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CHAPTER 1 
 

1. INTRODUCTION 
In recent years, new diagnostic and therapeutic techniques have created significant 

advances in cancer treatment, but also new challenges. Advances in technology with the 

development of new diagnostic tools, such as positron emission tomography / computed 

tomography (PET/CT), and treatment modalities are driving developments in cancer 

care [1]. PET/CT is undoubtedly an evolving technology also thanks to the development 

of new target-specific radiopharmaceuticals. Although [18F]F-fluorodeoxyglucose 

([18F]F-FDG) undoubtedly remains the milestone of the PET/CT method, the 

development of new radiopharmaceuticals has brought about considerable benefit for 

better diagnostic framing of many pathologies: as in the case of prostate cancer thanks 

to the development of radiopharmaceuticals linked to choline or prostate-specific 

membrane antigen (PSMA) and in the case of neuroendocrine tumors thanks to the 

development of [68Ga]Ga-DOTA-peptides. 

 

Over the last decade, technology has also led to an important evolution in the diagnostic 

field: from a purely diagnostic and qualitative tool, oncological imaging has acquired a 

central role in the context of personalized medicine. In fact, since the beginning of this 

decade, advances in hardware and software have made it possible to identify and use 

semi-quantitative and quantitative data extrapolated from imaging in clinical practice 

for the study of tissue pathophysiology with what is known as 'radiomics'. 

In medical imaging, radiomics is a relatively new and rapidly evolving field; this 

discipline, through the use of a large number of complex mathematical functions, makes 

it possible to extend the field of evaluation of images acquired by any imaging method, 

radiological and/or nuclear medical [2, 3].  

 

Radiomics, using bioinformatic approaches, thus makes it possible to move from a 

simple qualitative assessment to a more complex quantitative evaluation, providing a 

vast wealth of numerical data on underlying pathophysiological phenomena that are 

inaccessible to simple visual analysis. Radiomics applied to next-generation imaging, 

including PET, could make a valuable contribution in oncology with several potential 
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applications: differentiating benign from malignant disease, histopathological 

characterization, predicting response to cancer therapy and potential resistance to 

chemotherapy and radiotherapy, distinguishing subsets of malignancies with a better 

prognosis from those with a poor prognosis, recognizing patterns of post-therapy 

failure, assessing response to neoadjuvant treatment, and evaluating patients who may 

benefit from adjuvant therapy [4–7]. Radiomics might help the 'in vivo' and non-

invasive assessment of tumor heterogeneity. Histopathology is crucial in tumor 

classification; however, the assessment of tumor aggressiveness is generally performed 

by biopsy of one lesion, leading to a potential grading underestimation [8], since tumor 

heterogeneity is both spatial (inter and intratumoral heterogeneity) and time-related 

(more aggressive cell clones developing over time) [9, 10]. Thus, although multiple-

lesion biopsy sampling is not feasible, grading heterogeneity among primary and 

secondary lesions is not negligible and a non-invasive approach, such as the evaluation 

of PET imaging by radiomics, could support the evaluation of this heterogeneity [11].  

 

Neuroendocrine tumors (NET) are a heterogeneous group of malignancies represented 

by different histological subtypes and different primary locations [12]; neuroendocrine 

neoplasms (NENs) encompass a broad spectrum of neoplasms ranging from well-

differentiated indolent tumors to highly aggressive and poorly differentiated 

neuroendocrine carcinomas [13–15]. Histopathology is crucial in tumor classification 

and Ki-67 is currently used to define tumor grading in GEP NET [16].  New generation 

imaging technologies, including PET, might offer their contribute to the evaluation of 

tumor heterogeneity [4–6]. At present, PET imaging with [68Ga]Ga-DOTA-peptides 

analogs to the somatostatin (SST) is considered the state of the art to quantify SST 

receptors in vivo [17, 18], while [18F]F-FDG PET/CT is used to metabolically 

characterize more aggressive and higher grade NET lesions [19]. This dual approach 

has been recently evaluated leading to the development of the NETPET score [20]. 

Nevertheless, the simple in vivo quantification of receptor expression is not sufficient to 

characterize the biology of the tumor and the intra patients and intratumor 

heterogeneity. This drawback might be solved with a better characterization of tumor 

heterogeneity by the extraction of radiomic features (RFs), as a surrogate biomarker for 

NET lesions characterization [21], from the [68Ga]Ga-DOTA-peptide PET/CT [22–25].  
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While scientific interest in radiomics applied to PET imaging is rapidly increasing, the 

methodological approach needs to be validated and standardized and, thus, 

harmonization among protocols is needed [2, 26, 27]. Although radiomics is developing 

rapidly, it nevertheless requires the development of a methodology with the aim of 

achieving reproducibility, standardization, and prospective validation of the data 

collected. The application of a repeatable and reproducible method is indispensable 

because of the variability of the scanner hardware from different manufacturers, the 

radiopharmaceutical used, the injected activity, the acquisition time after injection, the 

acquisition time for each couch, the CT parameters used to correct the attenuation of the 

PET data and further technical parameters can significantly influence the collected data 

and the values of the extracted radiomic features [1, 25, 28–30]. 

 

Therefore, the aim of this thesis is to examine the potential technical and clinical 

applications of radiomics on nuclear medical imaging in the specific setting of 

neuroendocrine tumors. 
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CHAPTER 2 

 
2.1. NEUROENDOCRINE TUMORS  
Neuroendocrine neoplasms (NENs) comprise a wide variety of heterogeneous 

neoplasms, which originate from the diffuse neuroendocrine system and can therefore 

arise in anybody district. These tumors are considered rare, with an incidence of about 

3-5 new cases/100,000 inhabitants/year, although new data from the US Surveillance 

Epidemiology and End Results Program (SEER) show an increase in the incidence of 

the disease of about 520% over the last 32 years (1973-2005), with an annual rate of 

5.8% [31]. This increase in incidence can probably be attributed to the introduction of 

new and/or more sophisticated diagnostic tools (such as PET/CT and MRI). 

Although ubiquitous, these tumors most frequently affect the gastro-entero-pancreatic 

tract, about 33%, and the bronchopulmonary system, about 25%. 

 

In the gastro-entero-pancreatic tract, based on SEER data, gastro-intestinal and 

pancreatic neuroendocrine tumors (GEP-NET) are second in frequency only to colon 

cancer [32–36]. They can also arise in any part of the gastro-entero-pancreatic tract, but 

most frequently occur in the small intestine (30.8 %), followed by the rectum (26.3 %), 

colon (17.6 %), pancreas (12.1 %), stomach (8.9 %) and appendix (5.7 %).  

The survival of patients with GEP-NET depends on the site, and the stage according to 

the TNM classification and the WHO histopathological classification (Table 1), which 

expresses both the morphological appearance of the tumor and its proliferative activity 

in terms of the number of mitoses and proliferation index (by assessing the Ki67 index 

and thus the disease grading). Further prognostic factors are somatostatin receptor 

expression, the tumor's spontaneous evolution speed, and the patient's age. 

However, the prognosis for these tumors is overall superior to that of adenocarcinoma 

with the same location: higher for GEP-NETs of the rectum and appendix, lower for 

GEP-NETs of the small bowel and pancreas, where the prognosis is associated with 

many concomitant variables.  
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Table 1. Classification and grading criteria for GEP-NENs, according to the WHO 2019 Grading 
Classification. 

Classification Differentiation Nomenclature Grade 
Mitotic rate 
(mitoses/2 

mm2) 
Ki-67 index 

NETs Well differentiated 
NET, G1 Low <2 <3% 
NET, G2 Intermediate 2-20 3-20% 
NET, G3 High >20 >20% 

NECs Poorly 
differentiated 

NEC, small-cell 
type (SCNEC) High >20 >20% 

NEC, large-cell 
type (LCNEC) High >20 >20% 

MiNEN MiNEN Well or poorly 
differentiated Variable Variable Variable 

NOTE:  
- SCNEC: small-cell neuroendocrine carcinoma; LCNEC: large-cell neuroendocrine carcinoma; 
- MiNEN: mixed neuroendocrine-non-neuroendrocrine neoplasm; 
- mitotic rates are determined by counting in 50 fields of 0.2 mm2;  
- the Ki-67 proliferation index is determined by counting at least 500 cells in the regions of highest labelling 
(hot-spots), which are identified at scanning magnification. 
 

Neuroendocrine neoplasms of the lung are a heterogeneous group of tumors with 

different morphological aspects and different levels of clinical aggressiveness [37–40]. 

They account for about 2% of primary lung cancers. Within the NEN group, four 

morphological variants are identified based on epidemiological, genetic, pathological, 

and clinical data:  

- typical carcinoid (CT): low-grade tumors; composed of cells with an organoid, 

trabecular, palisade or ribbon-like appearance, separated by a delicate fibrovascular 

stroma. The individual cells are regular and have uniform round nuclei and a modest 

amount of eosinophilic cytoplasm. They are characterized by < 2 mitoses/hpf and 

absence of necrosis; 

- atypical carcinoid (AC): intermediate-grade tumors; has a histological composition 

remains similar to that of typical carcinoids, however they tend to show greater cell 

atypia, increased cellularity, nucleoli, lymphatic invasion and disorganized 

architecture. They are characterized by > 2-10 mitoses/hpf and/or foci of necrosis; 

- large cell neuroendocrine carcinoma (NE): malignant tumors, with no notable 

differences in survival between them: 

o large cell neuroendocrine carcinoma (LCNEC), in this case, the cells may 

retain an organoid appearance, but also present with diffuse and disorganized 

growth. They are characterized by > 10 mitoses/hpf and extensive areas of 

necrosis; 

o small cell carcinoma (SCLC): in this case the epithelial cells are small, with 

little cytoplasm, well-defined cell borders, finely granular nuclear chromatin 
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(salt-and-pepper type picture), and no conspicuous nucleoli. The cells are 

round, oval, or spindle-shaped with significant nuclear remodeling; they 

grow in clusters with neither glandular nor squamous organization. The 

mitotic count is high and associated with the presence of numerous apoptotic 

detritus. 

Thus, a spectrum based on the identification of four different histological subtypes 

results in a definite clinical prognostic scheme with precise implications for follow-up 

and clinical treatment (predominantly surgical in CT, multimodal in CA, predominantly 

chemo-radiotherapeutic in LCNEC/SCLC). 

 

According to the World Health Organization (WHO) classifications, the grading of 

neuroendocrine tumors is based on analysis of the histopathological examination of the 

tumor cytological or biopsy specimen, which shows the morphological features of the 

tumor and its proliferative activity in terms of the number of mitoses or proliferation 

index (Ki67 index). This allows the identification of NET (neuroendocrine tumor) for 

low- to intermediate-grade tumors, G1 and G2, and the identification of NEC 

(neuroendocrine carcinoma) for high-grade tumors, G3. Based on this premise, the 

current WHO classifications of neuroendocrine tumors are given below (Table 2).  

 

Table 2. WHO classification of thoracic and digestive neuroendocrine neoplasms. 

 

Thoracic WHO 2015 Gut WHO 2010 Pancreas WHO 2017 

Mitotic 

Index 

Necrosis Mitotic 

Index 

Ki67 

Index 

Mitotic 

Index 

Ki67 

Index 

Well-

differentiated* 

 

         

TC <2/10HPF No NET G1 <2/10HPF <2% NET G1 <2/10HPF <3% 

AC 
2-

10/10HPF 
Yes NET G2 

2–

20/10HPF 

3-

20% 
NET G2 

2–

20/10HPF 

3-

20% 

      NET G3 >20/10HPF >20% 

Poorly 

differentiated* 

         

NEC >10/10HPF Yes NEC >20/10HPF >20% NEC >20/10HPF >20% 

Mixed 

neoplasms 

         

Combined   MANEC   MiNENs   

NOTE: TC typical carcinoid, AC atypical carcinoid, NET neuroendocrine tumor, NEC neuroendocrine carcinoma, MANEC 
mixed adenoneuroendocrine carcinoma, MiNEN mixed neuroendocrine/non-neuroendocrine neoplasm, HPF high-power field. 
*Morphologically well-differentiated or poorly differentiated 
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NENs are usually sporadic in nature; although they may be related to certain hereditary 

syndromes, such as multiple endocrine neoplasia type 1 (MEN 1), type 2 (MEN 2), Von 

Hippel-Lindau syndrome (VHL), neurofibromatosis type 1 and tuberous sclerosis [15].  

 

For all neuroendocrine tumors, specific neuroendocrine markers are used to determine 

the neuroendocrine tumor phenotype: such as chromogranin A (CgA) and 

synaptophysin, the most reliable for sensitivity and specificity, but also CD56, PGP 9.5, 

TTF-1, CDX-2, Isl-1, PDX-1 and neuro-specific enolase (NSE) [41, 42]. 

A remarkable feature of NENs is the expression of somatostatin receptors (SSTRs) in 

well-differentiated tumors, with SSTRs type 1 and type 2 being present in the vast 

majority of NENs, while SSTRs type 3 and type 5 are expressed by approximately 60% 

of cases, and SSTR type 4 only rarely [43].  

The knowledge of histopathological and molecular characteristics of NENs as well as 

the availability of more accurate diagnostic tools and therapeutic options allow for a 

personalized approach to these diseases, with potential benefits in treatment response 

and survival. In-vivo imaging of SSTR expression in NENs is feasible since the 

development of [123I]I-labelled tyr-3-octreotide in 1989 [44, 45], when Krenning et al. 

documented for the first time positive [123I]I-labelled tyr-3-octreotide scans obtained for 

two meningiomas, two gastrinomas and one carcinoid [45]. In the last decade, the 

accuracy in NENs detection by [111In]In-pentetreotide (Octreoscan®) single-photon 

emission computed tomography / computed tomography (SPECT/CT) has been 

surpassed by [68Ga]Ga-DOTA-labelled somatostatin analog PET/CT. Compared to 

SPECT radiopharmaceuticals, somatostatin analog PET/CT has also the advantage of 

lower radiation exposure, earlier and shorter acquisition times, higher spatial resolution, 

and the possibility of tracer uptake quantitation [46, 47].  

 

The main [68Ga]Ga-DOTA-labelled somatostatin analogues clinically available today 

are [68Ga]Ga-DOTA-TATE (DOTA, Tyr(3)-octreotate), [68Ga]Ga-DOTA-NOC 

(DOTA,1-Nal(3)-octreotide), and [68Ga]Ga-DOTA-TOC (DOTA, D-Phe1, Tyr (3)-

octreotide). Currently, these are the most promising radiotracers for the study of well-

differentiated NENs (G1 and G2 with low-intermediate levels of the ki67 index, <10%). 

