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Very often, in Natural Language Processing (NLP), a text input is processed
to generate a text output that is related to it, like: a translation from one lan-
guage to another, a continuation to a given context, an answer to a question,
etc. This not only requires the model to broadly understand the input con-
tent, but also to gather some specific information from it, like named entities
to create accurate outputs. Many deep learning models have great general-
ization capabilities but luck on accuracy, generating inconsistent or halluci-
nated outputs. In this work we study this issue, proposing some methods to
enhance faithful text output generation and to control hallucinations. Our re-
search mainly focus on two objectives: a copying technique which process the
given input information more thoroughly; and an Information Retrieval based
method which allows to output more various and interesting utterances. For
the former task we propose an algorithm which relies on a language model to
read tabular text data and leverages a soft-switch mechanism to decide when it
is appropriate to copy from the input, instead of simply generating condition-
ing on it. We show that the so created model obtains very precise and sensible
results in the framework of Data-to-Text (DTT), while keeping the generaliza-
tion ability. For the latter objective we draw from the observation that a source
of information which is usually underused is the training set itself: it is needed
to create the model, but then it is no more used at inference time. Therefore we
propose to leverage this data over the entire pipeline by merging a Language
Model (LM) with a K-Nearest-Neighbors (kNN) algorithm. So doing, we steer
the great generation capability of LMs via conditioning on information and
facts coming from retrieved text. We test this idea on dialog learning, a noto-
riously difficult task since not only it requires the models to understand the
content in the chat history (which may be very long), but also to choose and
generate the best continuations accordingly to the chat tone, arguments and
being fact consistent. The resulting system is able to produce more interest-
ing and diverse utterances than the simple LM counterpart and it is less prone
to fact errors. In recent years the need for more accurate and reliable solu-
tions in NLP, and maybe within the entire deep learning world, has led to the
trend of creating deeper and deeper models in order to make them powerful
enough to tackle increasingly complex objectives. Although effective, this idea
has the drawback of heading towards overparameterized networks. These
big models are very clunky and usually occupy massive amount of memory
which, among other things, make it difficult to use them on small hardware,
like smartphones or IoT devices, and also asks for complex parallelized envi-
ronments, very costly to build. We face this problem presenting a technique
to reduce the number of parameters used by big deep learning models, al-
lowing them to be stored more easily while still producing comparable results
with the overparameterized ones. The idea is to iteratively shrink the models’
weights which have less impact on the loss computation. This allows to even-
tually prune the non-useful weights and keep the network “core”. Another
benefit of pruning is that the remaining network is sparse and might has better
generalization properties. We show how this technique can be used without
modifications for tasks very different from each other like dialog learning, ma-
chine translation, and even object classification with computer vision models.
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Chapter 1

Introduction

Natural Language Generation (NLG) is the research subfield which lies in the
intersection between artificial intelligence and computational linguistic and
has the goal to create computer systems that can produce linguistic outputs in
order to meet specified communicative goals. Some examples of NLG tasks
are Question Answering (QA), Dialog Generation (DG) or Machine Transla-
tion (MT).

In the last few years NLG has experienced a massive growth both in academia
and in the number of industrial applications mainly due to two factors: the
increasing simplicity to train and deploy robust deep learning models and the
growing presence of sources of textual data, which can be found organized in
huge datasets.

Anyway the presence of a great amount of textual data sometimes is not enough
in order to obtain accurate model performance. Even big deep models trained
on such datasets suffer by different flaws. One example is the presence of in-
vented facts in the generated language output, the so called hallucinations;
in these cases very often the names of people, locations, phone numbers, ad-
dresses and other rare textural entities are wrong or simply non-factually true.

Other examples of unsatisfactory results can be found in the dialog generation
field, where it exists the tendency of trained models to complete a given dialog
with very general or non-informative next turns. Greetings or simple repeti-
tions of previous utterances are very common and, although grammatically
and semantically correct, they lead to dull or inconclusive conversations.

These issues and more lead to a single question: how can we ensure faithful
and informative generation using data-driven models?

This thesis tries to answer to this question focusing on using input data in
a more sophisticated way, in order to obtain a Language Generation system
which produces outputs that do not contain false or trivial informations, while
being accurate and coherent.

We deal with this issue in the framework of two main NLG tasks: Data-To-Text
generation (DTT) and Dialog Generation.

DTT is an instance of NLG and can be defined as “the problem of generating
descriptive text from database records” (Wiseman et al., 2017) which usually
can be seen as sets of key-value pairs (Lebret et al., 2016; Novikova et al., 2017).
This DTT definition still includes a broad range of applications, including:
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Summary of hospital patients conditions: (Banaee et al., 2013; Gatt et al., 2009).
Physician’s reports or exams’ results can be converted into textual sum-
maries for efficient reading.

Current news reports: (Leppänen et al., 2017). These application allows to stream-
line the creation of news with no human in the loop, or just with minor
human interventions.

Weather forecasts: (Goldberg et al., 1994; Ramos-Soto et al., 2015; Reiter et al.,
2005; Turner et al., 2007). Data from different weather data sources like
sensors and meteorology agencies are orgnized and processed to gener-
ate forecasts.

financial reports: (Plachouras et al., 2016). These systems digest financial data,
which are usually organized as huge sets of numerical results, and allow
to gather information from them by querying these sources in a natural
textual way.

Soccer matches chronicle: (D. L. Chen & Mooney, 2008; Theune et al., 2001).
Soccer matches are easily described by some key information like the
two soccer teams, the match result, the place where the match was played.
This data can be converted in a descriptive textual form.

Museum-specific interactive information: (O’Donnell et al., 2001; Stock et al., 2007).
Museum exhibits like archaeological finds, paintings, or sculptures, can
be organized and presented in interactive environments with textual de-
scriptions of them. (O’Donnell et al., 2001; Stock et al., 2007);.

Traditionally, the DTT problem has been faced via pipeline models, in which
each submodule addresses a specific sub-task (detailed in Chapter 2). Sym-
bolic systems were the de facto standard, even if they typically require hand-
crafted rules heavily exploiting domain experts’ work, and are very far from
being generalizable. The rise of data-driven models, and particularly of Deep
Learning-based ones, have naturally brought to a shift in this paradigm with
the creation of the so called end-to-end architectures, where the modular pipeline
is substituted with a single neural network. Their data-driven design allows
the development of general models for DTT, but on the other hand they re-
quire a significant amount of data to reach satisfactory performance.

In this context we present in Chapter 2 an approach which effectively takes
care of the hallucination problem thanks to the introduction of a copy mecha-
nism which exploits a character-based vocabulary. In many Language Genera-
tion tasks, such as Question Answering or Dialog Generation, a deep learning
model would be much more effective if it had the ability to directly retrieve
named entities or rare words from the input itself, or in other terms, copying
them. Moreover, other times the information needed at generation time is not
accessible from the input itself but it is present in the training data. If this is the
case the tokenization/delexicalization preprocessing of the training data, typ-
ical of Language Generation tasks, may lead to the loss of the specific informa-
tion (i.e. rare words are swapped with the <unk> token) and in turn this leads
to a generation miss. This issue can be solved in a simple but rather elegant
way, by entirely removing the <unk> token from the vocabulary. We achieve it
by relying on a character-based vocabulary which contains upper/lowercased
letters, digits and special caracters as used in the ASCII printable standard. So
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doing, the <unk> token is no more needed since every single peace of textual
data can be expressed as a sequence of characters, and it can be processed in a
lossless way.

Dialog Generation is a branch of NLG which aims at creating systems able to
model human language and how humans comunicate through dialog. The
resulting models have the ability to generate or continue given dialogs in sen-
sible ways. In recent years such systems have been studied and implemented
both in academia and industry and are now deployed in many different areas,
such as:

Personal assistant systems: (Cortana (Microsoft, 2021), Siri (Apple, 2021)). Their
dialogue functions can effectively save users considerable time and ef-
fort helping with the completion of various services; from booking a sit
at the cinema to get whether forecasts.

Dialog completion systems: (Google Smart Replay (Kannan et al., 2016)). These
applications are able to complete some simple dialog or piece of text and
are usually deployed in the mobile world as a way to facilitate and speed
up the human interaction with mail, social and messaging apps.

Customer service bots: (Five9 Blended Contact Center (Five9, 2021), SmartAs-
sist (Kore.ai, 2021)). They are business platforms able to create conversa-
tional engagements with clients and help call center agents completing
or suggesting answers to users aiming at faster time to resolution.

Chit-chat chatbots: (I. V. Serban et al., 2017; Y. Zhang et al., 2020). These dialog
systems are not goal oriented and try to mimic general dialog generation
aiming for interesting conversation and user engagement. They are usu-
ally trained on huge chat datasets collected from online resources like
forum or social networks logs.

Dialog systems present challenges which are even harder than DTT’s. These
models must take into account a great amount of context information (dialog
history) to understand the tone, arguments and consequently generate coher-
ent continuations without repetitions or misinformed facts. Moreover, gen-
erating a dialog continuation requires the model to decide how to steer the
dialog itself; when to ask for a question, when to greet, make a joke or sug-
gest interesting facts, having a much more active role than in DTT. Therefore
it is not a surprise that the hallucination problem is still very much present in
dialog system’s outputs and must be taken into account.

