
UNIVERSITÀ DEGLI STUDI DI TORINO

DIPARTIMENTO DI SCIENZE VETERINARIE

Dottororato di Ricerca in

SCIENZE VETERINARIE PER LA SALUTE ANIMALE

E LA SICUREZZA ALIMENTARE

ENHANCING MACHINE LEARNING APPROACHES

FOR BIODATA MINING IN VETERINARY SCIENCES

Tesi presentata da: Irene Azzali

Tutor: Mario Giacobini

Coordinatore del dottorato: Maria Teresa Capucchio

ANNI ACCADEMICI 2017/2018-2018/2019-2019/2020



Contents

I Introduction and Motivations 9

1 Introduction to the ecological problem of vector borne diseases 10

1.1 Culex spp. mosquitoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 West Nile Virus in Piedmont Region, Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Modelling mosquito abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Statistical modelling of mosquito abundance . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Multiple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Generalized linear mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Limits of statistical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Introduction to Machine Learning approaches 16

2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Extreme gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Recurrent Neural Network and Long Short-Term Memory . . . . . . . . . . . . . . . . 20

2.2 Machine learning in mosquito modelling: pros and cons . . . . . . . . . . . . . . . . . . . . . 20

3 Genetic Programming 22

3.1 Introduction to Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Genetic Programming: the Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Genetic Programming for mosquito abundance . . . . . . . . . . . . . . . . . . . . . . 27

4 Thesis Goals and Motivations 28

2



II Genetic Programming Application 30

5 Genetic Programming on Mosquito Prediction 31

5.1 The dataset involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 The techniques involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Genetic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 Generalized linear mixed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.3 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.4 Extreme gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.5 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.3 The model for mosquito dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 What the results suggest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Vectorial Genetic Programming 40

6.1 Previous works about time series in GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Vectorial GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Experiments to validate VE_GP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1 Benchmark problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.2 Parameters and statistical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Next step: VE_GP real application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Vectorial Genetic Programming Stalks Mosquitoes 54

7.1 The new datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4 Conclusion and next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Further Works on Vectorial Genetic Programming: Prediction of Physiological Time

Series 64

8.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3



8.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3.1 Genetic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3.3 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3.4 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3.5 Long short-term memory network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3.6 Vectorial genetic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4 Experiments: Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.4.1 Analysis of the best solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

III Improving Genetic Programming 75

9 An Attempt to Improve Vectorial Genetic Programming Performance: the Inclusion of

Geometric Semantic Operators 76

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.1.1 Geometric Semantic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.2.1 The datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.2.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10 A Coevolutionary Approach Towards Assumption Free Genetic Programming 85

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2 Formulation of coevo_VE_GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2.2 Fitness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.2.3 Genetic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.2.4 New generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.2.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.4.1 Is coevo_VE_GP a real learning process? . . . . . . . . . . . . . . . . . . . . . . . . . 93

4



10.4.2 The (true) evolution of aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.4.3 Coevolution prematurely ended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.4.4 The driven inizialization is beneficial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.4.5 Comparison with VE_GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

IV Conclusions 103
10.6 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107

5



Abstract

Vector-borne diseases (VBDs) are illnesses caused by parasites, bacteria or viruses that are transmitted by

vectors, which include fleas, ticks and mosquitoes [57]. These diseases considerably impact the economic

and public health, thus the development of effective prevention measures is essential. Besides the treatment

and control of the disease itself, an approach to monitor VBDs is by means of vector control. Developing

effective vector control measures allows for an immediate interruption of disease transmission and helps in

disease eradication [28]. Vector abundance modelling is one of the approaches to address vector control.

Modelling vectors means estimating the local abundance of vectors as a function of the features deemed

informative on their dynamics. It is known that weather influences survival and reproduction rates of vectors,

in turn influencing the rates of development, survival and reproduction of the pathogens they harbour. The

prediction of vector occurrence and the understanding of vector-habitat link are therefore crucial to the early

warning of pathogen circulation and to guide vector control strategies.

Modelling techniques share the principle to learn from data, however, we recognize two main approaches

differing for their main purpose. Mathematical models, refers to all the mathematical formulas used to

describe how variations in the response variable are generated by relationship with explanatory variables.

The main objective of mathematical modelling is the discovery and the interpretation of the relationship

among the included variables. Machine learning modelling is, instead, a set of techniques that learn the best

model underlying data in order to make predictions on unseen data. The focus this time is in the accuracy of

the forecast, penalizing the readability of variables interactions. The use of precise mathematical modelling

techniques, statistical modelling, in the field of vector abundance modelling has been dominating respect to

machine learning approaches. Statistical modelling, in fact, provides understanding of the mechanisms that

influence vector abundance and thus suggests vector control strategies. Data involved to fulfil vector abun-

dance prediction, however, are usually heterogeneous, involving different formats and types. The research

is, therefore, moving towards machine learning (ML) models that can better catch the complex interplay

between environment, climate and vectors. Compared with statistical methods, ML does not reside on as-

sumptions (e.g. linearity of data structure). ML methods can handle complex data and implicit interactions

among input factors, further inquiring on possible non-linear impacts of the covariates which are generally
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difficult for statistical methods to recognize.

In an application perspective, models have their greatest utility when they can be used predictively and

not simply as a means of exploring putative relationships among variables in the data. This consideration

still leads towards further exploration of ML methods in VBDs abundance prediction. However the main

drawback of ML methods is the lack of readability and interpretability. Many of ML techniques, in fact,

are black-box methods, therefore the variables interaction responsible of the abundances remains unknown,

providing less information for vector control. This drawback is overcame by a ML techniques called Ge-

netic Programming (GP). GP automatically discovers solutions to problems by applying search principles

analogous to those of natural evolution [60]. In theory, GP can cover any kind of problem whose candidate

solutions can be measured and compared in terms of how well they solve the problem. One of GP most

successful application is the discovery of the function describing features interaction in data, or in other

words, modelling. Respect to classical ML methods, GP has the advantage to obtain readable models for the

user, which allows for interpretation when the model formula is not too complex. Moreover, GP performs a

natural selection of all the variables investigated to approximate the target, thus avoiding prior features se-

lection. To the best of our knowledge GP has never been explored in the field of vector abundance prediction,

although it has all the characteristic to be a promising technique.

In this work we focus on the most studied disease vectors: mosquitoes. Mosquito is in fact one of the

deadliest animal in the world due to its great ability to carry and spread diseases that can cause death,

such as Zika virus, West Nile virus, Chikungunya virus, dengue, and malaria [57]. More than half of the

world population, moreover, live in areas where mosquitoes are present. The threat accompanying this vector

determined, therefore, intensive studies on the topic of mosquito-borne diseases which provided us with many

data on mosquito dynamics.

The overall goal of this work is to investigate the innovative use of GP in the field of vector abundance

prediction. In particular we start from the available data of Culex pipens counts collected in the context of

the surveillance programme promoted by IPLA [3] in Piedmont region. The dataset was already used in [11]

to address mosquito abundance prediction by means of statistical modelling, thus we have previous results

to compare GP performance. Moreover, to include GP in the framework of ML for eco-epidemiological

problems, we benchmark GP performance against other ML approaches. We expect GP to improve at least

the predictive accuracy of statistical modelling which limits the interaction between predictors. GP structure

has even the advantage of being easy to modify in order to satisfy problem requirements. This feature is of

great importance since we can enhance classical GP approach to properly deal with the different data format

that we may face in vector abundance dataset. Time series are, in fact, frequently present in these dataset.

The seasonal dynamics of vector population is likely to be associated with the fluctuation of climatic and
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weather variables over time, thus time series data. At the moment, classical methods in statistical and ML

modelling are mostly unable to handle time series as ordered sequence of values. The problem we are dealing

with, in fact, is not the classical time series regression of predicting the future occurrence based on past ones.

GP easy structure, instead, can be extended to work with raw time series data. Mathematical vectors are

the suitable and immediate representation of time series and we can adapt GP to treat vectors as variables.

The development of an innovative approach of GP in the context of epidemiological modelling will even be

the springboard of a new ML technique that deals with vectors. By means of this work we want to make

the veterinary community aware of GP technique as a modelling approach that can sum up three important

goals of ecological modelling: readability of the model, ability to catch any functional forms describing the

data and ability to adapt to data without distorting their nature.
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Chapter 1

Introduction to the ecological problem of

vector borne diseases

Vector borne infectious diseases (VBDs) are illnesses that result from an infection transmitted to humans

by blood-feeding arthropods, such as mosquitoes, ticks, and fleas. Malaria, dengue fever, yellow fever and

plague are examples of such illnesses. The WHO estimates that one-sixth of the illnesses and disabilities

suffered worldwide is owing to vector-borne diseases, with more than half of the world’s population cur-

rently at risk [57]. VBDs constitute an important cause of death, health inequity, brake on socio-economic

development, and strain on health services. Continued progress in controlling these diseases is therefore an

important contribution to global health, development and security, particularly since there is no vaccine for

most of them.

Vector surveillance control is the primary mean to prevent VBDs, but, nonetheless, VBDs are still a

threat worldwide. The development of vector resistance to insecticides, changes in public health programs,

climatic change, increased mobility of humans, and urban growth are factors that contribute to the difficulty

in controlling and eliminating vector borne diseases. Since controlled epidemiological experiments are usually

not possible, modelling has played an important role in gaining a better understanding on how to mitigate

the burden of VBDs. This role of modelling has been strongly confirmed by the European Centre for Disease

Prevention and Control (ECDC) [24] that has recognized the spatial estimates of vector counts a crucial

advice to assess VBDs risk.

Modelling means estimating a desired response through a mathematical representation of the dynamics

underling it. Modelling vector abundance allows the prediction of occurrence which informs a number

of epidemiological concepts. These include the early warning of pathogen introduction, the potential for

pathogen transmission, its establishment and persistence, the consequent spread of the pathogen to new

areas and the control of pathogen spread. Of more importance is, however, the insight that modelling gives
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into the interactions of environmental and climatic factors driving the abundances. A prior knowledge of

these dynamics allows for more effective early strategies of mitigation and control.

This thesis originates from a virus considered endemic in Piedmont region: West Nile Virus (WNV). An

intensified and continuous WNV spread across northern Italy has been observed since 2008, which caused

more than one hundred reported human infections until 2016 [21]. In this context, modelling implication has

allowed the identification of informative patterns about potential disease outbreaks.

1.1 Culex spp. mosquitoes

The West Nile virus is transmitted predominantly by Culex spp. mosquitoes [16]. The habitat conditions of

these mosquitoes strongly impact the population abundance. Culex common breeding site is stagnant water

in a variety of natural and man-made containers, including tree holes, ditches and catch basins. They cannot

develop in running water, and water that is present less than a week. In addition, mosquitoes are cold-blooded

creatures, therefore they are not able to regulate their body heat and their temperature is essentially the

same as their environment. Temperature and mosquito activityare thus related with the insects flourishing

in moist, relatively warm environments [25]. Alterations to these traits can lead to substantial variations in

vectorial capacity of mosquitoes that harbor and transmit pathogens. Many mosquito-borne diseases, in fact,

exhibit substantial seasonality, due to strong links between environmental variables and vector life-cycles.

Culex pipiens is a Culex spp. complex native to Europe. Due to its spread and activity, Culex pipiens is

considered a pest in urban environments. Since Cx. pipiens is broadly distributed and bites a wide range of

hosts, the species enters into contact with a wide range of pathogens. In particular, Cx. pipiens appears to

be a major vector of WNV in Europe [56].

1.2 West Nile Virus in Piedmont Region, Italy

WNV circulation was firstly detected in Italy in the late summer of 1998, when 14 horses located in Tuscany

were confirmed for WNV infection by laboratory analyses [38]. After this outbreak, a national veterinary

surveillance plan was implemented in 2001 under the coordination of the Italian Ministry of Health (MoH) and

of the National Reference Centre for Exotic Diseases of Animals (Centro Studi Malattie Esotiche; CESME),

with the aim to early detect new incursions of WNV. The largest outbreak, however, dates to 2008 when

a WNV epidemic affected the regions in the Northeast of Italy surrounding the delta of the Po river. In

this occasion, the first human case of WNV neuro-invasive infection in Italy was observed [23]. Following

these events, the surveillance system was updated with the aim to detect as early as possible the WNV

circulation [7].
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Piedmont region was classified as a high risk area and therefore it was subject to the active surveillance

promoted by the national plan. Crossed by the Po river from West to East and bounded to the East

by the Ticino river, this region offers the suitable habitat to mosquitoes due to the extensive rice fields

that dominate the northeast landscape. This awareness has resulted in the regional mosquito population

surveillance programme that the "Istituto per le Piante da Legno e l’Ambiente" (IPLA) has been promoting

and coordinating since 1997. Mosquitoes are weekly collected, from May to September (20 collections per

year), from 36 CO2-baited traps randomly located in Casale Monferrato. This particular eastern area of

Piedmont region offers, in fact, a favourable environment for the proliferation of mosquitoes. After the

collections, all adult mosquitoes are sexed, counted and identified using proper keys. These data have been

used to implement different treatments strategies in order to reduce mosquito abundance in the study area.

More targeted vector control strategies, as well as the need to support decision making process, however,

demand for the use of modelling techniques. In light of this consideration, Bisanzio et al. in [11] used

the data of mosquito collections performed in the context of IPLA surveillance to evaluate the effects of

environmental determinants on the spatial distribution of Culex spp. through rigorous statistical modelling.

The predicted vector distribution maps allowed the identification of areas with high potential risk of WNV

introduction and amplification in eastern Piedmont region.

1.3 Modelling mosquito abundance

Since the goals for decisions and practices in the field of epidemiological problems are the prevention and

the control of a disease, modelling becomes a fundamental support. Applying models to mosquito dynamics

allows for the identification of the variables that influence the behaviour of the vector based on past infor-

mation, but also allows for the prediction of possible future scenarios. Building a model to predict mosquito

counts involve as a primary step the selection of the modelling technique. While mathematical models are

used in the epidemiological context to describe the mechanism of infection in a system [52, 27, 37, 26],

statistical models are the suitable approach to describe the mechanism of the abundance. Statistical models

formalize the relationship between variables in the form of a mathematical equation. The equation is based

on the additivity of deemed informative factors plus random errors that account for uncertainty, whose effect

on the response variable is based on coefficients estimation. These models are popular in the field of vector

modelling, because they well deal with count data and, most important, they can be interpreted.

1.3.1 Statistical modelling of mosquito abundance

Statistical models fall into four main categories: multiple linear regression techniques, generalized linear mod-

els, mixed effect models and time series approaches. Related to the precise vector we focus on, mosquitoes,
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we present the state of art concerning statistical modelling techniques, highlighting the reason beyond the

choice of a particular category.

In [42], for example, the authors predicted potential West Nile virus (WNV) mosquito vector in Seattle

region by means of multiple linear regression. More applications of multiple linear regression are found in [51]

where this modelling technique was implied to predict adult female of Aedes aegypti based on meteorological

variables.

Many researchers, however, found traditional linear regression too limiting due to the strict kind of

association imposed and rather prefer the more flexible generalized linear models. In [30, 12, 15] generalized

linear models were built to unveil the environmental drivers of mosquito abundances of some mosquito

species.

Mosquito abundance data are always the results of scheduled collections of mosquitoes from fixed traps in

the area of interest. In this perspective, mixed effect modelling approaches account for potential dependent

structure in these data due to the repeated observations at a single trap and due to the similar abundances

at nearby traps. In [62, 11] a generalized linear mixed model was used to predict mosquito abundance in

northwest Italy, while in [31] the effects of environmental and weather factors on mosquito abundances in

Ontario were investigated by means of linear mixed effect model.

Time series approaches, instead, are mainly used to forecast mosquito population based on meteorological

factors. An empirical model to predict WNV mosquito vector abundance in Erie County was developed in [64]

using time series analysis techniques and involving climatic variables. Poisson regression models were rather

explored in [54, 73] to describe and predict mosquito counts.

In this work we just focus on multiple linear regression and generalized linear mixed models (GLMM).

Multiple linear regression is selected because it is the basic modelling approach, while GLMM is selected

because it was the first technique enrolled to tackle the mosquito problem in our area of interest [11]. In

order to introduce the reader to the considered models, here below we provide a description of both the

techniques.

From now on we use with interchangeability the words target, output and response to denote the de-

pendent variable to be inferred and the word predictors, explanatory variables and features to denote the

independent variables deemed informative about the dependent variable.

1.3.2 Multiple linear regression

Multiple linear regression (MLR or LR) is a statistical approach to model the relationship between the

expected value of a continuous response 𝑦 and a set of explanatory variables 𝑥𝑖, 𝑖 = 1, . . . , 𝑛 through a

linear function [34], thus 𝐸(𝑦) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑛𝑥𝑛. The parameters of the function are estimated from
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data. The most common approach to fit parameters is least square (LS) method. The best parameters,

according to LS technique, are the ones that minimizes the the sum of squared residuals (a residual being:

the difference between a collected value, and the predicted value provided by a model). Given 𝑚 observations

of the response, the general model form can be rewritten as:

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + · · · + 𝛽𝑛𝑥𝑛𝑗 + 𝜖𝑗 , 𝑗 = 1, . . . , 𝑚,

where 𝛽𝑖, 𝑖 = 0, . . . , 𝑛 are the parameters and 𝜖𝑗 , 𝑗 = 1, . . . , 𝑚 are the error terms. The residual errors 𝜖𝑗

represent the deviations of the observed values 𝑦𝑗 from their means 𝐸(𝑦) and are assumed to be normally

distributed.

1.3.3 Generalized linear mixed models

A GLMM is a statistical model that combines the characteristics of Generalized Linear Models (GLM) and

mixed models [77]. Therefore, the linear function is assumed to link explanatory variables and a trans-

formation of the expected value of the response, and both fixed and random effects join the predictors to

introduce population-average effects and subject-specific effects. The general linear mixed model can be

written therefore as:

𝑔(𝐸(𝑌 )) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑛𝑥𝑛 + 𝑏1𝑢1 + · · · + 𝑏𝑝𝑢𝑝,

where 𝑔 is the link function, 𝛽0, . . . , 𝛽𝑛 are the fixed effects parameters, and 𝑏1, . . . , 𝑏𝑝 are the random effects

parameter of 𝑢1, . . . , 𝑢𝑝 random effects. Maximizing the log-likelihood function with respect to 𝛽0, . . . , 𝛽𝑛

and 𝑏1, . . . , 𝑏𝑝 allows the fitting of the model.

1.3.4 Limits of statistical modelling

Every modelling technique has it pros and cons that guide the user in the selection of the optimal method

for the problem under analysis. As previously shown, when dealing with mosquito counts statistical models

are one of the first choices due to their immediate application and interpretation. We claim, however, the

existence of some limitations that could be overcome by different modelling approaches.

Statistical models have fixed structures. The shape of the combination of variables is decided by experts

knowledge or information gained on previous data. Once chosen, the collected data are used to determine

the parameters, i.e. the coefficients of these combinations. Since the models have a human build formulation,

high order interactions among variables that are not specified can not be detected. The factors deemed as

informative about the abundances are heterogeneous, potentially including environmental time series as well

as constant characteristics of the study area, therefore complex relationships are more likely.
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We have mentioned that statistical models allow both the discovery of links and variables dynamics as

well as the prediction of the response, thus the counts. The main focus of the method, however, is in the

understanding of the relationship. The best relationship is inferred directly on the available collected data, in

the sense that the fixed structure adjust its shape through parameters to describe at its best the data. Surely,

a portion of the data can be cut off the adjusting phase to test the performance of the model on unseen

data. The goodness of the model, however, is evaluated by means of the significance and robustness of the

parameters rather than by means of performance on unseen values. Once discovered the dynamics, control

strategies may wish to foresee the abundances to know in advance high risk areas, and this need requires the

use of other kind of techniques focused on the accuracy of prediction rather than on interpretation.

The next section present to the reader the field of machine learning techniques. This new popular area

provides modelling approaches able to overcome the main limitations of statistical modelling.
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Chapter 2

Introduction to Machine Learning

approaches

The reader of this dissertation, once arrived at this page, has probably understood that the classical ap-

proaches to figure out mosquito dynamics consist in forcing pre-defined structure to fit these dynamics. These

approaches are actually statistical modelling approaches. The inclusion of new data and of new variables

to reflect every possible scenario makes the dynamics to be inferred highly complex. Moreover, only prior

knowledge or repeated tentative lead the choice of the fixed structures. The researcher with expertise in

statistical models, therefore, would undoubtedly face the question: "How can I discover the best models un-

derlying my data?". This is the time of machine learning introduction. Machine learning shifts the question

from "How can I" to "How can computer".

Machine learning (ML) is a collection of computational methods that give the computer the ability to

learn the solution to complex problems when we are not able to draw one. In this context, the problem is

the prediction of mosquito dynamics, thus through ML we will make the computer learn the best model to

describe and predict these dynamics. There are three broad types of ML, known as supervised Learning,

unsupervised Learning, and Reinforcement Learning, but we only go deep into the understanding of supervised

learning, which includes the problem we are dealing with.