While, in case of high levels of ki67 index (>10%), high-grade NET (G3), NEC, or in 

case of [68Ga]Ga-DOTA-peptide imaging of SSTR-negative lesions, patients are also 

candidates for [18F]F-FDG PET/CT [39, 48–50]. [18F]F-FDG is a glucose analog in 
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which a fluorine atom replaces the OH group at position 2; the tracer accumulates in the 

intracellular space in the form of [18F]F-FDG-6PO4 proportionally to the cellular 

requirement for this metabolic substrate. Although generally slow-growing and with a 

low rate of glucose metabolism, neuroendocrine tumors with a high proliferation index 

(ki67) and a low degree of differentiation are more likely to be detected by [18F]F-FDG 

PET/CT scan, and the presence of FDG-positive lesions is associated with a worse 

disease outcome [51]. 

 

Recently, Chan et al. [20] proposed a staging protocol by means of multiple imaging 

with [18F]F-FDG PET/TC and [68Ga]Ga-DOTA-peptides, resulting in the formulation 

of a new score, the "NETPET grade" (Figure 1), which could help in the prognostic 

evaluation of the patient and the resulting therapeutic decisions. However, at present, 

this protocol is little used: in fact, imaging with multiple tracers, although potentially 

providing the most accurate biological characterization of the disease, is not feasible in 

all patients and should only be considered in selected cases. 

 

 

 

 
Figure 1. NETPET 

grading flowchart. Chan, 

David LH et al. Dual 

Somatostatin 

Receptor/FDG PET/CT 

Imaging in Metastatic 

Neuroendocrine 

Tumours: Proposal for 

a Novel Grading 

Scheme with Prognostic 

Significance. 

Theranostics (2017): 

1149–1158. PMC. Web. 

20 May 2018. 
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This drawback might be solved with a better characterization of tumor heterogeneity by 

the extraction of RFs, as a surrogate biomarker for NET lesions characterization, from 

both [68Ga]Ga-DOTA-labelled somatostatin analogs and/or [18F]F-FDG PET/CT [21–

25]. 

Nuclear medical imaging provides indispensable information for staging, monitoring, 

and treatment choice: - detect the primary lesion, its local extension, and relationship 

with surrounding structures; - staging according to TNM in order to assess the best 

surgical and/or pharmacological therapeutic approach; - evaluate the response to 

therapy and the eventual need for a change of treatment during follow-up; - provide an 

indirect measure of cell differentiation through [68Ga]Ga-DOTA-peptide PET/CT; - 

identify patients who are candidates for treatment with cold and hot somatostatin 

analogs (Peptide Receptor Radionuclide Therapy - PRRT - based on the use of 

[177Lu]Lu-DOTA-labelled somatostatin analogs) [52–55]. As mentioned above, the 

application of a radiomic approach could implement the information extracted from 

PET/CT imaging in each of these settings. 

 

2.2. RADIOMIC 
Although the PET/CT examination can be evaluated by qualitative analysis exclusively, 

the development of effective methods for the measurement of a radiopharmaceutical's 

quantitative distribution and uptake into the disease site began to appear of great 

importance.  

 

The most effective and simple method is a semi-quantitative dimensionless parameter, 

the Standardised Uptake Value (SUV), which has provided a measure that is widely 

applicable in clinical routine. The SUV is calculated according to the following 

formula: 

 

 

 

 

This parameter expresses the ratio between the amount of radiopharmaceutical 

accumulated in a target lesion (defined as volume in ml or weight in grams) and the 

amount of tracer that would hypothetically be present in a region of equal volume if the 

                        Detected activity (Bq) / gr of tissue 
SUV = ------------------------------------------------------ 
                   Injected activity (Bq) / body weight (gr) 
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tracer was homogeneously distributed throughout the body. Therefore, an SUV value > 

1 indicates a preferred concentration in a defined lesion, on the contrary, an SUV value 

< 1 indicates a lower concentration in the target lesion than what we might consider a 

background radioactive concentration. SUV requires accurate measurement of 

administered activity, injection time, scan time, and patient weight and is influenced by 

PET scanner performance characteristics and image reconstruction factors.  

 

Radiomics allows to increase in the number of semi-quantitative and quantitative 

parameters that can be quantified by extracting a large number of quantitative 

characteristics (features) from medical images using data-characterization algorithms 

and bioinformatics approaches [1, 2, 22, 28, 29]. These features, namely radiomics 

features (RFs), have the potential to uncover disease characteristics that fail to be 

appreciated by the naked eye, leading to the possibility to quantify specific tumor 

attributes and phenotypes. RFs can be divided into morphological features, such as 

compactness and sphericity; first-order features, which describe the distribution of voxel 

intensities within the specified tumor volume; second-order static features or texture 

features, which can characterize the spatial interrelationships of intensity between tumor 

voxels; higher-order statistical features [56, 57]. Distinctive RFs can help to better 

describe the biological behavior of the disease in different settings and, consequently, to 

develop more accurate decision support models by combining medical imaging data 

(non-invasive and whole-body biomarkers) with other patient characteristics, such as 

molecular and histopathological tumor characteristics [1]. 

Most of the additional parameters used by radiomics in PET/CT imaging concern intra-

tumor heterogeneity, although other features related to shape or other parameters have 

also been described. The most used methods include statistical methods (first-, second-, 

and high-order), fractals, or transformation-based approaches, which convert the spatial 

information of an image into frequency-scale (Fourier) information [58].  

First-order statistical functions do not capture any spatial information but represent 

global measurements of a tumor. These include:  

- standard parameters such as SUV, metabolic volume (MV) or somatostatin 

receptor-expressing tumor volume (SRETV) and total glycolysis of the lesion 

(TLG=MV*SUVmean) or total lesion somatostatin receptor expression 

(TLSRE=SRETV*SUVmean);  
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- parameters extrapolated from the voxel intensity frequency histogram, such as 

global heterogeneity (with data such as skewness and kurtosis describing the 

shape of the histogram), entropy (describing the randomness of voxel values), 

and energy or uniformity (describing the homogeneity of voxel values). 

Second-order and high-order statistical functions, on the other hand, contain 

information on the spatial relationships between the intensities of more than two voxels 

and derive co-occurrence or difference matrices to provide local or regional measures of 

heterogeneity, often referred to as 'texture analysis'. In addition, the use of run-length 

encoding (RLE) algorithms and dimensional matrices provide information on a set of 

voxels or a group of similar voxels for a given aspect. 

Commonly used second-order features include entropy, energy, homogeneity, and 

contrast (which should not be confused with first- or high-order features bearing the 

same names), these features measure the relationships between pairs of voxels. High-

order features include those extrapolated from the grey tone difference matrices 

between neighboring voxels, such as coarseness (coarseness), contrast (contrast), 

busyness (busyness), and complexity (complexity). All these features are designed to 

best represent the human perception of heterogeneity and texture within an image. 

 

Despite the vast potential of radiomics in the nuclear medicine field, their application in 

clinical practice is still challenging and not yet validated; indeed, several factors can 

affect the resulting quantitative imaging biomarker measurement. Also, imaging 

analysis procedures such as tumor segmentation methods, grey-level intensity 

discretization, and image reconstruction algorithms can affect the robustness, 

repeatability, and reproducibility of these variables and their results [2, 26, 57, 59–61]. 

Recently, several documents have been provided by the scientific community to 

increase the robustness of these tools, such as the Radiomics Quality Score (RQS) [1], a 

point-based system that guides the researcher to use a rigorous methodological approach 

for performing radiomics, and the Imaging Biomarker Standardization Initiative (IBSI) 

[58], that aims to provide image biomarker nomenclature and definitions, benchmark 

data sets, and benchmark values to verify image processing and image biomarker 

calculations, as well as reporting guidelines, for high-throughput image analysis. In a 

recent review, Zwanenburg [26] identified and described the main pitfalls of data 

analysis that affect the reproducibility and generalizability of radiomics studies, 

dividing them into macro-areas: patient selection (sample size, injected 



 

 17 

radiopharmaceutical activity, patient movement, etc.), image acquisition (characteristics 

of the tomograph and type of acquisition used), image reconstruction (number of 

iterations, subsets, etc.), segmentation, image processing, image biomarker 

computation, and modeling. In 2022, as a result of a cooperative effort between the 

European Association of Nuclear Medicine (EANM) and the Society of Nuclear 

Medicine and Molecular Imaging (SNMMI), new guidelines have been developed with 

the aim of providing current best practices and recommendations for relevant aspects of 

radiomic analyses, including study design, quality assurance, data collection, the impact 

of acquisition and reconstruction, detection and segmentation, standardization and 

implementation of features, as well as appropriate modeling schemes, model evaluation 

and interpretation [62]. 

These recommendations are increasing researchers' understanding of the more technical 

aspects of radiomics, leading to a gradual harmonization and standardization of these 

approaches, making radiomics clinical future application more than just a hypothetical 

mirage. 
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CHAPTER 3 
 

3. AIMN OF THE STUDY 
Considering the data presented above, the aim of this doctoral project was to analyze the 

use of radiomics in neuroendocrine neoplasms.  

 

The objectives of this project are:  

- to develop a repeatable and reproducible methodology for the radiomic analysis of 

PET/CT images with the aim of achieving reproducibility, standardization, and 

prospective validation of the collected data. The application of a repeatable and 

reproducible method is indispensable, because the variability of the scanner hardware 

from different manufacturers, the radiopharmaceutical used, the injected activity, the 

acquisition time after injection, the acquisition time for each couch, the CT parameters 

used for the attenuation correction of the PET data, and further technical parameters can 

significantly influence the collected data and the values of the extracted RFs; 

- to assess the impact on PET image quantification of different image reconstruction 

methods; 

- to verify if there is a correlation between texture parameters extracted from PET/CT 

imaging and histopathological data in staging neuroendocrine tumors; 

- to verify if there is a correlation between texture parameters extracted from PET/CT 

imaging and prognostic indices of disease already known or under investigation 

(clinical and laboratory data and immunohistochemical and genetic features); 

- to identify, in association with prognostic data already known in the literature, the 

package of texture parameters that are indicators of tumor aggressiveness, which may 

help the diagnostic/therapeutic decision-making process by diversifying the different 

tumor clusters with different biological and clinical behavior; 

- identifying parameters and indicators that can help and predict response to therapy, 

with a focus on PRRT. 
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CHAPTER 4  
 
4. TECHNICAL STUDIES 
 
4.1. DEVELOPMENT OF 3D-PRINTED INSERTS FOR 

NEMA-PHANTOM SIMULATING NECROTIC TUMOR 

LESIONS FOR THE EVALUATION OF 

REPRODUCIBILITY OF PET/CT RADIOMIC FEATURES 
 
4.1.1. Publication details 
Liberini V. et al. Development of 3D-printed inserts for NEMA-phantom simulating 

necrotic tumor lesions for the evaluation of reproducibility of PET/CT radiomic 

features Abstracts book of the Annual Congress of the European Association of 

Nuclear Medicine – EAMN Annual Congress 2022 - TROP (Top Rated Oral 

Presentation) Session: Radiomics - Oral Presentation. Annual Congress of the European 

Association of Nuclear Medicine October 15-19, 2022 Barcelona, Spain. Eur J Nucl 

Med Mol Imaging 49 (Suppl 1), 1–751 (2022). https://doi.org/10.1007/s00259-022-

05924-4 

 
4.1.2. Introduction and aim 
Radiomic features (RFs) are quantitative features extracted from medical images that 

can provide disease information undetectable to the human eye, improving the clinical 

decision support system. Many variables influence the robustness of RFs and limit their 

use. In this study, we investigated the use of a phantom with 3D-printed inserts, 

simulating necrotic tumor lesions, to analyze the impact of different reconstruction 

parameters and different radionuclides on the reproducibility of PET-RFs.  

 
4.1.3. Material and Methods 
A tumoral lesion with a necrotic core extracted from a real PET/CT image served as a 

model to create the insert. The lesion was segmented manually using LifeX software, 

and the NIFTI-file of the segmented lesion was converted to an STL-file using ITK-

snap software. Finally, the insert was created on the free-web-app Tinkercard using the 

STL-file and creating a proper stem and screw for screwing the insert onto the phantom. 
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The transparent resin (FormLabs Standard Resin Cartridges Clear) insert was printed 

with the Form3+ 3D-printer (FormLabs) in six different sizes (maximum size of 54 

mm), as shown in Figure 2.  

 
Figure 2. The figure schematically shows the steps of lesion construction: from the segmentation of the 

PET image with LIFEx, to the creation of the lesions with TINKERCARD and their printing with the 3D 

resin printer. 
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The inserts were placed in the NEMA NU 2-2012 IQ phantom and scanned twice with 

two different radioisotopes ([18F]F and [68Ga]Ga) solutions. The lesions were filled 

with the same activity solutions of 21 MBq/l and the large background compartment of 

the NEMA IQ phantom with5.3 MBq/l. Phantom scans were reconstructed with 

different parameters (acquisition time: 1.5-5 min, iterations: 3-10), as shown in Figure 

3. 

 
Figure 3. The figure shows the 3D-printed inserts placed in the NEMA NU 2-2012 IQ phantom and 

scanned with [18F]F- and [68Ga]Ga solutions, respectively. 

 
The images were analyzed and segmented by a nuclear physician and 52 RFs were 

extracted with LifeX software. Relative trends of RFs and coefficients of variation 

(COV) were analyzed. Wilcoxon tests were applied to assess the differences between 

the RF associated with the two radioisotopes.  
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4.1.4. Results 
The majority of RFs were found to be sensitive to variations in the reconstruction 

parameters. Among the acquisition and reconstruction parameters, for both 

radioisotopes with an equal number of iterations, the number of subsets had the major 

impact on RFs, with COV greater than 50% for 13 RFs.  

Relative trends of RFs for different iterations showed in most cases a large variation 

applying from 3 to 5 iterations and low variation applying from 5 and 10 iterations, 

regardless of the volume of the inserts, as shown in Figure 4. 

 
Figure 4. The impact of iterations on the RFs stability for each 3D-printed inserts for [18F]F- and 

[68Ga]Ga acquisition, respectively. 

 

 

 

 

 

 

 

 

 

For different acquisition times, most RFs showed COV <20%. Significative differences 

between [18F]F- and [68Ga]Ga-RFs were observed for 14 RFs (4 conventional and 10 

texture RFs).  

Pearson correlation coefficients greater than 0.8 between RFs values and insert volumes 

were obtained for 75% of RFs for both radioisotopes. 

 
4.1.5. Discussion and conclusion 
These implemented and user-friendly 3D-printed inserts for NEMA-phantom allow to 

evaluate the impact of different acquisition and reconstruction parameters on RFs. This 

approach appears promising for the standardization of PET protocols and the 

harmonization of data in multicenter radiomic studies. 
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4.2. IMPACT OF SEGMENTATION AND 

DISCRETIZATION ON RADIOMIC FEATURES IN 68Ga-

DOTA-TOC PET/CT IMAGES OF NEUROENDOCRINE 

TUMOR 
 
4.2.1. Publication details 
Liberini V. et al. Impact of segmentation and discretization on radiomic features in 

68Ga-DOTA-TOC PET/CT images of neuroendocrine tumor. EJNMMI Phys. 2021 

Feb 27;8(1):21. doi: 10.1186/s40658-021-00367-6. PMID: 33638729; PMCID: 

PMC7914329. 

