. As the train progresses and the
network moves toward its final configuration, fewer and fewer neurons need to
be updated. Noticeably, Adam drives the neurons towards equilibrium faster, as
expected; however, in simple tasks like the considered one, it converges to lower
accuracy scores (92.96% for SGD and 92.01% for Adam). Furthermore, at the first
learning rate decay (epoch 100), for SGD, the number of updated neurons decreases
and then increases; such a phenomenon is not present in the Adam case. This is
explained by the different working principles of the two optimizers: SGD explores
the solution space looking for large minima, searching for configurations that prevent
equilibrium in high learning rate regimes.
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Fig. 9.4 Back-propagation FLOPs (left) and accuracy (right) for different values of µeq for ResNet-32
trained on CIFAR-10.
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Fig. 9.5 Neuronal equilibrium-related quantities for ResNet-32 trained on CIFAR-10. The red line
indicates the average.

Distribution of φ & choice of µeq

Looking at different values for µeq in Figure 9.4, we observe for all the values a
convergence to similar accuracy. Despite without warranty from the theory, we
tested a very large value for the momentum coefficient (0.9): the convergence of vt

∆φi

shows that the neurons are in general in a significantly correlated case of equilibrium,
with very high values for k in equation 9.2, which is also empirically observed in
Figure 9.5a. However, including a very large value for µeq maintains the memory of
very old variations, producing a sub-optimal reduction in terms of FLOPs reduction.
We find that a good compromise, supported by the findings as in Section 9.1.2, is to
set µeq to 0.5. Figure 9.5 reports the distribution for the velocities for φ , ∆φ , and v∆φ ,
observing that the average converges to a specific k for each of the three learning
rates used.
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Table 9.1 Ablation for ResNet-32 trained on CIFAR-10.

(a) Ablation on ∥Ξval∥0.

∥ΞΞΞval∥000 Bprop. FLOPs per iteration Accuracy

500 84.73M ± 629.15K 92.70 ± 0.12

250 82.62M ± 613.14K 92.80 ± 0.43

100 84.82M ± 628.05K 92.81 ± 0.15

50 84.81M ± 629.12K 92.96 ± 0.21

25 84.49M ± 629.37K 92.62 ± 0.28

10 84.91M ± 627.11K 92.70 ± 0.27

5 84.34M ± 619.37K 92.57 ± 0.48

2 85.76M ± 617.11K 92.80 ± 0.24

1 85.56M ± 626.09K 92.77 ± 0.23

(b) Ablation on ε .

εεε Bprop. FLOPs per iteration Accuracy

0.0 136.71M ± 15.34K 92.62 ± 0.23

0.0001 124.45M ± 161.76K 92.65 ± 0.40

0.0005 89.29M ± 589.71K 92.69 ± 0.19

0.001 83.62M ± 629.22K 92.96 ± 0.21

0.005 65.65M ± 591.07K 91.72 ± 0.37

0.01 52.53M ± 590.30K 91.23 ± 0.32

0.05 16.10M ± 254.94K 86.80 ± 0.29

0.1 4.97M ± 186.54K 83.90 ± 0.66

0.5 1.78M ± 137.92K 76.78 ± 2.57

Impact of the validation set size and εεε

Tab. 9.1 provides an empirical evaluation of the impact on the performance and on the
FLOPs varying the validation set size. We indeed do not observe a significant effect
on the performance of the model changing it. Interestingly, the approach produces
excellent results even for extremely low cardinality for the validation set (down to
even a single image): this can be explained by the presence of convolutional layers
(the only fully-connected layer is the output layer, excluded by default) which even
with small images produce high-dimensionality output in every neuron (Figure 9.1)
and by the homogeneity of the considered dataset. Investigating the impact of ε , we
find a drop in performance for very high values of ε , identifying a good compromise
for classification tasks to 0.001.