As a way to alleviate this issue and in general to build a more reliable, coher-
ent model, we present in chapter 3 a way to combine a LM with a Retrieval
System exploiting both the general language related skills of a trained deep
learning dialog model and the precision and the informative power of a re-
trieval platform. We show that this system is able to complete dialogs with the
usual dynamism of a well trained chatbot, but also avoiding hallucinations
and dull continuations by leveraging data from a given datastore which can
very well be, but it is not limited to, the training data itself.

The dimensions of NLP models as the ones just described have constantly
grown going from ∼ 10s of million to ∼ 100s of billions (Brown et al., 2020;
Microsoft-Nvidia, 2022) in just a few years. This has led to very slow and
memory consuming models which now require sophisticated ways to be trained
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and deployed effectively, like the need for parallelization, mixed-precision
computations and specific acceleration hardware.

Consequently, as further contribution in this thesis, in chapter 4 we study the
possibility to prune deep neural architectures in order to streamline their us-
age.

Sparsity is the set of techniques that aim at limiting (or decreasing) the dimen-
sionality of a neural network by pruning parameters within the model itself,
while maintaining acceptable performance. In practice the sparsity of a weight
matrix is the number of zero-valued elements divided by the total number of
elements within it; the more the zero parameters the more sparse is the matrix.

Numerous methods for inducing sparsity in the neural networks have been
proposed over the past few years: a non-exhaustive review can be found in
section 4.1. Among the most popular ones the L2 regularization based tech-
niques add a penalty term to the cost functional in order to shrink parameters’
values. All parameters dropping below a predefined threshold are then set to
zero, thus obtaining sparse architectures. Our method lies in this framework.

A drawback of these methods is that neural weights’ norms are all driven
close to zero without taking into account of weight relevance in the neural
architecture, as discussed in detail in Tartaglione et al. (2022) and Tartaglione
et al. (2018).

The pruning technique we deal with in this thesis proposes a new loss func-
tional holding a suited regularization term, and demonstrate that applica-
tion of the stochastic gradient descent (SGD) algorithm allows to derive a
new weights’ update rule which selectively decreases the norm of non rele-
vant weights, while performing a classic update for relevant ones. Shrinked
weights are then pruned in order to sparsify the neural architecture. This tech-
nique is effectively applied to prune two different Transfomer-based models
in the context of dialog generation but, because the proposed regularization
term can be added to any loss functional regardless of its form, it constitutes a
unified framework potentially exploitable for many different applications.

An appendix concludes the thesis showing how this technique can be applied
also for pruning convolutional neural networks within the framework of im-
age classification.
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Chapter 2

Improving Accuracy in
Data-To-Text Generation

Early approaches on DTT relied on static rules hand-crafted by experts which
addressed different sub-tasks, so simplifying the global objective of generating
natural language from structured data. Reiter and Dale (1997) identify the
following six sub-tasks:

Content selection: determining the subset of the input information to include
in the generated text.

Text structuring: ordering the information in an accessible way.

Sentence aggregation: splitting the information in sentences, both at the seman-
tic and at the syntactic level.

Lexicalization: deciding the words and phrases that verbalize information.

Referring Expression Generation (REG): choosing the words and phrases that un-
ambiguously identify domain objects. The essential difference with lex-
icalization is that REG consists in a discrimination task. This problem
is in turn split in the determination of referential forms (pronoun, proper
name, definite or indefinite description) and referential contents (set of
properties that identify the target entity).

Surface realization: generating the final well-formed, syntactically correct sen-
tences. This involves ordering the sentence components, ensuring mor-
phological correctness, producing function words and punctuation. Sur-
face generation typically faces the generation gap and can be interpreted
as a mapping between non-isomorphic structures (Ballesteros et al., 2015).

A three-stage pipeline architecture which builds on these tasks’ distinction
was originally introduced by Reiter (1994) and consists of a Text Planner, a
Sentence Planner, and a Linguistic Realizer. This abstract model, outlined by
Figure 2.1, has been described as the “de facto standard” (Reiter, 2010; Re-
iter & Dale, 1997), even if a fair number of systems relax or violate it (Gatt &
Krahmer, 2018).

The Text Planner is in charge of content selection and text structuring. It is
often referred to as Macroplanner, and it determines “what to say”. On the
other side, the Sentence Planner incorporates sentence aggregation, lexicaliza-
tion and referring expression generation. In opposite with the Text Planner, it
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TABLE 2.1: Most commonly used Data-To-Text Generation
datasets and their main features.

Dataset Domain Cont. selection Noisy Entity

WeatherGov (Liang et al., 2009) Weather forecast ✓ ✗ Single
WikiBio (Lebret et al., 2016) Biographies ✓ ✓ Single
WebNLG (Gardent et al., 2017a) Various ✗ ✗ Single
E2E (Novikova et al., 2017) Restaurants ✗ ✗ Single
RotoWire (Wiseman et al., 2017) Sportscast ✓ ✓ Multiple
SBNation (Wiseman et al., 2017) Sportscast ✓ ✓ Multiple
ToTTo (A. P. Parikh et al., 2020) Various ✓ ✗ Single

is often referred to as Microplanner, and it determines “how to say”. Finally,
the Linguistic Realizer carries out the surface realization task alone.

Unfortunately, splitting the DTT task expose generation systems to the gener-
ation gap (Meteer, 1991), defined as the presence of mismatches between early
and later components, so that antecedent decisions in the pipeline have unex-
pected, and possibly unfavorable, consequences on the later ones. The prob-
lem can be attenuated by merging two or more tasks, such as content selection
and text structuring (Duboué & McKeown, 2003), lexicalization and surface
realization (Elhadad et al., 1997), or content selection and REG (Engonopoulos
& Koller, 2014).

In particular in recent years, neural models blurred the distinction between
content selection and surface realization, showing that both can be learned in
an end-to-end, data-driven fashion (T. Liu et al., 2019; Mei et al., 2016; Pudup-
pully et al., 2019a). Based on the now-standard encoder-decoder architecture,
with attention and copy mechanisms (Bahdanau et al., 2015; Bonetta et al.,
2021b; Roberti et al., 2019; See et al., 2017), neural methods for DTT are able
to produce fluent text conditioned on structured data in a number of domains
(Lebret et al., 2016; Puduppully et al., 2019b; Wiseman et al., 2017), without
relying on heavy manual work from field experts.

So, these end-to-end systems solve the DTT generation problem as a whole
without the need for splitting it in sub-tasks and therefore avoiding the conse-
quences of the generation gap.

This has been made possible by the advent of larger and more complex datasets
(Gardent et al., 2017a; Lebret et al., 2016; Novikova et al., 2017; A. P. Parikh et
al., 2020; Wiseman et al., 2017) which satisfy the need for massive data typ-
ical of deep learning model training (see Table 2.1 and Table 2.2 for some
datasets’ features) and this has gone hand in hand with the introduction of
larger and more complex benchmarks. In particular, surface-realization abil-
ities have been well studied on hand-crafted datasets such as E2E (Novikova
et al., 2017) and WebNLG (Gardent et al., 2017a), while content-selection has
been addressed by automatically constructed datasets such as WikiBio (Lebret
et al., 2016) or RotoWire (Wiseman et al., 2017).

These large corpora are often constructed from internet sources, which, while
easy to access and aggregate, do not consist of perfectly aligned source-target
pairs (Dhingra et al., 2019; Perez-Beltrachini & Gardent, 2017). Consequently,
model outputs are often subject to over-generation: misaligned fragments from
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TABLE 2.2: Size of the Data-To-Text Generation datasets in-
cluded in Table 2.1

Dataset
No. of instances Vocabulary

size
Avg. target

lengthTrain Valid. Test

WeatherGov (Liang et al., 2009) 29 528 (total) 345 30.6
WikiBio (Lebret et al., 2016) 582 659 72 831 72 831 ∼ 400 000 26.1
WebNLG (Gardent et al., 2017b) 25 298 (total) 8077 22.7
E2E (Novikova et al., 2017) 42 061 4672 4693 ∼ 3000 14.3
RotoWire (Wiseman et al., 2017) 3398 727 728 ∼ 11 300 337.1
SBNation (Wiseman et al., 2017) 7633 1635 1635 ∼ 68 600 805.4
ToTTo (A. P. Parikh et al., 2020) 120 761 7700 7700 136 777 17.4

training instances, namely divergences, can induce similarly misaligned out-
puts during inference, the so-called hallucinations.

In this chapter we deal with hallucinations caused by models’ inability to cor-
rectly copy named entities or rare words from the input itself, which instead
are generated from other similar but incorrect entities in training set.

After a brief overview of some significant related works in Section 2.1, se-
quence to sequence architectures are described in Section 2.2. In Section 2.3
we resume the main ideas on sequence to sequence encoder-decoder architec-
tures with attention.

In Section 2.4 our original contribution to this field is presented (Bonetta et al.,
2021b; Roberti et al., 2019), namely a technique which address the rare word
issue through a character-based copy mechanism.

Section 2.5 includes the datasets descriptions, some implementation specifi-
cations, the experimental framework and the analysis and evaluation of the
achieved results.