 
4.2.2. Introduction and aim 
While scientific interest in radiomics applied to PET imaging is rapidly increasing, the 

methodological approach needs to be validated and standardized and, thus, 

harmonization among protocols is needed [2, 26, 27]. Indeed, imaging analysis 

procedures such as tumor segmentation methods, grey-level intensity discretization and 

image reconstruction algorithm can affect the RFs [2, 26, 57, 59–61]. Robustness 

analysis measures variability of RFs with respect to these factors. The identification of 

robust RFs for [68Ga]Ga-DOTATOC PET-CT is fundamental, since this innovative 

modality might be used as prognostic and predictive tool for evaluating tumor 

heterogeneity in NEN. To our knowledge there is only one study evaluating the 

robustness of RFs in function of image acquisition and reconstruction parameters for 

[68Ga]Ga-DOTA-peptides PET/CT [63], while the extraction of RFs and the 

assessment of RFs robustness in [18F]F-FDG PET/CT imaging has been broadly 

explored [64–68]. 

The objective of this study was to evaluate the robustness of RFs in function of 

segmentation methods and discretization settings in [68Ga]Ga-DOTATOC PET/CT 

images. 

 

4.2.3. Material and Methods 
270 consecutive patients affected by NEN referred to our institution to perform 

[68Ga]Ga-DOTATOC PET/CT between February 2017 and July 2019 were reviewed 
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(IRB protocol: CS2/477), in accordance with the procedure guidelines for PET imaging 

[48, 69, 70]. The inclusion criteria of the present study were: 1) histologically proven 

NEN; 2) patients who underwent [68Ga]Ga-DOTATOC PET/CT for staging in 

treatment-naïve patients or restaging after surgery; 3) willing to sign an informed 

consent form (ICF). Exclusion criteria were 1) age < 18 years; 2) previous systemic 

therapies. Forty-nine patients with a total of 60 lesions matched the inclusion criteria 

and were considered in this analysis. Primary tumor sites were GEP-NET, lung NET 

and others NET in 77.5% (38/49), 18.4% (9/49) and 4.1% (2/49) of cases, respectively.  

For each lesion, a three-dimensional volume of interest (VOI) was manually delineated 

(VOIm), slice-by-slice, in the OSEM PET image by four nuclear medicine physicians, 

by using the software LIFEx v. 4.81 (IMIV/CEA, Orsay, France - www.lifexsoft.org) 

[71]. For each VOI, three different thresholds were applied corresponding to the 20, 30 

and 40% of the maximum SUV of the VOI, obtaining VOI20, VOI30 and VOI40, 

respectively [72, 73]. All lesions were also contoured with a semi-automatic edge-based 

(SAEB) method, using a MATLAB (MathWorks) homemade code, based on the active 

contour model proposed by Chan and Vese [74], as shown in Figure 5. 

 

 

 
Figure 5. Semi-automatic edge-based (SAEB) 

algorithm workflow. The algorithm requires the 

intervention of an operator to insert the central 

point of the lesion (1) through an interface created 

in MATLAB, the operator can view both the PET 

and the CT images separately. As a second step, 

edge preserving filters are applied to the image to 

emphasize the edge of the lesion (2) and, after that, 

and a level-set is used which is a shape that evolves 

iteratively over the image (3). The level-set acts 

both on the original image of the lesion and on the 

filtered image in which the contours are 

highlighted. The iteration 0 of the level set, which 

would be the initialization, is the center of the 

lesion indicated by the operator. The final outline of 

the lesion is achieved at the end of the process. 
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Fifty-two RFs were extracted, using LIFEx in agreement with the Imaging Biomarker 

Standardization Initiative (IBSI) [58] description, applying different intensity rescale 

factors for gray-level discretization: two absolute (AR60=0-60, AR80=0-80) and one 

relative (RR=min-max of the VOI SUV). Dice similarity coefficient (DSC) was 

calculated to quantify agreement between different segmentation methods. STAPLE 

algorithm was used to compute the probabilistic estimate of the true segmentation from 

manual masks. The impact of different parameters on RFs was assessed by Intra-class 

Correlation Coefficients (ICC).  

 
4.2.4. Results 
DSC mean value was 0.75 ±0.11 (0.45–0.92) between SAEB and STAPLE and 0.78 

±0.09 (0.36–0.97) between the four manual segmentations.  

 

1) Robustness of RFs to segmentation  

1A) using no SUVmax threshold and applying the 3 intensity discretization settings: 

Setting no threshold and applying the three different intensity rescale factors (AR60, 

AR80 and RR), 65.3% of RFs showed high robustness to segmentation using both 

AR60 and AR80 (7/10 conventional, 3/6 histogram, 2/4 shape and 22/32 textural) vs. 

28.9% using RR intensity rescale factor (7/10, 0/6, 2/4, 6/32). The following RFs 

showed a loss of robustness applying the relative intensity rescale factor: 

HISTO_Entropy (both _log 10 and_log2), HISTO_Energy, GLCM (homogeneity, 

energy, contrast and dissimilarity), all the GLRLM features with the exception of 

RLNU, all the NGLDM features except from coarseness, the majority of GLZLM 

features with the exception of LZHGE, GLNU and ZLNU. 

1B) using 40% SUVmax threshold and applying the 3 intensity discretization settings: 

Using a 40% SUVmax threshold and applying the three different intensity rescale 

factors (AR60, AR80 and RR), the robustness of RFs to segmentation increased (ICC > 

0.9 for 86.5%, 82.7% and 65.3% applying AR60, AR80 and RR respectively) but with a 

similar trend to the previous results.  

1C) using AR80 and applying different SUVmax thresholds: 

Setting intensity rescale factor to 0-60 SUV and applying different SUVmax thresholds 

(no threshold, 20, 30 and 40%), the percentage of highly robust RFs to segmentation 
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were 65.3%, 78.8%, 80.8% and 86.5% for no threshold, VOI20, VOI30 and VOI40 

respectively. An increase of the SUVmax threshold produced a substantial increase of 

ICC of the following features: SHAPE_Sphericity, SHAPE_Compacity, 

GLCM_Correlation, all GLRLM features, NGLDM_Coarseness, NGLDM_Contrast 

and GLZLM_ZP. On the contrary, the following features decreased their ICC values: 

HISTO_Kurtosis, HISTO_ExcessKurtosis, GLZLM_LZE, GLZLM_SZLGE and 

GLZLM_LZLGE. 

 

2) Robustness of RFs to intensity discretization settings 

2A) for each segmentation applying no SUVmax threshold: 

Comparing the five VOI delineations (four operators and SAEB) and applying no 

SUVmax threshold (Figure 6), median value of ICC for intensity rescale factors was > 

0.9 for the conventional and shape features and for HISTO_Skewness, 

HISTO_Kurtosis, HISTO_ExcessKurtosis, GLCM_Correlation, GLRLM_RLNU and 

GLZLM_GLNU. Overall, the percentage of highly robust features was 40.4% (10/10 

conventional, 3/6 histogram, 4/4 shape and 3/32 textural). The majority of the remaining 

textural features showed poor robustness to discretization settings except for 

NGLDM_Coarseness which had a median ICC > 0.8. 

2B) for each segmentation method applying 40% SUVmax threshold: 

After increasing the isocontouring threshold (from no threshold to 40% SUVmax 

threshold) only GLCM_Correlation resulted to be highly robust among textural features. 

The rest of textural features remained were poorly robust (median ICC < 0.5) except 

from GLRLM_RLNU, NGLDM_Coarseness and GLZLM_GLNU. 

 

3) Robustness of RFs to SUVmax threshold 

Setting AR60 as intensity rescale factor, 51.9% of RFs (5/10 conventional, 3/6 

histogram, 0/4 shape and 19/32 textural) showed high robustness to different SUVmax 

thresholds (no threshold, 20, 30 and 40%). Changing the intensity rescale factor to a 

relative one (RR), only seven RFs resulted to be highly robust: five of them were 

conventional (SUVstd, SUVmax, SUVpeak 0.5 and 1 mL, CONV_TLSRE) and two 

textural (NGLDM_Coarseness and GLZLM_ZLNU). 
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4.2.5. Discussion and conclusion 
The major findings of our study are as follows: (a) quantitative comparison between a 

semi-automatic edge-based (SAEB) algorithm and manual segmentation showed a dice-

coefficient similarity (DSC) of 0.75 ± 0.11 comparable to DSC between operators (0.78 

± 0.03). This results suggests that a semi-automatic algorithm might be able to 

substitute manual segmentation to solve operator variability; (b) the use of absolute 

intensity rescaling factor (AR60 and AR80) achieved higher robustness of RFs to 

segmentation and isocontouring thresholding than relative intensity rescaling factor; (c) 

increasing the SUVmax isocontouring threshold had a positive effect on RFs robustness 

to segmentation, the same is not true for robustness to intensity discretization settings 

which is higher with no SUVmax threshold.  

Regarding inter-segmentation robustness, majority of RFs showed high robustness 

(ICC> 0.9) using absolute intensity rescale factors both AR60 and AR80. The less 

robust RFs was SHAPE_Sphericity, which describes the closeness of the VOI shape to 

a sphere and therefore is strongly sensitive to operator delineation. In line with previous 

studies [75], GLZLM (also called GLSZM) features and in particular the ones 

measuring zones with low grey-level (SZLGE and LZLGE) resulted to have a moderate 

robustness (ICC from 0.5 to 0.8) to segmentation. This is likely related to the lower 

uptake in lesions edges, where operator and SAEB segmentation showed a higher 

variability. 

Another interesting result of our study is related to the negative impact of the relative 

intensity rescaling factor on the robustness to segmentation of the majority of textural 

features analyzed. As the rescaling is carried out according to the minimum and 

maximum values of the VOI, the same image is rescaled differently depending on the 

segmentation operator/method used, leading to high variability also in RFs values. 

Additional segmentation of the VOIs using a 40% SUVmax threshold mitigated the 

robustness decrease due to relative resampling since thresholding excluded low-grey 

voxels from the VOIs increasing the similarity between their minimum values. Anyway, 

it must be highlighted that the use of relative resampling is not recommended in PET 

images, as already observed in [18F]F-FDG PET/CT [76–78]. Moreover, NETs are 

characterized by an extremely variable expression of somatostatin receptors in 

[68Ga]Ga-DOTA-peptides with a corresponding broader range for SUV values (from 

close to 0 up to higher than 100) compared to [18F]F-FDG PET/CT, causing a greater 
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impact on the RR compared to AR, where the robustness of RFs is highest with AR60 

comparing with AR80 at the expensive of information on voxels/lesions with an SUV 

uptake > 60.   

When using an absolute intensity rescale factor, the SUVmax thresholding had no 

considerable impact on inter-segmentation ICC values of the most part of textural 

features. Instead, increasing SUVmax threshold increased robustness of conventional, 

shape and GLRLM features. In accordance with previous studies [26, 61], the impact of 

intensity discretization on textural features was stronger than segmentation. When using 

no SUVmax threshold, only four textural features resulted to be robust: 

GLCM_Correlation, GLRLM_RLNU, NGLDM_Coarseness and GLZLM_GLNU. 

Our results suggest that the use of RFs is feasible also in [68Ga]Ga-DOTATOC 

PET/CT. The grey-level discretization influences the robustness of RFs, which vary 

depending on the use of relative or absolute resampling. The delineation of VOI had 

also an impact on the robustness of RFs, even if less relevant. These results suggest the 

needing to standardize the methodology used in the radiomic PET studies in [68Ga]Ga-

DOTATOC PET/CT.  
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4.3. IMPACT OF PET DATA DRIVEN RESPIRATORY 

MOTION CORRECTION AND BSREM 

RECONSTRUCTION OF 68Ga-DOTATATE PET/CT FOR 

DIFFERENTIATING NEUROENDOCRINE TUMORS 

(NET) AND INTRAPANCREATIC ACCESSORY SPLEENS 

(IPAS) 
 
4.3.1. Publication details 
Liberini V. et al. Impact of PET data driven respiratory motion correction of 68Ga-

DOTATATE PET/CT for differentiating neuroendocrine tumors (NET) and 

intrapancreatic accessory spleens (IPAS). Sci Rep 11, 2273 (2021). 

https://doi.org/10.1038/s41598-020-80855-4 

 
4.3.2. Introduction and aim 
Accessory spleens are congenital foci of healthy splenic tissue that are separate from the 

main body of the spleen [79, 80] and are relatively common. Intrapancreatic accessory 

spleens (IPAS) appear as a solid contrast-enhancing mass, usually smaller than 3 cm, 

located within the tail of the pancreas [81–83]. Owing to their morphology and contrast 

characteristics at CT and MR imaging, they may be mistaken for pancreatic tumors, in 

particular NENs [84]. Hence, an accurate diagnosis may avoid unnecessary surgery or 

biopsy.  

68Ga-labeled somatostatin analogue PET is the mainstay for the evaluation of the SSTR 

status of NEN. The biodistribution of somatostatin analogs is characterized by a 

physiological uptake in several organs, including spleen [85] and ectopic splenic tissue. 

Hence, IPAS may mimic pancreatic neuroendocrine tumors (pNET) and cause a false 

positive finding.  

The aim of our study was to evaluate whether quantitative parameters of [68Ga]Ga-

DOTATATE PET/CT can differentiate pNET from accessory spleens, including IPAS. 

For this purpose, the impact of novel Bayesian penalized likelihood reconstruction and 

respiratory data-driven motion correction of PET on quantitation were investigated [86].  
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4.3.3. Material and Methods 
A total of 498 consecutive patients with neuroendocrine tumors (NET) who underwent 

[68Ga]Ga-DOTATATE PET/CT between March 2017 and July 2019 were 

retrospectively analyzed. Subjects with accessory spleens (n=43, thereof 7 IPAS) and 

pNET (n=9) were included, resulting in a total of 45 scans. PET images were 

reconstructed using ordered-subsets expectation maximization (OSEM) and a fully 

convergent iterative image reconstruction algorithm with β-values of 1000 

(BSREM1000). Indeed, BSREM increases the accuracy of lesion quantitation compared 

to OSEM by maximizing signal–to-noise ratio (SNR) while achieving almost full 

convergence [87–89]. In this study, the global strength of the regularization in BSREM 

(β-value) of 1000 was selected based on previous studies, analyzing the effect on image 

quality and considering both radionuclide properties and scanner characteristics [90–

92].  