2.1 Supervised learning

Supervised learning is a type of ML in which the system is presented with labelled data, thus data of the

problem with the corresponding output. The goal of ML methods is to make the computer learn the mapping

function joining data to label so well that, when presented with new data, the computer infers the correct

label. To clarify, we consider 𝑋 a set of input variables, such as some informative factors about mosquito
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abundance. Letter 𝑌 , instead, represents the mosquito counts. Given to the computer data of 𝑋 and the

corresponding 𝑌 , through supervised machine learning the computer learns the mapping function 𝑓 so that

𝑓(𝑋) = 𝑌 . Once learnt, the computer is able to provide 𝑌 on new and unknown values of 𝑋. It is called

supervised learning because the process of an algorithm learning from a dataset can be thought of as a

teacher supervising the learning process. We know the correct answers, the algorithm iteratively makes

predictions on the training data and is corrected by the teacher. Learning stops when the algorithm achieves

an acceptable level of performance. Supervised learning is divided into two phase.

Phase 1 is the so called training phase in which the ML algorithm is fed by the labelled examples, thus

the 𝑋 and corresponding 𝑌 . Suppose we want to build the system to predict mosquito counts. We provide

in this phase to the ML algorithm examples of environmental and climatic variables and their associated

mosquito count. The algorithm may notice that the counts of rainy days are lower rather than the ones of

sunny days. By looking at the examples, over and over, the algorithm recognizes this pattern. Therefore,

the algorithm may find out that the map 𝑓 is 2.8 · rainfall, thus mosquito = 2.8 · rainfall where rainfall is an

entry of 𝑋 and mosquito is actually 𝑌 .

Phase 2 is instead the so called test phase in which we provide to the algorithm unseen data and it has

to return the label as learned is phase 1. This step consists in the real application of the system that, once

trained during phase 1, is finally able to predict on unknown data. Referring to the example problem, once

the algorithm has learnt 𝑓 , if we give it new values of the input variables, thus new value of 𝑋, the system

returns the corresponding mosquito count.

An important feature of the training phase is the acquisition of generalization capability. The system

learning is based on training data, so it seems reasonable that the more training data the system has access

to, the better it gets at guessing the map. This consideration is not true. The system in fact may become

too specific on the training data, learning a mapping function that fits perfectly the training data, but its not

capturing the general behaviour of the data. This phenomenon is called overfitting. Recalling our problem,

imagine that we provide to the algorithm lots of data regarding mosquito collections in a sunny area. The

variable concerning rainfall, therefore, may seem quite uninformative since it is mainly constant aver the

whole dataset. The algorithm, then, may learn a function perfect for these data that do not take into account

the rainfalls. When facing with new data regarding another area, the algorithm may fail to return the correct

number of mosquitoes because it has not learnt with generalization. Figure 2.1 shows in the simplest case

of one input variable a map 𝑓 learnt with overfitting and a map 𝑓 learnt with generalization. The curve in

(b) captures closely the training points, but it is likely that a new point will be to closer to the curve in (a),

rather than to the curve in (b).
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Figure 2.1: Training properties

Overfitting is not visible during the test phase unless we select a portion of the whole labelled dataset

as the test set, and use it just in phase 2. The labels will be then compared to the predictions made by

the system to infer the accuracy. In case the accuracy of predictions in the test set is much lower than the

accuracy of prediction in the training set, i.e. the other portion of the dataset, then overfitting is detected.

The problem of overfitting is now visible, but it would be better to avoid it. The simplest solution is

the so-called early stopping, involving the partition of the whole dataset in three portions. The training

and test set as mentioned before and the validation set. This last set is not used during the training, but

involved in the training to measure how generally the algorithm is learning at every looking at training data.

Figure 2.2 shows the mechanism. At every iteration, i.e. at every looking at training data, the map learnt

by the algorithm is tested on the validation set. As soon as the predictions error on the validation stops to

decrease, the training stops and test phase starts.

Iterations

Training error

Validation error

Stop

Figure 2.2: Training and validation set dynamics

The problem involved so far to clarify the explanations is the main epidemiological problem of the whole

dissertation: modelling mosquito abundance. The variables in 𝑋 are all the factors deemed informative

about the counts, while 𝑌 is the abundance of mosquitoes. The mapping function 𝑓 is the model, thus the

combination of variables that determines the target 𝑌 . The class of problems with the goal of finding the

link functions that can predict the value of the dependent attribute from the attribute variables is called

regression. Modelling mosquito abundance belongs to this class. Regression problems are tasks usually
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solved in the context of ML by supervised learning.

We have described until now how supervised learning manages regression problems by training and test,

but how in practise the map 𝑓 is discovered step by step during the training is still unknown. This process is

what defines the different ML techniques of supervised learning. We recognize neural networks, decision trees

and random forest, and regression trees. For the purpose of this work, we describe multilayer perceptron

that is a neural network, and random forests. Moreover we opt to consider two advanced ML techniques

that deserve to be explored: extreme gradient boosting and long short-term memory network. The first one

is known to be the most accurate ML methods for prediction [4], while the second belongs to the family of

recurrent neural network which addresses predictions involving time series. Since dataset concerning vector

abundance typically consists of time series, the use of a proper technique to treat these data is mandatory.

2.1.1 Multilayer perceptron

Multilayer perceptron (MLP) is a type of artificial neural network that is patterned in combination of

neurons called layers [66]. MLP consists of a set of source nodes that constitute the input layer, one or more

hidden layers of computational nodes, and an output layer of computational nodes. The multiple layers are

meant to capture more complex relationships among input variables, therefore we preferred MLP over simple

perceptron in the context of mosquito abundance modelling. The MLP network is fed with input data in the

input layer and the signal propagates in a forward way, layer by layer, towards the output layer that returns

the predicted target. Each unit (neuron) posses a unique set of weights corresponding to all the connection

that start from the unit. Weights are the parameters of the network to be trained in order to approximate

the function that links the input to the output. MLP is fitted by the values of weights that minimizes a

selected loss function.

2.1.2 Random forest

A regression tree is a ML technique that predict values of responses by learning decision rules derived from

features [40]. To construct a regression tree, from top to bottom a test is applied to one of the features.

Depending on the outcome of the test, we go to either the left or the right sub-branch of the tree. Eventually

we come to a leaf node, where we make a prediction. This prediction averages all the training observations

which reach that leaf. The tests, which are actually the rules defining the tree, determine a partition of

the feature space. The partition such that the overall sums of squares residuals is minimized corresponds

to the fittest tree. More robust than single regression tree are random forests. A random forest (RF) is

an ensemble of regression trees that estimates the target by averaging individual tree predictions [39]. In

this work, we use an RF that follows the Breiman bagging idea of trees ensamble. Instead of training each
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tree on the same observations, each tree of the forest is trained over a fixed lower number of observations,

randomly selected with replacement from the whole dataset of observations. This technique regularize the

outputs, thus improving the generalization ability of the whole forest.

2.1.3 Extreme gradient boosting

Extreme gradient boosting (XGBoost) is an implementation of gradient boosted (GB) regression trees, with

a difference in modelling details that generally allows XGBoost to obtain better performance [74]. Boosting

is a technique where new models (regression trees) are added to correct the errors made by existing models.

Specifically, gradient boosting is an approach where new models are created to fit the residuals of prior

models and then added together to make the final model. The word "gradient" refers to the use of the

gradient descent technique applied to minimize the loss when adding new models.

2.1.4 Recurrent Neural Network and Long Short-Term Memory

Recurrent neural network is a type of artificial neural network designed to handle sequence of data [33]. It

memorizes information about the sequence of inputs and use it for accurate predictions by means of loops

in the network that pass prior information forward. Basic RNN suffers from short-term memory: the more

steps of a sequence to process, the more trouble to retain information about the previous steps. To solve this

problem long short-term memory (LSTM) were developed [67]. LSTM learns long-term dependencies using

gates that are capable of understanding what information to store and what to remove. These mechanisms

are responsible for keeping track of the dependencies between the elements in the input sequence. We

choose LSTM rather than basic RNN so that, in case of time series variables, the network can predict using

information from the beginning of the series.

2.2 Machine learning in mosquito modelling: pros and cons

In the context of modelling mosquito abundance, ML adoption with neural networks [78, 65], random

forests [12, 68, 65] and regression trees [20, 22] revealed a high predictive power, beating eventually the

classical statistical methods [78, 68]. These techniques are gaining popularity among epidemiologists be-

cause they tackle problems for which classical statistical methods are not well-suited. There are, however,

language and technical barriers that can make it difficult for epidemiologists to read and assess machine

learning studies. We provide an overview of the advantages of ML as well as of the limitations that some ML

approaches are trying to overcome. As already stated, ML is able to detect all patterns and trends beyond

data that are not apparent to human. This property allows to draw insights from complex data, where the

human formulation of statistical models is not sufficient. However, to conduct a proper training phase, the
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amount of data has to be massive and of high quality. Again related to the training phase, the volume of

data to be manage and the actual training process are time costly, but once this phase has been carried out,

the model is available and ready to predict on any new data. Respect to statistical modelling, moreover, ML

does not rely on any assumption about data.

Despite its great advantages, we have not discussed so far about the model returned by ML. The reason

beyond this fact is that most of ML algorithms are black box method. This epithet means that it is not

available to the user the model learnt by the algorithm. We can not therefore interpret the modelling result

and infer the meaningful dynamics and patterns responsible of the target. In such a field, this lack is quite

a huge disadvantage since the interpretation of the model is a fundamental characteristic. The choice of the

ML model to deal with an epidemiological problem, therefore, must be carefully addressed.

The next Chapter is dedicated to the presentation of a particular ML method capable of combining the

learning abilities of ML with the interpretability feature of statistical modelling. This technique is called

Genetic Programming.
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Chapter 3

Genetic Programming

3.1 Introduction to Evolutionary Algorithms

The machine learning approaches described in Chapter 2 mimic human knowledge acquisition to gain in-

formation about data. There is, however, another source of learning, the one that has been developing all

species worldwide from ages ago: darwinian evolution. Evolution is the natural improvement of individu-

als or populations by means of several phenomena such as competition, struggle for survival and genetic

inheritance.

Evolutionary algorithms (EA) are techniques that use the mechanisms of natural evolution to search

the best solution to a problem. EAs should be defined as a nature-inspired /computational intelligence

technique, which is part of the broader artificial intelligence methods. The application of EAs on supervised

regression problem, however, include these techniques in the context of ML. An EA contains four overall

steps: initialization, selection, genetic operators, and termination. These steps correspond, roughly, to a

particular facet of natural selection. Figure 3.1 schematize the whole process of finding a solution with EA.

An EA starts with the initialization of a population of solution to the problem. The population contains

an arbitrary number of possible solutions to the problem called individuals. Once a population is created,

members of the population must be evaluated according to a fitness function. A fitness function is a function

that takes into consideration the characteristics of an individual, and outputs a numerical representation of

how viable of a solution it is. After selecting the top individuals according to the fitness function, these ones

are used to create the next generation in the algorithm. Using the characteristics of the selected parents,

new children are created that as mixture of the parents’ qualities. The mixing processes are known as

crossover and mutation. The children have their fitness evaluated and compete for survival with the current

population to return the new generation. As in natural evolution, generation by generation the fitness of

the population rises. Eventually, the algorithm must end. There are two cases in which this usually occurs:
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Figure 3.1: Flowchart of evolutionary algorithms.

either the algorithm has reached some maximum runtime, or the algorithm has reached some threshold of

performance. At this point a final solution is selected and returned.

There are different types of EA which differ for the representation of the solution. According to the

modelling problem of mosquito abundance, a suitable approach of EA is tree-based Genetic Programming

(GP). We dedicate the next section to GP full presentation, giving emphasis to the features that make it an

appropriate tool for epidemiological problem.

3.2 Genetic Programming: the Technique

Introduced in 1992 [60], Genetic Programming is a kind of EA that induces computer programs by evolu-

tionary means [76]. According to the definition, therefore, the evolving solutions to the problem at hand are

computer programs. Computer programs are collections of instructions that can be executed by a computer

to perform a specific task. To give an example, 𝑥 + 3 · (𝑥 + 𝑦 + 𝑥𝑦) is a computer program that can be

evaluated, provided a value for 𝑥 and 𝑦. In this perspective, a model of mosquito abundance, viewed as a

combination of variables, is a computer program. A GP algorithm, thus, is capable of evolving models of

mosquito abundance that over time better suits the data.

The basic process of GP to return the model of data follow the flow of Figure 3.2.
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1. Randomly create an initial population of models using the available ingredients.

2. Execute each model and ascribe its fitness.

3. Select models from the population to participate in genetic operations.

4. Creates new individual by applying genetic operations.

5. Repeat from point 2 until an acceptable solution is found or some other stopping condition is met.

6. Return the best model so far.

Figure 3.2: Executional steps of basic GP.

Models in GP are expressed as syntax trees, built using the available ingredients provided by the user

which are variables and constants, called terminals, and arithmetic operations, called functions. The set of

all these ingredients is called primitive set. To give an example, let us assume that want to find out the

relationship among {𝑥1, 𝑥2, 𝑥3} responsible of 𝑦. The terminal set is {𝑥1, 𝑥2, 𝑥3} plus some constants, and

the functions set may be {+, ×, max}, resulting in the primitive set {𝑥1, 𝑥2, 𝑥3 1, 0.4, +, *, max}. A possible

model for 𝑦 can be therefore max(𝑥1 + 𝑥2, 𝑥1 + 0.4 * 𝑥3), represented in tree structure as in Figure 3.3:

+

*

𝑥1 𝑥2

+

𝑥3 max

0.4 𝑥1

Figure 3.3: GP tree structure.

We now go into a deeper understanding of the main tools of GP architecture, previously mentioned in

Figure 3.2. For a complete explanation, however, refer to [61].

Initial population. The starting point of GP is the random creation of a population of proposed models.

The most frequent approaches to perform the initialization are the full method, the grow method and the

ramped half-and-half method (RHH), a combination of the previous ones. All these techniques rely on a

maximum tree depth defined by the user. In the full method nodes are taken randomly from the functions
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set until the maximum depth is reached; in the grow method, instead, nodes are selected from the whole

primitive set until the depth limit is reached. The RHH is the easiest way of combining the two previous

methods: half of the population is created with the full method, the other half is created with the grow

method.

Execute and ascribe a fitness. The models execution consists in the evaluation of the trees expression

substituting the values of the variables according to the dataset involved. The execution allows the calculation

of a score, called fitness, for each model, which represents how well the model solve the problem at hand.

Considering the example introduced before, the fitness of a model can be the mean squared errors between

the value of 𝑦 predicted by the model, and the value of 𝑦 collected in the dataset. In this precise situation,

the lower the fitness, the better the model.

Select. The models that do well, thus the ones with the better fitness, are probabilistically selected to breed

and produce new models. This rule agrees with the Darwinian theory of reproduction: better individuals

(models) are more likely to have children than inferior individuals. The most used sampling method is the

lexicographic parsimony pressure introduced in [70]. This method chooses a random number of individuals

from the population and the best of them is selected. The selection is based on the idea of placing fitness,

then size in lexicographic order; that is, preferring smaller individuals only when fitness is identical. The

process is repeated many times to provide a pool of best individuals.

Genetic Operations. The offsprings of the selected parents are created by two operators that simulate

the Darwinian crossover and mutation. Given two selected parents, the subtree crossover selects a crossover

node in each parent tree. Then, it creates the offspring by replacing the subtree rooted at the crossover node

in a copy of the first parent with a copy of the subtree rooted at the crossover node in the second parent, as

illustrated in Figure 3.4.

The subtree mutation, instead, randomly selects a mutation point in a tree and substitutes the subtree

rooted there with a randomly generated subtree, as shown in Figure 3.5.

Repeat until. The population of offsprings join the current population and survival criteria select the new

generation. The survival of the individuals is a two-phase process. First, all the individuals (parents and

offsprings) are ordered by priority of survival that depends on the elitism level chosen. Each individual in the

ordered list is granted survival, depending on the allowed population size. In order to combine the Darwinian

evolutionary inspiration with the optimization need, the suitable elitism level is keepbest. The best individual

from both parents and children is kept in the new population, so it receives the highest priority of survival,
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Figure 3.4: GP crossover. The swapping subtrees are marked in blue and red.
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Figure 3.5: GP mutation. The mutating subtree and the random subtree are marked in red.

independently of being a parent or a child. The remaining individuals are ordered children first and then

the parents.

The iterative process of measuring fitness and performing the genetic operations is repeated over many
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generations until termination criteria are satisfied. These criteria can be fitness threshold or maximum

number of generations.

Best model. The predictive model returned by GP algorithm is the model of the last evolved population

with the best fitness.

A GP user has to be aware that every GP run returns a different model, because the algorithm starts

from a randomly generated population subject to randomly genetic operations. It is mandatory therefore to

perform several runs of GP and define a way to return just one final model among all the best ones.

3.2.1 Genetic Programming for mosquito abundance

There are few works that exploit GP in ecology, specifically marine ecology, and their results look very

promising. In [71] GP is used to identify which environmental variables determine zooplankton abundance,

while in [17] a similar approach is used to detect the drivers of planktonic population. To the best of our

knowledge, GP has never been involved in problem concerning vector dynamics. Nonetheless we claim its

implication in the epidemiological problem of predicting mosquito abundance due to its great properties that

can sum up all the advantages of the modelling technique explored so far.

GP shares the same capability of ML methods of detecting complex interactions without requiring prior

knowledge about data structure. Besides these features, GP has the great advantage of returning readable

and even interpretable models since every tree structure can be explicated. Surely some tree structure are

huge and a biological interpretation can be hard, but sometimes they reveal novel and unexpected interaction

between variables. GP, moreover, is able to perform an implicit features selection. The survival of the fittest

models during evolution, in fact, determines the survival of the variables they use which are surely the

most meaningful ones since they are involved in the best predictive models. In addition, GP structure is

highly modular and parametrized, and these properties allows the building and test of new methods from

the initialization to the survival.

These characteristics of GP are of great importance in order to better align the modelling to the decision

making process, thus further investigation of GP is highly recommended for vector abundance prediction.
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Chapter 4

Thesis Goals and Motivations

The overall goal of this thesis is to explore the innovative use of GP in the field of vector abundance

prediction. We start from the available data of Culex pipens counts collected in Piedmont region in the

context of the surveillance programme promoted by IPLA [3]. The dataset was already used in [11] to

address mosquito abundance prediction by means of statistical modelling, thus we have previous results to

compare GP performance. Moreover, to include GP in the framework of ML for epidemiological problems,

we benchmark GP performance against ML state of art.

In addition, we want to exploit GP easy structure to properly deal with the different data format that

we may face. Time series are, in fact, frequently present in dataset concerning vector abundance, even in

the specific dataset we are considering. The seasonal dynamics of vector population is likely to be associated

with the fluctuation of climatic and weather variables over time, thus time series data. At the moment,

classical methods in statistical and ML modelling are mostly unable to handle time series. In order to not

collapse all the time series into a static features, classical methods, as shown in [11], split the series as

different observations. This choice surely keep all the values of the series, but destroy the order information.

The sequential order allows the identification of peaks and patterns and the lack of this knowledge penalize

the accuracy of the modelling techniques. GP could potentially be extended to work with ordered sequences.

This new approach will totally rely on raw data without prior transformation, and we claim it will bring great

benefit to the accuracy since it will take informations directly from not distorted data. Moreover, this new

approach, risen from problems in the field of epidemiology, will provide to the general modelling community

a new method to properly treat any kind of ordered sequence (time series as well as space points).

The selection of GP as a modelling technique to be explored is based on several aspects. Primarily we

reiterate that the monitoring of mosquito abundance can not be conducted without focusing even on the

modelling methods. Investing enough effort to explore and enhance modelling techniques must, therefore,

be of fundamental interest.
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In particular, GP keeps the good abilities of ML in the context of complex problem without dismissing

the interpretability of the model. These properties of GP has already been explored with great results in

the field of ecological modelling, thus further exploration in the analogous field of epidemiological modelling

are likely to reveal and confirm GP advantages.

We are aware that epidemiologists are unwilling to investigate ML methods due to the difficulty in

understanding how the learning take place and where to focus to enhance it. GP provides a good bridge

to let epidemiologist approach ML techniques. The learning algorithm and GP structure are easy and less

obscure, thus it is even easier to think where to act to enhance results. To give an example, during a GP run

it is possible to observe a slow evolution with a fitness of the population mainly constant. It is not difficult

to understand that to speed up the process we can introduce genetic operators that produce more extreme

modifications of individuals.

GP choice is further supported by the absence of a model selection to describe data. In statistical

modelling it is fundamental to know the shapes of the different models and the meaning of the parameters to

make a proper choice. In GP, instead, the only selection is in the predictive variables and in the mathematical

operators to link the variables.

The dissertation is organized as follows. After the introduction in Chapters 1, 2, 3 to the problem and

the methodologies, in Chapter 5 we investigate the application of GP on the mosquito problem mentioned

before. The results revealed two main issues related to the time series involved in the dataset, that led

us to the development of Vectorial GP(VE_GP). In Chapter 6 we presented the new approach of VE_GP

as a GP technique suitable for time series prediction, potentially applied in a wider range of problems

rather than only vector abundance. We provided a whole explanation of the technique and preliminary

results of the application of VE_GP on benchmark problems, simulating the real problems we may face.

Chapter 7 finally presents VE_GP application on mosquito problem. We compared the results against

classical GP and we focused on what the new approach let us discover. We moreover put interest into the

exploration of VE_GP as a concrete device to build up vector control strategies. We in fact interpreted the

provided predictive model in terms of variables involved, variables associations and informative window of

time identified. Since VE_GP is not only a tool to predict vector abundances, in Chapter 8 we tested its

application to a problem belonging to a different area regarding the prediction of physiological time series.