2.1 Related Works

Popularity and usage of neural models for Data-To-Text generation greatly
increased during the last decade. Hereafter we briefly review some important
contributions related to the main features and capabilities of our model.

2.1.1 Conditioned Neural Language Models

Wen et al. (2015a) proposed the first neural system specifically designed for
this task, which consists in a RNN Language Model (Mikolov et al., 2010),
conditioned by a one-hot representation of the input data structure. The model
is enriched by a CNN sentence model, which checks the generated sentence
for semantic consistency, and by a backward RNN-based reranker. The ar-
chitecture has been later improved by extending the recurrent LSTM architec-
ture with a gating “sentence planning cell”, yielding better results (Wen et al.,
2015b).
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2.1.2 Standard RNN Encoder-Decoder

An RNN Encoder-Decoder with attention (see Section 2.3) for DTT has been
developed by Dusek and Jurcícek (2016), aiming to generate either a deep syn-
tax dependency tree, realized by an external module, or the final sentence,
in an end-to-end fashion. Again, a reranking strategy is applied, penalizing
the absence of required information and the addition of irrelevant one. As
an alternative to reranking, Chisholm et al. (2017) propose an auto-encoding
strategy: an RNN Encoder-Decoder with attention is used to generate the nat-
ural language description of the input table, and then to get such table from
the generated utterance. This constrains output sequences to only express the
facts that are present in the data.

2.1.3 Improving Attention Mechanisms

The encoder-aligner-decoder architecture (Mei et al., 2016) is an RNN Encoder-
Decoder with a “coarse-to-fine alignment” mechanism. Standard attention
weights are re-weighted by the probability of each input token of being se-
lected, computed by a pre-selector solely on the basis of the input. This allows
a more picky content selection phase. Differently from the previous archi-
tectures, the encoder-aligner-decoder takes rid of beam search, reranking and
auto-encoding, simply relying on greedy generation. Sha et al. (2018) replace
the conventional attention mechanism with a dispatcher, that uses a soft switch
to choose between the standard content-based attention and a link-based at-
tention, that learns the transition between table fields during decoding, explic-
itly modeling the generation order of the input fields. A more complex archi-
tecture is proposed by Puduppully et al. (2019a), as they interpose a content
selection gate and a neural planner between the encoder and the decoder’s
attention mechanism, that uses the generated plan as the attention keys.

2.1.4 Encoding Structured Data

The main difference between DTT and Machine Translation, i.e. the structured
form of the data, has led to work on the encoding side. Lebret et al. (2016)
use a novel table encoding and embedding strategy to condition a neural lan-
guage model, both locally and globally. They also include copy actions, tak-
ing into account that input tables often contain output tokens. This encoding
strategy has been included in an Encoder-Decoder architecture by T. Liu et
al. (2018). Their encoding RNN is a modification of the LSTM cell, in which
the cell state is updated using also the field information. Their dual attention
mechanism uses the product of independent word-based and field-based at-
tention weights to compute the final context vector. Differently, Puduppully
et al. (2019b)’s model creates entity representations which are dynamically up-
dated. Their attention mechanism has a hierarchical structure, and it takes into
account both the input data and the entity representations. Hierarchical en-
coders are proposed by T. Liu et al. (2019) and Rebuffel et al. (2021) as well. The
former use a word-level and an attribute-level LSTM, and the respective atten-
tion weights are combined via an element-wise product. The latter encodes
entities from records, and data-structures from entities, taking advantage of
Transformer-based architectures. This allows to encode multiple-entity data
structures such as the ones included in the RotoWire (Wiseman et al., 2017)
dataset.
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FIGURE 2.1: The classical three-stage pipeline architecture (Re-
iter, 1994)

2.1.5 Improving Decoding

Compared to the encoder, relatively little work has been focusing on the de-
coder, indeed generating human-like sentences is not an exclusive property
of DTT, unlike encoding data tables. Wiseman et al. (2018) propose a neural
reinterpretation of template-based models: their Hidden Semi-Markov Model
(HSMM) decoder architecture “learns latent, discrete templates jointly with
learning to generate”. Such templates are easily interpretable and facilitate the
controllability of the generation, even if the quality of the resulting sentences
is quite far from state-of-the-art models.

2.2 Sequence-to-Sequence Architectures

Sequence-to-sequence (Seq2Seq) frameworks (Aharoni et al., 2016; Cho et al.,
2014; Sutskever et al., 2014) have proved to be very effective in NLG tasks
(Karpathy & Li, 2015; Mei et al., 2016; Wen et al., 2015a), as in Machine Trans-
lation (Bahdanau et al., 2015; Cho et al., 2014; Sennrich et al., 2016; Sutskever
et al., 2014) and in Language Modeling (Al-Rfou et al., 2019).

One of the most effective declination of the sequence to sequence architecture
is the Encoder-Decoder with Recurrent Neural Networks (Cho et al., 2014;
Sutskever et al., 2014) which consists of two separate RNNs, the encoder and
the decoder, which play different roles; the encoder reads the input and the
decoder generates the output.

The Encoder-Decoder models (and Seq2Seq in general) assume the data they
are fed with to be a sequence, but one of the main difference between Data-To-
Text and other Text-To-Text tasks, such as the ones just cited, is the non-linear
structure of the input. Data tables can have either a key-value structure, in-
terchangeably called slot-value structure, (Lebret et al., 2016; Novikova et al.,
2017), or a more complex table form (Wiseman et al., 2017), so they need a pre-
processing step called linearization, which makes them compatible with neural
Seq2Seq systems. Linearization of the input involves (i) creating embedding
vectors that encode it in a convenient way, and (ii) determining an arbitrary
order for inherently unordered data.

Key-value pairs can be treated as independent subsequent embedded tokens,
delegating to the network the task of distinguishing tokens belonging to data
keys from those belonging to the corresponding values (Dusek & Jurcícek,
2016). This sub-task can be made more trivial to the network by using some
special tokens as delimiters for key and/or values. This is also the approach
used in this thesis since we use the "[" and "]" characters as value delimiters.
A different approach consists in concatenating the key embedding and each
value token’s one (Sha et al., 2018), possibly adding a linear projection and
a non-linear activation, such as the hyperbolic tangent (Wiseman et al., 2017;
Yang et al., 2017). The representation of the key relative to a given token can
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TABLE 2.3: Special tokens included in the vocabulary V , and
their respective roles.

Token Description

<s> Start of sequence
</s> End of sequence
<unk> Unknown, out-of-vocabulary word
<pad> Padding (used in mini-batching)

be enriched by such token’s position, counted from both the start and the end
of the sequence (Lebret et al., 2016; T. Liu et al., 2018).

Different ordering of key-value pairs during training impacts the resulting
generation systems’ performance (Kedzie & McKeown, 2020). In particular,
when the order of the pairs matches the output sentence’s realization order,
models tend to be more controllable.

Once the input data are correctly formatted and organized for the Encoder-
Decoder model the training/inference process can begin. Neural Seq2Seq
architectures take a sequence {x1, . . . , xTx} as input, and output another se-
quence {y1, . . . , yTy}, where the sequences’ lengths are Tx and Ty, respectively.
Input sub-sequences ranging from 1 to j are referred to as x1:j so that x = x1:Tx .
Similarly, output sub-sequences ranging from 1 to t are referred to as y1:t, and
y = y1:Ty .

More specifically, in Data-To-Text Generation, inputs are variable-sized sets of
key-value pairs ⟨k; w1:Tk⟩. Input and output sequences share the same vocabu-
lary V , defined as the set of all possible V = |V| tokens, including the special
ones shown in Table 2.3. Both input and output sequences are linearized and
transformed in lists of embedded tokens prior to be fed into the neural model.

Hereafter we indicate with W and b the model’s weight matrices and vectors
respectively, whose values are learned via back-propagation. Hidden states
size (or model sizes) is generically referred to as emb ∈ N+.

The encoder RNN is in charge of reading the input sequence one time step j at
a time, updating its hidden state vector hj ∈ Remb as described in eq. 2.1.

hj = RNNenc(xj, hj−1), j = 1, . . . , Tx. (2.1)

The decoder RNN updates its hidden state dt conditioned by the previous
generated token and dt−1. Moreover, the encoder’s final hidden state is used
to bootstrap the decoder (i.e. d0 = hTx ):

dt = RNNdec(yt−1, dt−1), t = 1, . . . , Ty. (2.2)

At each time step t, the corresponding decoder’s hidden state dt is projected
to a vocabulary-sized vector ot, which is in turn converted to a categorical
probability distribution:

ot = W · dt + b (2.3)
P(yt|y1:t−1, x) = softmax(ot), (2.4)
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where W ∈ Remb×V . The output token yt is generated according to the proba-
bility distribution P(yt|y1:t−1, x).

Note that the Encoder inputs xj and the Decoder inputs yt−1 are transformed
into embedding vectors, which are stored in a lookup table and they are learned
during training via a linear transformation of a randomly initialized matrix
E ∈ RV×emb, where each row corresponds to a token.

A typical RNN Encoder-Decoder shows the following features:

• the RNN variants used for both the encoder and the decoder are Long
Short-Term Memory (Gers et al., 2000; Hochreiter & Schmidhuber, 1997)
or, less frequently, Gated Recurrent Units (Cho et al., 2014). Those archi-
tectures reduce the exploding or vanishing gradient problems (Bengio et
al., 1993; Bengio et al., 1994) and better deal with long-term dependen-
cies inside sequences.