9.2.2 Main experiments

In this section, we show the results of the proposed method. For our experiments, we
focused on different state-of-the-art architectures trained on standard classification
and semantic segmentation datasets. All the learning policies used are borrowed
from other works and are un-optimized to test the adaptability of NEq.

ResNet-32 trained on CIFAR-10. The training spans 250 epochs, using SGD as
optimizer with momentum µopt = 0.9, weight decay 5×10−4 and initial learning
rate η = 0.1, reduced by a factor of 10 after 100 and 150 epochs. To evaluate the
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Table 9.2 Results of the application of NEq to each experimental setup, compared to the stochastic
approach. We report the average FLOPs per iteration at backpropagation, and the final performance of
the model evaluated on the test set (values annotated with † report the classification accuracy, values
annotated with ‡ report the mean IoU).

Dataset Model Approach Bprop. FLOPs per iteration Performance

CIFAR-10 ResNet-32

Baseline 138.94M ± 0.0M 92.85% ± 0.23%†

Stochastic (p = 0.2) 112.99M ± 0.00M (-18.68%) 92.78% ± 0.19% (-0.07%)†

Stochastic (p = 0.5) 69.75M ± 0.00M (-49.8%) 91.88% ± 0.27% (-0.97%)†

Stochastic∗ 86.34M ± 0.00M (-37.85%) 92.23% ± 0.25% (-0.62%)†

Neq 84.81M ± 0.63M (-38.96%) 92.96% ± 0.21% (+0.11%)†

ImageNet-1K

ResNet-18

Baseline 3.64G ± 0.0G 69.90% ± 0.04%†

Stochastic (p = 0.2) 2.94G ± 0.00G (-19.26%) 69.42% ± 0.16% (-0.48%)†

Stochastic (p = 0.5) 1.85G ± 0.00G (-49.11%) 69.18% ± 0.03% (-0.72%)†

Stochastic∗ 2.82G ± 0.00G (-22.58%) 69.45% ± 0.06% (-0.45%)†

Neq 2.80G ± 0.03G (-23.08%) 69.62% ± 0.06% (-0.28%)†

Swin-B

Baseline 30.28G ± 0.00G 84.71% ± 0.04% †

Stochastic (p = 0.2) 24.65G ± 0.00G (-18.6%) 84.54% ± 0.04% (-0.83%)†

Stochastic (p = 0.5) 16.15G ± 0.00G (-46.67%) 84.40% ± 0.02% (-0.31%)†

Stochastic∗ 11.02G ± 0.00G (-63.67%) 84.27% ± 0.04% (-0.44%)†

Neq 10.78G ± 0.02G (-64.39%) 84.35%±0.02% (-0.36%)†

COCO DeepLabv3

Baseline 305.06G ± 0.0G 67.71% ± 0.02%‡

Stochastic (p = 0.2) 248.69G ± 0.00G (-18.48%) 67.11% ± 0.02% (-0.60%)‡

Stochastic (p = 0.5) 163.42G ± 0.00G (-46.43%) 66.91% ± 0.04% (-0.80%)‡

Stochastic∗ 229.00G ± 0.00G (-24.93%) 67.02% ± 0.03% (-0.69%)‡

Neq 217.29G ± 0.04G (-28.77%) 67.22% ± 0.04% (-0.49%)‡

neuronal equilibrium we used a ∥Ξval∥0 of 50 images, µeq = 0.5, and ε = 0.001. We
used a batch size of 100 images during training.

ResNet-18 trained on ImageNet-1K [99]. This model was trained with SGD as an
optimizer for 90 epochs, with η = 0.1, reduced by a factor of 10 every 30 epochs,
µopt = 0.9 and weight decay 10−4 using a batch size of 128. We used a ∥Ξval∥0 of
1.2k images, µeq = 0.5, and ε = 0.001.