The dataset structure of this problem is analogous to the one of vector abundance prediction, thus this

exploration let us strengthen VE_GP potential in real scenarios. Chapter 9 of the dissertation is dedicated

to some attempts we made to enhance VE_GP predictive ability that actually made us realize the real goal

of GP enhancement. Chapter 10, infact, presents a new approach of VE_GP that pave the way to the

concept of assumption-free in ML. Finally IV makes the overall conclusion of the thesis.
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Part II

Genetic Programming Application
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Chapter 5

Genetic Programming on Mosquito

Prediction

In this chapter, we report the investigation of genetic programming (GP) use in predicting mosquito abun-

dance. To highlight the pros and cons of GP we compare the technique with machine learning (ML) and

statistical methods already applied in the ecological field, in particular we considered a generalized linear

mixed model (GLMM), a random forest (RF), an extreme gradient boosting (XGBoost) and a multilayer

perceptron (MLP). The results revealed the high predictive accuracy of GP and the great capability of

generalization. However, a critical issue emerged: none of these methods treats properly time series.

5.1 The dataset involved

We started the exploration of GP on mosquito abundance prediction using the Cx. pipiens counts from 2002

to 2006 collected in the context of IPLA surveillance plan. The choice of the years and of the mosquito

species depends only on the quality of data. We considered the same predictive variables of [11], selected

as the most informative about the abundance of mosquitoes. The variable TWEEK is the average Land

Surface Temperature (LST) from 8 to 15 days prior to the trapping day derived from the Moderate Resolution

Imaging Spectro radiometer (MODIS) satellite (National Aeronautics and Space Administration, NASA [75]).

RAIN represents the cumulative rainfall from 10 to 17 days before trapping, registered by the nearest weather

station to the trap [1]. Both these variables capture the effect of climatic conditions on mosquito population

abundance during a precise window of time. Vegetation changes deemed influential on mosquito dynamics

are caught by the Normalized Difference Vegetation Index (NDVI ), derived again from MODIS [75] as 16

days average. While these variables change on each day of collection, some others are constant and inform

about the environment surrounding the trap. DISTU, DISTR, and DISTW estimate the distance of sampling
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locations to the nearest urban center, rice field and woodland respectively. The area covered by rice fields is

registered in the variable RICEA. The elevation of the trap location (ELEV ) is included among predictors

to spot the impact of altitude. The last variable involved is SIN, a sinusoidal curve with a phase of one

year. It is an artificial informer of the seasonality of mosquitoes, reflecting the shape of mosquito abundance

across the year. Its value, thus, has a peak in the first week of August where experts know there is a peak

in mosquito abundance.

The entire dataset used is thus composed of 3600 observations, each one corresponding to a collection of

mosquitoes on a precise day and trap. Every observation contains the values of the nine predictors (TWEEK,

RAIN, NDVI,DISTU, DISTR, DISTW, RICEA, ELEV and SIN ) and the value of the dependent variable,

or target, which is the number of mosquitoes collected.

To perform the experiments, we split the dataset into a learning and test set, following the natural order

of the years. Collections from 2002 to 2005 are used as the learning set to tune and train the algorithms, while

collections of 2006 form the test set, therefore they represent unseen data, used to test the generalization

performance of the predictive models. This approach is naturally determined by the real problem at hand:

developing predictive models for mosquito abundance. Thus, we used data from the past (2002-2005) to

train models and we assessed their generalization ability by evaluating them on future predictions (2006).

5.2 The techniques involved

We used different tools and software to run the chosen algorithms, namely MATLAB R2018A, GPLab [72]

and R. Nonetheless we do not provide a description of all the parameters, especially for the ones kept at

the default value of the respective implementations. Some parameters that needed to be manually inserted

were tuned according to the following strategy: we proposed a value for the parameter and we estimated

the performance of the algorithm by running it 60 times on 60 different splits of the learning set; in each

run the algorithm was trained on 75% of the learning set and validated on the remaining 25%; the median

result over the 60 runs on the 25% measures the performance of the algorithm using that particular value

of the parameter. In the end, we used the configuration that allowed us to obtain the best performance. In

the following description, we specify which software was used and which parameters were tuned in each case.

All the details about the techniques are found in Chapter 1.

5.2.1 Genetic programming

To perform GP experiments the preliminary parameter to be declared is the primitive set. In our case, the

terminal set T consists of the predictors described in Section 5.1, plus random constants r between 0 and 1

generated in runtime when building trees. Therefore T = {TWEEK, RAIN, NDVI, DISTU, DISTR, DISTW,
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RICEA, ELEV, SIN, 𝑟}. The functions set F includes the usual binary addition, subtraction and multipli-

cation operators, plus a protected version of the division, known as kozadivide, that returns 1 when the

denominator is equal to zero. Thus the set is F = {plus, minus, times, kozadivide}. Fitness is measured

as the Root Mean Squared Error (RMSE) between the predicted values and the real mosquito abundances.

The computational tool used for GP experiments is GPLab [72], a public domain GP system implemented

in MATLAB. The parameter setting considered is reported in the upper part of Table 5.1, and it corresponds

to the default values provided by GPLab.

5.2.2 Generalized linear mixed model

Since the first modelling technique to approach our problem was the GLMM proposed in [11] we included

this model in the comparison. The authors defined as random effects RNDtrap, which represented the spatial

difference between traps (the subjects) and SRNDtrap, which represented the effect of the spatial location

of each trap. The model expression provided is:

𝑦 = I + 𝛽1 * RAIN + 𝛽2 * TWEEK + 𝛽3 * SIN + 𝛽4 * ELEV + 𝛽5 * DISTU + RNDtrap

where I is the intercept representing the fixed effect and y is the abundance of mosquitoes. All the analyses

and training were performed using the R software package [2].

5.2.3 Random forest

In this work, we use an RF implemented in R [5], which requires the manual input of the number of trees

participating in the forests. Therefore, according to the strategy described above, we tuned this parameter,

investigating values from 100 to 700. The selected value was 700, as reported in Table 5.1.

5.2.4 Extreme gradient boosting

The implementation we chose for XGBoost is the one contained in R [6], which requires the number of rounds

(iterations) to be specified by the user. According to the tuning technique described above, we investigated

the best number of trees to configure, called the number of rounds, from 1 up to 20. This value and other

main parameters of XGBoost in R are listed in Table 5.1.

5.2.5 Multilayer perceptron

We adopted multilayer perceptron implementation included in the Matlab Neural Network toolbox [55].

Following the strategy previously described, we tuned the number of hidden neurons considering a network

with just one hidden layer. We explored all the values between 1 and the number of input variables as

suggested by a frequently used rule of thumb [8]. All the main parameters used are described in Table 5.1.
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Table 5.1: Parameters used in the experiments.

GP Parameters

population size 500

max number of generations 100

initialization Ramped Half and Half [61]

selection method Lexicographic parsimony pressure [70]

elitism best individual kept

crossover rate 0.9

mutation rate 0.1

max tree depth 17

RF Parameters

number of trees 700

XGBoost Parameters

𝜂 learning rate 0.3

max tree depth 6

number of rounds 7

MLP Parameters

learning algorithm Levemberg-Marquardt backpropagation [36]

hidden neurons 1

𝜇 increase factor 0.1

𝜇 decrease factor 10

epochs 1000
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5.3 Experiments and results

5.3.1 Experiments setup

Our objective was to study GP’s ability in predicting mosquito abundance during 2006, based on historical

data collected from 2002 to 2005, and to show its competitiveness by comparing it with other methods. After

a tuning phase of some parameters, RF, XGBoost, MLP and GLMM were trained on the learning set and

then evaluated on the unseen collections of 2006. Since GP is a population based and stochastic technique,

the training phase is conducted differently. We run the algorithm 60 times; in each time the population was

trained on a random sample of 75% instances of the learning dataset. In each run, the individual of the final

population that better performed in the remaining 25% of the learning dataset (called validation set) was

selected as the best predictive model found by GP. The final 60 best models composed the sample population

of GP models. Each of the GP models was then evaluated on the test set.

We measured the accuracy of prediction by comparing the RMSE between predicted and real collections

on the test data. Statistical significance of the null hypothesis of no difference in performance between GP

and each of the other method was based on one sample Wilcoxon signed rank test at 𝛼 = 0.0125, after

Bonferroni correction. For further comparison, we measured the overfitting as the difference between the

test and learning set RMSE.

5.3.2 Results

Table 5.2 summarizes the RMSE returned by each techniques on the test set. Regarding GP, we report the

median RMSE over the 60 models, choosing the median instead of the mean as a more robust descriptor of

outliers, which are likely to be found in stochastic methods. Table 5.3 presents the 𝑝-values of the Wilcoxon

tests comparing GP with the other methods.

Table 5.2: Statistics about the RMSE of the different techniques on the test set.

GP RF XGBoost MLP GLMM

83.8 (median) 83.0 87.9 83.7 85.5

Table 5.3: Statistical significance of the difference in performance between GP and the other methods.

GP vs RF GP vs XGBoost GP vs MLP GP vs GLMM

𝑝 = 3.1 · 10−7 𝑝 = 1.7 · 10−11 𝑝 = 0.2 𝑝 = 1.2 · 10−10
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According to the statistical tests, GP performance differs from all the other methods except MLP. The

boxplot in Figure 5.1 shows that GP is only outperformed by RF.
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Figure 5.1: RMSE on both the learning and test set for the different algorithms. Test set results are plotted

in grey, while learning set results are plotted in black.

The results on GP performance immediately suggest that the relationship among variables is more com-

plex than the one previously designed with a GLMM in [11]. However, at first glance, GP does not seem

to be the technique that returns the best result. Nonetheless, the quality of predictions should also take

into account the quality of learning subject to overfitting. As mentioned above, we decided to quantify

overfitting by calculating the difference between the learning and test median RMSE. For RF and MLP, this

measure returns 46.1 and 17.4 respectively. This result indicates severe overfitting for RF. Contrarily, the

difference between the learning and test RMSE for GP is only 1.8. We hypothesize that both RF and MLP,

even though the latter being in a more reduced form, are not learning the existing relationship between the

variables. The boxplot of Figure 5.1 shows that the same phenomenon appears even more substantially in

XGBoost, which is generally considered the top machine learning method nowadays. A possible reason for
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this fact, strengthened by the RF results, is that regression trees are not suitable for the problem at hand.

To corroborate the appropriateness of using GP, compared to the other studied techniques for the problem

at hand, we calculated the percentage of GP models in the sample with lower RMSE compared to MLP and

RF on the test set. Respectively 22% and 43% of GP models outperformed RF and MLP.

The comparison of GP against other models, however, should be treated as a way to frame GP perfor-

mance in the context of ML modelling. The goal is not to prove GP as the outperforming technique.

5.3.3 The model for mosquito dynamics

Another competitive advantage of GP compared to other machine learning methods, including the ones

studied here, is the possibility of reading and interpreting the model. Despite the fact that decision trees

are easy to understand representations in logical terms, the process of averaging the results coming from

multiple decision trees in an RF muddies the logic. Since model interpretability is a key feature of ecological

modelling, GP shows its benefit in the field again.

We selected as the predictive model for mosquito abundance the best model on its validation set among

the 60 best models. The resulting RMSE on the test set is equal to 83.4. The complex equation is still

readable and interpretable, thus we report in Equation (5.1) its expression. The symbols used are the

ones classically associated with the primitive functions reported in Table 5.1; when no symbol is found, a

multiplication is occurring.

#Mosquitoes =𝐷𝐼𝑆𝑇𝑊 · 𝑆𝐼𝑁3

𝐷𝐼𝑆𝑇𝑈
+ (𝑇𝑊𝐸𝐸𝐾 − 𝐷𝐼𝑆𝑇𝑅 + 𝐷𝐼𝑆𝑇𝑊 )𝑆𝐼𝑁7

𝐷𝐼𝑆𝑇𝑅

+ 𝐷𝐼𝑆𝑇𝑊 · 𝑅𝐼𝐶𝐸𝐴 · 𝑆𝐼𝑁5

𝑇𝑊𝐸𝐸𝐾
+ 2𝑆𝐼𝑁5 + 𝐷𝐼𝑆𝑇𝑊 · 𝑆𝐼𝑁5

𝐷𝐼𝑆𝑇𝑈

− 𝐷𝐼𝑆𝑇𝑅 · 𝑆𝐼𝑁3 + (𝑇𝑊𝐸𝐸𝐾 − 𝐷𝐼𝑆𝑇𝑅)𝑆𝐼𝑁8

+ 2𝑆𝐼𝑁3(2𝑆𝐼𝑁 + 1)
𝐷𝐼𝑆𝑇𝑈

+ 𝐷𝐼𝑆𝑇𝑈 · 𝑆𝐼𝑁3

𝐷𝐼𝑆𝑇𝑅
+ 2𝐷𝐼𝑆𝑇𝑊 · 𝑆𝐼𝑁3

− 𝐷𝐼𝑆𝑇𝑊 · 𝑆𝐼𝑁2

𝐷𝐼𝑆𝑇𝑅
− 𝐷𝐼𝑆𝑇𝑅 · 𝑆𝐼𝑁 + 𝐷𝐼𝑆𝑇𝑊

(5.1)

Since there were quite a lot of occurrences of kozadivision in the expression, we checked whether their

result was frequently the constant 1 used to protect the division when the denominator is zero. Luckily, on

the test set, the protected version of the division was not used too much, therefore the divisions involved are

mainly true division.

The general expression reported in Equation (5.1) may be hard to interpret, but the analysis of the

variables discarded and the general effect of the ones selected may provide meaningful information. To

investigate the role of each variable in the prediction we firstly considered, as a subjective measurement, the
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number of times each variable appears in the model. Table 5.4 shows these frequencies of occurrence of the

single variables in the model.

Table 5.4: Frequency of each variable in the best model.

Variable Frequency

TWEEK 3

RAIN 0

NDVI 0

DISTU 4

DISTR 7

DISTW 7

RICEA 1

ELEV 0

SIN 13

The implicit feature selection embedded in GP reveals that RAIN, NDVI and ELEV are not informative

about mosquito abundance. Interestingly, the most frequent variable is SIN. We performed an analogous

investigation also in the GLMM model. The standardized coefficients, in fact, give a measure of the change

in the target (in standard deviations) for every standard deviation change in the predictors. Since the

higher standardized coefficient is the one of SIN (𝛽𝑆𝐼𝑁 = 0.02, 𝛽𝐷𝐼𝑆𝑇 𝑈 = −0.003, 𝛽𝐸𝐿𝐸𝑉 = −0.007, 𝛽𝑇 𝑊 𝐸𝐸𝐾 =

−0.005, 𝛽𝑅𝐴𝐼𝑁 = 0.003), we can state that also when using the GLMM this variable is considered as the most

informative one. A similar analysis could not be carried out for the other techniques, since they were mainly

black box methods.

5.4 What the results suggest

An issue that emerged from the results presented so far deserves further attention. The variable SIN is an

artificial predictor included in the dataset to suggest the period of collection and therefore how high the

abundance of mosquitoes is expected to be. Both GP and GLMM models strongly rely on this variable,

which undoubtedly provides lots of information concerning mosquito abundance. However, this predictor

is the result of prior knowledge about the problem and we would rather prefer the algorithms to directly

infer from data which combination of environmental and climatic variables determines the fluctuations of

mosquito abundance. The main problem not allowing this detection is the improper treatment of these

environmental and climatic variables.
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LST, NDVI, and the rainfall are time series predictors whose flow is related to seasons, thus they can

be strong predictors of mosquito dynamics. Nonetheless, they are not recognized as such by GP (and even

GLMM) probably because they are not treated as time series. Time series were managed as independent

training cases by all the machine learning techniques studied in this paper, including GP. This element may

cause a loss of information, which may deteriorate the ability to predict mosquito abundance.

These arguments inspired us to develop a new approach of GP with the main goal of solving time series

issues and therefore becoming a powerful tool in the field of vector dynamics prediction. This new technique

of GP is called vectorial genetic programming (VE_GP). As the adjective "vectorial" suggests, the technique

is based on the introduction of vectors as new terminal representation suitable for time series. In Chapter 6

we will explain in details the new approach of VE_GP, focusing the attention on how VE_GP exploits the

new terminal representation to extract knowledge from time series.

Published Original Research Article Azzali I., Vanneschi L., Mosca A., Bertolotti L., Giacobini M.,

Towards the use of genetic programming in the ecological modelling of mosquito population dynamics. Genet

Program Evolvable Mach, 21, 629–642 (2020).
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Chapter 6

Vectorial Genetic Programming

Among the several existing typologies of problems to which Genetic Programming (GP) [61] can be applied,

symbolic regression is undoubtedly one of the most popular. The objective of symbolic regression is to find a

function that describes the relationship between inputs and corresponding outputs, developing a model that

can be used to make predictions on new inputs. Of great importance, belonging to the family of symbolic

regression, is panel data forecasting. A panel dataset is a collection of observations for multiple subjects at

different equal-spaced time intervals [13]. Therefore, if the independent variables among the M observations

measured are 𝑋𝑖
1, . . . , 𝑋𝑖

𝑁 where 𝑖 = 1, . . . , 𝑀 and 𝑋𝑖
𝐾 , . . . , 𝑋𝑖

𝑁 change in time (𝑋𝑖
𝑗𝑡

with 𝑖 = 1, . . . , 𝑀 ,

𝑗 = 𝐾, . . . , 𝑁 and 𝑡 = 1, . . . , 𝑇 denoting time series variables) and 𝑌 is a dependent variable (𝑌 𝑖
𝑡 with

𝑡 = 1, . . . , 𝑇 denoting a target time series variable), we can express the dataset as

{𝑋𝑖
1, . . . , 𝑋𝑖

𝐾−1, 𝑋𝑖
𝐾1 , . . . , 𝑋𝑖

𝐾𝑇
, . . . , 𝑋𝑖

𝑁1 , . . . , 𝑋𝑖
𝑁𝑇

, 𝑌 𝑖
1 , . . . , 𝑌 𝑖

𝑇 }

where 𝑖 = 1, . . . , 𝑀 refers to the subject being observed. The interest of panel data regression lies in

predicting dependent variables which are hard to measure. To clarify, let us consider the example panel

reported in Table 6.1. In this example, trap location characteristics are collected for traps and days in order

to predict mosquito abundance. The standard GP approach can be easily applied to panel data regression,

as described in Chapter 5. However, there can be a potential disadvantage. Data instances (fitness cases)

are treated independently. Therefore the algorithm is not able to recognize that two (as in lines 1 and 2

in Table 6.1), or more, observations belong to the trap. This situation may result in a loss of knowledge

regarding the time series, that may instead have been useful to effectively model the target.

The idea to overcome the problem is to design a novel GP system, that we call Vectorial GP (VE_GP),

able to exploit the source of information provided by the additional dimension of time of panel datasets.

To make the algorithm consider the whole time-series, we aggregate related data instances referring to the

same entity in a vectorial representation, so that variables that change in time become vectorial variables.
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Table 6.1: Example standard panel dataset.

Trap Id Distance_city Elevation Rain Mosquitoes

1 12 121 15.2 0

1 12 121 0 150

2 5.8 56 2.3 120

2 5.8 56 2.3 93

2 5.8 56 0 102

3 3.4 90 4.5 75

Therefore, the panel dataset represented in Table 6.1 is transformed into the representation reported in

Table 6.2. In this configuration, a GP tree can be composed either by scalar terminals (to represent features

Table 6.2: Example vectorial panel dataset.

Trap Id Distance_city Elevation Rain Mosquitoes

1 12 121 [15.2,0] [0,150]

2 5.8 56 [2.3,2.3,0] [120,93,102]

3 3.4 90 4.5 75

such as Distance_City, Elevation and Trap ID) or by vectorial terminals (for instance to represent Raind

and Mosquitoes). Moreover, the technique we propose adds new functions to the primitive set, defined with

the purpose of describing the behaviour of temporal variables. From now on, we use the term time series to

indicate an observation of a vectorial variable, also called time series variable. Therefore, a time series is a

sequence of recorded values, belonging to one entity and represented as a vector.

6.1 Previous works about time series in GP

Working with time series in GP has always been a challenging problem due to the inherent difficulty of

handling this type of data. Common strategies include feature extractions to reduce the series into scalar

features [29] or element by element treatment, where each entry of the series is an independent terminal [32].

However, some previous works explored the idea of keeping the native data type of time series, the vector.

Holladay et al. [41] introduced a vector-based GP to predict the feature vector of fixed length signals. In this
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paper, vectors were possible inputs rather than scalars, and the primitive set included domain dependent

functions that act on both of them. A more recent work of Bartashevich et al. [59] allows vectors as primitives

and include vectorial functions such as the cross and dot product to build GP individuals. Other approaches

were proposed to preserve the ordered essence of time series such as Vera et al. [19]. In this latter work the

authors investigated the serial processing of data where the time sequence is presented to the algorithm in

series so that the elements of a sequence are processed in the same order as they are recorded.

Starting from the idea of [41] we move further to provide a more exhaustive vector-based GP. Our

VE_GP is less problem-specific and aims at providing an algorithm able to deal with any naturally ordered

variable of any length. Moreover, in VE_GP we included new structures that advance the search space of

the considered problems. VE_GP elevates the capabilities of previously proposed vector-based approaches

and provides a more sophisticated technique.