• the encoder is bidirectional (Schuster & Paliwal, 1997), as the whole in-
put sequence is typically available and information from both left and
right tokens can be informative.

• the decoder uses input feeding, i.e. “attentional vectors are fed as inputs
to the next time steps to inform the model about past alignment deci-
sions”. This aspect is better presented in Sec. 2.3.

• the whole architecture is trained end-to-end, using Back-Propagation
Through Time (Rumelhart et al., 1986; Williams & Zipser, 1989) and
Teacher Forcing (Williams & Zipser, 1989).

• the inference phase can be carried out using different decoding tech-
niques which usually differs by the sampling process used to generate
the next output token. The most used ones are greedy, beam search (Dept.,
2015), top-k (Fan et al., 2018) and nucleus sempling (Holtzman et al.,
2020).

2.3 Encoder-Decoder Architectures with Attention

The Seq2Seq architecture just described in 2.2, although being very effective,
shows a major drawback: it can not scale easily to very long sequences. The
sequential nature of RNNs leads to a difficult gradient flow during the learn-
ing phase and it gets worsen for long inputs/outputs, with issues like the
vanishing or exploding gradient (Pascanu et al., 2013). Moreover, since the
autoregressive decoder is conditioned on the last encoder hidden state hTx ,
the amount of information which flows from the encoder to the decoder is
limited by the dimension of hTx .

The Encoder-Decoder architecture with Attention module (or mechanism) (Bah-
danau et al., 2015) is a renewed way to solve these issue. This neural net com-
ponent aims to emulate the human unconscious attention mechanism. For
example, during a first vision of an image, we focus our attention on a precise
region of the image itself; once we have inferred what is present, we move
on to another region, but with expectations derived from the first inference.
Similarly, when reading a sentence, attention falls on verbs, which allow us to
decode the context quickly and predict (in part) what will come next. We can
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FIGURE 2.2: The Encoder-Decoder with attention (Bahdanau
et al., 2015; T. Luong et al., 2015). Left side: the encoder is im-
plemented as a bi-directional RNN and outputs one annotation
hj for each input token xj. Right side: the decoder, which pro-
duces one state dt for each time step. At the top the attention

mechanism is shown.

see Attention as a vector of importance weights, which puts in first place the
portions of data relevant to the task we want to learn.

The Encoder-Decoder architecture with Attention, which we may simply refer
to as EDA, is represented in Figure 2.2. The main components of the attention
mechanism are:

(i) the alignment model etj

etj ≡ att(dt−1, hj) = bT · tanh(Wa · [dt−1; hj]), 1 ≤ j ≤ Tx, 1 ≤ t ≤ Ty (2.5)

which is parameterized as a feedforward neural network and scores how well
input in position j-th and output observed in the t-th time instant match. Tx
and Ty are the length of the input and output sequences, respectively. Each
vector hj corresponds to the concatenation of the hidden states produced by
the backward and forward RNNs of the bidirectional encoder.

(ii) the attention probability distribution αij

αtj =
exp(etj)

∑Tx
k=1 exp(etk)

≡ [so f tmax(et)]j, 1 ≤ j ≤ Tx, 1 ≤ t ≤ Ty (2.6)

(et is the vector whose j-th element is etj)
(iii) the context vector Ct

Ct =
Tx

∑
j=1

αtjhj, 1 ≤ t ≤ Ty, (2.7)
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weighted sum of the encoder annotations hj.

According to Bahdanau et al., 2015, the context vector Ct is the key element for
evaluating the conditional probability P(yt|y1, . . . , yt−1, x) to output a target
token yt, given the previously outputted tokens y1, . . . , yt−1 and the input x.
They in fact express this probability as:

P(yt|y1, . . . , yt−1, x) = g(yt−1, dt, Ct), (2.8)

where g is a non-linear, potentially multi-layered, function. So doing, the ex-
plicit information about y1, . . . , yt−1 and x is replaced with the knowledge of
the context Ct and the decoder state st.

2.4 Learning to Copy

Encoder-Decoder models uses data represented in a word-by-word scheme
both in input and output sequences; anyways, such schemes can’t be effec-
tive without a special, non-neural delexicalization phase that handles unknown
words, such as proper names or foreign words (Wen et al., 2015b). The delex-
icalization step has the benefit of reducing the dictionary size and, conse-
quently, the data sparsity, but it is affected by various shortcomings. In par-
ticular, according to Goyal et al. (2016) - it needs some reliable mechanism for
entity identification, i.e. the recognition of named entities inside text; - it re-
quires a subsequent re-lexicalization phase, where the original named entities
take back placeholders’ place; - it cannot account for lexical or morphological
variations due to the specific entity, such as gender and number agreements,
that can’t be achieved without a clear context awareness.

Recently, some strategies have been proposed to solve these issues: Gu et al.
(2016) and See et al. (2017) face this problem using a special neural copying
mechanism that is quite effective in alleviating the out-of-vocabulary words
problem, while T. Luong et al. (2015) tries to extend neural networks with a
post-processing phase that copies words as indicated by the model’s output
sequence. Some character-level solutions of this issue have been presented as
well, either as a fallback for rare words (M. Luong & Manning, 2016), or as
subword units (Sennrich et al., 2016).

A significantly different approach consists in employing characters instead of
words, for input slot-value pairs tokenization as well as for the generation of
the final utterances, as done for instance in Agarwal and Dymetman (2017)
and Al-Rfou et al. (2019).

The model we dealt with lies in this framework (Bonetta et al., 2021b; Roberti
et al., 2019): it is a character-level Encoder-Decoder model with attention mech-
anism and copying capabilities that resulted in a completely neural end-to-end
architecture. In contrast to traditional word-based ones, it does not require
delexicalization, tokenization nor lowercasing; besides, according to our ex-
periments it never hallucinates words, nor duplicates them. As we will see,
such an approach achieves rather interesting performance results and pro-
duces a vocabulary-free model that is inherently more general, as it does not
depend on a specific domain’s set of terms, but rather on a general alphabet.
Because of this, it opens up the possibility, not viable when using words, to
adapt already trained networks to deal with different datasets.
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FIGURE 2.3: Our proposed copy mechanism: the final proba-
bility distribution is the sum of Pt

alph and Ptj
att, weighted by pt

gen.

More specifically, our model shows two important features, with respect to
the architecture proposed by Bahdanau et al. (2015): (i) a character-wise copy
mechanism, consisting in a soft switch between generation and copy mode,
that disengages the model to learn rare and unhelpful self-correspondences,
and (ii) a peculiar training procedure, which improves the internal represen-
tation capabilities, enhancing recall; it consists in the exchange of encoder and
decoder RNNs, – GRUs (Cho et al., 2014) in our specific case – , depending
on whether the input is a tabular Meaning Representation (MR 1) or a natural
language sentence.

Our character-based copy mechanism is inspired by the Pointer-Generator
Network (See et al., 2017), a word-based model that hybridizes the Encoder-
Decoder traditional model and a Pointer Network (Vinyals & Le, 2015). Bas-
ing on these ideas, in our model we identify two probability distributions that,
differently from what done by See et al. (2017) and Wiseman et al. (2017), act
now on characters rather than on words: the alphabet distribution Palph and the
attention distribution Patt.

The former is the network’s generative probability of sampling a given char-
acter at time t, recalled in eq. (2.8):

Pi
alph = so f tmax(W[dt; Ct] + b), (2.9)

where W and b are trainable parameters.

The latter is the distribution reminded in eq. (2.6), created by the attention
mechanism over the input tokens, i.e. in our case, over input characters:

Ptj
att ≡ αtj (2.10)

In our method this distribution is used for directly copying characters from the
input to the output, pointing their input positions, while in (Bahdanau et al.,
2015) Patt is used only internally to weigh the input annotations and create the
context vector Ct.

1MR is another way to indicate a set of attributes in the form of key-value pairs.
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The final probability of outputting a specific character c is obtained combin-
ing Palph and Patt through the quantity pgen, defined later, which acts as a soft
switch between generating c or copying it (see fig. 2.3):

Pt(c) = pt
gen · Pt

alph[c] + (1 − pt
gen) ∑

j|xt=c
Ptj

att(c), (2.11)

where Pt
alph[c] is the component of Pt

alph corresponding to that character c.

The backpropagation training algorithm, therefore, brings pgen close to 1 when
it is necessary to generate the output as in a standard Encoder-Decoder with
Attention (Pt(c) ≃ Pt

alph[c]); conversely, pgen will be close to 0 (i.e. Pt(c) ≃
∑j|xt=c Pj

att(c)) when a copying step is needed.

The model we propose therefore learns when to sample from Palph for selecting
the character to be generated, and when to sample from Patt for selecting the
character that has to be copied directly from the input.

This copy mechanism is fundamental to output all the unknown words present
in the input, i.e. words which never occur in the training set. In fact, gener-
ating characters in the right order to reproduce unknown words is a sub-task
not “solvable” by a naive Seq2Seq model, which learns to output only known
words.