A data-driven gating (DDG) technique (MotionFreeTM, GE Healthcare) was applied to 

extract respiratory triggers and use them for PET motion correction within both 

reconstructions. This technique utilizes a principal component analysis (PCA) to 

compute the spatiotemporal variation of list mode data. The algorithm provides a signal-

to-noise measure of respiration-like frequencies within the data, denoted as R-value, that 

is configurable (R-value threshold). The determination of the R-value has a function of 

trigger: the R-value is measured at the end of base acquisition time for each bed position 

for which motion screening was prescribed and is used to make an on-the-fly decision 

whether motion has been detected. This then triggers the data acquisition to 

automatically be extended according to the prescribed acquisition time and data binning 

scheme used for motion correction (MC) [93]. In the default protocol, the quiescent 

phase of the respiratory cycle is set to 50% for motion correction, triggering an 

automatic data acquisition extension equaling to double the base acquisition time to 

preserve total count statistics. The R-value for triggering motion correction used for this 

study was R = 10.0 [94]. An example of IPAS uptake at PET/CT has shown in Figure 6. 

 
Figure 6. [68Ga]Ga-DOTATOC PET/CT showing an intrapancreatic accessory spleen mimicking a 

pancreatic neuroendocrine tumor. Contrast-enhanced CT image in portal-venous phase showing the 

lesion in the pancreatic tail (a). Contrast-enhanced CT image in arterial phase showing the enhancing 

lesion in the pancreatic tail. The lesion is characterized by mild [68Ga]Ga-DOTATATE uptake, more 

evident in OSEM-DDG (d) and BSREM-DDG (f) images (SUVmax 8.6 and 7.6, respectively) compared 
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with OSEM(c) and BSREM (e) images without DDG (SUVmax 6.4 and 6.2, respectively). The PET 

volume of the accessory spleen is smaller in OSEM-DDG and BSREM-DDG images (980 mm and 814 

mm, respectively) compared with OSEM and BSREM images without DDG (1400 mm and 1520 mm, 

respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PET parameters among different samples were compared using non-parametric tests. 

Parameters (SUVmax, SUVmean and volume) of each sample (all accessory spleens, 

IPAS, pNETs, and all lesions) were compared among different reconstructions using 

Wilcoxon signed ranks test. The different reconstructions were compared as follows: - 

BSREM1000 versus OSEM; - BSREM1000-DDG with R = 10.0 + Q.StaticTM versus 

BSREM1000 half time/bed position (BSREM1000 1/2); - OSEM-DDG with R = 10.0 + 

Q.StaticTM versus OSEM half time/bed position (OSEM 1/2); - BSREM1000-DDG with R 

= 10.0 + Q.StaticTM versus OSEM-DDG with R = 10.0 + Q.StaticTM. 
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Receiver operating characteristics (ROC) analyzed the ability of PET parameters to 

differentiate IPAS and pNETs.  

 

4.3.4. Results 
Out of 498 cases, accessory spleens were detected in 63 PET/CT scans of 63 patients 

(12.2%). Of these, PET list mode data was available in 38 scans (60.3%; mean age 56.4, 

range 33 - 83 years). The majority of accessory spleens (79.1%) were located 

perisplenic, particularly medial to the spleen (55.8%; splenic hilum, gastrosplenic 

ligament, splenorenal ligament), followed by an intrapancreatic location (16.3%; IPAS), 

and 4.6% were ectopic (splenic vessels and paracolic).  

Significant correlations were observed between diameter (mm) and SUVmax of 

accessory spleens: 

- in OSEM reconstruction with r2 = 0.779, p = 0.001, 95% CI [0.515, 0.853] for 

Pearson correlation, and a coefficient of 1.266, with standard error equal to 

0.167, p = 0.001 and r2 = 57.21% for the linear regression equation; 

- in BSREM reconstruction with r2 = 0.725, p = 0.001, 95% CI [0.598, 0.885] for 

Pearson correlation, and a coefficient of 1.246, with standard error equal to 

0.178, p = 0.001 and r2 = 53.43% for the linear regression equation. 

Out of 498 cases, pNET lesions (primary and metastatic) were detected in 9 PET/CT 

scans (1.8%; mean age 64.2, range 44 - 74 years), 2 with 1 accessory spleen and 1 

pNET already included in the accessory spleen cohort. 

Regarding the sub-cohort of patients retrospectively acquired and analyzed for the DDG 

reconstructions, SUVmax and SUVmean were able to distinguish pNET both from all 

accessory spleens and from IPAS, both in OSEM and in BSREM reconstructions, with 

the only exception of SUVmax of IPAS vs. pNET in OSEM. In particular, SUVmax can 

distinguish: - Accessory spleens vs. pNET in OSEM (p = 0.024) and BSREM (p = 

0.014); - IPAS vs. pNET in BSREM (p = 0.034). 

An even higher level of significance was achieved with DDG (R > 10.0), where 

SUVmax can distinguish: - Accessory spleens vs. pNET in both OSEM-DDG and 

BSREM-DDG (p = 0.002 each); - IPAS vs. pNET in both OSEM-DDG and BSREM-

DDG (p = 0.033 each). 
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The relationship between SUVmax and PET volume for accessory spleen, IPAS and 

pNET separately in each reconstruction (OSEM, OSEM-DDG, BSREM and BSREM-

DDG) is shown in Figure 7. 

 
Figure 7. Scatter plots showing the relationship between SUVmax and PET volume ofaccessory spleens, 

IPAS and pNETs in OSEM (a) and BSREM-DDG (b), respectively,in the sub-cohort of patients 

retrospectively acquired (42 accessory spleens, 6 IPAS and 8 pNET). 

 

For differentiating accessory spleens and pNETs with specificity 100%, the ROC 

analysis yielded an AUC of 0.742 (sensitivity 56%) / 0.765 (sensitivity 56%) / 0.846 

(sensitivity 62%) / 0.840 (sensitivity 63%) for SUVmax 36.7 / 41.9 / 36.9 / 41.7 in 

OSEM / BSREM1000 / OSEM+DDG / BSREM1000+DDG, respectively.  

 

4.3.5. Discussion and conclusion 
The major findings of our study are as follows: (1) both SUVmax and SUVmean are 

able to distinguish pNET from accessory spleens and IPAS, (2) SUVmax on the 

BSREM-DDG reconstruction yields the best results (p-value < 0.002 for pNET vs. 

accessory spleens and < 0.033 for pNET vs. IPAS), (3) different SUVmax cut-off 

between pNET and accessory spleens / IPAS were found for each reconstruction, (4) 

and BSREM-DDG reconstruction achieved the best ROC curve result (an SUVmax cut-

off > 41.7 identifies a pNET with a specificity of 100% and a sensitivity of 75% (AUC 

0.840)), (5) SUVmax of accessory spleens is linearily correlated with their volume.  

Our results suggest a possible new indication for the use of [68Ga]Ga-DOTA-peptide 

PET/CT in clinical routine, confirming the ability of [68Ga]Ga-DOTATATE PET/CT 

to distinguish IPAS and pNET. Moreover, the impact of reconstruction algorithms is 
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one of the most relevant factors on the use of absolute quantitative methods for 

PET/CT. In our study, Bayesian penalized reconstruction data yielded slightly better 

results than OSEM distinguishing pNET from IPAS by SUVmax (p-value < 0.034 for 

BSREM vs. < 0.057 for OSEM) and for distinguishing pNET from accessory spleens by 

SUVmax (p-value < 0.014 for BSREM vs. < 0.024 for OSEM). This finding could be 

explained with the fact that the majority of well differentiated pNETs are characterized 

by significantly higher somatostatin receptor expression compared to the physiological 

uptake in splenic tissue (ectopic or not).  

Besides the image reconstruction algorithm, PET image quality may also be affected by 

respiratory motion, leading to reduced quantitative accuracy and seemingly increased 

tumor/lesion volume. This problem affects particularly small lesions in the upper 

abdomen, such as accessory spleens, IPAS and pNET [95–98]. In our study, DDG 

increased the ability of PET parameters (SUVmax and SUVmean) to discriminate 

pNET from IPAS (SUVmax p-value < 0.033) and/or accessory spleens (SUVmax p-

value < 0.002) both in BSREM and OSEM reconstructions. Furthermore, for all the 

lesions included in our study, DDG lead to a significant increase in SUVmax and 

SUVmean, both with BSREM and OSEM reconstructions (all p-values < 0.001), while 

a significant decrease in PET volume was only found with OSEM reconstruction (p-

value < 0.001), in line with a recent study of Catalano et al. [99]. 

In conclusion, DDG-based motion correction is beneficial particularly for the 

assessment of small lesions that are subject to respiratory motion, also in the upper 

abdomen. BSREM1000 leads to a significant increase of SUV parameters compared to 

OSEM, while DDG leads to a significant increase of SUV parameters and reduced PET 

volume compared to reconstructions without DDG. 
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CHAPTER 5 
 
5. CLINICAL STUDIES  
 

5.1. DIAGNOSTIC VALUE OF CONVENTIONAL PET 

PARAMETERS AND RADIOMIC FEATURES 

EXTRACTED FROM 18F-FDG-PET/CT FOR 

HISTOLOGIC SUBTYPE CLASSIFICATION AND 

CHARACTERIZATION OF LUNG NEUROENDOCRINE 

NEOPLASMS 
 
5.1.1. Publication details 
Thuillier P. et al. Diagnostic value of both conventional PET parameters and radiomic 

features extracted from 18F-FDG PET/CT for histologic subtype classification and 

characterization of lung neuroendocrine neoplasms. Biomedicines. 2021 Mar 

10;9(3):281. doi: 10.3390/biomedicines9030281. PMID: 33801987; PMCID: 

PMC8001140. 

 

5.1.2. Introduction and aim 
Lung neuroendocrine neoplasms (Lu-NENs) represent a group of rare neoplasms and 

are classified into four histological subtypes: lung neuroendocrine tumors (Lu-NETs), 

including typical (TC) and atypical carcinoid (AC), and lung neuroendocrine 

carcinomas (Lu-NECs), including large-cell neuroendocrine carcinomas (LCNECs) and 

small-cell neuroendocrine carcinomas (SCLCs) [100]. The prognosis of Lu-NENs is 

highly related to the histological subtypes. Lu-NECs are associated with a poor 

prognosis with a 5-year survival rate of 15% in LCNEC and 2% in SCLC, respectively, 

while patients affected by Lu-NETs hold a better prognosis. However, ACs are 

associated with poorer survival rates compared with TCs (44% and 87%, respectively) 

[101].  Thus, correct identification of the different Lu-NENs histological patterns is 

crucial in the decision-making process [40]. 
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PET/CT is recommended to investigate Lu-NENs [48, 102]. [18F]F-FDG is widely used 

in Lu-NECs, but also in Lu-NETs [103, 104]; while [68Ga]Ga-DOTA-peptides PET/CT 

is suggested mainly in Lu-NETs (80% of tumor subtypes express somatostatin 

receptors) [51, 105]. Several studies assessed the diagnostic performance of dual 

[18F]F-FDG and [68Ga]Ga-DOTA-peptides-PET/CT in detecting lung carcinoid [106], 

suggesting their complementary role in discriminating TC from AC. Nevertheless, both 

exams are rarely performed before surgery. 

Intratumoral tumor heterogeneity is one of the hallmarks of malignancy, aggressiveness, 

treatment response, and prognosis [21]. Indeed, PET radiopharmaceuticals present a 

different pattern of uptake within the tumor, however established conventional and 

volumetric PET parameters, such as SUV, MTV and TLG, do not allow for assessment 

of the heterogeneity of radiotracer uptake in a tumor. Recently, the extraction of RFs 

from [18F]F-FDG PET/CT was applied to characterize the histological pattern and 

prognosis of non-small cell lung cancers (NSCLCs) [107]. To the best of our 

knowledge, the radiomic approach has not yet been applied to characterize Lu-NENs. 

In this study, we have hypothesized that both conventional PET parameters (i.e., SUV-

based and volumetric parameters), and RFs extracted from [18F]F-FDG PET/CT might 

allow for more accurate definition of the histologic patterns and phenotypes of Lu-

NENs. Therefore, the primary objective of this study was to investigate the diagnostic 

value of both conventional parameters and RFs to distinguish NETs from NECs and 

then, TC from AC. The secondary objective was to determine if these parameters are 

associated with pathological characteristics of tumor aggressiveness (such as mitotic 

index, presence of necrosis, and Ki-67 index), and TNM stage in Lu-NETs. 

 

5.1.3. Material and Methods 
Forty-four naïve-treatment patients on whom [18F]F-FDG PET/CT was performed for 

histologically confirmed Lu-NEN (n = 46) were retrospectively included. Inclusion 

criteria were: (a) Histologically proven Lu-NEN diagnosis (obtained by core biopsy in 

10 samples or surgery in 36 samples) and classified according to the current WHO 

classification; (b) naïve-treatment patients who underwent [18F]F-FDG PET/CT; (c) 

patients who consented to participate in the study. Exclusion criteria were: (a) [18F]F-

FDG PET/CT performed after surgery; (b) Cytological data available only. All clinical 

and histological data (age, gender, TNM) were collected. 
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All patients underwent [18F]F-FDG PET/CT on the same PET scanner (Philips Gemini 

DualsliceEXP scanner, PET AllegroTM system with Brilliance CT scanner, Philips 

MedicalSystems, Cleveland, OH). The median time interval between PET imaging and 

biopsy was 1.5 months (0–6 months), in accordance with the procedure guidelines for 

PET imaging. 

 

Manual segmentation was performed by two operators allowing for extraction of four 

conventional PET parameters (SUVmax, SUVmean, MTV, and TLG) and 41 RFs, 

using LIFEx v. 6.0 (IMIV/CEA, Orsay, France). Manual segmentation for non-avid 

lesions was performed on the coupled CT images. 

 

The continuous quantitative variables were compared by non-parametric tests (Mann–

Whitney U or Kruskal–Wallis). For conventional PET parameters, we performed ROC 

analysis to assess the diagnostic performance of each of the conventional parameters to 

classify each lesion. The reproducibility of RFs between the two operators was assessed 

by ICC using a two-way mixed effects model. Among RFs with ICC > 0.9, the Mann–

Whitney test was used to compare the RFs between each group of patients and select 

RFs able to discriminate the 2 groups of patients (Lu-NECs versus Lu-NETs and then 

TC versus AC). To reduce the potential redundancy among the RFs extracted in this 

study, the most useful predictive parameters were selected using the least absolute 

shrinkage and selection operator (LASSO) logistic regression model.  

Then, a Pearson correlation analysis was performed between conventional PET 

parameters and RFs extracted from the LASSO regression. Then, a multivariate logistic 

regression analysis was performed to calculate a radiomic signature with the selected 

RFs. Finally, a ROC curve was used to illustrate the diagnostic performance of the 

model to predict the histological pattern. 