6.2 Vectorial GP

VE_GP is built on top of the GPLab toolbox [72]. GPLab includes most of the traditional features usually

found in many GP systems. We chose it because its highly modular structure makes it a particularly versatile,

generalist and easily extendable tool, highly suited for testing new elements and techniques. Moreover, it

is written in MATLAB, which provides a particularly appropriate environment to manage vectors. In the

following paragraphs we describe the primitive set and other particular elements of VE_GP.

Functions of arity one

Since VE_GP is specific for time series variables, we integrated the set of classical arity one functions with

aggregate functions. Standard aggregate functions collapse the whole time series variable into a single value

of more significant meaning. They can be included in the primitive set when we deal with time series

prediction based on past time series variables. We even face problems where the time series target flows

simultaneously to the time series predictors, which means that the time instants, corresponding to the entries

of a vector, are the same for both the target and the predictors. Therefore, specially meant for this latter

problem, we added cumulative aggregate functions. These operators applied on a time series return a vector

whose entries are the aggregate values of only previous time values. These versions of the aggregate function,

the standard and the cumulative ones, allow GP to foresee any kind of time series, from the ones that take

place during the recording of data to the future ones. All the arity one functions can be also easily applied

to scalars, considering them as a vector of 1 × 1 dimension. The primitives of arity one used by VE_GP are

described in Table 6.3.
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Table 6.3: Description of functions of arity one. The columns represent the primitive function (first column),

MATLAB name (second column) and the outcome of the function (third column) applied on a given vector

v (in this example, v=[1, 2.5, 4.3, 0.7]).

Primitive

function

(pf)

MATLAB

name

pf(v)

Mean V_mean V_mean([1, 2.5, 4.3, 0.7]) = 2.1

Max, Min V_max,

V_min

V_max([1, 2.5, 4.3, 0.7]) = 4.3

V_min([1, 2.5, 4.3, 0.7]) = 0.7

Sum V_sum V_sum([1, 2.5, 4.3, 0.7]) = 8.5

Mode V_mode V_mode([1, 2.5, 4.3, 0.7]) = 0.7

Length V_length V_length([1, 2.5, 4.3, 0.7]) = 4

2-Norm V_2norm V_2norm([1, 2.5, 4.3, 0.7]) = 5.1

Cumulative

mean

C_mean C_mean([1, 2.5, 4.3, 0.7]) = [1, 1.8, 2.6, 2.1]

Cumulative

sum

C_sum C_sum([1, 2.5, 4.3, 0.7]) = [1, 3.5, 7.8, 8.5]

Cumulative

max, min

C_max,

C_min

C_max([1, 2.5, 4.3, 0.7]) = [1, 2.5, 4.3, 4.3]

C_min([1, 2.5, 4.3, 0.7]) = [1, 1, 1, 0.7]

Exp, Log,

Cos, Sin,

Abs,

Square,

Cube, Sqrt

V_exp,

V_log*,

V_cos,

V_sin,

V_abs,

V_2, V_3,

V_sqrt*

*(protected

version

as [61])

V_exp([1, 2.5, 4.3, 0.7]) = [2.7, 12.2, 73.7, 2.0]

V_log([1, 2.5, 4.3, 0.7]) = [0, 0.9, 1.5, −0.4]

V_cos([1, 2.5, 4.3, 0.7]) = [0.5, −0.8, −0.4, 0.8]

V_sin([1, 2.5, 4.3, 0.7]) = [0.8, 0.6, −0.9, 0.6]

V_abs([1, 2.5, 4.3, 0.7]) = [1, 2.5, 4.3, 0.7]

V_2([1, 2.5, 4.3, 0.7]) = [1, 6.3, 18.5, 0.5]

V_3([1, 2.5, 4.3, 0.7]) = [1, 15.6, 79.5, 0.3]

V_sqrt([1, 2.5, 4.3, 0.7]) = [1, 1.6, 2.1, 0.8]

Functions of arity two

Concerning arity two we included new functions inspired by classical vector operations. These functions

can manage vectors of different lengths completing the shortest one with the null-element of the function
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involved. In the case of a scalar and a vector as inputs we provided a specific evaluation in order not to

consider scalars as 1 × 1 vectors. The primitives of arity two used by VE_GP are described in Table 6.4.

The functions VSUMW, V_W, VprW and VdivW are called standard arity two functions.

Table 6.4: Description of functions of arity two. The columns represent the primitive function (first column),

MATLAB name (second column), the outcome of the function (third column) applied on a given scalar s

and vector v1 and the outcome of the function (fourth column) applied on two vectors v1 and v2 (in this

example, s=0.2, v1=[1, 2.5, 4.3], v2=[0.1, 3.2, 4, 1.1]).

Primitive

function

(pf)

MATLAB

name

pf(s,v1) pf(v1,v2)

Element-

wise sum

VSUMW VSUMW(0.2, [1, 2.5, 4.3]) = [1.2, 2.7, 4.5] VSUMW([1, 2.5, 4.3], [0.1, 3.2, 4, 1.1]) = [1.1, 5.7, 8.3, 1.1]

Element-

wise

V_W V_W(0.2, [1, 2.5, 4.3]) = [−0.8, −2.3, −4.1] V_W([1, 2.5, 4.3], [0.1, 3.2, 4, 1.1]) = [0.9, −0.7, 0.3 − 1.1]

Element-

wise prod-

uct

VprW VprW(0.2, [1, 2.5, 4.3]) = [0.2, 0.5, 0.9] VprW([1, 2.5, 4.3], [0.1, 3.2, 4, 1.1]) = [0.1, 8, 17.2, 1.1]

Scalar VscalprW VscalprW(0.2, [1, 2.5, 4.3]) = 1.6 VscalprW([1, 2.5, 4.3], [0.1, 3.2, 4, 1.1]) = 26.4

Element-

wise divi-

sion

VdivW*

*(protected

version

as [61])

VdivW(0.2, [1, 2.5, 4.3]) = [0.2, 0.08, 0.05] VdivW([1, 2.5, 4.3], [0.1, 3.2, 4, 1.1]) = [10, 0.8, 1.1, 0.9]

Scalar Divi-

sion

VscaldivW*

*(protected

version

as [61])

VscaldivW(0.2, [1, 2.5, 4.3]) = 0.3 VscaldivW([1, 2.5, 4.3], [0.1, 3.2, 4, 1.1]) = 12.8

Parametric aggregate functions

We introduced parametric aggregate functions that apply the referring aggregate function only to the values

belonging to the time window described by parameters. Regarding standard aggregate functions, the param-

eters 𝑝 and 𝑞 define respectively the initial and final position of the range to be considered. Therefore the

standard aggregate function is applied to the input values of position 𝑝, . . . , 𝑞 − 1, 𝑞. To have an admissible

range 𝑝 < 𝑞. Concerning cumulative aggregate functions, we remind that the output is a vector. The 𝑖 − ith

entry of the output depends on the values belonging to the window described by parameters 𝑝 and 𝑞. In this

case, 𝑝 defines how far to look back from the 𝑖 position determining the initial value of the range, while 𝑞

defines how many values to consider. Thus, the 𝑖 − ith entry of the output is the aggregate function applied

on input values of position 𝑖− (𝑝−1), . . . , 𝑖− (𝑝−1)+𝑞 −1. To have admissible range in this case 𝑝 > 𝑞. The

primitives of the parametric aggregate function used by VE_GP are described in Table 6.5. It is noteworthy
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that many of the new functions are not replicable by the standard GP.

Table 6.5: Description of parametric aggregate functions. The columns represent the primitive function (first

column), MATLAB name (second column), the outcome of the function (third column) applied on a given

vector. For standard functions 𝑝 is the initial position while 𝑞 is the final position of the range, instead for

cumulative functions 𝑝 is the number of backward steps to be made in order to determine the initial position

of the range while 𝑞 is the amplitude of the range (in this example, v=[1, 2.5, 4.3, 0.7, 1.6], (𝑝,𝑞)=(2,3) for

standard functions, (𝑝,𝑞)=(3,2) for cumulative functions).

Primitive

function

(pf)

MATLAB

name

pf𝑝,𝑞(v)

Mean in

[p,q]

V_mean𝑝,𝑞 V_mean2,3([1, 2.5, 4.3, 0.7, 1.6]) = 3.4

Max in

[p,q], Min

in [p,q]

V_max𝑝,𝑞,

V_min𝑝,𝑞

V_max2,3([1, 2.5, 4.3, 0.7, 1.6]) = 4.3

V_min2,3([1, 2.5, 4.3, 0.7, 1.6]) = 2.5

Sum in [p,q] V_sum𝑝,𝑞 V_sum2,3([1, 2.5, 4.3, 0.7, 1.6]) = 6.8

Cumulative

mean in

[p,q]

V_Cmean𝑝,𝑞 V_Cmean3,2([1, 2.5, 4.3, 0.7, 1.6]) = [0, 1, 1.8, 3.4, 2.5]

Cumulative

max in

[p,q],

Cumulative

min in [p,q]

V_Cmax𝑝,𝑞,

V_Cmin𝑝,𝑞

V_Cmax3,2([1, 2.5, 4.3, 0.7, 1.6]) = [0, 1, 2.5, 4.3, 4.3]

V_Cmin3,2([1, 2.5, 4.3, 0.7, 1.6]) = [0, 1, 1, 2.5, 0.7]

Cumulative

sum in [p,q]

V_Csum𝑝,𝑞 V_Csum3,2([1, 2.5, 4.3, 0.7, 1.6]) = [0, 0, 3.5, 6.8, 5]

Initialization

Given the new representation in VE_GP, several challenges arise. First, a big number of scalar inputs

can cause a poor initial representation of new functions and terminals, as such barely used during the

evolutionary process. Second, it is possible to obtain final solutions whose output is a scalar and not a vector

because many of the integrated functions collapse a vector into a scalar. We designed a different initialization
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strategy which releases unique and innovative characteristics of VE_GP during the evolution. The strategy

is resumed in the procedure described in Figure 6.1. The motivation behind the second rule is to ensure a

representative amount of trees in the initial population whose output is not a scalar. Similarly, the third rule

ensures trees where the new functions are meaningfully used. In our opinion, the initialization strategy that

we propose does not introduce significant bias in the evolutionary process, contrarily, it aims to aid VE_GP

to free its full potential during the evolution.

Create an empty population 𝑃 (the initial population) of size N.

1. Generate 𝑛1 trees in 𝑃 using Ramped Half-and-Half initialization algorithm (𝑅𝐻𝐻) [61];

2. Generate 𝑛2 trees in 𝑃 using 𝑅𝐻𝐻 such that each tree always generates an output which is a vector:

(a) randomly generate a tree 𝑡 by means of 𝑅𝐻𝐻;

(b) randomly select a standard primitive function 𝑝𝑓 of arity two;

(c) randomly select a vector-terminal 𝑣;

(d) create the following tree, using post-fix notation, (pf t v);

3. Generate 𝑛3 trees in 𝑃 using 𝑅𝐻𝐻 where aggregate primitive functions are forced to receive a vector-

terminal as an input.

Figure 6.1: Proposed initialization strategy.

We furthermore initialized the values of the parameters for the aggregate functions. Since a time series

variable can have a different length among fitness cases, we randomly set 𝑝 and 𝑞 between 1 and the maximum

time series length for all the parametric aggregate functions.

Genetic operators

VE_GP includes a new type of mutation. Besides the classical one there is the mutation of aggregate function

parameters. This operator allows parameters to evolve so that the most informative window where to apply

the relative aggregate function is found. Firstly, the algorithm searches the tree for parametric aggregate

functions and randomly selects one. Secondly, a random parameter is chosen and mutated according to

the procedure reported in Table 6.6. Every time a genetic operator requires a new tree, parameters are set

according to the initialization default values.
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Table 6.6: Parameters mutation.

Standard aggregate functions parameters p,q Cumulative aggregate function parameters

p,q

• Random selection of 𝑝 or 𝑞;

• If 𝑝 randomly change it from 1 to 𝑞;

• If 𝑞 randomly change it from 𝑝 to the maxi-

mum time series length.

• Random selection of 𝑝 or 𝑞;

• If 𝑝 randomly change it from 1 to the maxi-

mum time series length;

• If 𝑞 randomly change it from 1 to 𝑝.

6.3 Experiments to validate VE_GP approach

6.3.1 Benchmark problems

We tested the proposed VE_GP against a standard GP system (GP) on four benchmark problems. To

investigate the competitiveness of VE_GP we chose a first problem where the target does not involve

the new primitive functions in order to see if VE_GP is penalized by having unnecessary functions and

structures. Three more problems include some of the new functions in the target, and they are meant to

show the performances of both algorithms considering that GP can just try to approximate the new functions

at its best.

Korns5 This benchmark problem is inspired by Korns problem number five for symbolic regression [35]. We

chose to involve four variables of random numbers between -50 and 50 as the input, named 𝑋1, 𝑋2, 𝑋3, 𝑋4

respectively. Differently from the true Korns problem number five, the latter variable 𝑋4 for our experiment

is a vector of length 10. The target expression is:

𝐾5 = VSUMW(3.0, VprW(2.13, V_log(𝑋4))).

The dataset for VE_GP consists of 1000 instances, while for GP it consists of 10000 instances because we

vertically untied the variable 𝑋4 and the target 𝐾5 to have the classical panel data representation.

Benchmark1 This benchmark problem is a new one that makes use of the aggregate functions implemented

to produce the target. The vectorial dataset consists of 100 instances, where each instance is composed by

four features: a random number between -10 and 10, another random number between -10 and 10, a vector

of random numbers between 10 and 40 of length 10, and a vector of random numbers between -5 and 5 of
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length 10. Naming the variables in order as 𝑋1, 𝑋2, 𝑋3 and 𝑋4 the target reads as follows:

𝐵1 = V_W
(︁
VSUMW(𝑋4, V_mean(𝑋3)), V_W(VscalprW(𝑋3, 𝑋4), 𝑋2)

)︁
.

Conversely, for the scalar dataset, we vertically untied the vectorial features so that it consists of 1000

instances.

Benchmark2 This benchmark problem involves the cumulative functions described in the previous section.

The vectorial dataset is the same used for the previous benchmark B1, while the target is now

𝐵2 = VprW
(︁
VdivW(VSUMW(𝑋3, 𝑋1), V_Cmean(𝑋4)), 𝑋2

)︁
.

Again for the scalar dataset we vertically untied the vectorial variables.

Benchmark3 This benchmark problem includes parametric aggregate functions. Therefore the evolution

of parameters is integrated in VE_GP. The variables involved are five: 𝑋1 is a vector of length 20 of random

numbers between 10 and 30, 𝑋2 is a random number between 50 and 60, 𝑋3 is a random number between

5 and 10, 𝑋4 is a random number between -2 and 2, and 𝑋5 is a random number between 0 and 1. The

target is:

𝐵3 = VSUMW(VprW(V_Cmin3,3(𝑋1), VdivW(𝑋2, 𝑋3)), 𝑋4).

The dataset for VE_GP consists of 100 instances, while for GP it consists of 1000 instances because, as for

the other problems, we vertically untied the vectorial variables.

6.3.2 Parameters and statistical test

The experimental parameters used in all the problems are provided in Tables 6.7 and 6.8. They were

essentially the same for both GP and VE_GP to facilitate the comparison between the techniques. We

should remark that the choice of new terminal functions between cumulative or standard version depends on

the chosen recording time of the time series involved. Fitness is calculated as the Root Mean Square Error

(RMSE) between the output and the target. Since the output of trees built by VE_GP is supposed to be

a vector, for this latter algorithm we calculated the RMSE vertically disbanding both output and target;

in this way the measures of fitness are ensured to be comparable between the two techniques. Moreover,

when a VE_GP tree wrongly produces scalars as an output, each scalar is replicated until the length of the

corresponding target to make it a vector. We decided to penalize these trees by multiplying their fitness for

a huge constant (100).

We tested both techniques on a total of 50 runs, each of which considers a different training and test

data partition; from now on the term test set stands for unseen data. In particular, at the beginning of a
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VE_GP run, 70% of the instances are randomly selected as the training set, while the remaining ones form

the test set. We kept the same division for GP with correspondence of the observations, so that time series

are not split. We performed a set of tests to analyse the statistical significance of the results. At first, the

Kolmogorov-Smirnov test showed that final fitness data are not normally distributed and hence we opted

for a rank-based statistic. Test decision for the null hypothesis of no difference in performance between GP

and VE_GP were calculated with the Wilcoxon Rank Sum Test on the final test fitness. We opted for it

because it is a non parametric test and considers the median which is more robust than the mean to outliers.

In order to quantify the assuming difference in performance between the two approaches, we even used a

Vargha Delaney A-test which is an index of effect size [10].

Table 6.7: Standard GP parameters.

K5 B1 B2 B3

Runs 50 50 50 50

Population 500 500 500 500

Generations 100 100 100 100

Training-

Testing

division

70%-30% of vectorial in-

stances

70%-30% of vectorial in-

stances

70%-30% of vectorial in-

stances

70%-30% of vectorial in-

stances

Genetic op-

erators

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Initialization Ramped Half-and-

Half [61], max depth

6

Ramped Half-and-

Half [61], max depth

6

Ramped Half-and-

Half [61], max depth

6

Ramped Half-and-

Half [61], max depth

6

Functions

set

plus, minus, times, pro-

tected div as [61]

plus, minus, times, pro-

tected div as [61]

plus, minus, times, pro-

tected div as [61]

plus, minus, times, pro-

tected div as [61]

Terminals

set

Input variables, random

numbers

Input variables, random

numbers

Input variables, random

numbers

Input variables, random

numbers

Selection for

reproduction

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Elitism Replication probability

0.1, best individual is

kept

Replication probability

0.1, best individual is

kept

Replication probability

0.1, best individual is

kept

Replication probability

0.1, best individual is

kept

Maximum

depth

17 17 17 17
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Table 6.8: Vectorial GP parameters.

K5 B1 B2 B3

Runs 50 50 50 50

Population 500 500 500 500

Generations 100 100 100 100

Training-

Testing

division

70%-30% of instances 70%-30% of instances 70%-30% of instances 70%-30% of instances

Genetic op-

erators

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Crossover, probability

0.9-Mutation, probabil-

ity 0.1

Crossover, probability

0.5-Mutation, proba-

bility 0.1-Mutation of

parameters, probability

0.4

Initialization 30% Ramped Half-and-

Half [61], 70% Ramped

Half-and-Half with

forced initialization

30% Ramped Half-and-

Half [61], 70% Ramped

Half-and-Half with

forced initialization

30% Ramped Half-and-

Half [61], 70%Ramped

Half-and-Half with

forced initialization

30% Ramped Half-and-

Half [61], 70%Ramped

Half-and-Half with

forced initialization

Functions

set

VSUMW, V_W, VprW,

VdivW, V_mean,

V_max, V_min,V_sum

VSUMW, V_W, VprW,

VdivW, V_mean,

V_max, V_min, V_sum

VscalprW

VSUMW, V_W, VprW,

VdivW, V_Cmean,

V_Cmax, V_Cmin,

V_Csum

VSUMW, V_W, VprW,

VdivW, V_Cmeanpq,

V_Cmaxpq, V_Cminpq,

V_Csumpq

Terminals

set

Input variables, random

numbers

Input variables, random

numbers

Input variables, random

numbers

Input variables, random

numbers

Selection for

reproduction

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Lexicographic Parsi-

mony Pressure [70],

tournament size=10

Elitism Replication probability

0.1, best individual is

kept

Replication probability

0.1, best individual is

kept

Replication probability

0.1, best individual is

kept

Replication probability

0.1, best individual is

kept

Maximum

depth

17 17 17 17

6.4 Results

In this section, we analyse the performance achieved by the two algorithms on the four problems. The

evolution fitness plot (Figure 6.2) shows the best fitness in each generation for the training and the test

set, median of 50 runs. Besides evolution plots, there are boxplots based on the test fitness at the end of

evolution. The statistical test comparing final test fitness between both techniques can be found in Table 6.9.

In this table, 𝑝 is the 𝑝-value of the Wilcoxon test with a 5% level of significance. The term 𝐴 represents the

value of the Vargha Delaney A-test. The test returns a number between 0 and 1, representing the probability
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that a randomly selected observation from the first sample is bigger than a randomly selected observation

from the second sample. In our specific case, the first sample is formed by the best fitness found by GP while

the second sample is composed of the best fitness found by VE_GP. It is important to remember that fitness

is measured via RMSE, therefore, the lower it is, the better performance it means. Vargha and Delaney

in [10] provided a suggested threshold for interpreting the size of the difference: 0.5 means no difference at

all, up to 0.56 indicates a small difference, up to 0.64 indicates medium and anything over 0.71 is large. The

same intervals apply below 0.5.
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Figure 6.2: GP and VE_GP fitness evolution plots. The bars represent the first and the third quartile. K5

through a) and b), B1 through c) and d), B2 through e) and f) and B3 through g) and h) .

Table 6.9: Statistical results of final test fitness comparison.