The generation probability pgen ∈ [0, 1] is computed as follows:

pt
gen = σ(Wy · ỹt−1 + Wd · dt + Wp · pt−1

gen + Wc · Ct) (2.12)

where σ is the sigmoid function, ỹt−1 is the last output character’s embedding,
dt is the current decoder’s cell state and Ct is the current context vector. Wy,
Wd, Wc and Wp are the parameters whose training allows pgen to have the
convenient value.

We highlight that in our formulation pt−1
gen , i.e. the value of pgen at time t − 1,

contributes to the determination of pt
gen. In fact, in a character-based model it

is desirable that this probability remains unchanged for a fair number of time
steps, and knowing its last value helps this behavior. This never happens in
word-based models such as See et al. (2017), in which copying for a single time
step is usually enough.

We also help the model to learn when it is necessary to start a copying phase,
using the following formulation of P(c) (Bonetta et al., 2021b):

Pt(c) = pt
gen · Pt

alph(c) + (1 − pt
gen) ∑

j|xj=c
Pt,j−1

att (c) (2.13)

Sometimes, our model has difficulty in focusing on the first letter it has to
copy. This may be caused by the variety of characters it could be attending on;
instead, it seems easier to learn to focus on the most largely seen characters,
as for instance " " and "[". Since these special characters are very often the
prefix of the words we need to copy, when this focus is achieved, we would
like the attention distribution to be translated one step to the right, over the
first letter that must be copied. Therefore, the final probability of outputting
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FIGURE 2.4: An example of shifting the attention distribution.
On the left the Patt distribution is picked on the "[" token, used
as delimiter. Shifting the distribution one step to the right al-

lows to pick the distribution on the entity we want to copy.

a specific character c, introduced in eq. (2.11), is modified to Pt,j−1
att , i.e. the

attention distribution shifted one step to the right and normalized. Figure 2.4
shows the convenience of this approach.

Notice that Pt,j−1
att is the only shifted probability, while Pt

alph remains unchanged.
Therefore, if the network is generating the next token (i.e. pt

gen ≃ 1 ), the shift
trick does not involve Pt(c) and the network samples the next character from
Pt

alph, as usual. This means that the shift operation is not degrading the gener-
ation ability of the model, whilst improving the copying one.

2.4.1 Switching GRUs

In order to further improve performance, we enrich our model’s training pipeline
with an additional phase which forces an appropriate language representation
inside the recurrent components of the model. In order to achieve this goal,
the encoder and the decoder do not own a fixed GRU, differently from what hap-
pens in classical end-to-end approaches. The recurrent module is passed each
time as a parameter, depending on which one of the two training phases is ac-
tually performed. So doing, both RNNs learn to encode and decode, becoming
more robust

In the first phase, similar to the usual one, the GRU assigned to the encoder,
named RNNx, deals with a tabular representation x as input, the GRU as-
signed to the decoder, named RNNy, has to cope with natural language, and
the model generates an output utterance ỹ = F(x). Conversely, in the second
phase, GRUs are switched and we use as input the just obtained natural lan-
guage utterance ỹ to generate a new table x̃ = G(ỹ) = G(F(x)). The same
model can therefore build both F and G, thanks to the switch of GRUs, as
shown in Figure 2.5.

In other words, the learning iteration is performed as follows.

• A dataset example (x, y) is given. x is a tabular meaning representation
and y is the corresponding reference sentence.

• We generate an output utterance ỹ = F(x) where RNNx is within the
encoder and RNNy within the decoder.

• We perform an optimization step on the model’s parameters, aiming at
minimizing L f orward = loss(ỹ, y).
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FIGURE 2.5: The switching GRUs mechanism. On the left side
the RNNx is used as Encoder and RNNy for the Decoder while

on the right side the two GRUs are switched.

• We reconstruct the meaning representation x̃ back from the previously
generated output: x̃ = G(ỹ) = G(F(x)). So in this case RNNx is used
within the decoder and RNNy within the encoder.

• We perform a further optimization step on the model’s parameters, this
time aiming at minimizing Lbackward = loss(x̃, x)

The higher training time, direct consequence of the just described technique,
is a convenient investment, as it brings an appreciable improvement of the
model’s performance (see Section 2.5.4).

2.5 Experiments

2.5.1 Datasets

We tested our model on four datasets, whose main descriptive statistics are
given in Table 2.4: among them, the most known and frequently used in liter-
ature is the E2E dataset (Novikova et al., 2017), used as benchmark for the E2E
Challenge 2 organized by the Heriot-Watt University in 2017. It is a crowd-
sourced collection of roughly 50,000 instances, in which every input is a list
of slot-value pairs3 and every expected output is the corresponding natural
language description. The dataset has been partitioned by the challenge orga-
nizers in predefined training, validation and test sets, conceived for training

2challenge website: http://www.macs.hw.ac.uk/InteractionLab/E2E/
3the slot-value term is used with the same meaning of the more known key-value term.

http://www.macs.hw.ac.uk/InteractionLab/E2E/
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data-driven, end-to-end Natural Language Generation models in the restau-
rant domain. A dataset sample is shown in Table 2.5.

TABLE 2.4: Descriptive statistics. Left side: sizes of training,
validation and test sets. Right side: average number of charac-

ters, respectively for MR and natural language sentences.

Dataset
Number of instances Avg. number of characters

training validation test MRs NL sentences

E2E 42061 4672 4693 112.11 115.07
E2E+ 42061 4672 4693 112.91 115.65
Hotel 2210 275 275 52.74 61.31
Restaurant 2874 358 358 53.89 63.22

However, during our experiments, we noticed that the values contained in
the E2E dataset are a little naive in terms of variability. In other words, a slot
like name, that could virtually contain a very broad range of different values,
is filled alternating between 19 fixed possibilities. Moreover, values are par-
titioned among training, validation and test set, in such a way that test set
always contains values that are also present in the training set.

In order to better highlight improvements in copying/recalling abilities, and
as a further original contribution in our work, we created a modified version
of the E2E dataset, called E2E+, as follows: we selected the slots that represent
more copy-susceptible attributes, i.e. name, near and food, and conveniently re-
placed their values, in both meaning representations and reference sentences.
New values for food are picked from Wikipedia’s list of adjectival forms of
countries and nations4, while both name and near are filled with New York
restaurants’ names contained in the Entree dataset presented in Burke et al.
(1997). It is worth noting that none of the values of name are found in near;
likewise, values that belong to the training set are not found in the validation
set nor in the test one, and vice versa. This value partitioning shall ensure the

4https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_
countries_and_nations, consulted on August 30, 2018

TABLE 2.5: An E2E data instance. The Meaning Representation
appears in the dataset once for each reference sentence.

Meaning Representation References

name[The Wrestlers],
eatType[coffe shop],
food[Indian]
priceRange[less than L20]
area[city centre]
familyFriendly[yes]
near[Raja Indian Cuisine]

Indian food meets coffee shop at The Wrestlers
located in the city centre near Raja Indian Cuisine.
This shop is family friendly and priced at less than
20 pounds.

Near Raja Indian Cuisine, The Wrestlers provides
the atmosphere of a coffee shop with Indian food.
At less than 20 pounds, it provides a family friendly
setting for its customers right in the city centre.

The Wrestlers is a coffee shop providing Indian food
in the less than L20 price range. It is located
in the city centre. It is near Raja Indian Cuisine.

https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
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absence of generation bias in the copy mechanism, stimulating the models to
copy attribute values, regardless of their presence in the training set. The MR
and 1st reference fields in Table 2.9 are instances of this new dataset.

Finally, we tested our model also on other two datasets, Hotel and Restaurant,
frequently used in literature (for instance in Wen et al., 2015a and Goyal et al.,
2016). They are built on a 12 attributes ontology: some attributes are common
to both domains, while others are domain specific. Every MR is a list of key-
value pairs enclosed in a dialogue act type, such as inform, used to present
information about restaurants, confirm, to check that a slot value has been rec-
ognized correctly, and reject, to advise that the user’s constraints cannot be
met. For the sake of compatibility, we filtered out from Hotel and Restaurant
all inputs whose dialogue act type was not inform, and removed the dialogue
act type. Besides, we changed the format of the key-value pairs to E2E-like
ones.

2.5.2 Metrics

We evaluated the models’ performance on test sets’ output utterances using
the Evaluation metrics script5 provided by the E2E Challenge organizers. It
rates quality according to five different metrics:

• BLEU (Papineni et al., 2002), a length-penalized precision score over n-
grams, n ∈ J1, 4K, optionally improved with a smoothing technique (B.
Chen & Cherry, 2014).

• NIST (Doddington, 2002), a variant of BLEU which gives more credit to
rare n-gram and less credit to common ones.

• METEOR (Banerjee & Lavie, 2005), that tries to overcome the fact that
BLEU does not take recall into account, and it only allows exact n-gram
matching. Hence, METEOR uses the F-measure and a relaxed matching
criterion.

• ROUGE_L (C.-Y. Lin, 2004), based on a variation of the F-measure where
the precision and recall are computed using the length of the longest
common subsequence between hypothesis and reference.

• CIDER (Vedantam et al., 2015), that weighs each hypothesis’s n-gram
based on its frequency in the reference set and in the entire corpus. The
underlying idea is that frequent dataset’s n-grams are less likely to be
informative/relevant.