Swin Transformer [100] (Swin-B) trained on ImageNet-1K. We used the Swin-B
architecture to test our technique on more modern models and training policies.
Here we trained the model from a pre-trained checkpoint trained on ImageNet-21K,
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following the official GitHub repository2 released under the MIT License. We used
a ∥Ξval∥0 of 1.2k images, µeq = 0.5, and ε = 0.001.

DeepLabv3 [101] trained on COCO [102]. Besides classification tasks of varying
complexity, we tested our procedure on a semantic segmentation problem. We used
DeepLabv3 with a ResNet-50 backbone and the COCO dataset for this experiment.
To train the network, we followed the state-of-the-art procedure defined in PyTorch3.
We evaluated the neuronal equilibrium using a ∥Ξval∥0 of 320 images, µeq = 0.5,
and ε = 0.02.

9.2.3 Discussion

The results (average over five different runs) are reported in Table 9.2. For each
experiment, we compare our technique with a “stochastic” approach. Namely, we
randomly halt the update of a given neuron at every epoch and with probability
p. We test on three different probabilities: 0.2, 0.5, and a probability as close as
possible to the average over the one achieved by NEq - indicated with “*”. To
evaluate the effectiveness of the proposed procedure, we focus on the average
computational complexity of the back-propagation for a single update iteration
(expressed in FLOPs) and the network generalization capabilities at the end of the
training. In all the considered scenarios, it is possible to observe a reduction of FLOPs
with very marginal or no performance drop for NEq. Compared to the stochastic
approach, with fixed probabilities, the amount of saved computation is similar
in all the scenarios considered. Still, the loss in performance varies, depending
on the specific architecture/dataset. On the contrary, NEq remains consistent in
performance, self-adapting to the particular setup and saving the largest FLOPs for
the given performance. Furthermore, the performance loss is lower when testing the
stochastic approach with the same FLOPs saving (hence, even letting that information
leak in favor of the stochastic approach).

2https://github.com/microsoft/Swin-Transformer
3https://github.com/pytorch/vision/tree/main/references/segmentation

https://github.com/microsoft/Swin-Transformer
https://github.com/pytorch/vision/tree/main/references/segmentation
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9.3 Summary

The Lottery Ticker Hypothesis [13] showed the existence of sub-graphs in deep
models which, when trained in isolation, can match the original performance of the
whole model. Finding these sub-graphs is, however, a complex task, as in the first
stages of the learning, the model itself is at non-equilibrium. Identifying these with a
dynamic strategy, without requiring a posterior over the whole training process, is a
crucial task to be solved towards computational resource saving. Differently from
the vast majority of the literature, which focuses on the identification of sub-graphs
without any substantial computational saving (as they rely on iterative or roll-back
algorithms), we have introduced the knowledge of neuronal equilibrium, looking for
entire structures of the deep model at equilibrium, not requiring further optimization
and gradient computation, which self-adapts to very specific experimental setups on
very different learning scenarios. This work opens the doors to a deeper understand-
ing of the deep neural network’s learning dynamics and to developing new training
strategies exploiting this knowledge.

The proposed approach analyzes the behavior of an entire neuron. However,
empirical experiments show that there could be further improvements considering
ensembles of neurons. For example, Figure 9.5 shows the average value for the
similarities close to a constant, but many neurons are still away from the convergence
value, meaning that these neurons, at isolation, are still not at equilibrium: is the
scenario changing when considering the dynamics of groups of neurons? Further-
more, to validate the adaptability of NEq to the most popular training schemes, no
optimization of the hyper-parameters for the training procedure has been performed
(as it is out of scope for our evaluation). However, higher savings in computational
complexity are possible by tuning the training strategy as well. In such a direction,
prospectively, it will be of interest to design more efficient learning strategies that
consider the concept of neuronal equilibrium.
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Conclusions

In this thesis, we explored the problem of decreasing the resource requirements of a
deep network model during inference via neural network pruning. Pruning allows us
to remove many elements (parameters or neurons) from an architecture, reducing the
model’s memory footprint and inference time. In Chapter 3, we went over the main
concepts of neural network pruning while also providing an overview of the state-of-
the-art. In particular, we presented the four main categories of pruning procedures:
unstructured, in which parameters are removed independently; structured, in which
entire neurons are removed from the architecture; one-shot, usually faster albeit fewer
parameters are removed; gradual, generally slower, but allow for a more significant
reduction in the number of parameters. Exploring these differences allowed us to
propose multiple pruning-related procedures and expand our understanding of the
effect of pruning on neural network models.