 

5.1.4. Results 
The main characteristics and clinical details of the 44 patients and 46 lesions 

histologically proven for Lu-NENs are represented in Table 3. 
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Table 3. Clinical and histological characteristics of the cohort. 

Characteristics  Value Characteristics Value 
 

Sex, n(%) 
 M-classification, n(%)  

Male 23 (52.3) 0 41 (89.1) 
Female 21 (47.7) 1 5 (10.9) 

Age (years) moy (DS) 62.8 (10.1) Histological subtypes  
Lesion side, n(%)  TC 15 (32.6) 

Right 29 (63) AC 11 (23.9) 
Left 17 (37) TC or AC 1 (2.2) 

Size (mm; moy(DS) 30.5 (16) LCNEC 16 (34.8) 
T-classification, n(%)  SCLC 3 (6.5) 

1 17(37.0) Mitosis/mm² (n=35)  
2 11 (23.9) <2 15 (42.8) 
3 8 (17.4) 2-10 10 (28.6) 
4 0 (0) 10/mm² 10 (28.6) 
X 10 (21.7) Ki67% (n=45)  

N-classification, n(%)  ≤5% 15 (33.3) 
0 26 (56.5) >5 and ≤20% 10 (22.2) 
1 20 (43.5) >20% 20 (44.4) 

 

All conventional PET and volumetric parameters resulted higher in Lu-NECs compared 

to Lu-NETs (p<0.001). At ROC curve analysis, the best cut-off value to distinguish 

between Lu-NECs and Lu-NETs for SUVmax, SUVmean, MTV and TLG were 5.16 

(Se=0.84, Sp=0.85 and Acc=0.85; AUC = 0.91), 3.69 (Se=0.79, Sp=0.96 and Acc=0.89; 

AUC = 0.91), 8.96 (Se=0.68, Sp=0.85 and Acc=0.78; AUC =0.8) and 38.67 (Se=0.79, 

Sp=0.89 and Acc=0.85; AUC =0.86), respectively (Figure 8). 

 
Figure 8. ROC curve analysis of the conventional and volumetric PET parameters (left) and 

Histo_Entropy_log10 (right) 

 
 

Regarding RFs, the inter-observer agreement between the two operators showed that 

30/42 RFs (73.2%) were highly robust (6/6 histogram, 2/3 shape and 22/32 TFs; 
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ICC>0.9). Among the 30 RFs with ICC>0.9, 26 were significantly associated with 

histological subtypes (all p-values <0.05). Then, after LASSO implementation, HISTO_ 

Entropy_log10 was selected as the most predictive RF, with no significant advantages 

in adding more RFs to the model. At the ROC curve analysis, HISTO_ Entropy_log10 

showed an AUC of 0.90, with a cut off value of 0.94 (Se=0.90, Sp=0.78 and Acc=0.83). 

Finally, HISTO_ Entropy_log10 was significantly positive correlated with SUVmax 

and SUVmean (r= 0.95 and 0.94 respectively). Combining both conventional 

parameters and HISTO_ Entropy_log10 in a logistic regression model, no significative 

advantages were found respect of the model with only SUVmean to predict the 

histological subtypes. 

Finally, none of the conventional parameters were able to distinguish between TCs and 

ACs. Median SUVmax (3.62 versus 2.8; p=0.68) and SUVmean (2.37 versus 1.62; 

p=0.65) were not statistically different between TC and AC. None of the RFs was 

significantly different among TC and AC. 

Regarding histological data, none of the PET parameters evaluated was associated with 

mitotic count or the presence of the necrosis (p>0.05). Stratifying TC and AC according 

to Ki-67 level, two TC presented Ki-67 >5%, while one AC had a Ki-67 ≤5% and two 

AC presented a Ki-67 >20. SUVmax and SUVmean showed a positive trend with Ki-

67, without showing statistical significance (p=0.05 and 0.07 respectively). The two 

patients with AC and a Ki-67 index > 20% had much higher SUV values than TC and 

AC with Ki-67 <20%. Using Ki-67 as a continuous variable, there was an association 

between Ki-67 and SUVmax (R=0.52, p=0.007). 

Regarding TNM status, SUVmax, MTV and TLG of the primary lesion were 

significantly associated with N+ status (p<0.05). At the ROC-curve analysis, SUVmax 

resulted the most accurate predictor of N+ status (AUC=0.78; p=0.004) with 

sensitivity=0.67, specificity=0.82 and accuracy=0.77, applying a cut-off of 4.11. In the 

Lu-NET subgroup, only 3 patients were M+ at the time of diagnosis and conventional 

and volumetric parameters showed a trend of correlation with M+ (p=0.08 for MTV and 

TLG). 

 

5.1.5. Discussion and conclusion 
Our study showed the good diagnostic performance of conventional parameters in the 

identification of Lu-NETs vs Lu-NECs allowing to discriminate these two groups of 
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patients, while our results did not suggest any potential additional value of the RFs. 

Regarding our subgroup analysis, considering Lu-NETs, we did not observe any 

difference between conventional PET parameters or RFs and TC and AC classification. 

On the other hand, higher value of conventional and volumetric PET parameters of the 

primary lesion were able to predict N+ status. 

Regarding the diagnostic performance of RFs, we found that RFs do not provide 

additional information allowing us to discriminate Lu-NECs and Lu-NETs. Only 

HISTO_Entropy_log10 was selected by the LASSO regression, but it was highly 

correlated to conventional PET parameters. These results may be explained by the 

characteristics of our Lu-NENs population. First, even if several NETs might present 

high FDG-avidity, while several NECs hold low FDG-avidity, the broad difference in 

SUV values in NECs compared with NETs could lead to a broader difference in RF 

values between the two groups [108]. Moreover, the volume of Lu-NENs in our cohort 

was low (median value of MTV = 7.52 mL) and several studies reported that a radiomic 

approach does not provide additional information when the lesion metabolic volume is 

lower than 10 mL [109]. After LASSO implementation, HISTO_Entropy_log10 was 

also selected as the most predictive RF. At the ROC curve analysis, 

HISTO_Entropy_log10 showed a similar AUC of 0.91 but did not provide additional 

value comparing to the conventional PET parameters. 

In the Lu-NET groups, we did not find any difference between TC and AC among all 

parameters when considering SUV parameters or other RFs. When related to the 

radiomic approach, these results could also be explained by the same reasons as for the 

Lu-NETs and Lu-NECs (i.e., no difference and a low SUV value in this case and a 

small size of lesions). 

Nevertheless, a trend in the association between SUV values and the Ki-67 index, with 

special reference to the subgroup of cases with Ki-67 values exceeding 20%, has been 

found along with an association between SUV and N+ status. For this reason, 

conventional PET parameters might be applied to evaluate the tumor aggressiveness and 

to predict lymph node involvement in Lu-NETs. These preliminary results need to be 

validated in larger cohorts, even applying different methodologies, to assess the possible 

contribution of the radiomic analysis in PET imaging within this clinical setting. 
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5.2. PROGNOSTIC VALUE OF WHOLE-BODY PET 

VOLUMETRIC PARAMETERS EXTRACTED FROM 

68GA-DOTATOC PET/CT IN WELL-DIFFERENTIATED 

NEUROENDOCRINE TUMORS 
 
5.2.1. Publication details 
Thuillier P. et al. Prognostic value of whole-body PET volumetric parameters 

extracted from 68Ga-DOTATOC-PET/CT in well-differentiated neuroendocrine 

tumors. J Nucl Med. 2022 Jul;63(7):1014-1020. doi: 10.2967/jnumed.121.262652. 

Epub 2021 Nov 5. PMID: 34740949. 

 

5.2.2. Introduction and aim 
NENs are a group of tumors of common embryological origin that can develop in 

multiple organs and secrete different hormones, leading to a variety of clinical 

presentations. They are most frequently observed in the gastroenteropancreatic tract 

(GEP–NENs) and the bronchopulmonary system. Although being relatively rare, their 

incidence has greatly increased in the last 30 years and estimated at approximately 

5/100,0000/year [31]. 

PET/CT imaging with [68Ga]Ga-DOTA-SSTa is the mainstay for the “in vivo” 

evaluation of the SSTR on the NETs cells membranes [110, 111]. Overall, almost 90% 

of primary G1–G2 GEP-NETs present a PET-positive finding due to the high SSTR 

expression on the tumor cell surface [19]. In clinical practice [68Ga]Ga-DOTA-SSTa-

PET/CT plays a major role in tumor characterization of NENs, in the assessment of 

disease extension and also to select properly the patient candidate for PRRT, becoming 

the gold standard in the diagnosis and management of WD-NETs [48, 112]. The 

prognostic value of [68Ga]Ga-DOTA-SSTa PET/CT imaging has been widely assessed 

in the literature, nevertheless mainly focusing on standardize uptake value (SUV) 

parameter [113, 114].   

In the last few years, measures of metabolic tumor burden (MTB) from [18F]F-FDG-

PET/CT images have been explored and showed a major prognostic value compared to 

semi quantitative parameters in several tumor models. MTB calculation is based on two 

PET parameters: MTV, which indicates the volume of metabolically active tumor, and 
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TLG, which is the product of SUVmean and MTV. More recently, two studies [115, 

116] have interestingly demonstrated the prognostic utility of the somatostatin receptor 

tumor burden (SRTB) in patients with WD-NETs in predicting PFS, through the 

measurement of whole-body total lesion somatostatin receptor expression (TLSREwb) 

and somatostatin receptor expressing tumor volume (SRETVwb) from [68Ga]Ga-

DOTATATE-PET/CT images. 

Hence, the objective of this study is to evaluate the prognostic value of SRTB extracted 

from [68Ga]Ga-DOTATOC PET/CT in a large cohort of patients presenting WD-GEP-

NETs and Lung-NETs.  

 

5.2.3. Material and Methods 
We retrospectively analyzed [68Ga]Ga-DOTATOC-PET/CT of 84 patients with 

histologically confirmed WD-NETs (51 G1, 30 G2 and 3 G3). Eligible patients matched 

all the following inclusion criteria: (1) histologically proven G1-G3 WD-NETs; (2) 

GEP or bronchopulmonary or unknown primary site; (3) [68Ga]Ga-DOTATOC-

PET/CT performed in our department with at least 1 positive lesion; (4) follow-up > 6 

months; (5) informed consent signed. Exclusion criteria were: (1) patient <18 years old; 

(2) incomplete histological data; (3) poorly differentiated neuroendocrine carcinoma; 

(4) concomitant metastatic neoplasia others than NET; (5) no evidence of disease at the 

time of [68Ga]Ga-DOTATOC-PET/CT; (6) refusal of data sharing according to ethical 

and privacy local law. 

The following patient characteristics were retrieved from medical records: age, gender, 

genetic mutation if present, TNM stage at the time of PET imaging, tumor grade (G1, 

G2 or G3 according to Ki67% level (<3; 3-20; >20%, respectively), functional status, 

treatment history (surgery, radiotherapy, locoregional therapeutic procedures, prior 

systemic lines) and ongoing therapy after [68Ga]Ga-DOTATOC-PET/CT during the 

follow-up. Patients without history of treatment (excluding surgery) before PET were 

considered as “naive-treatment” patients. 

All patients underwent PET/CT on an analog 3D PET scanner (Philips Gemini Dual-

slice EXP scanner – PET AllegroTM system with Brilliance CT scanner – Philips 

Medical Systems, Cleveland, OH), in accordance with the procedure guidelines for PET 

imaging [48]. 
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For each PET/CT, all DOTATOC-avid lesions were segmented independently by two 

operators using a customized threshold based on the healthy liver SUVmax using LIFEx 

6.0. For each lesion, SRETV and TLSRE (SRETV*SUVmean) were extracted. Then, 

we calculated the whole-body SRETV and TLSRE (SRETVwb and TLSREwb), defined 

as the sum of all SRETV and TLSRE, respectively. We classified each VOI according 

to its site including primary tumor, lymph node (ln), liver, bone and others (i.e. 

peritoneal, lung, and other rare metastatic sites). Then, we calculated the whole-body 

SRETV and TLSRE (SRETVwb and TLSREwb), defined as the sum of all lesions 

SRETV and TLSRE, respectively (Figure 9).  

 
Figure 9. Example of a 57-year-old female patient presenting a G3 well differentiated pancreatic NET. 

[68Ga]Ga-DOTATOC-PET/CT analysis (A: PET/CT fusion, B: PET imaging) showed high uptake in all 

lesions (highest SUVmax =104.4). SRTB analysis (C, D and E) found a SRETV and a TLSRE of 249ml 

and 4191g, respectively. Patient underwent PRRT and showed partial response according to RECIST 1.1 

but finally progressive disease was reported 27 months after PET exam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Time to progression (TTP) was defined as the combination of disease-free-survival 

(DFS) in patients undergoing curative surgery (n=10) and progression-free survival 

(PFS) for patients with unresecable disease (n=74). TTP and overall survival (OS) were 

studied using Kaplan-Meier analysis, log-rank test, and Cox’s proportional hazard 

model. 
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5.2.4. Results 
Among the 322 patients screened, 84 patients (38 male, 46 female; mean age 62.8±12 

years) were included in the study. [68Ga]Ga-DOTATOC-PET/CT was performed for 

primary staging (n=34) or restaging (n=50). The most frequent primary tumor origin 

was the pancreas (39/84=46.4%). Fifty-four (64.3%) presented a metastatic disease at 

the time of PET/CT.  Patients were classified as G1, G2 and G3 in 40.5, 55.9 and 3.6% 

of case, respectively. Forty-seven patients were considered treatment-naive before 

PET/CT. 

 

In the whole cohort, a total of 442 lesions and subsequent VOI were segmented 

including primary (n=36; 8.1%), lymph node (n=72; 16.3%), liver (n=185; 41.9%), 

bone (n=114; 25.8%) and other categories of tumor sites (n=35; 7.9%), respectively. 

The median values of SUVmax, SRETV and TLSRE per-lesion were 9.7 [range,3.3-

116.5], 4.0 ml [range,0.5-1980.3], and 24.8 g [range,1.8-21819.5], respectively. The 

median value of SRETVwb and TLSREwb were 32.4 ml [range,0-3078.7] and 338.3 g 

[range,0-22658.6], respectively.  

For SRTB parameters, optimal cut-offs for predicting TTP were defined using the 

receiver operating characteristic (ROC) curve. For SRETVwb, the AUC was of 0.83 

(best cut-off of 39.1ml with a sensibility, specificity, and accuracy of 0.86, 0.76 and 0.8, 

respectively. For TLSREwb, the AUC was of 0.79 with a best cut-off of 306.8g with a 

sensibility, specificity, and accuracy of 0.86, 0.74 and 0.79 respectively.  