K5 B1 B2 B3

𝑝 = 0.14 𝑝 = 6.79 · 10−18 𝑝 = 1.08 · 10−9 𝑝 = 1.34 · 10−12

𝐴 = 0.41 𝐴 = 1 𝐴 = 0.85 𝐴 = 0.91

Firstly, if we consider the K5 benchmark, there is no significant disparity in performance between the

algorithms. This confirms our expectation since the target of the problem does not involve the new functions;

the difference between techniques, thus, it is just in data representation. The VE_GP algorithm moreover

is not affected by unnecessary improvement of the initialization step and by the extension of the primitive

set. Table 6.9 and Figure 6.3 shows differently that VE_GP outperforms GP for B1, B2, and B3. Moreover,

51



1
3
.5

1
5
.5

ST_GP VE_GP

 T
e

s
t 

F
it
n

e
s
s

(a) K5 test boxplot

9
5

0
0

ST_GP VE_GP

(b) B1 test boxplot

5
6
0
0
0

ST_GP VE_GP

 T
e

s
t 

F
it
n

e
s
s

(c) B2 test boxplot

5
0

1
0

0

ST_GP VE_GP

(d) B3 test boxplot

Figure 6.3: GP and VE_GP fitness boxplots for test set.

Figure 6.2 reveals an increasing error for the GP test set on both B1 and B2 problems which means that

overfitting is occurring. Therefore GP is not able to understand the underlying relationship between the data.

This phenomenon does not happen to VE_GP that increases in fitness during generation for both training

and test data. A notable observation that emerges from the B2 evolution plot is the growing amplitude of

percentiles. This consideration stresses the fact that every time GP tries to extract the implicit relationship

between data it fails, remaining stuck to high error levels. Concerning B3, the difficulty of finding the

correct window of time emerges even from VE_GP, where percentiles show the presence of runs not able to

overcome GP in 50 generations. Nevertheless, at the end of the evolutionary process, every VE_GP model

outperforms the GP ones that stabilize at high error suggesting the idea of no future improvements.
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6.5 Next step: VE_GP real application

The technique of VE_GP turned out to be a powerful approach to deal with panel data. The key feature that

distinguish VE_GP is the vectorial representation of time series that preserves the true nature of sequential

variables. The main consequence of this new representation is the innovative capability of the algorithm to

extract the most informative features of a time series variable during the evolution.

In order to characterize suitable problems for VE_GP we chose benchmark problems in which the al-

gorithm resulted with better performance. However, the idea of VE_GP approach was suggested by panel

datasets that represents many eco-epidemiological problems such as the mosquito abundance prediction.

Therefore, to claim that VE_GP reveals advantages and overcome the issues emerged in 5, we are now going

to apply it on mosquito abundance problem treated in 5, comparing the new results with the ones of the

previous works.

Published Original Research Article Azzali, I., Vanneschi L., Silva, S., Bakurov I., Giacobini M.,

A vectorial approach to genetic programming. Genetic Programming. EuroGP 2019. Lecture Notes in

Computer Science, vol 11451. Springer, Cham (2019).
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Chapter 7

Vectorial Genetic Programming Stalks

Mosquitoes

Vectorial Genetic Programming (VE_GP) was developed to solve the main drawback of Genetic Program-

ming (GP) on mosquito prediction: the mistreating of time series. In Chapter 5 we highlighted the impor-

tance given to the SIN variable in the GP model, as the only informer about the time flow. Time series

predictors were, in fact, expanded in different fitness cases and therefore treated independently. The vectorial

representation of VE_GP allow these time series to be kept in one single fitness case, avoiding the use of

SIN to indicate the time of the season in which a fitness case was collected.

The implemented approach of VE_GP is even provided by aggregating functions, parametric or not,

which role is to extract information about the behaviour of a time series. These aggregating functions gives

to the evolution the task of inferring the most meaningful characteristics of time series directly from data,

instead of using experts prior knowledge. To clarify, we consider the mosquito problem under analysis. The

time series predictors TWEEK, RAIN, NDVI consists of aggregated values starting from the daily ones:

TWEEK is an average of daily temperatures registered during a precise week before the collection day,

RAIN is a cumulative sum of daily rainfall again registered during a precise week and NDVI is a 16 day

average. Instead of keeping together these already aggregated values, in VE_GP we could consider daily

values and evolve aggregations and windows of time. This idea agrees with the choice of eliminating SIN

from the predictors, as a variable reflecting experts knowledge on mosquito seasonality.

In this Chapter therefore we will apply VE_GP on mosquito prediction modyfing the previous dataset

in the following ways. Firstly, we exclude SIN from the predictors, secondly we group togheter daily values

of the time series predictors, determining as the new fitness cases the observations from a trap during a

year. The main goal is to treat properly time series, relying on evolution as the process able to detect

meaningful behaviours and windows of time of the time series. To give a threshold to VE_GP results and
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to highlight the advantages of this innovative approach we compare its performance against the ones of the

techniques involved in 5 deprived of the SIN variable. Moreover, we insert in the comparison the long short-

term memory (LSTM) network, which is one of the current state of art regarding machine learning for time

series prediction. This technique was suitable for application on the problem, when we realized there was a

deficit in dealing with time series. However, VE_GP overcomes two limitations of LSTM network. First,

LSTM network can not deal with time series of different length between the predictors and the target, while

VE_GP is totally able to learn from daily values and measure the quality of the learning trough comparison

on specific days. Second, LSTM network does not return a readable model which is instead an added value

of VE_GP, fundamental for interpretation in the field of eco-epidemiological problems.

7.1 The new datasets

To perform the experiments on VE_GP we start by considering the same scalar predictive variables selected

in Chapter 5. They are ELEV, DISTU, DISTR, DISTW, RICEA. Regarding the time series predictors

considered in Chapter 5, we introduce the novelties mentioned before. First, we discard the variable SIN.

Second we remove the prior aggregations of the time series predictors, therefore, VE_GP handles daily

values of land surface temperatures, normalized difference vegetation index, and rainfalls which are the

environmental time series predictors. Since mosquitoes are not active during the whole year we consider

the daily values of the variables from the 1st of April until the 20th of September. We keep the same name

for the daily time series variable, therefore all the predictors are ELEV, DISTU, DISTR, DISTW, RICEA,

TWEEK, NDVI, RAIN.

Regarding the classical techniques of Random forest (RF), Extreme Gradient Boosting (XGBoost), Mul-

tilayer Perceptron (MLP) and standard GP, we involve the same dataset of Chapter 5 simply deprived of the

variable SIN. We do not consider the generalized linear mixed model (GLMM), because removing SIN would

mean repeating the whole procedure to find out the most meaningful predictors among all the ones proposed

in [11] minus SIN which may cause the identification of variables never considered in our investigation.

Concerning LSTM network we start from the dataset used by the classical techniques and we group

together the yearly values of collections corresponding to the same trap.

To sum up the three dataset structures we have:

• VE_GP: the dataset is a matrix of 180 rows and 9 columns. Columns one to eight indicate a predictor

while the rightmost is the target; time series variables (NDVI, TWEEK and RAIN ) are represented as

vectors of length 173 since they contain daily values from April 1st (37 days before the first collection

of the year) to September 20th (the last collection day of the year). The target Mosq is instead a
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vector of length 20 representing the 20 collections per year from each trap. Each row corresponds to

the collections from a trap during a year.

• RF, XGBoost, MLP, GP: the dataset is a matrix of 3600 rows and 9 columns. Columns one to eight

indicate a predictor while the rightmost is the target; each row corresponds to a day of collection.

• LSTM: the dataset is a matrix of 180 rows and 9 columns. Columns one to eight indicate a predictor

while the rightmost is the target; time series variables (NDVI, TWEEK and RAIN ) are represented

as vectors of length 20 corresponding to the values associated at each collection day in a year (the

aggregated values used in an untied form in Chapter 5). The target Mosq is instead a vector of length

20 representing the 20 collections per year from each trap. Each row corresponds to the collections

from a trap during a year.

7.2 Experiments

We perform 30 runs of all the techniques dividing the dataset into learn and test set. Collections from 2002

to 2005 determine the learning set, while collections of 2006, according to the temporal order of years, form

the test set. The learning set is then divided randomly in 70% fitness cases as the train set and the remaining

30% as the validation set. This division is used by the different techniques to tune some parameters that

have to be manually inserted in the implementation. Precisely, the number of trees in RF, the number

of iterations in XGBoost, the number of hidden nodes in MLP and LSTM. The goal of this exploration

is undoubtely a first evaluation of VE_GP performance involving the comparison with other techniques,

thus no optimization of parameters is performed. However, the tuning of very few parameters not provided

at default values by the software involved is mandatory to return at least reasonable results. Concerning

VE_GP and GP the division into train and validation set is instead used to select the predictive model. At

the end of evolution, in fact, we have a population of individuals evolved by learning from the train set. The

individual with the best predictive accuracy on the unseen validation test is chosen as the best model.

The parameters used by LSTM and VE_GP are reported in Table7.1. Since VE_GP deals with simul-

taneous time series between the input and the target (same flowing year) and we would like to discover

new aggregations and ranges of the time series, we consider as the functions set F ={V_Cmean𝑝,𝑞, V_Cmax𝑝,𝑞,

V_Cmin𝑝,𝑞, V_Csum𝑝,𝑞}, where each function is the one describe in Chapter 6. To find out the best windows of

time parameters are subject to the mutation of parameters, Chapter 6. The tuning of RF, XGBoost, MLP

returned the same parameters as Chapter 5, thus for these techniques and GP we refer to 5.1.

The performance of each technique is evaluated by means of Root Mean Squared Error(RMSE) between

the predicted abundance and the real collections of 2006. VE_GP predicts daily values of abundances, thus
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Table 7.1: Parameters used to set LSTM and VE_GP.

LSTM Parameters

learning algorithm Adam

hidden neurons LSTM layer 200

epochs 50

batch size 1

VE_GP Parameters

population size 500

max number of generations 100

initialization Ramped Half and Half with rules [61]

selection method Lexicographic parsimony pressure [70]

elitism Best individual kept

crossover rate 0.5

mutation rate 0.1

mutation param rate 0.4

max tree depth 17

we include in RMSE calculation only the abundances corresponding to the collection days. This problem

belongs to minimization problems, thus the lower RMSE, the better performance.

The comparison is primarily conducted between VE_GP, LSTM and RF, XGBoost, MLP, GP without

SIN. However we even examine VE_GP and LSTM in contrast with RF, XGBoost, MLP, GP with SIN

(the results of Chapter 5), in order to reveal potential better performance simply related to time series well

representation. Be aware that to reduce the computational times, increased by the vectorial representation,

we perform only 30 runs. From previous GP results therefore, we extract randomly 30 runs.

Statistical significance of the null hypothesis of no difference in performance between all the techniques

is determined with Kruskal-Wallis non parametric ANOVA at 𝛼 = 0.05. In case of statistical difference in

performance we use a Wilcoxon Rank Sum test to detect difference in performance between VE_GP and

the other techniques at 𝛼 = 0.05/6 = 0.008 after Bonferroni correction.

7.3 Results

Table 7.2 reports the p-values of the statistical tests comparing the test results of all the techniques and

the test performance of VE_GP against the other methods. The techniques of RF, XGBoost, MLP, GP, in
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these first results, use SIN as a predictive variable. To have a visual feeling of which method is the best in

case of difference in performance, we show in Figure 7.1 the boxplot of both learn and test errors.

Table 7.2: Statistical significance of the difference in performances between the methods. RF, XGBoost,

MLP, GP consider SIN.

Kruskal-Wallis test 𝑝 = 6.9 · 10−7

VE-GP vs RF VE-GP vs XGBoost VE-GP vs MLP VE-GP vs GP VE-GP vs LSTM

𝑝 = 3.7 · 10−9 𝑝 = 0.5 𝑝 = 1.3 · 10−8 𝑝 = 7.7 · 10−6 𝑝 = 0.00028
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Figure 7.1: RMSE boxplots. RF, XGBoost, MLP, GP consider SIN.

The variable SIN is a very influencing predictor and, despite the use of vectors and evolving aggregations,

VE_GP is not able to outperform all the classical techniques on 2006 collections.

Considering instead RF, XGBoost, MLP and GP without SIN, Table 7.3 and Figure 7.2 report the

statistical test results on the test set and the test and learn boxplots respectively.

In this scenario VE_GP is the outperforming technique in terms of accuracy. In particular it has better

performance even respect to LSTM which is one of the current state of art ML technique to deal with time

series. The capability of VE_GP to extract meaningful windows of time is therefore a great added value of

this approach. LSTM in fact, deals only with time series of the same length, thus with correspondence of
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Table 7.3: Statistical significance of the difference in performances between the methods. RF, XGBoost,

MLP, GP consider SIN.

Kruskal-Wallis test 𝑝 = 1.3 · 10−6

VE-GP vs RF VE-GP vs XGBoost VE-GP vs MLP VE-GP vs GP VE-GP vs LSTM

𝑝 = 5.7 · 10−7 𝑝 = 1.9 · 10−9 𝑝 = 1.8 · 10−9 𝑝 = 1.6 · 10−9 𝑝 = 0.00028
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Figure 7.2: RMSE boxplots. RF, XGBoost, MLP, GP do not consider SIN.

time instants.

Having established the potential of VE_GP we can now exploit one of its important feature: the read-

ability of the model. Table 7.4 reports the median appearance of each predictive variables in the best models

returned. As justified in Chapter 5, these values represent a subjective measure of the importance of each

variables in target approximation.

Comparing these frequencies with those of 5.4, where 2 out of 3 time series predictors were never used

(NDVI and RAIN ), we can highlight how the absence of SIN leads the evolution towards the understanding

of the environmental dynamics responsible of mosquito abundances. The variables TWEEK and RAIN, in

fact, are the second and third most used variables in VE_GP models. Nonetheless, a static feature such as

DISTU seems to be fundamental to reveal mosquito abundance.

The supporting tool we would provide to inform the monitoring plan on mosquito is the best predictive
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Table 7.4: Median frequency of each variable in the best models.

Variable Frequency

TWEEK 6

RAIN 5

NDVI 3

DISTU 4

DISTR 5

DISTW 10

RICEA 1

ELEV 0

model. We therefore include the formula of this model, selected as the best performing one on the validation

set over the 30 runs, and we try to give a simple interpretation to it, extracting the information we can provide

to vector control officies. We remind that, the despite the complexity of GP models, they are always readable

and the main effect of variables on the target could be captured for interpretation purposes. Equation (7.1)

represents the expression of the best VE_GP model. The symbols used are the ones classically associated

with the primitive functions reported in Section 7.2; when no symbol is found, a multiplication is occurring.

#Mosquitoes =V_Cmean71,29

[︃
𝑅𝐴𝐼𝑁 − 𝐷𝐼𝑆𝑇𝑅 · DISTU · 𝑅𝐴𝐼𝑁 + V_Cmax46,31

(︃

V_Cmax46,35(𝑇𝑊𝐸𝐸𝐾 − 3𝐷𝐼𝑆𝑇𝑅 + 2𝑅𝐴𝐼𝑁) − 𝑇𝑊𝐸𝐸𝐾 + 𝐷𝐼𝑆𝑇𝑅·

DISTU2 − 3𝐷𝐼𝑆𝑇𝑅 − V_Cmean66,35

(︂
2𝑇𝑊𝐸𝐸𝐾 − 𝐷𝐼𝑆𝑇𝑅 · DISTU·

𝑅𝐴𝐼𝑁 − 3𝑅𝐴𝐼𝑁 + V_Cmax46,28(2𝑅𝐴𝐼𝑁 − 𝐷𝐼𝑆𝑇𝑅) + V_Cmax46,31
(︁

5𝑅𝐴𝐼𝑁 − 2𝐷𝐼𝑆𝑇𝑅 − V_Cmax25,2
(︀
𝐷𝐼𝑆𝑇𝑅 · 𝑅𝐴𝐼𝑁 · V_Cmin158,14(𝑅𝐴𝐼𝑁)

)︀
)︁)︂

− V_Cmax25,2(𝐷𝐼𝑆𝑇𝑅 · DISTU · 𝑅𝐴𝐼𝑁) + 0.84𝑅𝐴𝐼𝑁

𝑁𝐷𝑉 𝐼 + 𝐷𝐼𝑆𝑇𝑅
+ 𝑅𝐴𝐼𝑁

)︃
]︃

− 𝐷𝐼𝑆𝑇𝑅

(7.1)

Based on 7.1 we can make the following observations:

• DISTW, the most frequent variable in median, is absent in this model. This characteristic may be one

of the reason of such good performance. The model, in fact, rely more on time series variable.
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• RAIN is the most frequent variable involved. This predictor, modified by multiplication with other

variables, is mostly applied to a maximum or a minimum. Differently from the prior aggregation

therefore, VE_GP has detected as meaningful the peaks of rainfall.

• The variable RAIN, modified by multiplication with DISTR and DISTU is always found at the nu-

merator with minus sign. This results suggest that the more it rains far from river and urban center,

the less abundant are mosquitoes.

To understand whether the best model (7.1) is able to estimate the seasonality of abundance without

SIN, in Figure 7.3 we plot the predicted median abundance of 2006 over the traps.
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Figure 7.3: Median number of mosquito abundance in 2006. The solid line represents the abundances

predicted by VE_GP, the dashed line represents the collected abundances.

VE_GP is able to identify the period of mosquitoes highest activity, which was attributed by experts

to mid-summer, therefore from the collection number 10 (first collection of July) to collection number 18

(last collection of August). The seasonality is thus reconstructed, but VE_GP model does not reach the real

abundance of the peak. The consequences of this under estimation are highlighted in the vector maps. The

vector maps show the potential spatial distribution of mosquito abundances, dividing the abundance values

into categories. These maps are fundamental to design vector control interventions during years in which

virus transmitted by vectors are known to circulate. Figure 7.4 reports the vector maps of mosquitoes during

2006, considering both VE_GP predictions and real collections. We plot 3 different maps according to 3

different periods in which mosquitoes are active: spring (collection 1 to collection 7), early summer (collection

8 to collection 15) and late summer (collection 16 to collection 20). For each period we normalize the median

abundance of each trap with respected to the real median abundance of mosquitoes during the warm season

(all collections). The normalized values are then placed into 4 categories: 1) “None to low” for normalized
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abundances <2% the value of the warm season median; 2) “Low to moderate” (2-25%); 3) “Moderate to

high” (25-75%); and 4) “High” (>75%). These thresholds are chosen to provide a representative of the lower

quartile, the interquartile range, and the upper quartile with respect to warm season values. The “None to

low” cut-point of 2% rules out extremely low abundance values that are unlikely to be sufficient to generate

substantial risk for humans.

Figure 7.4: Vector map of mosquito abundances during 2006. The upper maps report VE_GP forecasted

abundances, the lower maps report the real abundances.

The seasonality recognized by VE_GP is evident even in these maps: spring has the lowest abundances

that increase and peak in early summer to decrease, not at spring level, in late summer. Moreover the model

well marks the upper part of the studied area as the one with the highest abundances. Despite these good

properties, VE_GP model under estimates mosquito levels in early summer, and in late summer does not

identify high abundances. Since vector maps are used to guide virus control strategies, this limitation of the

model worsen the surveillance and intervention activities.

7.4 Conclusion and next steps

Understanding the relationship between mosquitoes and their environment can provide valuable information

to identify West Nile virus, and other vector-borne pathogens, introduction and spread. The previous works

on the topic included among environmental variables the artificial indicator of mosquito seasonality, SIN.

The role of this predictor was fundamental as revealed by results of Chapter 5. The variable SIN in fact,

provides the time dimension used by the approaches not specific for time series. The use of SIN, however,

hides the complex environmental dynamics responsible of the abundances, which can instead be used to
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understand how to act to control mosquitoes. This requirement lead us to the development of vectorial

genetic programming (VE_GP) that by means of vectorial terminals and aggregating functions keep time

series in their natural structure and extract from them interesting and unusual features. The time dimension

is therefore maintained in the vectorial representation, thus the specific problem of mosquito in Piedmont

region could be treated without the use of SIN. The aim of this Chapter was therefore the application of

VE_GP on mosquito problem, avoiding of course SIN and using daily values of the predictor time series

instead of previously aggregated ones. This latter characteristic makes the evolution discover from data

which aggregation and windows of time are meaningful and informative about the target.

The use of VE_GP on the problem at hand has revealed great advantages. With respect to the other

techniques deprived of SIN, VE_GP outperformed all other counterpart machine learning algorithms on

predicting the mosquito abundance in the year 2006. Being moreover able to see and partially interpret the

best predictive model has been a great added value of VE_GP. We remind, in fact, the we want to provide a

useful tool to mosquito management. This model reveals the use of interesting and different aggregations of

predictor time series to approximate the target. Considering therefore daily values has given the possibility

to discover these aggregations directly from data, without the need of experts knowledge.

There is however a drawback of VE_GP that should be overcome. The predictive model of VE_GP is

able to catch the seasonality of abundances, which is positive since we cut off SIN. However the model is not

able to reach the peak value, thus under estimating the abundances. This fact compromise the information

the model provides, since it does not well recognize the areas of the region at high level of mosquitoes

and therefore at high risk for WNV dynamics. Possible reasons underlying this issue are the lack of an

environmental predictor or the lack of an innovative aggregating functions. More investigation on how to

solve the problem should be carried out in order to return an even more performing model.