In Chapter 4, we proposed LOBSTER: an unstructured, gradual pruning tech-
nique. LOBSTER uses a sensitivity-based regularization to push toward zero the
least influential parameters and promote sparsity in the architecture. In this context,
we define the sensitivity of a parameter as the derivative of the loss function with
respect to the target parameter. Unlike standard L2 regularization, the sensitivity
is aware of the global contribution of the parameters to the loss and can self-tune
its effect. Moreover, LOBSTER computes the sensitivity by exploiting the already
available gradient of the loss function, avoiding the additional computations of other
sensitivity-based approaches. With extensive testing, we showed that LOBSTER
achieves competitive results for different combinations of datasets and architectures.
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LOBSTER, while able to remove many parameters, result in unstructured spar-
sification, which is harder to exploit without particular sparse-oriented software
or hardware. For this reason, in Chapter 5, we presented SeReNe. SeReNe is a
structured, gradual pruning procedure that applies a neuron-oriented regularization
according to the contribution of the neuron’s post-synaptic potential to the network’s
output. Our experiments show that the technique can prune a satisfactory amount
of neurons while maintaining a good generalization performance. Since SeReNe
could be computationally intensive, we proposed some faster variations, albeit less
performing.

To better exploit the structure in the models pruned using SeReNe, we presented
Simplify in Chapter 6. Simplify is a PyTorch-compatible library that removes the
zeroed neurons from a pruned neural network. Simplify allows fully exploiting
the induced structured sparsity in a network model without needing ad hoc sparse-
oriented software or hardware and automatically handles bias propagation and
residual layers. Evaluation with different state-of-the-art architectures shows that
simplified models achieve faster inference time when compared to both their dense
and pruned-only counterparts. By using Simplify, in Chapter 7, we provided some
empirical evidence of the benefits of structured pruning. To this end, we investigated
the contribution of pruning in the MPEG-7 Part 17 neural network compression
pipeline, verifying that structured pruning presents better synergy with quantization
and entropy coding, enabling better end-to-end compression and inference speed of
the deployed model. Also, in the same chapter, we presented HLSinf, an open-source
platform for neural network accelerators in FPGAs. Integrated into the EDDL library,
this platform eases the deployment of pruned and quantized models and exploits the
efficiency of FPGAs.

While much importance was given to the structure of the pruning procedure, in
Chapter 8, we explored and compared the properties of gradual and one-shot pruning
and proposed PSP-entropy to measure the state of ReLU-activated neurons. Compar-
ing one-shot and gradual pruning, we observed that the latter focus on a subset of
sharp, well-generalizing minima, which can explain why one-shot approaches fail
to recover the performance for high sparsity ratios. Also, we observed that gradual
pruning generates architectures able to extract more general features making them a
good candidate for transfer-learning scenarios.
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Finally, in Chapter 9, we shifted the focus of pruning from identifying the less
useful parameters during the forward pass to evaluating which set of neurons has to
be updated for each training epoch. The proposed technique, NEq, allows us to find
such neurons: we leverage the concept of neuronal equilibrium to freeze the gradient
computation for neurons that no longer need updates. This reduces the time required
for computing the gradients of the neural network during the backpropagation step.
Various experiments on different tasks showed that NEq allows us to reduce the
number of operations needed to perform backpropagation substantially.
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