Using this threshold, Kaplan-Meier analysis revealed significant difference of TTP/OS 

for both SRETVwb and TLSREwb (p<0.001). Higher SRETVwb (≥39.1ml) and 

TLSREwb (>306.8g) were correlated with significantly shorter median TTP 

(TTP=12months; CI95% [10-23] vs not reached for both; p<0.001) and shorter median 

OS (OS not reached for both; p<0.001). SUVmax was not associated with TTP and OS 

(p=0.08 and p=0.09, respectively), as shown in Figure 10.  
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Figure 10. Time to progression (left) and overall survival (right) in patients according to SUVmax (A, B), 

SRETVwb (C, D) and TLSREwb (E, F). 

 

 

Thus, we performed a multivariate analysis and SRETVwb (>39.1ml) (HR=4.8 

[1.6;14.5]; p=0.006) was the only independent predictor of TTP regardless of TNM 

stage, Ki67% level and treatment history (p=0.58, 0.85 and 0.39, respectively), as 

shown in Figure 11. 



 

 46 

Figure 11. Time to progression (left) and overall survival (right) in patients according to TNM stage (A,  

B) , grade (C, D) and treatment history (E, F). 

 

 
5.2.5. Discussion and conclusion 
In our cohort SRETVwb and TLSREwb could predict TTP/OS in patients with WD-

NETs and SRETVwb was the only independent prognostic parameter for TTP, 

regardless of histopathologic grade and TNM staging. SRETVwb extracted from 
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[68Ga]Ga-DOTATOC-PET/CT could have a prognostic utility in the clinical 

management of WD-NETs.  

At univariate analysis we found that SRTB parameters, SRETVwb (≥39.1ml) and 

TLSREwb (≥306.8g) were significantly associated with TTP. Our results are consistent 

with the literature data. Regarding [68Ga]Ga-DOTATATE-PET/CT studies, in a 

prospective study including a large population of 184 patients with G1-G3 NETs, 

Tirosh et al. highlighted that SRETV≥7.0 mL and ≥35.8 mL were significantly 

associated with PFS and OS (p<0.001 both), respectively [115]. In another prospective 

study including only G1-G2 GEP-NETs, Toriihara et al. found that SRETVwb≥11.1ml 

and TLSREwb≥146.48g were associated with PFS [116].  

In addition, Kim et al. [117] performed a retrospective study in 31 patients with 

unresectable or metastatic WD-GEP-NETs undergoing [68Ga]Ga-DOTATOC-PET/CT 

images before receiving lanreotide. In this study, lower tumor-to-liver ratio, SUVmax 

and higher SRETVwb (>58.9ml) were significantly associated with shorter PFS in 

univariate analysis, but only TLR (HR= 3.182, p=0.021) remained an independent 

factor for PFS in multivariate analysis. On the contrary, we showed that SUVmax was 

not associated with TTP, which is consistent with Tirosh et al. and Toriihara et al. 

studies [115, 116].  

Furthermore, in our cohort SRETVwb was an independent prognosis parameter 

(HR=4.8 [1.6; 14.5]; p=0.006) in the multivariate analysis. Torihara et al. also 

highlighted that only SRETVwb was independently associated with PFS in survival 

analysis, but not TLSREwb. In our study, both parameters displayed a great degree of 

correlation (R=0.916), so we decided to only include SRETVwb in the multivariate 

analysis. Moreover, we showed that SRETVwb was an independent prognostic factor 

regardless of Ki67%, TNM stage and treatment lines before PET.  

From a methodological point of view in our study, we chose a customized threshold 

based on liver SUVmax. To our knowledge, this is the second study in which such a 

segmentation method is used to assess the SRTB with [68Ga]Ga-DOTATOC-PET/CT 

in patients with WD-NETs [117]. This methodology presents the advantage to be fast, 

hence it could represent a useful tool to be used in clinical practice. Using this 

methodology, we found higher cut-off values of SRETVwb and TLSREwb in our study 

than those in studies assessing SRTB using [68Ga]Ga-DOTATATE. The literature 

showed that tumor uptake is higher and liver uptake is lower at [68Ga]Ga-DOTATOC 

versus [68Ga]Ga-DOTATATE, leading to higher tumor-to-liver ratio [118]. Hence, we 
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can assume that SRETVwb and TLSREwb might be lower using [68Ga]Ga-

DOTATATE.  

Moreover, assessing the reproducibility and robustness of SRTB calculation is 

important. In our study, we showed that the reproducibility between the two operators 

was excellent with ICC>0.9 for both SRETVwb and TLSREwb parameters. To our 

knowledge, there is no study assessing the reproducibility of SRTB parameters in 

[68Ga]Ga-DOTA-SSTa-PET/CT. Many studies showed that segmentation method can 

impact the reproducibility of MTVwb between operators in [18F]F-FDG-PET/CT 

imaging, especially threshold methods based on SUV>41% of SUVmax [73]. SRTB 

parameters in [68Ga]Ga-DOTA-SSTa-PET/CT might be more reproducible than 

MTVwb due to the higher signal-to-noise ratio.  

Moreover, the evaluation of SRETVwb and TLSREwb changes (namely ΔSRETVwb 

and ΔTLSREwb) after initiation of systemic therapy may offer very promising 

perspectives, especially for patients treated with PRRT [119], and need to be assessed in 

futures studies. However, the initiation of SSA treatment or PRRT can modify liver 

uptake as previously reported [47] and impact the calculation of SRTB. Therefore, the 

systematic use of the pre-therapeutic liver SUVmax cut-off value could be a solution to 

follow the evolution of volumetric parameters (ΔSRETVwb and ΔTLSREwb) and 

should be evaluated [119]. 

In our cohort, whole-body volumetric [68Ga]Ga-DOTATOC-PET/CT parameters 

(SRETVwb and TLSREwb) were associated with TTP and OS. SRTB could have an 

additional value in comparison to conventional prognostic parameters and other 

standard PET parameters to predict patient’s prognosis. SRTB approach could provide 

additional information to help clinicians in the treatment decision making and to guide 

follow-up of patients, thus supporting the implementation of these parameters in clinical 

practice for management of patients with WD-NETs. However, our findings need to be 

further confirmed in more homogeneous cohorts of patients and larger prospective 

studies are needed. 
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5.3. 68Ga-DOTATOC PET/CT-BASED RADIOMIC 

ANALYSIS AND PRRT OUTCOME: A PRELIMINARY 

EVALUATION BASED ON AN EXPLORATORY 

RADIOMIC ANALYSIS ON TWO PATIENTS 
 

5.3.1. Publication details 
Liberini V. et al. 68Ga-DOTATOC PET/CT based radiomic analysis and PRRT 

outcome: a preliminary evaluation based on an exploratory radiomic analysis on two 

patients. Front Med (Lausanne). 2021 Jan 26;7:601853. doi: 

10.3389/fmed.2020.601853. 

 

5.3.2. Introduction and aim 
PRRT has proven to be an effective treatment for metastatic GEP-NET [120]. 

[177Lu]Lu-DOTATATE has been approved by European Medicine Agency (EMA) in 

2017 for treating inoperable or metastatic GEP-NET with progressive disease. To 

evaluate the response to PRRT, the Delphic consensus assessment for GEP-NET [121] 

considers suboptimal both the Response Evaluation Criteria in Solid Tumors 1.1 

(RECIST 1.1) and PET parameters derived by functional imaging  (SUV), considering 

the high variability in somatostatin receptor expression and different histological 

patterns related to disease heterogeneity. [68Ga]Ga-DOTA-SSTR PET/CT allows to 

evaluate the in vivo expression of the SSTR in NET, and is considered a gatekeeper to 

select the proper candidate to PRRT [20, 48, 122]. Thus, the identification of new and 

reliable semi-quantitative and quantitative imaging parameters might be crucial to better 

select eligible patients and to assess the response to PRRT. Radiomic is a new 

innovative bioinformatic approach to the image’s analysis [1, 57, 123]. 

We hypothesize that advanced semi-quantitative PET parameters and radiomic analysis 

applied to [68Ga]Ga-DOTATOC PET/CT might identify correctly tumoral 

heterogeneity and new parameters able to predict response to PRRT in NET patients. In 

this preliminary study, we retrospectively explored this hypothesis on two NET patients 

with liver metastases and different outcome from PRRT therapy. 
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5.3.3. Material and Methods 
We retrospectively performed semiquantitative and radiomic analysis in [68Ga]Ga-

DOTATOC PET/CT image of two patients both presenting with NET liver metastases, 

selected from a retrospective study approved by Local Ethical Committee (IRB 

protocol: CS2/477) of AOU Città della Salute e della Scienza. Both patients were 

treated with PRRT in a clinical trial (EUDRACT 2015-005546-63) approved by the 

Ethical Committee of “Area Vasta Emilia Nord” (AVEN) of the “Azienda USL-IRCCS 

of Reggio Emilia, Italy”.  Patients’ information and dosimetry schedule for both patients 

are summarized in Figure 12. 

 
Figure 12. [68Ga]Ga-DOTATOC PET/CT (pre- (a) and post-therapy (b)) and [18F]F-FDG PET/CT 

(pre-therapy (c)) of Patient A; [68Ga]Ga-DOTATOC PET/CT (pre- (d) and post-therapy (e)) and 

[18F]F-FDG PET/CT (pre-therapy (f)) of Patient B; and patient history timeline of both Patient A and B. 

The pre- and post-therapy maximum intensity projection (MIP) of [68Ga]Ga-DOTATOC PET/CT of 

Patient B shows a homogeneous decreasing in size and somatostatin receptor expression of all the liver 

lesions. Patient A received 1 cycle of [90Y]Y-DOTATOC (1.7 GBq) followed by 6 cycles of [177Lu]Lu-

DOTATOC (total cumulated activity 26.13 GBq) with a median estimated absorbed dose of 104.5 Gy 

(range:63-134). Patients B received 3 cycles of [90Y]Y-DOTATOC (cumulated activity of 3 GBq) 

followed by 3 cycles of [177Lu]Lu-DOTATOC (cumulated activity of 14.30 GBq) with a median 

estimated absorbed dose of 104 Gy (range:94-122). 
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Patient-A had metastatic disease by G3 NET of rectum and Patient-B by G3 NET of the 

pancreas. Both patients underwent surgery as primary therapy (pT2N0, Ki67 10%) plus 

somatostatin analogue (lanreotide) administration. Both patients developed liver 

metastases, treated with multiple radiofrequency ablations, subsequently with 

chemotherapy after progression and later with everolimus. Liver biopsy revealed similar 

Ki67% patterns (Ki67 25% for patient A and 22% for patient B). PRRT was considered 

as third line of treatment according to clinical trials inclusions criteria. [18F]F-FDG 

PET/CT showed faint uptake in the lesions with NET- PET score of 2a for Patient A 

and score 1 for Patient B [20], while the [68Ga]Ga-DOTATOC PET/CT scan showed 

visually high uptake in all lesions. Six cycle of PRRT were administrated, completed in 

November 2018 for Patient A and in July 2018 for Patient B.  

 

Patient A and patient B, according to the trial design, underwent several [177Lu]Lu- 

and [90Y]Y-DOTATATOC administrations. Tumor absorbed doses were calculated 

following the procedure described by Finocchiaro et al [124]. Similar biodistribution 

and kinetics for peptides labelled with [177Lu]Lu and [90Y]Y was generally assumed 

[125], therefore the results obtained with [177Lu]Lu were extrapolated to [90Y]Y, 

simply substituting physical decay constant λ and S factor, as reported in the paper of 

Guerrierio et al. [126]. Patient A received only one cycle of [90Y]Y due to radioisotope 

supply problems. However, the range of tumor absorbed doses for patient A (63-134 

Gy) was comparable to the tumor absorbed doses for patient B (91-122 Gy). Patient A 

died for cancer-related disease 13 months after treatment, while Patient B at the end of 

follow up was alive with persistent disease and presented disease progression 16 months 

after PRRT (overall survival was 26 months after PRRT).  

 

Patients underwent [68Ga]Ga-DOTATOC PET/CT before and after the end of PRRT 

treatment. According to RECIST 1.1, Patient-A was considered as non-responder to 

PRRT, while Patient-B achieved very good partial response. 

 

Radiomic analysis was performed by manually contouring VOI by one operator and a 

total of 38 features were extracted using the software LIFEx v.5.10 (IMIV/CEA, Orsay, 

France) [71]. In both pre- and post-PRRT PET scans, two volumetric parameters, [127], 

were also evaluated: the somatostatin receptor expressing tumor volume (SRETV), 

representing the volume of the isocountouring derived volumes of interest (VOI) based 
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on percentage of 50% threshold of lesion maximum SUV (VOI50) [73], and the total 

lesion somatostatin receptor expression (TLSRE), calculated by multiplying the SRETV 

of each lesion with its corresponding SUVmean value. Moreover, the whole-body 

SRETV (SRETVwb-50) and TLSRE (TLSREwb-50) of each patient were also calculated in 

both pre- and after-PRRT scan.  

 

The Mann-Whitney test was used to compare the RFs extracted by the VOI of the liver 

metastasis lesion of the two patients on the pre-PRRT scan. To evaluate the 

independence of the features, the correlation of each RF with all the others was studied 

using regression analysis, generating a Pearson correlation matrix. Two RFs were 

considered strongly correlated in case of correlation coefficient greater than 0.8 or lower 

than -0.8. Only RFs which were not strongly correlated with SUVmax and lesion PET 

volume were analyzed due to their already established role on PRRT as predictive and 

prognostic biomarkers [114–116, 128–130]. Finally, the Principal Component Analysis 

(PCA) was used to obtain an alternative visualization of correlated and independent RFs 

and to investigate the possibility of creating a smaller set of maximally uncorrelated 

RFs (principal components) able to explain the majority of total variation in the data set. 

 

5.3.4. Results 
The response to therapy was more heterogenous in Patient A with some liver and 

abdominal lesions increased in size, and others showing a partial response. A total of 8 

liver metastases in Patient A and 10 liver metastases in Patient B were considered for 

inter-patient RFs comparison. Moreover, in patient A, 2 further lymph-nodes and 2 bone 

lesions were analyzed.   

 

Comparing liver metastases of pre-PRRT scan, twenty-eight RFs resulted significantly 

different among patients A and B at the Mann-Whitney test. Figure 13 shows the results 

of the Pearson correlation to identify the non-redundant features. Moreover, the PCA of 

the first two principal components (PCs), performed in 26 features, explained the 83.8% 

of total variance (Figure 13). 