Besides the peak problem that has not yet deserved a proper attention, we move on with further works

on VE_GP. Since mosquito problem is the only real scenario in which we applied VE_GP, we involve

another real available dataset to validate even more the method. Furthermore, we investigate which tech-

niques enhance VE_GP performance and which instead should not be included to fully exploit VE_GP

characteristics. The following Chapters are dedicated to these mentioned further analysis.
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Chapter 8

Further Works on Vectorial Genetic

Programming: Prediction of Physiological

Time Series

8.1 Introduction to the problem

Vectorial Genetic Programming (VE_GP) has revealed great advantages in mosquito prediction, thus it needs

to be tested on other real scenarios involving time series. The health-care domain is the right place where

to look for other possible VE_GP applications. The prediction of physiological time series, in fact, is taking

the place of classical monitoring. The reasons behind this preferred approach are multiples. The acquisition

of some physiological data can, in fact, be very physically demanding [18] and in field monitoring may be

difficult where there is a lack of portable instruments to directly register data [69]. Several techniques can be

used to perform these predictions, from classical linear regression to machine learning (ML) algorithms [79].

All these techniques forecast time series by means of a training phase in which they learn the relationships

among predictors and target from previously collected data. Since in the health-care domain data are

complex and heterogeneous, machine learning may provide more efficient methods for the purpose rather

than traditional regression method that do not catch complex relationship between different variables.

However, an important issue is that none of these basic methods takes into account the temporal com-

ponent. To clarify, the problem that these techniques have to tackle is the prediction of time series based on

other time series, therefore some inputs and the output are sequences of values collected/predicted at regu-

lar intervals. To present admissible dataset to the algorithms these sequences are usually split into different

observations implying the loss of information regarding the history of the series. The problems described so

far are therefore suitable for VE_GP application.
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The specific problem we tackle through VE_GP is the prediction of ventilation flows of running people

based on heart rate and other physiological variables, in order to monitor the inhaled load of pollutants. As

previously done in Chapter 7, we analyse VE_GP performance against six other different techniques. We

consider therefore Linear Regression (LR), Random Forest (RF), Multilayer Perceptron (MLP) and Genetic

Programming (GP) that use a dataset where time series are split in different fitness cases. Moreover, we

investigate Long Short Term Memory network (LSTM) that is frequently used to process time series.

The aim of the comparison is a first evaluation of the potential of VE_GP in the field of time series

regression, therefore we do not strongly tune the techniques involved, but we rather consider general reason-

able values for the parameters. Once selected through this preliminary analysis the preferred technique to

tackle the problem, we should optimize its parameter set to improve the accuracy of the forecast.

8.2 The dataset

The problem was proposed by the Centre of Preventive Medicine and Sport - SUISM - University Structure of

Hygiene and Sport Sciences, Centre of excellence of the University of Turin. The goal is to predict ventilation

flow during outdoor activities based on physiological variables in order to monitor the intake of air pollution.

To train and test the algorithms for predictions on real time collected values, data were recorded during

an indoor trial conducted by the centre. The relationship between variables and respiratory rate, in fact,

does not change in function of the conditions in which physical exercises are performed [58].

A group of 262 volunteers underwent an aerobic exercise on a trade mill in order to measure some cardio-

respiratory variables through a portable miniaturized ergospirometer (K4, Cosmed, Italy, [63]). Tests were:

basal metabolic rate tests with a constant heart rate, threshold tests (in which the heart rate increases up

to the maximum of the lactic acid threshold, then suddenly decreases), and altitude tests (in which the

air pressure is simulated in a definite altitude level). The test started with a speed of 5 km/h that was

incremented of 1 km/h every minute. The participant could suspend the test when he/she felt exhausted.

Heart rate was recorded every 10 seconds as well as ventilation, which is needed to evaluate models ability

in prediction.

The methods LR, RF, MLP and GP work on a dataset 𝑀 of 20496 rows (instances, observations or

fitness cases) and 5 columns (features or variables). The features selected as predictors are: the age (AGE),

the biological sex (a binary value, equal to 1 for female) (SEX), the body mass index (BMI) and the heart

rate (HR). The rightmost column of 𝑀 contains the collected ventilation values, which are considered as the

target of our regression problem. We remark that each row of 𝑀 contains the heart rate and the ventilation

of an individual at a precise time instant. The dataset is drawn differently for RNN and VE-GP according

to the sequential representation that they admit. Starting from 𝑀 , we group together in vectors the values
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of the same time series so that the new dataset consists of 262 rows and 5 columns. Each row contains the

age, the biological sex, the BMI, the heart rate series and the ventilation series of a person.

8.3 Methodologies

We now report all the algorithms enrolled to face the problem, focusing the attention on the parameters we

manually set. A deep explanation of how each technique works could be found in Chapter 2.

8.3.1 Genetic programming

In GP we have firstly to declare the primitive set. We used as the functions set set F= {+, −, *, /}, where

/ is the division operator protected as in [61], while as the terminal set the the four variables of our dataset

(sex, age, BMI and heart rate), plus a random constant. To evaluate the trees we first perform a linear

scaling of the predicted output. Linear scaling is a technique introduce in [50] to improve the performance

of GP in difficult symbolic regression problems. Instead of applying the fitness measure directly on the

predicted output 𝑦, we perform a linear regression of the target 𝑡 on 𝑦 to find out 𝑎 and 𝑏 such that the sum

of squared errors between 𝑡 and 𝑎 + 𝑏𝑦 is minimized. Thus, we calculate the fitness as the root mean squared

error (RMSE) between predicted and scaled output and the real target. In this way GP evolves trees so that

the shape of their expression is more similar to the shape of the target function. This prevents GP from

spending too many generations in finding the range of the output before adapting the shape. A sum up of

GP parameters, kept mainly at the default values proposed by the system, is reported in Table 8.1.

8.3.2 Random forest

The implementation used to run RF requires the number of trees in the forest. Following the main conclusion

of [53], we fix the number of trees in the forest equal to 100. The other parameters are kept at the values

offered by the system and reported in Table 8.1.

8.3.3 Multilayer perceptron

Concerning MLP, we only set the number of hidden nodes to 3, following the rule of thumb that suggests

to choose a number of hidden neurons between 1 and the number of input variables. In order to train and

test the network on the same data as the other techniques, we do not consider a validation set to stop the

learning phase. All the other parameters are reported in Table 8.1.
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8.3.4 Linear Regression

LR does not require any parameters and is not considered at all a ML methods. However we include it in

the analysis as the simplest technique to catch relationship and to make predictions.

8.3.5 Long short-term memory network

LSTM network is the only technique receiving the same data representation as VE_GP. However, in case of

time series of different length among fitness cases, LSTM network is forced to group in batch observations

and pad time series to the longest one of the batch. Since VE_GP is able to deal with time series of different

length without completing them, to make fair the comparison we set the batch size of LSTM network equal

to 1. In Table 8.1 we summarize the parameters setting for LSTM.

8.3.6 Vectorial genetic programming

VE-GP parameters are set according to default values which are mainly the same as the standard GP and

which allows an as fair as possible comparison with the other techniques. The terminal set is composed by

the four scalar variables age, sex, BMI and a random constant and by the vectorial heart rate. The functions

set is formed by VSUMW, V_W, VprW, VdivW and by the cumulative C_mean and C_min since ventilation and

heart rate are collected simultaneously. All the functions are defined in 6. Fitness is calculated applying

RMSE on linear scaled outputs as described in 8.3.1. Table 8.1 reports the parameters setting.
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Table 8.1: Parameters used to set ML algorithms.

GP Parameters

population size 500

max number of generations 300

initialization Ramped Half and Half [61]

selection method Lexicographic parsimony pressure [70]

elitism Best individual kept

crossover rate 0.9

mutation rate 0.1

max tree depth 17

RF Parameters

number of trees 100

MLP Parameters

learning algorithm LM backpropagation

hidden neurons 3

𝜇 increase factor 0.1

𝜇 decrease factor 10

initial 𝜇 0.001

epochs 1000

LSTM Parameters

learning algorithm Adam

hidden neurons LSTM layer 200

epochs 50

batch size 1

VE_GP Parameters

population size 500

max number of generations 300

initialization Ramped Half and Half with rules [61]

selection method Lexicographic parsimony pressure [70]

elitism Best individual kept

crossover rate 0.9

mutation rate 0.1

max tree depth 17
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8.4 Experiments: Results and Discussion

To estimate how accurately the predictive techniques perform, we adopt a stochastic cross validation ap-

proach. Differently from mosquito problem, in fact, we can not ascribe a fixed reasonable group of obser-

vations to the test set. We therefore perform 50 runs of each algorithm considering 50 random splits of the

dataset into training and test set. The training set is the dataset provided to the algorithm in order to learn,

while the test set comprehends unseen data used to test the algorithm in predicting the target. The training

set always contains 70% of the participants (183 people) randomly selected, while the test set includes the

remaining 30% (79 people).

The measure of comparison selected is the median RMSE between the predicted and the real ventilation

values over the 50 test sets. We choose the median rather than the mean because of the presence of stochastic

methods such as GP and VE_GP which are more inclined to have outliers. Boxplot and statistics concerning

the test errors can be found in Figure 8.1 and Table 8.2. In Figure 8.1 the errors are represented in logarithmic

scale.
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Figure 8.1: RMSE test boxplots

Boxplot of test RMSE in logarithmic scale for the different algorithms.
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Table 8.2: Statistics about the RMSE of the different techniques on the test set.

GP LR LSTM MLP RF VE_GP

mean 129.8 21.5 17.2 20.8 22.5 20.1

standard deviation 715.3 1.0 1.6 1.1 1.3 10.0

median 21.4 21.3 17.1 20.7 22.4 18.2

Table 8.2 reveals that VE_GP outperforms all the other techniques except LSTM. To assess statistical

significance of difference in performance between VE-GP and the other techniques, we firstly perform a

Kruskal-Wallis non-parametric ANOVA test with a significance level of 𝛼 = 0.05. The resulting 𝑝-value

reported in Table 8.3 shows the significant difference in median performance between the methods. Moreover,

we apply pairwise Wilcoxon tests with 𝛼 = 0.05/5 = 0.01 after Bonferroni correction.

The test 𝑝-values are reported in Table 8.3. Statistical analysis indicates that VE_GP consistently

outperforms LR, RF, GP and MLP, but it is beaten by LSTM.

From these results we can infer the importance of keeping together ordered sequences such as ventilation

and heart rate, in a structure like for instance a vector to improve the accuracy of predictions.

Table 8.3: Statistical significance of the difference in performances between the methods.

Kruskal-Wallis test 𝑝 < 10−16

VE_GP vs GP VE_GP vs LR VE_GP vs LSTM VE_GP vs MLP VE_GP vs RF

𝑝 = 1.3 · 10−11 𝑝 = 9.5 · 10−12 𝑝 = 5.8 · 10−6 𝑝 = 2.0 · 10−9 𝑝 = 7.3 · 10−14

Besides RMSE, performances evaluation should consider the capability of methods in catching the shape

of ventilation flow. For this reason, we selected three different persons with the common feature of being

poorly represented in the whole dataset so that we can even show the ability of the methods in generalization.

One person has a BMI greater than 25 (16% of the entire dataset), one person is a female (5% of the entire

dataset) and the last one is greater than 50 years old (7% of the entire dataset).

Figures 8.2, 8.3, 8.4 show the collected and the predicted ventilations of the three people for all the

methods involved on a random run that included them in the test set.

All the methods are good in finding intriguing characteristics of ventilation shape such as peaks and

monotony and reveal good capabilities in generalization. Moreover, VE_GP and LSTM shows smooth

ventilation series. A possible reason of this behaviour is the fact that they receive the whole heart rate series

as input, therefore they have the possibility to remove noise and irregular roughness from it and highlight
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Figure 8.2: Predicted vs observed ventilation for a person with BMI > 25. The dashed line represents

the collected values of ventilation, while the other line represents the predicted values of ventilation by the

corresponding method.

meaningful features.

8.4.1 Analysis of the best solutions

Among all the techniques used in this paper, GP, VE_GP and LR are the most used for producing in-

terpretable solutions. This property let us further investigate how time series treatment influences the

performance of a method. Due to the large size and complexity of the best solutions provided by the genetic

programming approaches, we base our analysis on the features selection characteristic. The aim is to find

out how the time component may change which variables are preferred or ignored more often. Unfortunately,

this analysis is not possible for black box methods such as RF, MLP and LSTM.

The standardized coefficients in LR give a measure of the change in the target (in standard deviations)

for every standard deviation change in the predictor variables. Since the higher standardized coefficient is

the one of heart rate (0.80), we assume that the linear model already view this variable as an impacting one,

missing however some information.

Concerning GP and VE_GP we measure the median occurrence of the variables in the 50 best models.

Table 8.4 shows the frequencies. The most recurrent feature in GP is BMI while in VE_GP the most frequent

one is HR. We deem therefore that GP is not able to give the right importance to the flow of heart rate.
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Figure 8.3: Predicted vs observed ventilation for a female. The dashed line represents the collected values of

ventilation, while the other line represents the predicted values of ventilation by the corresponding method.

These observations highlight the importance of keeping together ordered sequences which is the key feature

of VE_GP.

Table 8.4: Median occurrence of variables in the solutions found by genetic programming approaches.

HR SEX AGE BMI

GP 49.5 29 47 63

VE_GP 78.5 10.5 11.5 26

8.5 Conclusion

In the health-care domain, prediction of physiological time series relies on machine learning (ML) techniques

that automatically discover insightful relationships between variables. However, the sequence of measures

of a physiological variable over time is presented to classical ML methods as a group of different fitness

cases. This representation may cause a loss of useful information about the behaviour of time series. Thus,

prediction of physiological time series may require more advanced ML techniques such as long short-term

memory network (LSTM), that consider the time relationship among data. Beside these, the vectorial genetic
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Figure 8.4: Predicted vs observed ventilation for a person of age > 50. The dashed line represents the

collected values of ventilation, while the other line represents the predicted values of ventilation by the

corresponding method.

programming (VE_GP) seems suitable for the problem in analysis due to its capability of treating time series

as vectors. We have therefore carried out a preliminary comparison of ML techniques that deal differently

with the time component on the problem of predicting ventilation flow from other physiological variables

including heart rate series.

VE_GP turned out to be a promising technique in the field of machine learning for time series prediction.

This approach not only considers time series as vectors, but is able to manage time series of different length

and scalar variables without forced padding. Moreover, VE_GP is able to extract meaningful features

from the predictor time series (heart rate) that improves the target prediction (ventilation), which is not

possible for classical ML methods. VE_GP, in addition, still allows the interpretability of the solution which

may provide meaningful information about the problem. Although VE_GP performances are overcame by

LSTM, we have to remind that there is no particular tuning of the technique. Since we purposely do not

optimize VE_GP implementation, we can expect improvements in performances when VE_GP parameters

are properly tuned. The use of VE_GP therefore becomes encouraging even on a real problem, reinforcing

its potential and hinting its application on other similar problems of the health-care domain.
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Chapter 9

An Attempt to Improve Vectorial Genetic

Programming Performance: the Inclusion

of Geometric Semantic Operators

9.1 Introduction

Vectorial Genetic Programming (VE_GP) has already revealed advantages in benchmark problems, chapter

6, but noteworthy are the results on the real prediction of time series data, Chapters 7, 8. The predictive

accuracy and the generalization ability of VE_GP is always ascribed to the key feature of keeping together

ordered sequences in vectors. This representation, in fact, lets the evolution discover the most informative

aggregating functions to be used in the predictive model, which are responsible of inferring information on

the time series behaviour.

Nonetheless, one of the major advantages of VE_GP is claimed to be its ability to evolve the window of

time where the new aggregating functions are applied. VE_GP, in fact, adds to all the aggregating functions

their parametric version, so that they can be applied only on a portion of the whole vector. The search

for the best parameters, the ones that determine the most informative portion of the vector, is part of the

evolutionary process, thanks to the introduction of a parameter mutation operator.

In recent years, the use of geometric semantic operators (GSOs) in GP [9] became popular and showed

some interesting advantages with respect to GP with classical genetic operators [46, 49, 48, 43]. GSOs,

thus, deserve to be explored even in VE_GP approach to see if they still bring advantages in time series

forecasting, although they can not include a semantic parameter mutation.

We thus investigate the use of GSOs in VE_GP by presenting a comparative study of GP techniques

on two time series forecasting problems. The first one is the well known mosquito problem already implied
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in Chaptesr 5, 7. This dataset demands for the inclusion of parametric aggregating functions as primitives,

as shown in Chapter 7, offering the possibility to explore the role of the windows evolution for the accuracy

of predictions. The second dataset is the one regarding the prediction of people ventilation, described in

Chapter 8. In this case, the fact that the time series among different subjects have different lengths suggests

the use of aggregation functions without parameters. Further explanations on the different use of aggregation

functions will be provided in Section 9.2. The methods we compare are VE_GP and classical GP, both using

classical and semantic genetic operators.

9.1.1 Geometric Semantic Operators

Geometric semantic operators (GSOs) are genetic operators recently introduced for GP [9] to replace the

traditional syntax-based crossover and mutation. The term semantic in GP community indicates the vector of

outputs an individual produce on the training instances. Thus, any GP individual can be identified as a point

(its semantic) in a multidimensional space (dimension equal to the number of observations) called semantic

space. While traditional crossover and mutation manipulate individuals just randomly changing their syntax,

GSOs define transformation on the syntax of individuals that correspond to the genetic algorithms operators

of geometric crossover and ball mutation in the semantic space. Geometric crossover generates an offspring

that stand on the segment joining the parents; ball mutation is a weak perturbation of the coordinates of

an individual. We report the definition of the GSOs as given in [9] for individuals with real domain and

considering Euclidean distance as the fitness function, since these are the operators we are going to use in

the experimental phase.

Geometric semantic crossover (GSXO) returns, as the offspring of the parents 𝑇1, 𝑇2 : R𝑛 → R, the

individual:

𝑇𝑋0 = (𝑇1 · 𝑇𝑅) + ((1 − 𝑇𝑅) · 𝑇2)

where 𝑇𝑅 is a random number in [0, 1]. Geometric semantic mutation (GSM) transforms the individual

𝑇 : R𝑛 → R according to the expression:

𝑇𝑀 = 𝑇 + 𝑚𝑠 · (𝑇𝑅1 − 𝑇𝑅2)

where 𝑇𝑅1 and 𝑇𝑅2 are random real individuals with codomain in [0, 1] and 𝑚𝑠 is the mutation step. We

refer to [9] for a proof of the fact that GSXO corresponds to geometric crossover in the semantic space, while

GSM corresponds to ball mutation in the semantic space. The main advantage of these semantic operators is

that they induce a unimodal fitness landscape, thus an error surface characterized by the absence of locally

suboptimal solution, on every supervised learning problems. This property should enhance GP evolvability

on all these problems. The main drawback that afflicts GSOs is that the size of the offsprings is larger than
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the one of their parent(s). To overcome this problem we use the implementation of GSOs proposed by [44]

and the strategy of elitist replacement suggested in [47].

Unfortunately it is not possible to define the semantic equivalent of parameter mutation as described

in Chapter 6. To clarify, let us assume that this operator exists, we call it geometric semantic parameter

mutation (GSPM). GSPM has to change one of the parameter of a parametric aggregation function de-

termining, as a result, a weak perturbation of the semantic of 𝑇 , the individual containing the parametric

aggregation function. However, modifying the window in which the aggregation function is applied means

considering different values of the time series observed, thus the perturbation of the semantic of 𝑇 depends

on the semantic of 𝑇 itself. Surely this fact is in contrast with the hypothesis of weak perturbation.

9.2 Experiments

9.2.1 The datasets

Concerning mosquito problem (P_Mosq) the datasets involved are the ones described in Chapter 7. GP

therefore considers all the environmental predictors except SIN while VE_GP considers the environmental

predictors with daily values vectors of time series predictors.

Regarding ventilation problem (P_Physio),instead, the datasets are fully described in Chapter 8.

9.2.2 Experimental Settings

We have extended GP and VE_GP implementations in order to include GSOs. The methods involved in

the experiments are therefore GP, VE_GP, GP with GSOs (GSGP) and VE_GP with GSOs (GSVEGP).

With each technique we have performed a total of 50 runs on both P_Mosq and P_Physio. Here we lay out

the design of the experiments conducted on both problems.

P_Mosq

In each experimental run we have considered the same partition of training and test sets that follows the

natural order of years: collections from 2002 to 2005 are used as the training set, while collections of 2006

form the test set.

Fitness is calculated as the Root Mean Square Error (RMSE) between the output and the target. In

case of vector based GP (VE_GP and GSVEGP) the output are the predictions of mosquito abundance

over 173 days (April 1st-September 20th), thus for the evaluation of fitness we have considered as the actual

output the predictions corresponding to the collection days. Since the output of trees built by VE_GP and

GSVEGP is supposed to be a vector, for these latter algorithms we have calculated the RMSE vertically

78



disbanding both output and target; in this way the measures of fitness are ensured to be comparable among

all the techniques.