2.5.3 Implementation Details

We developed our model using the PyTorch framework6, release 0.4.17.

Tables are encoded simply converting all characters to ASCII and feeding ev-
ery corresponding index to the encoder, sequentially. The resulting model’s
vocabulary is common for every possible training set, so making possible the
use of transfer learning procedures, where appropriate.

5https://github.com/tuetschek/E2E-metrics
6Code and datasets are publicly available at https://github.com/marco-roberti/

char-data-to-text-gen
7https://pytorch.org/

https://github.com/tuetschek/E2E-metrics
https://github.com/marco-roberti/char-data-to-text-gen
https://github.com/marco-roberti/char-data-to-text-gen
https://pytorch.org/
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TABLE 2.6: Model hyperparameters and training settings.

Hyperparameter Value

Embedding size 16
GRU hidden size 256
N. of recurrent layers 4
Attention size 128

Learning rate 10−4

β1; β2 for Adam (Kingma & Ba, 2015) 0.9; 0.999
Max gradient norm (Pascanu et al., 2013) 1
Batch size 16
Max no. of epochs 30

The training has been carried out using one Nvidia Titan RTX GPU, as de-
scribed in Sec 2.4. The two GRUs have the same dimensions, in terms of input
size, hidden size, number of layers and presence of a bias term. Moreover,
they both have to be bidirectional, even if the decoder ignores the backward
part of its current GRU. A typical run lasts for about 10 hours. The final hy-
perparameters for our model are presented in Table 2.6.

We minimize the negative log-likelihood loss using teacher forcing (Williams
& Zipser, 1989) and Adam (Kingma & Ba, 2015); the latter being an optimizer
that computes individual adaptive learning rates. As a consequence of the
length of the input sequences, a character-based model is often subject to the
exploding gradient problem, that we solved via the well-known technique of
gradient norm clipping (Pascanu et al., 2013).

2.5.4 Results and Discussion

In order to show that our model represents an effective and relevant improve-
ment, we carry out two different experimentations: an ablation study and a
comparison with two well-known models. The first model is the Encoder-
Decoder architecture with Attention mechanism by Bahdanau et al., 2015 (here-
after “EDA”), used character-by-character. The second one is TGen (Dusek &
Jurcícek, 2016), a word-based model, still derived from EDA, but integrating
a beam search mechanism and a reranker over the top k outputs, in order to
disadvantage utterances that do not verbalize all the information contained in
the MR. We chose it because it has been adopted as baseline in the E2E Chal-
lenge and we used its official code implementation. Hyperparameter tuning is
done through 10-fold cross-validation, using the BLEU metric Papineni et al.,
2002 for evaluating each model. The training stopping criterion was based on
the absence of models’ performance improvements.

Our first experimentation, the ablation study, refers to the E2E dataset be-
cause of its wide diffusion, and is shown in Table 2.7; “EDA_CS” identifies
our model, and ‘C’ and ‘S’ stand for “Copy” and “Switch”, the two major im-
provements presented in this work. It is evident that the partially-improved
networks are able to provide independent benefits to the performance. Those
components cooperate positively, as EDA_CS further enhances those results.
Furthermore, the obtained BLEU metric value on the E2E test set would allow
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TABLE 2.7: Ablation study on the E2E dataset. Best values for
each metric are highlighted (the higher the better)

EDA

BLEU 0.4999
NIST 7.1146
METEOR 0.3369
ROUGE_L 0.5634
CIDER 1.3176

EDA_C

BLEU 0.6255
NIST 7.7934
METEOR 0.4401
ROUGE_L 0.6582
CIDER 1.7286

EDA_S

BLEU 0.6538
NIST 8.4601
METEOR 0.4337
ROUGE_L 0.6646
CIDER 1.9944

EDA_CS

BLEU 0.6705
NIST 8.5150
METEOR 0.4449
ROUGE_L 0.6894
CIDER 2.2355

TABLE 2.8: Performance comparison. Note the absence of
transfer learning on dataset E2E+ because in this case the train-
ing and fine-tuning datasets are the same. Best values for each

metric are highlighted (the higher the better)

E2E+ E2E Hotel Restaurant

EDA

BLEU 0.3773 0.4999 0.4316 0.3599
NIST 5.7835 7.1146 5.9708 5.5104
METEOR 0.2672 0.3369 0.3552 0.3367
ROUGE_L 0.4638 0.5634 0.6609 0.5892
CIDER 0.2689 1.3176 3.9213 3.3792

TGen

BLEU 0.6292 0.6593 0.5059 0.4074
NIST 9.4070 8.6094 7.0913 6.4304
METEOR 0.4367 0.4483 0.4246 0.3760
ROUGE_L 0.6724 0.6850 0.7277 0.6395
CIDER 2.8004 2.2338 5.0404 4.1650

EDA_CS

BLEU 0.6197 0.6705 0.5515 0.4925
NIST 9.2103 8.5150 7.4447 6.9813
METEOR 0.4428 0.4449 0.4379 0.4191
ROUGE_L 0.6610 0.6894 0.7499 0.7002
CIDER 2.8118 2.2355 5.1376 4.7821

EDA_CSTL

BLEU - 0.6580 0.5769 0.5099
NIST - 8.5615 7.4286 7.3359
METEOR - 0.4516 0.4439 0.4340
ROUGE_L - 0.6740 0.7616 0.7131
CIDER - 2.1803 5.3456 4.9915

our model to be ranked fourth in the E2E NLG Challenge, while its baseline
TGen was ranked tenth.

Our second experimentation, the comparison study, is shown in Table 2.8.
The character-based design of EDA_CS led us to explore in this context also a
possible behavior as a transfer learning capable model (for more information
on transfer learning see Goodfellow et al. (2016) and Ruder et al. (2019)). In
order to test this hypothesis, we used the weights learned during training on
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the E2E+ dataset as the starting point for a fine-tuning phase on all the other
datasets. We chose E2E+ because it reduces the generation bias, as discussed
in Section 2.5.1. We named this approach EDA_CSTL.

A first interesting result is that our model EDA_CS always obtains higher met-
ric values with respect to TGen on the Hotel and Restaurant datasets, and three
out of five higher metrics values on the E2E dataset. However, in the case of
E2E+, TGen achieves three out of five higher metrics values. These results sug-
gest that EDA_CS and TGen are comparable, at least from the point of view of
automatic metrics’ evaluation.

A more surprising result is that the approach EDA_CSTL allows to obtain bet-
ter performance with respect to training EDA_CS in the standard way on
the Hotel and Restaurant datasets (for the majority of metrics). On the E2E
dataset, EDA_CSTL outperforms EDA_CS only in one case (i.e. METEOR met-
ric) but shows a BLEU increment of at least 14% with respect to TGen’s score
when compared to both Hotel and Restaurant datasets.

Finally, the baseline model, EDA, is largely outperformed by all other exam-
ined methods.

Therefore, our model exploits its transfer learning capabilities effectively, show-
ing very good performance in a context like Data-To-Text generation in which
the portability of features learned from different datasets, in the extent of our
knowledge, has not yet been explored.

We highlight that EDA_CS’s good results are achieved even if it consists in
a fully end-to-end model which does not benefit from the delexicalization-
relexicalization procedure, differently from TGen. Most importantly, the latter
represents a word-based system: as such, it is bound to a specific, limited
vocabulary, in contrast to the general-purpose character one used in our work.

Table 2.9 reports the output of the analyzed models for a couple of MR, taken
from the E2E+ test set. The EDA’s inability to copy is clear, as it tends, in its
output, to substitute those values of name, food and near that do not appear
in the training set with known ones, guided by the first few characters of the
input slot’s content. Besides, it shows serious coverage issues, frequently ’for-
getting’ to report information, and/or repeating the same ones.

These troubles are not present in EDA_CS output utterances: the model nearly
always renders all of the input slots, still without duplicating any of them. This
goal is achieved even in absence of explicit coverage techniques thanks to our
peculiar training procedure with switching Grus, detailed in Section 2.4, that
for each input sample minimizes also the loss on the reconstructed tabular in-
put. It is worth noting that the performance of TGen and EDA_CS are overall
comparable, especially when they deal with names or other expressions not
present in training.

The joint analysis of the matrix of the attention distribution Ptj
att and the vector

pgen allows a deeper understanding of how our model works.

In Figure 2.6 every row shows the attention probability distribution “seen”
when an output character is produced at the t-th time instant (i.e. the vector
Ptj

att, 1 ≤ j ≤ Tx), while every column shows values of the attention distribu-
tion corresponding to a specific input position j (i.e. the vector Ptj

att, 1 ≤ t ≤ Ty).
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(A) On an E2E instance.

(B) On an E2E+ instance.

FIGURE 2.6: Attention distribution (white means more atten-
tion) and pgen (white: generating, black: copying), as calcu-

lated by the model
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TABLE 2.9: A comparison of the three models’ output on some
MR of the E2E+ test set. The first reference utterance is re-

ported for convenience

MR name[New Viet Huong], eatType[pub], customer rating[1 out
of 5], near[Ecco]

1st reference The New Viet Huong is a pub near Ecco that has a customer rating of
1 out of 5.

EDA_CS New Viet Huong is a pub near Ecco with a customer rating of 1 out of
5.