 
Figure 13. Pearson correlation matrix heat map, considering only the 26 radiomic features resulted 

significant at the Mann-Whitney test (a). This graphic displays the absolute value of the correlation 

coefficient between each pair of radiomic features, ranging from + 1 (positive linear correlation, in red) 
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to – 1 (negative linear correlation, in green). The correlation coefficient of 0 is represented in yellow and 

identified radiomic features that are not correlate. Graphic representation of the features correlation 

plots resulted from the Principal Component Analysis (PCA), performed on the 26 radiomic features 

resulted significant at the Mann-Whitney test (b). It shows the relationships between features: positively 

correlated features are grouped together, and negatively correlated features are positioned on opposed 

quadrants. The distance between features and the origin measures the quality of the features on the factor 

map and features that are away from the origin are well represented on the factor map. The SUV-related 

RFs are visible in the lower left quadrant and the volume-related RFs in the lower right. The scree plot of 

the percentages of variation that each principal component (PC) account for shows that PC1 and PC2 

identified 83.8% of the percentages of variation (c). 

 

 

 

The relative correlation of these RFs with SUVmax and volume are shown in Figure 14. 

Seven second-order features resulted not correlated with both SUVmax and volume and 

statistically different among patient A and B (Figure 14).  

 

Regarding the two volumetric parameters, baseline TLSREwb-50 and SRETVwb-50 were 

5524.7 mL and 493.8 mL for Patient A and 1780.2 mL and 35.2 mL for patient B, 

respectively. At the post PRRT PET scan, both TLSRE wb-50 and SRETVwb-50 increased 

in patient A (TLSREwb-50 9291.6 mL (ΔTLSREwb-50 +68,2%) and SRETVwb-50 991.0 mL 

(ΔSRETVwb-50 +100,7%) and decreased in patient B (TLSREwb-50 202.4 mL 

(ΔTLSREwb-50 -88,6%) and SRETVwb-50 23.2 mL (ΔSRETVwb-50 -51,7%).  

 
Figure 14. (a) Pearson correlation coefficients between radiomic features and SUVmax and and volume 

(mL), respectively; (b) the boxplot of the second-order features not correlated with both SUVmax and 

volume in non-responder and responder. 
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5.3.5. Discussion and conclusion 
There is a lack of validated quantitative parameters able to predict the response to 

PRRT in PET imaging, while radiomic approach is emerging as a very promising 

analysis to study tumoral heterogeneity and should be evaluated for its prognostic and 

predictive role. Werner et al. [131] analyzed RFs on [68Ga]Ga-DOTA-peptides in 31 

patients with G1/G2 pancreatic NET. They found that “TF entropy” (corresponding to 

GLCLM-entropy) was associated with overall survival (cutoff = 6.7, p= 0.02) and 

increasing entropy might be a predictor of a longer survival. In our study the median 

value of GLCLM-entropy was > 6.7 for Patient-B and < 6.7 for Patient-A, even if not 



 

 55 

reached statistical significance. The Mann-Whitney test demonstrated a significant 

difference among the two patients in others twenty-eight RFs on baseline PET/CT, 

which could be related to differences in lesions behavior. Seven second-order RFs have 

been identified as poorly associated with SUVmax and PET volume parameters and 

might be considered as potential predictors of therapy response.  

In the post-PRRT PET/CT scan of patient B, the value of GLRLM-LRE and NGLDM-

Busyness increased in liver responder lesions (“liver 6, 7 and 8” with a decrease of 

SUVmax and PET volume). On the contrary, GLCM correlation, GLRLM-SRE, 

GLRLM-RP and GLZLM-ZP decreased in the same lesions (data are showed in Table 

1). Furthermore, in a lesion (“lymph node 1”) of Patient A, characterized by SUVmax 

decreasing, these RFs showed similar changes with the only exception of GLCM 

correlation, despite PET volume increasing (stable disease for RECIST 1.1). These 

changes have been not observed in non-responder lesions in both patients; in particular 

GLRLM SRE, GLRLM LRE, GLRLM RP, GLZLM ZP and NGLDM busyness did not 

change consistently, resulting almost stable. Finally, GLZLM-LZLGE changes seems 

less related to the PRRT response, as increasing and decreasing changes has been 

observed in both responder and non-responder lesions randomly. Furthermore, RF 

changes seem to be independent from the Gy delivered to the lesions.  

While far from definitive, these data allow to hypothesize a potential role both for RFs 

in pre-therapy scan and ΔRFs changes as predictor of therapy response, in combination 

with  predictive parameters (including standard semiquantitative PET parameters and 

dosimetry), if confirmed trough a prospective study [20, 121, 123, 127]. 

Regarding the two volumetric conventional PET parameters, the few data at present 

available in literature showed a significant correlation between the SRETVwb-50 and 

disease progression. Tirosh et al. [115] observed an association between “[68Ga]Ga-

DOTATATE TV” (corresponding to SRETVwb-50) > 7.0 mL with higher risk for disease 

progression and “[68Ga]Ga-DOTATATE TV” > 35.8 ml was associated with higher 

disease-specific mortality. Toriihara et al. [116] showed an association between 

“[68Ga]Ga-DOTATATE ∑SRETV” (corresponding to SRETVwb-50) > 11.29 mL and 

shorter progression free survival. In our study, the responder patient presented an 

SRETVwb-50 of 35.2 mL at baseline PET/CT, just below the cut-off value associated 

with higher disease-specific mortality in Tirosh study.  SRETVwb-50 in non-responder 

patient was of far above the cut-off reported above (493.8 mL). These data are 

consistent with the different response and outcome to PRRT of our patients, namely 
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considering the higher tumor burden and the relative lower uptake of the lesions in the 

non-responder vs. the responder patient (mean TSR 2.35 for Patient A versus 8.80 for 

Patient B; mean TLR 7.44 for Patient A versus 24.81 for Patient B). Overall survival 

after PRRT was 26 months (at last follow-up patient was alive with disease) in patient-

B, while was 13 months in Patient-A (died with disease). On the other hand, the median 

absorbed dose received by the two patients was very similar; therefore, in these two 

cases dosimetry cannot explain completely the different response, as well as negative 

pre-PRRT [18F]F-FDG PET/CT (Figure 1). Furthermore, the opposite trend of 

TLSREwb-50 and SRETVwb-50 (increase in Patients-A, decrease in Patient-B) in 

accordance with RECIST 1.1 might suggest a role for these parameters also in PRRT 

response. To our knowledge, there are no studies, designed to evaluate the role of 

ΔSRETVwb and ΔTLSREwb on therapy response.  

Despite evaluated on only two patients, this preliminary analysis suggests the use of 

RFs and TLSREwb-50, SRETVwb-50 as parameters to evaluate response to PRRT in 

NET patients. Moreover, pre-therapy RFs and RFs changes observed from pre- to post-

therapy scan might help to predict and to assess response to PRRT, leading to an 

optimization in the management of NET patients. These exploratory results need to be 

confirmed by future studies, enrolling a larger and more homogenous population. 
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5.4. [68Ga]DOTATOC PET/CT RADIOMICS TO PREDICT 

THE RESPONSE IN GEP-NETS UNDERGOING 

[177Lu]DOTATOC PRRT: THE "THERAGNOMICS" 

CONCEPT  
 

5.4.1. Publication details 
Laudicella R. et al. [68GA]DOTATOC PET/CT machine-learning applicationsin the 

prediction of response in GEP-NETS undergoing[177LU]DOTATOC PRRT: the 

‘‘THERAGNOMICS’’ concept. 15th National Congress of the Italian Association of 

Nuclear Medicine and Molecular Imaging (AIMN). Clin Transl Imaging 10 (Suppl 1), 

1–111 (2022). https://doi.org/10.1007/s40336-022-00492-x 

 

5.4.2. Introduction and aim 
PRRT represents an effective treatment for metastatic or inoperable NET, recently 

approved in Europe, USA, and Canada for GEP forms [52, 53, 132]. PRRT is included 

in the theragnostics scenario, enabling, through a unique radiopharmaceutical 

administration for multiple cycles, a molecularly targeted therapeutic procedure (i.e., 

beta minus emission of [177Lu]Lu) and biodistribution imaging (i.e., gamma emission 

of [177Lu]Lu). However, although PRRT is effective in the majority of cases, 

approximately 15–30% of patients will progress during PRRT and can benefit from 

timely adjustments, therapy combinations, rapid sequencing, or alternatives. 

Furthermore, the Delphic consensus for GEP-NET response to therapy assessment 

defined both the RECIST 1.1 criteria and PET parameters as suboptimal due to the high 

variability in SSTR expression, the different histological patterns related to disease 

heterogeneity, heterogeneous responses, and lack of standardized criteria for molecular 

imaging [121]. In addition, biochemical assessment of tumor markers, such as 

Chromogranin A is also suboptimal. However, promising and innovative approaches, 

such as NET TEST, have been proposed but they are highly costly and not easily 

accessible [133, 134]. Therefore, the identification of new and reliable quantitative 

imaging parameters, such as radiomics, could be crucial to better address eligible 

candidates and to assess the response to PRRT, early selecting the best therapeutic 

opportunity, avoiding high-costly treatments and related toxicities.  
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A few studies already assessed the potential application of machine-learning (ML) in 

GEP-NET to predict response to PRRT. However, such studies referred to very limited 

populations [119, 135], heterogeneous cohorts, or considered only predefined features 

[131, 135, 136]. Therefore, we aimed to develop a more robust radiomics 

(“radiOMICS”) predictive model of response analyzing [68Ga]Ga-DOTATOC PET/CT 

images before and after complete [177Lu]Lu-DOTATOC PRRT (“THERAGNOstics”) 

in well-differentiated, progressive, metastatic GEP NET, namely “Theragnomics” that 

can be applied in a clinical decision support system (CDSS). 

 

5.4.3. Material and Methods 
In this retrospective study, we included all consecutive well-differentiated GEP-NET 

patients who, between 1 April 2013 and 30 November 2019, underwent a baseline 

[68Ga]Ga-DOTATOC PET/CT within 2 months before beginning the PRRT with 

[177Lu]Lu-DOTATOC, and a follow-up [68Ga]Ga-DOTATOC PET/CT available 

within 9 months after the last PRRT cycle. CgA was also assessed before each PRRT 

cycle and at the end of the treatment. Clinical, laboratory, and [68Ga]Ga-DOTATOC 

PET/CT follow-up data were collected for a period of at least 3 months after the last 

cycle. Patients were not eligible if: (a) they were under 18 years of age; (b) lack of 

follow-up/baseline imaging and clinical data; (c) patients with other concomitant 

oncological pathology. In Figure 15, we describe the study workflow.  

 
Figure 15. Study workflow. 

 
 

In comparison with baseline, [68Ga]Ga-DOTATOC PET/CT follow-up after PRRT 

determined the status of response to therapy for each lesion in terms of disease 

progression (PD, increase in lesion size/SUVmax of at least 25%) vs. stability (SD, 

increase-reduction in lesion size/SUVmax < 25%), reduction (PR, decrease in lesion 

size/SUVmax of at least 25%), or disappearance (CR). All PET/CT images were 
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qualitatively analyzed with a dedicated workstation and were interpreted by two nuclear 

medicine physicians. All patients completed full PRRT (at least 5 cycles) that began 

within 2 months after baseline [68Ga]Ga-DOTATOC PET/CT. Therapy response was 

routinely assessed on an individual lesion level. 

Through LifeX, we extracted 65 PET features for each lesion detected at baseline 

[68Ga]Ga-DOTATOC PET/CT.  In addition, five clinical features were also considered: 

grading (G1-G2-G3), number of PRRT cycles, PRRT cumulative activity, pre- and 

post-PRRT CgA values. All the features (imaging and clinical) were correlated with the 

response data. Specifically, due to the redundancy, heterogeneity, and uncertainty of the 

information represented by the radiomics features, we used an innovative mixed 

descriptive-inferential sequential approach for the feature selection and reduction 

process [62]. For each feature, the point biserial correlation (pbc) index between 

features and the dichotomic outcome (PD vs. SD, PR, CR) was calculated, sorting the 

features in pbc descending order. Then, a cycle started to add one column at a time, 

performing a logistic regression analysis by comparing the p-value of each iteration and 

stopping in the case of a growing p-value. Accordingly, the features with valuable 

association with the outcome were identified and assessed (singularly and in 

combination) for response to PRRT prediction. Finally, the discriminant analysis (DA) 

was used for implementing the classification model using the k-fold strategy to split 

data into training and validation sets. In this way, the PET studies were divided into k-

folds. One of the folds was used as the validation set and the remaining folds were 

combined in the training set. This process was repeated k-times using each fold as the 

validation set and the other remaining sets as the training set. In our study, k = 5 was 

empirically determined by trial-and-error strategy (k range: 5–15, step size of 5).  

For the most significant features, we also assessed the percentage difference value 

before (T0) and after PRRT (T1) in terms of delta radiomics, translating the pre-PRRT 

[68Ga]Ga-DOTA-peptide PET/CT ROI in the same lesion area of the follow-up 

performed within nine months after PRRT. The delta radiomics was then calculated 

using the following formula: 

 

D = 100 * (Feature T1 - Feature T0)/Feature T0 

 

Finally, we performed a per-district analysis (lymph node, liver, and bone) evaluating 

all the pre-PRRT PET/CT features in response to PRRT prediction.  
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The differences of the most significant features and delta radiomics between responders 

and non-responders were compared using a non-parametric Mann–Whitney U test. The 

ability of the most significant radiomics features to predict the response to PRRT was 

assessed with ROC analysis. The AUC was reported.  

In addition, a site-dependent sub-analysis was performed for the most represented 

districts of our cohort (lymph node, liver, and bone), evaluating both the pre-PRRT 

PET/CT parameters, radiomics features, and the delta radiomics for the most significant 

parameters in the response to PRRT prediction. 

 

5.4.4. Results 
A total of 38 GEP NET patients with a median age of 58 years (range 35–79; mean 59; 

15 out of 38 female) were retrospectively included and underwent a baseline [68Ga]Ga-

DOTATOC PET/CT (mean activity 151.1±55.5 MBq, range 93–330 MBq; median 

120.5 MBq) a mean of 1.4±0.7 months (0–2) before complete PRRT with a median 

cumulative dose of 29.0 GBq (23.9–32.8 GBq), followed by [68Ga]Ga-DOTATOC 

PET/CT (mean activity 165±62.6 MBq, range 93–330 MBq; median 128.5 MBq) a 

mean of 8.7±1.1 months (3–9) after the last PRRT cycle. The primary sites originated 

from the pancreas in 17 out of 38, ileum 14 out of 38, colon three out of 38, stomach 

two out of 38, and jejunum two out of 38. Grading was distributed as follows: 9/38 G1, 

27/38 G2, 2/38 G3. [177Lu]Lu-DOTATOC PRRT was performed a median of five 

cycles (5–7; total 200; mean 5.3±0.5) with a mean administered activity of 29±1.5 GBq. 

Baseline CgA was 277 ng/mL (17–1315; mean 394.7±376.1 ng/mL), while follow-up 

CgA was 125.5 ng/mL (16–1630; mean 380.5±426 ng/mL).  