All the runs used population of 100 individuals and the evolution stopped after 50 generations. GP

and GSGP initialized populations using the Ramped Half-and-Half (RHH) method [60] with a maximum

initial depth equal to 6, while VE_GP and GSVEGP initialized populations using the process proposed in

Chapter 6 based on RHH with maximum initial depth again equal to 6. The functions set for GP and GSGP

contains the four binary arithmetic operators +, −, × and / protected as in [60]. The days of mosquitoes

collection are the same across years and traps, thus it is reasonable to look for common informative windows

of time among all the observations. For this reason, the functions set for VE_GP contains the binary

operators VSUMW, V_W, VprW, VdivW plus the parametric cumulative aggregating functions C_max𝑝,𝑞, C_min𝑝,𝑞,

C_mean𝑝,𝑞, C_sum𝑝,𝑞. GSVEGP can not handle parametric functions, thus its functions set consisted of the

binary operators VSUMW, V_W, VprW, VdivW plus the cumulative aggregating functions C_max, C_min, C_mean,

C_sum. All the functions of the vectorial approaches are defined in Chapter 6. The terminal sets contains

the 8 variables as described in Chapter 7 plus random constants r between 0 and 1 generated in run time

when building individuals. To select parents we use a tournament selection involving 4 individuals. To

create new individuals, GP uses standard crossover and subtree mutation [60] with probabilities equal to 0.9

and 0.1 respectively. Besides crossover and mutation, VE_GP uses parameter mutation with probabilities

respectively 0.5, 0.1 and 0.4. The semantic algorithms of GSGP and GSVEGP, instead, uses GSXO and

GSM with probabilities respectively 0.1, 0.9 and 0.7, 0.3; the mutation steps are respectively 1 and 0.01.

The different probabilities and mutation rates depend on a preliminary experimental study performed to

find the best parameter setting. Survival of individuals is elitist for GP and VE_GP, while we use the elitist

replacement [47] for GSGP and GSVEGP. Maximum tree depth is fixed at 17 for GP and VE_GP while no

depth limit is imposed in GSGP and GSVEGP.

P_Physio

Differently from the previous problem, a distinct partition of the training and test sets has been considered

in each run. In particular, 70% of the data instances are randomly selected at the beginning of each run as

training set, while the remaining 30% were used as the test set.

Fitness is calculated as the RMSE between the output and the target. In case of vector based GPs we

follow the procedure described above to guarantee comparable measures.

All the runs used population of 100 individuals and the evolution stopped after 50 generations. GP and

GSGP initialize populations using the RHH with a maximum initial depth equal to 6, while VE_GP and

GSVEGP initialize populations using the process proposed in 6 based on RHH with maximum initial depth
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again equal to 6. The functions set for GP and GSGP contain the four binary arithmetic operators +, −, ×

and / protected as in [60]. The subjects of the trial ran on the trade mill as long as they could, thus the HR

and VE series have different lengths among the people. Looking for a common informative window of time

across all the people may weaken the learning phase. In fact, some time windows may be more adequate

for long time series compared to shorter ones, causing a loss of generalization ability. For this reason, the

functions set for both VE_GP and GSVEGP contains the binary operators VSUMW, V_W, VprW, VdivW plus

the cumulative aggregating functions C_min and C_mean as in Chapter 6. All the terminal sets contain the

4 variables as described in Chapter 8 plus random constants r between 0 and 1 generated in runtime when

building individuals. To select parents we use a tournament selection involving 4 individuals. To create

new individuals, both GP and VE_GP uses standard crossover and subtree mutation [60] with probabilities

equal to 0.9 and 0.1 respectively. The semantic algorithms of GSGP and GSVEGP, instead, use GSXO and

GSM with probabilities respectively 0.3, 0.7 and 0.5, 0.5; the mutation steps are respectively 1 and 0.1.

Also in this case, the different probabilities and mutation rates depends on a preliminary experimental study

performed to find the best parameter setting. Survival of individuals is elitist for GP and VE_GP, while

we use the elitist replacement [47] for GSGP and GSVEGP. Maximum tree depth is fixed at 17 for GP and

VE_GP while no depth limit have been imposed in GSGP and GSVEGP.

9.2.3 Experimental Results

In this section, we report the results obtained in terms of training and test RMSE. In particular, at each

generation we store the value of RMSE on the training and on the test set of the best individual in the

population, i.e. the one with the smallest RMSE on the training data. The curves report the median over

the 50 runs of all these values collected at each generation. The median was preferred over the mean due to

its robustness to outliers which are common in stochastic methods. Figure 9.1 reports the training and test

errors for P_Mosq and P_Physio.

These plots clearly show that VE_GP in both problems is the fastest in learning, with perspective

of further improvement going on with generations, at least for the P_Mosq problem. Moreover, the fast

decreasing of the test error confirms that VE_GP is learning with generalization ability. On the contrary,

both GSGP and GSVEGP exhibit a slow and almost static (GSVEGP in particular) learning phase. We

claim that the main reason behind this fact is the huge size of the semantic space. Considering in fact

GSVEGP, in P_Physio problem the semantic space has dimension (length(𝑝1) × · · · × length(𝑝183)) where

183 is the number of people in the training set (70% of data instances) and length(𝑝𝑖) is the length of the

time series recorded for person 𝑝𝑖; in P_Mosq the size is still huge, being (20)144 where 20 is the number of

mosquitoes collections over a year and 144 is the number of collections in the training set (36 traps×4 year).
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Figure 9.1: GP, GSGP, VE_GP and GSVEGP fitness evolution plots. In grey GP technique, in black

VE_GP technique. The dashed lines refer to GSOs, while the solid lines refer to standard genetic operators.

Since the goal of the analysis is to understand how parametric functions influence the performance, we

compare the RMSE on the test set of the models found out in the 50 runs by all the techniques. We consider

as a model the best individual on the training set at the end of the evolution. Statistical significance of

the null hypothesis of no difference among the methods is determined with pairwise Kruskal-Wallis non-

parametric ANOVAs at 𝑝 = 0.05. In both problems the resulting 𝑝-value states that there is a significant

difference in performance among techniques, thus we perform multiple two-sample Wilcoxon signed rank

tests to understand which method differs from the other. The significance level for each test depends on the

Bonferroni correction. We report the values of the statistical tests in Table 9.1, as well as the boxplots of

models test fitness in Figure 9.2.

According to the statistical tests, VE_GP performance differs from all the other methods for both

problems. Moreover, boxplots in Figure 9.2 show that VE_GP is outperforming all the other techniques.

This outcome confirms that VE_GP is the better GP approach when dealing with panel data, rather than

classical GP approach.

Regarding P_Mosq, the results confirm our intuition on the benefit of evolving time windows to discover

the most informative ones without prior fixing them just by means of experts knowledge. Surely GSVEGP’s
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Table 9.1: Results of comparison between techniques on P_Mosq and P_Physio. Significance level of

Wilcoxon test after Bonferroni correction 𝑝 = 0.05/3 = 0.02.

P_Mosq: Kruskal-Wallis ANOVA 𝑝 < 10−16

VE_GP vs

GSVEGP

VE_GP vs

GSGP

VE_GP vs GP

𝑝 < 10−16 𝑝 = 5.7 · 10−16 𝑝 = 2.2 · 10−14

P_Phisio: Kruskal-Wallis ANOVA 𝑝 < 10−16

VE_GP vs

GSVEGP

VE_GP vs

GSGP

VE_GP vs GP

𝑝 = 2.6 · 10−10 𝑝 = 2.1 · 10−7 𝑝 = 1.1 · 10−5

slow learning is due to the semantic space dimension, but we claim that considering always all the data points

of previous collections (classical cumulative functions) rather than an evolving windows over previous times

may cause a loss in population diversity and thus be another reason of slow learning. In fact, in VE_GP we

find individuals containing different aggregations that span different time series portion, while in GSVEGP

we find surely individuals containing different aggregations, but they all span the same time series portion.

To confirm this observation we report the median (over the 50 runs) diversity curves along generations for

GSVEGP and VE_GP. We use as a subjective measure of diversity the standard deviation of the fitness

values in the population at each generation.

Figure 9.3 clearly shows that GSVEGP is unable to keep good diversity levels which is a key feature

of a successful search process. We try to give an explanation of other plausible reasons for this GSVEGP

diversity drop. GSOs seems to quickly direct the diversified initial population towards the target; however,

after the individuals have converged, the improvements are thinner and thinner and the weak perturbation

of one of the components of one of the output time series results in a weak perturbation of the individual

fitness. At a certain point, thus, GSOs seems to be less efficient due to the high dimension of the semantic

space. In addition, the elitist replacement used to control individual growth [47], at that certain point,

causes more frequently the replication of individuals instead of the offspring replacements. In fact, if the

weak perturbations are not efficient (produce offsprings with bigger fitness) parents are preferred rather then

their offsprings. All these behaviours are feasible reasons of GSVEGP loss of diversity.

Concerning P_Physio results, we expected GSVEGP to be to be the best performing method, since

parametric functions are not involved in any primitive set. However, statistical tests and the boxplots reveal

that VE_GP is the method with the best performance. These results confirm that GSOs are not suitable
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Figure 9.2: Test fitness boxplots of models found out by each technique. Figure (a) refers to P_Mosq, while

figure (b) refers to P_Physio.

to deal with time series variables, probably because of the high dimension of the semantic space induced.

9.3 Conclusions

This analysis is an investigation on the usefulness of evolving parametric aggregation functions for time

series forecasting. Aggregations of values may return informative features of predictors time series for the

target, however aggregations on all historical times of predictors may not be needed to forecast the target

series. The behaviour of the predictors over a window of time may in fact be more meaningful for the target.

To clarify, let us consider the P_Mosq problem of predicting the abundance of mosquitoes during a year:

mosquitoes collected at day 𝑡 are more likely to be affected by the rainfalls over the week before 𝑡 rather

than on all the rainfalls of the days before 𝑡; mosquitoes growth in fact, lasts more or less one week, thus

rainfalls over a week may cause the loss of eggs and thus adult mosquitoes at day 𝑡.

Vectorial genetic programming (VE_GP) includes in the functions set aggregating function depending

on parameters to define time window in which to apply the function. The genetic operator of parameter

mutation, moreover, gives the possibility to parameters to evolve in order to catch the most informative

windows. By this work we therefore want to highlight the benefits of tackling time series forecasting using

VE_GP. In particular, we compare VE_GP performance against VE_GP with geometric semantic operators

(GSVEGP) on two problems. While the first one, P_Mosq, demands for parametric aggregating functions

in the functions set, the second problem, P_Physio, does not require evolving time windows. We choose

GSVEGP as a benchmark because although geometric semantic operators should improve the performance,
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Figure 9.3: Diversity evolution for VE_GP and GSVEGP on P_Mosq. Curves are plotted in logarithmic

scale.

the geometric semantic awareness does not allow parameter mutation as a genetic operator.

The main contribution of this analysis consists in showing that parametric aggregating functions can

further improve the performance when the dataset hypothesis allow for their inclusion (P_Mosq). Moreover

we find out that considering all the history of time series may influence the maintenance of diversity in

the evolving population. Surprisingly, however, results achieved on P_Physio reveals a weakness of GP

algorithms with geometric semantic operators. We impute this result to the high dimension of the semantic

space caused by time series variables that slow the learning process.

The outcomes pave the way for future works on the design of more efficient geometric semantic operators

for problems involving time series, able to perform more dynamical evolutions. A wider result is, however,

the highlight of VE_GP as a successful approach in time series forecasting, making the GP community aware

of its value.

Published Original Research Article Azzali I., Vanneschi L., Giaconini M., Investigating the use of

geometric semantic operators in vectorial genetic programming. Genetic Programming. EuroGP 2020.

Lecture Notes in Computer Science, vol 12101. Springer, Cham (2020).
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Chapter 10

A Coevolutionary Approach Towards

Assumption Free Genetic Programming

10.1 Introduction

Natural evolution developed species, suitable to the environment in which they live, apparently without

any use of prior knowledge. Why therefore not challenging evolutionary algorithms, so that they can also

work in a totally autonomous way, without requiring any prior knowledge from humans? Vectorial Genetic

Programming (VE_GP) was introduced exactly to avoid as much as possible the use of prior knowledge and

improve GP’s autonomy in search processes. In case of problems dealing with time series VE_GP keeps

these variables in their natural structure, without pre-applying any aggregating function (like its mean or

maximum), suggested by expert knowledge, that collapse them into a scalar value. There is still however,

a reminder of prior knowledge in VE_GP: to deal with time series, VE_GP needs to be furnished with a

predefined set of aggregating functions, that catch informative windows of time and time series variables

during evolution. These aggregating functions are typically the classical ones involved in time series analysis

(for instance, mean, sum, maximum, minimum, etc.), and they can be embedded in VE_GP as they are

known to return meaningful features of the time series. Complex problems, however, may be solved by other

aggregating functions, defined as combinations of vector entries, not yet know or defined. Therefore, why not

let evolution itself search for new aggregating functions, instead of manually embedding a set of predefined

ones?

This question led us to propose and investigate an approach where even the nature of aggregations is

explored, Coevolutionary Vectorial Genetic Programming (coevo_VE_GP). In order to avoid the use of a

predefined set of known aggregating functions, a population of aggregating functions is coevolved in parallel

with the standard VE_GP. The main idea is, therefore, the parallel evolution of two populations, one of
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standard VE_GP individuals and one of aggregating functions. These two populations are connected by

means of their fitness functions: the better the individuals of VE_GP that use an aggregating function, the

higher the aggregating function fitness value.

Coevolution is a well-known concept, but what makes our approach original is its purpose of applying co-

evolutionary dynamics to remove human embedded prior knowledge. The reader familiar with VE_GP may

think that the introduction of a parametric terminal function that picks vector entries allows the standard

VE_GP to achieve the same result as the coevolutionary approach. This terminal function, by means of the

parameter evolution, can be used to build any combination of vector entries, thus any aggregating function.

Surely this is right, but using coevolution we expect to reduce the computational effort and to speed up

the learning process. In this chapter, we define coevo_VE_GP to solve time series problems, assessing its

performance through artifical benchmark problems, designed to explore the emergence of different kinds of

aggregation functions. Surely we expect that the added complications will cause less performance in some

environments, but the overall objective is a preliminary investigation of coevo_VE_GP, in order to state its

feasibility and to elucidate the framework in which the technique would be helpful.

10.2 Formulation of coevo_VE_GP

The algorithm of coevo_VE_GP is based on the simultaneous evolution of two populations. One population,

called POP1, evolves a VE_GP system, whose individuals are feasible solutions to the problem at hand.

The other population, called POP2, evolves functions to be used by POP1 to transform vector variables into

scalar values. In particular, the individuals of POP2 are aggregating functions, that is to say they define

aggregations of vector entries.

We now explain in detail this coevolutionary process, using an example for clarity. We assume we are

tackling a problem described by {𝑋1, 𝑋2, 𝑥3} as the input variables, where 𝑋1 and 𝑋2 are vectorial variables,

and 𝑥3 is a scalar variable. For simplicity we consider both 𝑋1 and 𝑋2 vectors of length 3.

10.2.1 Initialization

The first step of coevo_VE_GP is the initialization of POP2. The individuals of POP2 define relationships

among vector entries, where the vectors are actually the vectorial variables involved in the problem. Con-

sidering the example problem, the individuals are built using the terminals {𝑣1, 𝑣2, 𝑣3} which represent the

general 3 entries of the vectorial variables at hand. The function set could include any kind of arithmetical

function as in classical GP. However, for the sake of simplicity, we consider the standard {+, −, ×, /}. The

operator / returns 1 when the denominator is equal to 0, and the result of the division otherwise.

The initial population could be built with any initialization technique, but we decided to always include
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Figure 10.1: Generation 0: POP2={𝑓1,𝑓2,𝑓3}.

𝐼1=

×

𝑋2 -

𝑋1 0.45

𝐼2=

+

-

𝑓1

𝑋1

1.3

𝑋2

𝐼3=

+

/

𝑋1 0.9

𝑓2

𝑓1

𝑋2

𝐼4=

-

𝑓2

+

𝑋1 𝑋2

𝑋2

𝐼5=

/

𝑋1 +

𝑓3

𝑋1

2.8

Figure 10.2: Generation 0: POP1 = {𝐼1,𝐼2,𝐼3,𝐼4,𝐼5}.

some driven individuals. These individuals represent classical aggregations (e.g., mean, sum) which return

meaningful values of the vector in consideration. Results achieved in Chapters 7, 8 made us realize the

key role of these functions in the predictive model of real-world problems, thus they can potentially be

the building blocks of more sophisticated aggregations. These functions should be therefore included as

individuals in the initial POP2 and let the evolution discard or rely on them. Figure 10.1 provides an

example of initial POP2 composed by 3 individuals, including the individual representing the mean.

After POP2 initialization, we can build the initial POP1. POP1 is a standard population of VE_GP.

For example, following our example, the terminal set would be {𝑋1, 𝑋2, 𝑥3}. The functions set is the key

element of the coevolutionary process. Besides any kind of operations available in VE_GP it contains all

the individuals of the current POP2, considered as functions on the vectorial input variables. The functions

set at the base of POP1 consists, therefore, of {+, −, ×, /, 𝑓1, 𝑓2, 𝑓3}. The operators +, −, ×, / are extended

to vectors as defined in Chapter 6.

All the VE_GP techniques of initialization can be used to initalize POP1. However, following a common

rule, every element of POP2 is used at least once as a terminal function in the initial POP1. This guideline

guarantees a well defined fitness for every individual of the POP2 initial population. The previous assertion

in clarified in subsection 10.2.2 where we present how fitness is calculated. Figures 10.2 shows an example

of POP1 initial population.
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The number of POP2 initial individuals should not be too high in order not to force too many inclusions of

aggregating functions in POP1. Furthermore, the size of POP2 increases during the evolution, as explained

in subsection 10.2.4. A reduced dimension is likely to imply a lack of diversity in the population and for this

reason we adopt a strategy, explained in subsection 10.2.3, to avoid the problem.

10.2.2 Fitness evaluation

The core of the coevolutionary process is the fitness evaluation in the two populations. Since the problem

at hand is solved by POP1 individuals, the first fitness values to be calculated are the ones of the POP1

individuals. Nodes corresponding to individuals of POP2 are always treated as aggregating functions on

POP1 terminals.

Regarding POP2, instead, the fitness assigned to each individual depends on how good are the individuals

in POP1 that contain them. Given an individual f in POP2, the fitness of f is therefore the mean of the

fitness of all the individuals in POP1 containing f. This definition implies the possibility of individuals in

POP2 without a fitness value.

10.2.3 Genetic operations

The genetic phase starts in POP2. Besides classical crossover and mutation [61], we decided to introduce

the random generation of individuals, in order to maintain diversity. There are several techniques for

maintaining diversity, which typically reduce selection pressure, selection noise or operator disruption [14].

These techniques operate on the existing individuals of the population. Since we start from a small POP2,

whose size is dynamical (see subsection 10.2.4), the simple introduction of new random individuals is

preferable over the other existing techniques to keep diversity and to avoid a premature collapse of POP2.

Figure 10.3 shows an example of POP2 offspring. We use the following short forms: 𝑐𝑝,𝑞(𝑓, 𝑔) denotes

the crossover swapping the subtree rooted in node 𝑝 in 𝑓 with the subtree rooted in node 𝑞 in 𝑔; 𝑟𝑔() denotes

a randomly generated individual. Once the genetic phase is done in POP2, POP1 is able to generate

its own offspring. Crossover and mutation are used normally, but we added another genetic operation to

exchange individuals with POP2. This new genetic operator is called mutation_pop2. Mutation_pop2 looks

for individuals of POP2 in the nodes of a POP1 individual. After selecting randomly one of these POP2

individuals, the operator of mutation_pop2 changes it randomly with one of the offspring of POP2.

In Figure 10.4, we represent an example of POP1 offspring. We use the following short form: 𝑐𝑝,𝑞(𝐼, 𝑌 )

denotes the crossover swapping the subtree rooted in node 𝑝 in 𝐼 with the subtree rooted in node 𝑞 in 𝑌 ;

𝑚𝑝(𝐼) denotes the mutation of the subtree of 𝐼 rooted in 𝑝; 𝑚𝑝𝑜𝑝2𝑝(𝐼) denotes the mutation of the POP2

individual rooted in node 𝑝 of 𝐼; 𝑟𝑒𝑝(𝐼) denotes the replication of 𝐼.
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10.2.4 New generation

To create the new generation and continue the coevolution process, we start by calculating the fitness of

the individuals in POP1. After applying a classical survival operator [61], the new generation of POP1

is established. In our example: POP1={𝐼2, 𝐼10, 𝐼9, 𝐼7, 𝐼8}. Having the updated POP1, we can calculate

the fitness of all the available individuals of POP2. It is important to calculate again the fitness of the

individuals of the previous generation, since we have a new POP1. In case an individual 𝑓 of POP2 is not

included in any individual of POP1, we can not ascribe a fitness to it. In this case, the survival is applied

by simply removing from the whole POP2 (previous POP2 and offspring) the individuals without a fitness.

This process of selection implies a dynamical size of POP2. The new generation of POP2, in our example,

is therefore POP2={𝑓1, 𝑓2, 𝑓4}.

The reader must be aware that a possible outcome of coevo_VE_GP is the emptying of POP2. In

the case, in fact, when the updated POP1 does not use any aggregating functions, no individual of POP2

survives. In this situation, the coevolutionary process is stopped since it does not involve anymore two

simultaneously evolving populations.

10.2.5 Algorithm

To summarize the description of the coevolutionary technique, we report the pseudo-code of the coevo_VE_GP

in Algorithm 1.
Algorithm 1: Pseudo-code of coevo_VE_GP.