TGen New Viet Huong is a pub near Ecco with a customer rating of 1 out of
5.

EDA Near the riverside near the ERNick Restaurant is a pub near the ER-
Nicker’s.

MR
name[La Mirabelle], eatType[restaurant], food[Iraqi],
priceRange[high], area[riverside], familyFriendly[yes],
near[Mi Cocina]

1st reference
La Mirabelle is a children friendly restaurant located in the Riverside
area near to the Mi Cocina. It serves Iraqi food and is in the high price
range.

EDA_CS La Mirabelle is a high priced Iraqi restaurant located in the riverside
area near Mi Cocina. It is children friendly.

TGen La Mirabelle is a high priced Iraqi restaurant in the riverside area near
Mi Cocina. It is child friendly.

EDA
La Memaini is a high priced restaurant that serves Iranian food in the
high price range. It is located in the riverside area near Manganaro’s
Restaurant.

We can therefore follow the white spots, corresponding to higher values of at-
tention, to understand the flow of the model’s attention during the generation
of the output utterance.

Moreover, pgen values, which lie in the numeric interval [0, 1], help us in the
interpretation of the Attention: they are represented as a grayscale vector from
zero (black) to one (white) under the matrices. Values close to 0 mean copying
and those near 1 mean generating.

We can note that our model’s behavior varies significantly depending on the
dataset it has been trained on. Figure 2.6a shows the attention probability
distribution matrix of EDA_CS (together with pgen vector) trained on the E2E
dataset: as observed before, attribute values in this dataset have a very low
variability (and are already present in the training set), so they can be individ-
ually represented and easily generated by the decoder. In this case, a typical
pattern is the copy of only the first discriminating character, clearly noticeable
in the graphical representation of the pgen vector, and the subsequent genera-
tion of the rest of the word. Notice that the attention tends to remain improp-
erly focused on the same character for more than one output time step, as in
the first letter of “high”.

On the other hand, the copy mechanism shows its full potential when the sys-
tem must learn to copy attribute values, as in the E2E+ dataset. In Figure 2.6b
the diagonal attention pattern is pervasive: (i) it occurs when the model actu-
ally copies, as in “Harley Davidson” and “Coco Pazzo”, and (ii) as a soft track
for the generation, as in “customer rating”, where the copy-first-generate-rest
behavior emerges again.
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FIGURE 2.7: Copying common words leads the model to “un-
certain” values of pgen

A surprising effect is shown in Figure 2.7, when the model is expected to copy
words that, instead, are usually generated: an initial difficulty in copying the
word “The”, usually a substring of a slot value, is overcome as follows. The
first character is purely generated, as shown by the white color in the un-
derlying vector, and the sequence of the following characters, “he_”, is half-
generated and half-copied. Then, the value of pgen gets suddenly but correctly
close to 0 (black) until the closing square bracket is met. The network’s output
is not affected negatively by this confusion and the attention matrix remains
quite well-formed.

As a final remark on the used metrics: while being useful, well-known and
broadly accepted, they do not perfectly reflect the ability to directly copy in-
put facts to produce outputs, so settling the rare word problem. New met-
rics that give greater importance to rare words might be needed in the future,
with the purpose of better assess performances of able-to-copy NLG models
on datasets such as the E2E+ one.

Surely, the architectural updates and the peculiar training pipeline of EDA_CS
make our model training time per epoch slower than EDA and EDA_C. One
training epoch on EDA lasts for ∼ 30 minutes, ∼ 37 for EDA_C and ∼ 84
for EDA_CS. Even though this may sound like an issue, in practice our model
needs far less epochs to train to similar loss values (and consequently output
quality) than the other two architectures. In Fig. 2.8 we can see the training
loss curves of the 3 before-mentioned models on the E2E+ dataset; the red
dashed line indicates a level of equal loss at 3.5, which we found to be a rea-
sonable training loss after which the models tend to overfit. The plot shows
how our model reaches good loss values (the red dashed line) already at the
end of the second epoch, while EDA_C and EDA takes almost 4 and 14 times
longer respectively. This is another evidence of the fact that our model is actu-
ally very efficient in squeezing information from the data.
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FIGURE 2.8: Comparison of training losses of EDA, EDA_C
and EDA_CS on the E2E+ dataset.
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Chapter 3

A Retrieval-Augmented
Approach for more Informative
and Accurate Dialog Generation

Automatic dialog generation has rapidly grown in the last few years (S. Zhang
et al., 2018), becaming a fundamental component for many real-world, chal-
lenging applications, such as virtual assistants, conversational agents (Tudor
Car et al., 2020), advanced question answering applications (D. Guo et al.,
2018), or completion tools (Kannan et al., 2016), and is also a matter of great
concern for companies and organizations relying on artificial intelligence so-
lutions to enhance millions of daily interactions through their services.

Simple single-turn Seq2Seq architectures, initially proposed for this task, often
fail to capture long-term temporal dependencies across dialog turns (J. Li et al.,
2016; Sutskever et al., 2014; Vinyals & Le, 2015).

Multi-turn Seq2Seq models, such as the hierarchical recurrent encoder decoder
(HRED) (I. Serban et al., 2016; I. V. Serban et al., 2017; Xing et al., 2018) have
tried to alleviate these problems, yielding responses more coherent with the
dialog contexts. Nonetheless, the generated texts tend to be either generic or
too short, and not comparable with the human ones.

Recently, pretrained transformer-based models such as BERT (Devlin et al.,
2018), Transformer-XL (Dai et al., 2019), XLNet (Yang et al., 2019) and ERNIE
(Z. Zhang et al., 2019) led to state-of-the-art performance on many Natural
Language Processing/Understanding tasks, including Question Answering,
Sentence Classification, Sentence Similarity Inference, Named Entity Recogni-
tion, etc. The architectures of two prominent examples of such models are de-
scribed in sec. 3.2.2 and in sec. 3.2.3 for the Transformer and the Transformer-
XL respectively.

An interesting idea for further enhancing a generative model performance is
to condition the generation on samples retrieved from a task-related datastore.

The model we present in this chapter (Bonetta et al., 2021a) exploits a sim-
ilar framework; our first original contribution concerns how to augment a
Language Model (LM) with a k-Nearest Neighbors (kNN) and a generative
module in order to use it for actual text generation. Furthermore, in the dia-
log generation framework, the typical dialog structure is used to enhance and
speed up the retrieval mechanism, improving the generation results.
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In Section 3.1 a brief overview of some related works is presented. Section
3.2 outlines the self-attention mechanism and the main transformer-based ar-
chitectures. In Section 3.3 we describe our model, formally defining our ap-
proach, and also going into detail of the retrieval mechanism. The remaining
sections are devoted to the dataset descriptions and results discussion.

3.1 Related Works

The approaches we deal with here focus on incorporating external knowledge
in the generation process, both explicitly or implicitly.

3.1.1 Retrieval Augmented Models

Retrieval augmented models typically rely on a datastore to retrieve sensi-
ble explicit information, like piece of texts, to further condition the generative
process. (Guu et al., 2020; K. Lee et al., 2019) augment a generative model
with a neural retriever trained to pick informative text paragraphs. Another
approach has been used in (Guu et al., 2017) where they show how to re-
trieve prototype sentences from the training corpus and then refine them to
get better generative outputs. (Khandelwal et al., 2020) propose to interpolate
a LM with a KNN system. At every time step the LM outputs a distribution of
probabilities over a vocabulary and the kNN-system outputs distances over k-
nearest-neighbors tokens from a datastore. Such distances can be normalized
to have a probability distribution over the KNNs, and finally the two distribu-
tion can be interpolated. Anther approach (Karpukhin et al., 2020) consists in
training models to minimize the distances between context and continuation
embeddings in a hidden space. LM or masked LM are used to generate such
embeddings.

3.1.2 Memory Augmented Models

There have been some other works about learning mechanisms which read
from memories, typically through attention heads, (Sukhbaatar et al., 2015;
Weston et al., 2014) and incorporate these techniques to enhance text gener-
ation models (Z. Lin et al., 2019; Madotto et al., 2018). Although these ap-
proaches successfully integrated systems which can retrieve and even update
information from memory stores, it is non trivial to scale these ideas to millions
or more memories. It is also difficult to directly interpret retrieved memories,
which are not grounded to some specific resources, like text spans.

3.2 Self-Attention Models

As we have described in chapter 2 RNN models, either implemented via LSTMs
or GRUs have been widely used in the DTT field and more generally in NLP
related tasks (J. Li et al., 2022; M. Luong et al., 2016; T. Luong et al., 2015;
Ranzato et al., 2016) with great success. This has been made possible by the
advent of the Encoder-Decoder architectures paired with the attention mech-
anisms which, although being effective, show some drawbacks mainly due to
their sequential nature. These models usually unroll computation factorizing
the output probabilities along the input or output sequences, and use attention
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FIGURE 3.1: graph representing the scaled dot-product self-
attention on the left, and its multi-head version on the right1.

.

to align symbols with time-steps. This force the network to define a temporal
order in the data since every piece of computation done at a fixed time-step is
conditioned on the previous one.