At baseline [68Ga]Ga-DOTATOC PET/CT, we obtained 324 SSTR-positive lesions 

with at least 16 voxels. Based on their location, lesions were divided as follows: 169 in 

324 liver, 91 in 324 lymph nodal, 42 in 324 bone lesions, and 22 in 324 parenchymal 

(different than liver). At the qualitative assessment of follow-up [68Ga]Ga-DOTATOC 

PET/CT, 133 in 324 lesions were classified as PD and 191 lesions as responsive to 

therapy (SD + PR + CR). 

Through LifeX software, 65 features were extracted from baseline [68Ga]Ga-

DOTATOC PET/CT for each lesion. From the reduction and selection process, the 

combination of three features, two from PET (HISTO_Skewness; HISTO_Kurtosis) and 

one clinical (Grading) proved able to predict each lesion’s response to PRRT in terms of 
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progression vs. positive results, regardless of their nature (parenchymal, lymph nodes, 

bone lesions), with an AUC ROC, sensitivity, and specificity of 0.744, 66.4%, and 

70.3%, respectively. However, the best predictive result was obtained for 

HISTO_Skewness, with an optimal cut-off at 2.45 reaching an AUC ROC, sensitivity, 

and specificity of 0.745, 80.6%, and 67.2%, respectively.  Moreover, HISTO_Kurtosis, 

with an optimal cut-off at 6.94 reached an AUC ROC, sensitivity, and specificity of 

0.722, 61.2%, and 75.9%, respectively.  Differently, the SUVmax was not significant (p 

= 0.49) to predict the response to PRRT in terms of progression vs. objective benefit or 

response (AUC ROC 0.523, sensitivity 36.7%, specificity 63.3%), as shown in Figure 

16. 

 
Figure 16. ROC curve analysis for HISTO_Skewness, HISTO_Kurtosis, Grading, their combination 

(Combined Model) and SUVmax in the prediction of response to PRRT (early FU status) in terms of PD 

vs. positive results (SD, PR, CR). 

 
 

Furthermore, HISTO_Skewness and HISTO_Kurtosis were significantly higher (p < 

0.001) in non-responders’ lesions than in responders’ lesions before and after PRRT. 

Indeed, for such features, we also assessed the delta radiomics. After PRRT, in 

responsive lesions (SD + PR + CR) we observed a mean percentage reduction for 

DHISTO_Skewness (-3.31%±664.3%) and a mean percentage increase for 

DHISTO_Kurtosis (15.98%±71.4%). Differently, for progressive lesions (PD), we 

observed a higher mean percentage increase for DHISTO_Skewness (112.54%±348.3%; 
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p = 0.209) and for DHISTO_Kurtosis (5.81%±52.3%), less evident than 

responsive/stable lesions (p = 0.255). 

We also performed a site-dependent sub-analysis for the most represented districts of 

our cohort (lymph node, liver, and bone), evaluating all the most significant pre-PRRT 

PET/CT features in response to PRRT prediction, also considering the 

DHISTO_Skewness and DHISTO_Kurtosis. The following PET features showed a 

statistically significant difference between responder and non-responder lesions at the 

Mann–Whitney test: for the lymph node lesions (n = 91; 41 in 91 non-responsive and 50 

in 91 responsive), SUVmin and SUVmean (both p<0.028); metabolic tumor volume 

(MTV; p<0.0028); HISTO_Skewness and HISTO_Kurtosis (both p<0.028); shape (mL, 

p=0.012). For liver lesions (n = 169; 61 in 169 non-responsive and 108/169 responsive), 

MTV (p<0.001), all HISTO features (p < 0.041), GLCM_Energy (p=0.05), and 

GLCM_Entropy (p=0.048). Finally, for bone lesions (n = 42; 24 in 42 nonresponsive 

and 18 in 42 responsive), only HISTO_Skewness and HISTO_Kurtosis (both p<0.014) 

showed a statistically significant difference between responder and non-responder 

lesions. The mean values of HISTO_Skewness, HISTO_Kurtosis and SUVmax for 

responder and non-responder patients in the three districts are presented in Table 4. 

 
Table 4. The values of HISTO_Skewness, HISTO_Kurtosis, and SUVmax (median DS, range) for 

responder and non-responder patients in the three main districts affected by the disease. 
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For the lymph node district, the AUC of HISTO_Skewness was 0.67 (best cut-off at 

2.45 with a sensibility and specificity of 76% and 60%, respectively), while the AUC of 

HISTO_Kurtosis was 0.64 (best cut-off at 8.10 with a sensibility and specificity of 76% 

and 58%, respectively). For the liver district, the AUC of HISTO_Skewness was 0.76 

(best cut-off at 1.94 with a sensibility and specificity of 87% and 67%, respectively), 

while the AUC of HISTO_Kurtosis was 0.75 (best cut-off at 6.55 with a sensibility and 

specificity of 87% and 68%, respectively). For the bone district, the AUC of 

HISTO_Skewness was 0.73 (best cut-off at 3.33 with a sensibility and specificity of 

79% and 78%, respectively), while the AUC of HISTO_Kurtosis was 0.72 (best cut-off 

at 15.33 with a sensibility and specificity of 79% and 78%, respectively). For the other 

before-mentioned parameters, the ROC curve was not informative (AUC < 0.5). 

Finally, in Table 5 we summarized the results of the per-site sub-analysis performed on 

the Δradiomics of HISTO_Skewness and HISTO_Kurtosis. Accordingly, only 

ΔHISTO_Skewness for the liver district and ΔHISTO_Kurtosis for the bone district 

showed a statistically significant difference between PRRT responder and non-

responder lesions (p=0.031 and p=0.022, respectively). However, the ROC curve for 

these two parameters was not informative (AUC < 0.6), probably related to the small 

sample analyzed. 

 
Table 5. The values of ΔHISTO_Skewness and ΔHISTO_Kurtosis (median ± DS, range) for PRRT 

responder and non-responder lesions in the three main districts affected by the disease. 
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5.4.5. Discussion and conclusion 
In our model, the [68Ga]Ga-DOTATOC PET/CT radiomics features 

“HISTO_Skewness” and “HISTO_Kurtosis” were able to predict the PRRT response 

based on a lesion for primary tumors as well as metastasis regardless of the origin with 

an AUC ROC, sensitivity, and specificity of 0.745, 80.6%, 67.2%, and 0.722, 61.2%, 

15.9%, respectively, vs. 0.523 for the SUVmax that was not significant to predict the 

response to PRRT (p = 0.49). Moreover, the combination of two radiomics features 

(HISTO_Skewness; HISTO_Kurtosis) together with one clinical feature (Grading) was 

able to predict the PRRT response with an AUC ROC, sensitivity, and specificity of 

0.744, 66.4%, and 70.3%, respectively, but did not improve the accuracy over the 

HISTO_Skewness. 

So far, very few studies have investigated the role of ML in the prediction of response 

to PRRT in GEP-NET patients. Wetz et al. have reported on the predictive role of 

“asphericity” in GEP-NET patients enrolled for PRRT [137]. They observed that a 

higher level of “asphericity” was associated with poorer outcomes. However, compared 

to our study investigating [68Ga]Ga-DOTATOC PET/CT, features were derived from 

[111In]DTPA0-octreotide scintigraphy, which has a lower affinity to SSTR2 compared 

to PET radiopharmaceuticals, and different image modalities than PET/CT and/or 

PET/MRI. More recently, Önner et al. assessed the value of two predefined first-order 

features, “skewness” and “kurtosis” (interestingly the same to our study), in the 

prediction of response to PRRT in 22 GEP-NET patients for a total of 326 lesions [138]. 

Differently from our study, they considered SD as a non-response to PRRT, even if in 

the clinical practice the stability of disease is a warranted result in this scenario 

considering that PRRT is approved for progressive, metastatic, and usually heavily 

treated NET patients. Similar to our results, they observed that such features were 

significantly higher in non-responder patients (p<0.001 for skewness and p=0.004 for 

kurtosis, vs. a p<0.001 in our study for both).  

In a different scenario from our paper (survival analysis), Werner et al. described their 

experience in a multicentric cohort of 142 NET patients (108/142 GEP NET) applying 

predefined features. The authors reported that four features, namely “entropy” (similar 

to our results for lymph node lesions), “correlation”, “short-zone emphasis”, and 

“homogeneity”, provided a significant distinction between responders from non-

responders. Furthermore, “entropy” proved to be independently associated with PFS 
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and OS, while “skewness” was independently associated with OS. Moreover, 

conventional PET parameters did not predict any of these outcomes [136]. Similarly, in 

our study, we observed that the SUVmax was not significant to predict the response to 

PRRT (p = 0.49), and only slightly significant for the distinction between PRRT 

responder and non-responder bone lesions (p = 0.047). The same group later observed, 

in 31 pNET (G1-G2) patients who underwent PRRT, that a cut-off > 6.7 for “entropy” 

reached a significant predictive ability for longer OS (AUC 0.71) [131].  

Moreover, in our study, for the most statistically significant PET features, we assessed 

the percentage variations in terms of delta radiomics: in responsive/stable lesions, we 

observed a mean % reduction for ΔHISTO_Skewness (-3.3%±664.3%) and a mean % 

increase for ΔHISTO_Kurtosis (16%±71.4%); for progressive lesions, we observed a 

mean % increase for ΔHISTO_Skewness (112.5%±348.3%) and ΔHISTO_Kurtosis 

(5.8%±52.3%), less evident than for responsive/stable lesions. In a small, heterogeneous 

NET cohort [135], Weber et al. applied textural analysis to [68Ga]Ga-DOTATOC 

PET/MRI liver lesions before and after PRRT at different dosages/radiopharmaceuticals 

using only predefined features. In terms of delta radiomics, they observed that patients 

undergoing therapy with SSA showed a trend in “entropy” decrease (-0.07±0.16) when 

compared to patients undergoing PRRT (0.14±0.43). 

In our preliminary experience, we aimed to give weight to a predictive model of 

response to PRRT based on the most significant [68Ga]Ga-DOTATOC PET/CT 

features. In the lesion progression prediction, a HISTO_Skewness = 2.45 reached an 

AUC ROC of 0.745 (sensitivity 80.6%, specificity 67.2%) and a HISTO_Kurtosis = 

6.94 reached an AUC ROC of 0.722 (sensitivity 61.2%, specificity 75.9%), with similar 

results if considered together with clinical parameters.  

Moreover, in the district sub-analysis, we observed that Δradiomics has a different 

tendency to increase or decrease for each feature, thus further reflecting NET’s 

heterogeneity in the liver (often extensive lesions with central necrosis) bone (often 

mixed and small lesions) and lymph node (possible desmoplastic reaction) [33]. 

As already stated, both [68Ga]Ga-DOTATOC PET/CT SUVmax and PET lesion 

volume are considered suboptimal parameters to assess the response to PRRT. 

Therefore, the potential added value of RFs is to provide prognostic additional 

information to conventional parameters, and HISTO_Skewness and HISTO_Kurtosis 

belong to this subset of features, as previously demonstrated [119]. The opportunity to 
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assess for each patient the single lesion’s heterogeneity and predict each lesion’s 

response to PRRT would enhance physicians to early address patients to the best 

options of care, reducing costs and potential toxicities [134], improving quality of life 

and survival.  

The presented preliminary “theragnomics” model proved to be superior to conventional 

quantitative parameters to predict the response of GEP-NET lesions in patients treated 

with complete [177Lu]Lu-DOTATOC PRRT, regardless of the lesion site. 
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CHAPTER 6 
 
6.1 DISCUSSION  
Because PET radiomics in NENs is still in its early stages, especially applied to 

[68Ga]Ga-DOTA-labelled somatostatin analog PET/CT, the methodology is less 

standardized and studies are more explorative compared to radiomics studies in other 

fields. 

For that reason, in this doctoral research, we have developed both technical and clinical 

studies. The technical studies developed respectively concerning the phantom, the 

creation of a semi-automatic segmentation approach, and the impact of reconstruction 

algorithms are a small step towards the unresolved harmonization problem of all the 

pre-processing steps required to ensure repeatability and reproducibility of data and 

results. However, we evaluated only a few of the many variables that must be taken into 

account to achieve robust semiquantitative or radiomic features, such as variabilities in 

scanner hardware from different manufacturers, injected activity, acquisition time after 

injection for functional imaging, acquisition time per bed position, CT parameters used 

for attenuation correction of PET data, matrix size, slice thickness of reconstructed 

images, respiratory motion, PET reconstruction algorithm and other post-reconstruction 

steps, such as the size of bin and segmentation methods used. This highlights the need 

for standardization, especially if such image analysis approaches are tested in 

multicenter studies [7, 22, 26, 61]. Indeed, in the future, our technical studies will have 

to be replicated in a multi-center setting to be validated. 

In our clinical studies, we examined the potential of radiomics for several key 

objectives in the management of NENs patients: prediction of tumor grade, prognostic 

assessment, and prediction of response to PRRT. Despite the attractive results reported 

above, there is still considerable work required to apply the results of this research in 

clinical practice: a sufficiently large and homogeneous study sample is hardly available 

due to the rarity of NENs, patients with NENs hardly perform a dual-imaging with 

[18F]F-FDG and [68Ga]Ga-DOTA-peptides PET to evaluate the “NETPET score”, the 

inherent heterogeneity of these tumors makes a standardized approach in the 

methodology applied to PET imaging difficult compared to other tumors (high 

variability of uptake for both [18F]F-FDG and [68Ga]Ga-DOTA-peptides imaging 

compared to other tumors), these are mostly exploratory and univariable analyses with a 
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lack of external validation. Despite this, some encouraging results obtained through the 

above-mentioned articles suggest that a significant role in 'non-invasive' patient 

management in the clinical practice and in the clinical decision support system (CDSS) 

could be played by some RFs in the future, such as first-order statistics (such as 

entropy), metabolic tumor burden (MTB) from [18F]F-FDG PET/CT images, 

somatostatin receptor tumor burden (SRTB) from [68Ga]Ga-DOTA-peptides PET/CT 

images and GLRLM features. 

Finally, as part of the results of this doctoral project, the publication of negative results 

regarding the use of radiomics in lung neuroendocrine tumors was also very relevant: 

indeed, the publication of negative findings in the field of radiomics is equally 

important to that of positive results to understand the directions for meaningful research 

that will bring the field to the next level.  

 

6.2 CONCLUSION 
In conclusion, the results obtained from our research are promising but need to be 

further investigated in a multi-center setting to assess possible validation. In this 

scenario, based on the results of our studies, technical studies and clinical studies that 

used radiomics for the prediction of response or long-term outcome seem to be more 

relevant endpoints comparing with studies focus on the identification of tumor grade, 

since these latter presumably require even more large and homogeneous samples and 

the availability of several data (histopathological, genetic, radiological and nuclear 

medical). 
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