START;

GENERATE: POP2={𝑓1, 𝑓2, 𝑓3}

GENERATE: POP1={𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5}

FITNESS_POP1: 𝐹𝐼𝑠 = fitness(𝐼𝑠) for all 𝑠 ∈ 1, . . . , 5

FITNESS_POP2: 𝐹𝑓𝑡 = mean(𝐹𝐼𝑟 ) : 𝑓𝑡 ∈ 𝐼𝑟 for all 𝑡 ∈ 1, 2, 3

for g=1,. . . ,G do
SELECTION_POP2

GENETIC OPERATIONS POP2

SELECTION_POP1

GENETIC OPERATIONS POP1

compute FITNESS_POP1

POP1_generation(g)=SURVIVAL(POP1+offspring)

compute FITNESS_POP2

POP2_generation(g)=SURVIVAL(POP2+offspring)
end
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10.3 Experiments

We begin the experimental validation of coevo_VE_GP using 4 artificial benchmark problems. These

problems are randomly designed in order to fulfil the first goal of the exploration: show that the coevolution

is actually working, and that POP2 is bringing an active contribution to the evolution of POP1. Here we

describe how these 4 datasets are structured. Note that by 𝑋𝑖
𝑗 we denote the 𝑗-th entry of vector 𝑋𝑖.

Benchmark #1 (bench1)

• 𝑋1 = vector of length 10 of numbers randomly drawn with uniform probability from [1, 10].

• 𝑋2 = vector of length 10 of numbers randomly drawn with uniform probability from [50, 100].

• 𝑥3 = number randomly drawn with uniform probability from [−5, 5].

• Target = (𝑋1
1 + 2 · 𝑋1

2) · 𝑥3 + 𝑋2.

Benchmark #2 (bench2)

• 𝑋1 = vector of length 10 of numbers randomly drawn with uniform probability from [1, 100].

• Target = (𝑋11+...+𝑋110)+𝑋11

𝑋1
.

Benchmark #3 (bench3)

• 𝑋1 = vector of length 10 of numbers randomly drawn with uniform probability from [1, 100].

• Target = (𝑋11+...+𝑋110

10 ) + 𝑋1.

Benchmark #4 (bench4)

• 𝑋1 = vector of length 10 of numbers randomly drawn with uniform probability from [1, 10].

• 𝑋2 = vector of length 10 of numbers randomly drawn with uniform probability from [1, 100].

• 𝑋3 = vector of length 10 of numbers randomly drawn with uniform probability from [−10, 10].

• 𝑥4 = number randomly drawn with uniform probability from [0, 1].

• Target = 𝑥4 · 𝑋1 + 𝑋2

𝑋21− 𝑋34
𝑋35

.
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Table 10.1: Parameters setting of coevo_VE_GP used in the benchmark problems.

POP1 POP2

generations 50 50

initial pop size 100 20

genetic operators crossover, mutation, muta-

tion_pop2

crossover, mutation, random gen-

eration

genetic operators probs 0.5, 0.1, 0.4 0.9, 0.1, rate=0.1

initialization Ramped Half-and-Half with

POP2 control

Ramped Half-and-Half

functions set VSUMW, V_W, VprW, VdivW +,-,×,koza division

terminals input variables + random num-

bers

10 general inputs + random num-

bers

fitness RMSE average RMSE

parents selection Lexicographic Parsimony Pres-

sure

Lexicographic Parsimony Pres-

sure

elitism keep best keep all indiv with fitness

pop size fixed dynamic

max depth 17 17

Each dataset consists of 1000 instances, 70% randomly used as the training set, the remaining 30% used as

the test set. We performed 50 exploratory runs of coevo_VE_GP without any parameter tuning, remarking

that these experiments are meant just as a first evaluation of the method. Table 10.1 reports the parameter

setting used for each problem.

To evaluate the performance of coevo_VE_GP we compared it with standard VE_GP applied on the

same problems. The standard technique of VE_GP is, in fact, totally capable of evolving a population

towards each benchmark target. Aggregations of vector entries can be built by means of a terminal function

that extract from a vector one of its entries. To clarify, let us consider the function 𝑓𝑗 that returns from

vector 𝑉 the 𝑗-entry (𝑉 𝑗). The aggregating function 𝐹 (𝑉 ) = 𝑉 1 + 𝑉 3, for example, can be found in a

VE_GP tree as 𝑉 𝑆𝑈𝑀𝑊 (𝑓1(𝑉 ), 𝑓3(𝑉 )).

We expect, however, in VE_GP a less efficient evolution because good aggregations can be easily de-

stroyed by a crossover or a mutation. Differently, coevo_VE_GP keeps good aggregations in nodes.

To perform VE_GP experiments we introduced a parametric terminal function V_entryp that returns

the 𝑝-th entry of a vector; in case the input is a scalar, the output will be the scalar itself, in case 𝑝 is greater
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than the length of the vector, the output will be zero. To properly handle this function, we introduced a

new genetic operator, mutation_p that randomly mutates the parameter 𝑝 of a V_entryp function. Since

the function V_entryp is specific for vectors, we applied the forced initialization of standard VE_GP, as

described in 6.

We performed the usual 50 runs keeping using the parameters summarized in Table 10.2.

Table 10.2: Parameters setting of the algorithm of VE_GP used in all benchmark problems.

generations 50

initial pop size 100

genetic operators crossover, mutation, mutation_p

genetic operators probs 0.5, 0.1, 0.4

initialization Ramped Half-and-Half with rules

functions set VSUMW, V_W, VprW, VdivW, V_entryp

terminals input variables + random numbers

fitness RMSE

parents selection Lexicographic Parsimony Pressure

elitism keep best

pop size fixed

max depth 17

10.4 Results and discussion

This section presents the results achieved by coevo_VE_GP on the benchmark problems. We firstly focus

the attention on the validity of the technique as a coevolutionary algorithm. Then we prove the effectiveness

of the specific strategies inserted in coevo_VE_GP to finally highlight the advantages and disadvantages of

the coevolutionary process against a standard approach.

10.4.1 Is coevo_VE_GP a real learning process?

The first results we show are the evolutions of the fitness of the best individuals of POP1 on both the training

and the test set, for each benchmark problem. These results are reported in Figure 10.5. The lines plotted

in the figures report the median values calculated over the 50 runs.

These plots highlight the capability of POP1 to gain knowledge through the coevolutionary process on

every benchmark problem. The learning process, moreover, exhibits a good capability of generalization since
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Figure 10.5: Evolution of the median best fitness of POP1 on bench1, bench2, bench3 and bench4. In blue

the training set, in green the test set.
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the test errors are generally decreasing, thus overfitting is not occurring.

10.4.2 The (true) evolution of aggregations

As we are developing a coevolutionary algorithm, we want to be sure that both populations are really evolving

through generations. For this reason, we report the evolution of the fitness of the best individual of POP2.

We remind that, in case of a run where coevolution ends prematurely, the best individual is the last best

individual found for every missing generation. The lines again show the median best fitness over the 50 runs

performed.
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Figure 10.6: Evolution of the median best fitness of POP2 on bench1, bench2, bench3 and bench4.

Figure 10.6 shows a decreasing fitness through generations, thus the best aggregations are used by better

and better individuals of POP1 through generations. These good individuals, however, may have not been

originated through crossover and mutation. We remind, in fact, that during the genetic phase random

individuals are added into POP2 to keep diversity. To ensure that evolution through crossover and mutation

is the actual process enhancing the performance, in Figure 10.7 we report the evolution of the percentage of

individuals in POP2 originated by a genetic operation.

As usual, the line shows the median percentage over the 50 runs. As Figure 10.7 shows, the non-random

individuals increase in the population through generations, thus genetic evolution is really taking place.
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Figure 10.7: Median percentage of not random individuals in POP2 on bench1, bench2, bench3 and bench4.

10.4.3 Coevolution prematurely ended

As already described, some runs may end the coevolution before the stopping criteria, because POP1 indi-

viduals do not use anymore the aggregations of POP2. To understand the role of the coevolutionary process

in approximating the aggregations, we compare the sample of test fitness of the best individuals in POP1

of the two class of runs. The comparison is carried out by means of Wilcoxon signed rank test at 𝛼 = 0.05

significance level, with null hypothesis of no difference in performance between the samples. Table 10.3

reports the 𝑝-values of the test and Figure 10.8 shows the boxplot of the two samples in order to get a visual

feeling, in case of difference in performance, of the sample that returns the best performance. Concerning

bench2, the statistical test and the consequent boxplot are not reported because every run reaches the last

generation.

Table 10.3: Wilcoxon rank-sum test 𝑝-values comparing runs that reach the last generation respect to runs

that end the coevolution before the last generation. The significative values are represented in bold.

Bench1 3.6 · 10−4

Bench3 0.026

Bench4 0.11
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Figure 10.8: Boxplots of the test fitness of the best individuals in POP1 for every benchmark problem.

On the left the sample of coevo_VE_GP runs that end before generation 50, on the right the sample of

coevo_VE_GP runs that reach generation 50.

Bench4 is the only problem where we fail to reject the null hypothesis of no difference in performance,

therefore there is no sufficient evidence to conclude that one sample performs differently from the other.

We should, therefore, use with caution models returned by coevolutionary processes ended before the

last generation.

10.4.4 The driven inizialization is beneficial

The decision of including precise known aggregations (called forced individuals) in the initial pool of POP2

should be demonstrated as an appropriate idea. We would like to observe, in fact, that individuals having

these forced ones as ancestors have better performance with respect to individuals having only random trees

as ancestors. This result indicates that known aggregations drive the evolutionary process towards the right

direction. We therefore perform an analysis of the ancestors of the best individuals of POP2 with respect

to the fitness. After the first generation we store the ancestors of each individual. Moving on with the

evolution we store for each individual the ancestors of its parents. This process allows the identification of

forced individuals in the history of each individual.

Figure 10.9 shows the fitness of the best individuals for each percentage of forced individuals in its

genealogical tree. The bars represent the median fitness of the best individuals over the 50 best individuals

whose percentage of forced ancestors is the same. We considered just runs that actually reach generation

50, because they are more representative of the coevolutionary process and they still form a sample of size

greater than the minimum 30.

The barplots suggest that precise percentages of these forced ancestors determines the lowest fitness, thus

the best performance. Unfortunately in bench1 and bench4 the best performance are achieved by individuals

without forced ancestors. The other 2 problems instead prove that having a huge number of forced ancestors
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Figure 10.9: Barplots of the median best fitness in POP2 for every benchmark problem. On the horizontal

axis the percentage of forced individuals in the ancestors history, on the vertical axis the median fitness.

determines better performance. We can therefore conclude that the inclusion of meaningful aggregation

during POP2 initialization should be a problem dependent choice. This result actually agrees with the

leitmotif of the whole work: some problems may be solved by innovative and unusual aggregations.

10.4.5 Comparison with VE_GP

To evaluate the difference in performance between coevo_VE_GP and VE_GP, we use a Wilcoxon rank-sum

test, with confidence level 𝛼 = 0.05, comparing the 50 test fitness of the best individuals for each problem.

The null hypothesis is that there is no difference in test performance between the two approaches. Concerning

coevo_VE_GP, the best individual is always the best individual of the last generation coevolved. The

resulting 𝑝-values are reported in Table 10.4. In Figure 10.10, we represent the boxplots of the two samples,

provided to understand which technique achieves the best performance in case of significative statistical

difference. The boxplot regarding bench2 is reported in logarithmic scale, due to the presence of outliers.

The results of subsection 10.4.3 revealed that runs that do not reach the last generation have usually

worse performance respect to run that end properly the coevolutionary process. These runs therefore may

obscure the good performance of coevo_VE_GP respect to standard VE_GP. Consequently we compare
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Table 10.4: Wilcoxon rank-sum test 𝑝-values comparing coevo_VE_GP respect to VE_GP. The significative

values are represented in bold.

Benchmark 1 0.0011

Benchmark 2 5.6 · 10−7

Benchmark 3 0.37

Benchmark 4 0.39
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Figure 10.10: Boxplots coevo_VE_GP vs VE_GP.

VE_GP only against the runs of coevo_VE_GP that reach generation 5. Table 10.5 reports the 𝑝-values

of the comparison, while Figure 10.11 shows the boxplots. Bench2 does not appear in this latter analysis

because every coevo_VE_GP run of bench2 reaches properly generation 50.

Table 10.5: Wilcoxon rank-sum test 𝑝-values comparing coevo_VE_GP runs that reach generation 50 respect

to VE_GP. The significative values are represented in bold.

Benchmark 1 0.036

Benchmark 3 0.11

Benchmark 4 0.72
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Figure 10.11: Boxplot coevo_VE_GP vs VE_GP considering only coevolution runs that reach the final

generation.

The results suggest that the previous considerations are not related to the worse performance of prema-

turely ended coevolution runs. In VE_GP, therefore, the aggregations seems not be totally destroyed during

the genetic phase, and there is no evidence of a general predominance of one technique.

Besides the fact that these results depend on the problems involved, there is an aspect where co-

evo_VE_GP may exhibit its potential: computational effort. The key feature of coevo_VE_GP is the paral-

lel evolution of two populations, that makes the identification of the best aggregation a separate sub-problem

from the main one. This split determines a different computational overhead between coevo_VE_GP and

classical VE_GP. We therefore decided to compare the fitness of the two approaches against the compu-

tational efforts, defined as the total number of nodes the algorithm has evaluated in each population for a

given number of generations. At generation g the computational effort is:

𝐶𝐸𝑔 = 𝑃𝐸𝑔 + 𝑃𝐸𝑔−1 + · · · + 𝑃𝐸0,

where

𝑃𝐸𝑔 =
𝑁∑︁

𝑘=1
𝑝_𝑘𝑔 · 𝑎𝑣𝑔_𝑛𝑜𝑑𝑒𝑠_𝑘𝑔,

with 𝑁 being the number of coevolving populations, 𝑝_𝑘𝑔 the number of individuals in population 𝑘 at

generation 𝑔 and 𝑎𝑣𝑔_𝑛𝑜𝑑𝑒𝑠_𝑘𝑔 the average number of nodes in population 𝑘 at generation 𝑔. Figure 10.12

shows the median test fitness curves of the best individuals against computational effort, for every benchmark.

It can be seen that the our coevolutionary approach always require less computational effort to achieve

the same performance.
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Figure 10.12: Best median fitness against computational effort for every benchmark problem. The solid lines

refer to coevo_VE_GP while the dashed lines refer to VE_GP.

10.5 Conclusions

The work was motivated by the idea of checking if evolution is able to extract knowledge from data and solve

problems in an autonomous way. The technique of VE_GP was developed based on this trust, by restoring

the natural structure of time series and avoiding prior aggregations. The coevolutionary approach we propose

(coevo_VE_GP) removes from VE_GP the known aggregations used during evolution by evolving them in

a parallel population, thus making a further step towards autonomy. The population of main programs relies

on a population of aggregating functions by using these individuals as terminal functions. The evolution of

this latter population is determined by the evolution of the main population: the better the individuals that

include an aggregating function, the better the aggregating function. This subordinate fitness evaluation is

the key feature of coevo_VE_GP. The algorithm we present fits perfectly in the coevolutionary field, but is

built on innovative goals and techniques: the inclusion of the VE_GP evolutionary technique and the search

for unusual aggregations of time series.

We explored the effectiveness and the efficiency of coevo_VE_GP by means of four benchmark problems

based on different hand-tailored aggregations. We compared the coevo_VE_GP performance against the

only method we are aware of, having the same ability to discovery innovative aggregations: standard VE_GP.

101



The primary result achieved is the validity of the proposed approach. In both populations, new evolved

populations are better than previous ones. Moreover, when the coevolution stops prematurely because

aggregating functions are no more used by the main population, the proposed solutions are worse compared

to those evolved by complete coevolutionary processes. These outcomes confirm the correct working of

the technique, but there are reasons to believe in an improvement, in terms of the quality of the evolved

solutions, with respect to VE_GP. While in coevo_VE_GP, in fact, the aggregating functions are nodes, in

VE_GP they are subtrees; since subtrees are subject to genetic manipulation, in standard VE_GP it is, in

principle, much easier to destroy a good aggregation, compared to coevo_VE_GP, weakening therefore the

evolutionary process. The results presented show that the approach of coevo_VE_GP is not outperforming

VE_GP in terms of accuracy of the solutions. The strength of coevo_VE_GP is indeed revealed when

gaining more insight into the behaviour of the techniques. Coevo_VE_GP exhibits a lower computational

effort to achieve the same performance, compared to VE_GP. This feature is fundamental considering the

area of application of these technique. The problems to tackle are complex and difficult, involving time

series and aggregation. Reduce the computational effort is thus an indispensable goal to reduce the length

of already expansive runs.

The introduction of coevo_VE_GP must be followed undoubtedly by a further exploration of the main

behaviours emerged, and by an application of the technique on real problems. Since standard VE_GP

has already been applied on real problems in 7, 8, one of the first steps of our future work is the use of

coevo_VE_GP to tackle these problems. These investigations may find out innovative aggregations to

approximate the target and may give an unusual interpretation of the final models to better understand the

dynamic underlying the problems.
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Part IV

Conclusions
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Conclusions

Are genetic programming approaches an improvement of the current state of art in vector abundance mod-

elling? At the end of this dissertation we can definitely say yes. The original goal of this work was an

investigation of genetic programming (GP) in the field of vector abundance modelling through the specific

problem involving mosquito. As described in Chapter 2, Machine Learning (ML) is not a frequent choice

when dealing with vector abundance prediction, despite the good results achieved. In addition, GP, be-

longing to a subfield of ML, has only been applied on problems of marine ecology. There is, therefore, a

clear lack of ML applications in ecological modelling that GP can start to fill as a suitable technique to

combine accuracy and epidemiologist interest of readability. The proposed investigation of GP consisted not

only in the application of the technique, but mainly on the enhancement of GP to properly deal with the

data structures regarding vector abundance modelling. We can therefore analyse the fulfilments of the goals

dividing them into two points: GP application and GP enhancement.

GP application

The dataset of mosquito collections in Piedmont region gave us the possibility to explore GP capabilities in

the field. GP has revealed all its deemed advantages: ability to catch more complex variable interactions

rather than classical statistical modelling, ability to perform an implicit features selection and the ability to

provide a readable model. Since machine learning (ML) methods do not assume any fixed combination of

variables to predict the target, the property of finding complex interaction of variable is shared by all ML

techniques. The impossibility to have, however, a model to be interpreted in order to understand the main

causes of high abundance has put ML methods aside in the field of vector abundance modelling. Thanks

to this work, we have provided awareness to the veterinary science community about a ML technique, GP,

that can join predictive accuracy and generalization ability with readability, probably the main reason of

immediate statistical modelling application.
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GP enhancement

Our main contribution, however, is the development of vectorial genetic programming (VE_GP). Thanks

to the issues raised from GP application to mosquito abundance prediction, we built a technique, VE_GP,

suitable for vector abundance modelling, but open to other application involving similar data structures.

We claim with ambition, in fact, that VE_GP is a general technique and should be used with high degree

of reliability when repeated observations of a problem have their natural representation in a vector. To

give a preliminary proof this statement we tested VE_GP not only on mosquito prediction but even on

the ventilation problem. Despite the increased complexity of the data format VE_GP can deal with, this

new techniques still embrace the good properties of models’ readability and easy structure of classical GP.

Moreover, VE_GP is a winning approach without any further tentative of enhance its performance. When

we tried, in fact, to tune the genetic operators by including the geometric semantic ones, the complexity of

the data strongly emerged and compromised VE_GP predictive accuracy.

The overall path of this work, reflecting the next moves to each emerging issues, provides a major insight:

data left revealing knowledge are more powerful rather than experts knowledge. The arguments that led us

to the development of VE_GP were originated by artificial constructions based on experts knowledge on the

problem at hand. Helping the evolutionary process through prior knowledge seemed reasonable, nonetheless

this knowledge was hindering the discovery of the real variables interactions. The idea of an assumption-free

evolutionary process arised in VE_GP, but became strongly evident in the coevolutionary vectorial genetic

programming (coevo_VE_GP). While VE_GP removes prior aggregations from time series but still assumes

known aggregations to be the building blocks of variables interactions, coevo_VE_GP let even the nature of

aggregations evolve. This idea always suggested us how to move on. Trying to enhance VE_GP by simply

enhancing its predictive ability using geometric semantic operators was not the winning approach, instead

trying to enhance VE_GP philosophy following the prior knowledge removal gave birth to the powerful

coevo_VE_GP. The whole dissertation journey is actually a process towards the awareness that data hide

all the knowledge about a problem, we have only to find the best way to extract this knowledge.

10.6 Future works

All the concluding assertions should take into account one main limitation of the research: dataset availability.

We inferred the potential of VE_GP applying the technique to two real problems, with only one belonging

to the field of ecological modelling. The conclusions we made therefore are undoubtedly problem specific,

but other vector abundance dataset are likely to have the same structure of the one regarding mosquito. A

possible difference may be the choice of the time instants thus months or hours rather than days. In addition,
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coevo_VE_GP, due to time restriction has just been explored through artificial benchmark problem and

not jet on real ones.

In order to overcome the limitation of the study a recommended future work is the application of VE_GP

and coevo_VE_GP on real problems regarding vector abundance modelling. Moreover, this study was

oriented to vector dynamics in time. VE_GP is a technique that consider vectors as terminals, without

strictly assuming that vector representation should be used only for time series. The vectorial terminal can

be implied for any other ordered series that requires not to be collapsed. Predicting vector abundance in

altitude provides an example of ordered series where the sequential values do not correspond to consequent

values in time but rather consequent values in space. It would be interesting therefore to apply VE_GP even

to vector abundance problem concerning spatial prediction rather time prediction to highlight the potential

of the technique in dealing with any kind of ordered structure.
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