As a consequence, it is difficult (or even impossible) to parallelize computa-
tions within training samples, specially when using a deep model, since every
RNN layer needs to wait for results from previous time-steps and from previ-
ous layers. Moreover, these architectures creates computational graphs where
the number of operations required to relate different arbitrary input or output
positions grows by the distance between them. The resulting issue is that the
model tends to learn patterns which relate inputs close to themselves (Pascanu
et al., 2013). If we look for example at how word embeddings are created by
the encoder stack in a Encoder-Decoder architecture we see that the aforme-
tioned issue leads to sub-optimal word embeddings since there is no simple
way to create such embeddings injecting information from very distant tokens.

The Transformer model (Vaswani et al., 2017) has been created with the inten-
tion of solving these problems and create a more efficient, prallelizable and ex-
plainable Encoder-Decoder architecture. Its basic core-idea is to avoid any re-
currence in the model and to use an attention mechanism, called self-attention,
as principal computational block.

3.2.1 The Self-Attention

The self-attention mechanism described in the Transformer (see fig. 3.2 for
a view of the model architecture) takes inspiration from the original atten-
tion mechanism for Encoder-Decoder architectures (Bahdanau et al., 2015) and
from other subsequent works like (Cheng et al., 2016; A. Parikh et al., 2016)
where the so called intra-attention mechanism is proposed. These techniques
have the specific benefit to uncover patterns and relations among tokens in the
same sequence.

1Figure from (Vaswani et al., 2017)
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TABLE 3.1: Different approaches for computing the attention
alignment. q and ki are the query and key respectively. sim
is a similarity functions such as cosine. Wimp, Wx and b are

trainable parameters.

Name Reference Formula

Additive Bahdanau et al. (2015) bT · tanh(W · [q; h])

General T. Luong et al. (2015) qTWki
Dot-product T. Luong et al. (2015) q · h
Scaled dot-product Vaswani et al. (2017) q·h√

emb
Similarity Graves et al. (2014) sim(ki, q)
biased general Sordoni et al. (2016) ki(Wq + b)
activated general Ma et al. (2017) act(qTWki + b)
generalized kernel Choromanski et al. (2021) ϕ(q)Tϕ(ki)
concat T. Luong et al. (2015) WT

impact(W[q; ki] + b)
additive Bahdanau et al. (2015) WT

impact(W1q + W2ki + b)
feature-based Y. Li et al. (2019) WT

impact(W1ϕ1(K) + W2ϕ2(K) + b)

The self-attention (see left side of fig.3.1) is a function that maps a query Q and
a set of key-value pairs (K, V) to an output using the following formula:

Attention(Q, K, V) = So f tmax(a(Q, K))V (3.1)

a(Q, K) =
QKT
√

dk
(3.2)

where a(Q, K) is called the alignment function since it relates queries and keys.
Q ∈ RTx×dk , K ∈ RTx×dk and V ∈ RTx×dk are linear transformations of the self-
attention layer input, Tx is the length of such input and dk is the key vector di-
mension. The specific attention alignment in Eq. 3.2 is called scaled dot-product
attention since it computes a dot-product which is further scaled by dk (left in
figure 3.1).

Nowadays many variants of the alignment function are used; we show some
of the most relevant implementations in table 3.1, but Eq. 3.2 remains one of
the most widely used since it is very efficient to compute in modern hardware
like GPUs and does not add extra weights to the network.

3.2.2 The Multi-Head Self-Attention and The Transformer

The multi-head self-attention (see Fig. 3.1 on the right) is a linear combination
of H independently computed scaled dot-product attentions (see Table 3.1),
whose queries, keys and values are linear projections of q, k, and v:

multiHead(q, k, v) = [head1; . . . ; headH ] · Wo (3.3)

headi = attention(q · Wq
i , k · Wk

i , v · Wv
i ), i = 1, . . . , H (3.4)

Named emb the embedding dimension, Wo ∈ Remb×emb and, for each i, Wq
i ∈

Remb× emb
H , Wk

i ∈ Remb× emb
H , and Wv

i ∈ Remb× emb
H . The number of heads H is

chosen so that emb mod H = 0.
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FIGURE 3.2: The Transformer architecture (figure from
Vaswani et al. (2017)).
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The feed-forward layer on top of each multi-head attention block in figure
3.2 is a single hidden layer perceptron which uses the Rectified Linear Unit
(ReLU) activation function (Glorot et al., 2011; Jarrett et al., 2009; Nair & Hin-
ton, 2010) and has f hidden neurons:

FeedForward(x) = ReLU(x · W1 + b1) · W2 + b2, (3.5)

where W1 ∈ Remb×f , b1 ∈ Rf , W2 ∈ Rf×emb, b2 ∈ Remb and x ∈ RTx×emb is a
generic input. Multi-head attention and feed-forward layers are followed by
a residual connection (K. He et al., 2016) and layer normalization (Ba et al.,
2016).

The Transformer is composed of two submodules, as can be seen in Figure 3.2:

• the encoder is made up of N identical stacked modules, each one consist-
ing of a multi-head self-attention followed by a feed-forward layer (see
Equation 3.5);

• the decoder is made up of N identical stacked modules, each one consist-
ing of a multi-head self-attention and a multi-head input-output atten-
tion where the queries come from the previous decoder layer, and the
memory keys and values come from the output of the encoder. On top
of each stacked module there is a feed-forward layer (see Equation 3.5).

Both input and output embeddings are enriched by a fixed, sinusoidal-based
positional encoding (Gehring et al., 2017). Finally, a linear projection and a
softmax activation determine the categorical distribution from which the t-th
output token is sampled, as in Equation 2.3.

The transformer architecture has some important advantages over the RNNs:

• the amount of computation that can be parallelized, as measured by the
minimum number of sequential operations required.

• the shorter path length among long-range dependencies in the network.

Learning long-range dependencies is a key challenge in many sequence trans-
duction tasks. One key factor affecting the ability to learn such dependencies
is the length of the paths that forward and backward signals have to traverse
in the network. The shorter these paths between any combination of positions
in the input and output sequences are, the easier the learning of long-range de-
pendencies. Self-attention layer connects all positions with a constant number
of sequentially executed operations, whereas a recurrent layer requires O(n)
sequential operations. In terms of computational complexity, self-attention
layers are faster than recurrent layers when the sequence length n is smaller
than the representation dimensionality emb, which is most often the case with
sentence representations used by state-of-the-art models in machine transla-
tions, such as word-piece (Wu et al., 2016) and byte-pair (Gage, 1994) repre-
sentations.

3.2.3 The Transformer-XL

In this section we introduce the Transformer-XL (i.e. Transformer extra-long)
(Dai et al., 2019) which, as the name suggests, takes inspiration form the Trans-
former and adapt it to deal with very long sequences. In the next Section 3.3
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we will show how to updat it for sequence to sequence modeling and how to
add a retrieval mechanism in order to improve generation even further.

The Transformer-XL is no more an Encoder-Decoder model, but relies on an
upgraded version of a Transformer’s decoder block and has been released for
language modeling purposes, even though not for language generation per
se. This means that it cannot be used off the shelf to learn sequence to se-
quence tasks but it shows some impressive results when used to compute the
conditioned probability of a given piece of text or to create context representa-
tions. This model reads inputs left to right and computes the probability of a
sequence x1, x2, ..., xn maximizing the objective:

P(x1, x2, ..., xn) =
N

∏
n=1

P(xn|x<n)

In order to effectively encode an arbitrarily long context into a fixed size rep-
resentation a simple solution would be to process the entire context sequence
using an unconditional Transformer’s decoder. This solution, even though
simple in the idea, is not easily scalable to long inputs since the memory and
computational requirements of the self-attention modules scales more than
linearly in the input length. To address these limitations the Transformer-XL
implements two ideas:

• Recurrence mechanism. It adds a recurrence mechanism to the Trans-
former architecture. During training, the hidden state sequence com-
puted for a given chunk of text is fixed and cached (i.e. creating memo-
ries) to be reused as an extended context when the model processes the
next chunk. Although the gradient still remains within a segment, this
additional input allows the network to exploit information in the history,
leading to an ability of modeling longer-term dependency and avoiding
context fragmentation. This process is similar to truncated back propa-
gation (Werbos, 1990).

• Relative Positional Encodings. Instead of incorporating positional bias
statically into the initial embedding as happens in the Transformer, one
can inject the same information into the attention score of each layer.
More importantly, it is more intuitive and generalizable to define the po-
sitional bias in a relative manner. For instance, when a query vector qi
attends on the key vectors k≤i, it does not need to know the absolute po-
sition of each key vector to identify the order of the segment. Instead,
for qi it is sufficient to know the relative distance between each key vec-
tor k≤j and itself, i.e. i − j. Practically, one can create a set of relative
positional encodings T ∈ RLmax×d, where the i-th row indicates a rela-
tive distance of i between two positions and T is the maximum allowed
distance. By injecting the relative distance dynamically into the atten-
tion score, the query vector can easily distinguish the representations,
making the state reuse mechanism feasible.
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TABLE 3.2: Dataset specifications.

Taskmaster-1 Prop. dataset
# dialogs 7,708 1,328,301
# turns 169,467 21,953,321
# unique tokens 29,626 1,601,647
avg. turn per chat 21.99 16.53
avg. tokens per turn 7.83 18.00

3.3 Retrieval Augmentation for Dialog Generation

In this section our method is outlined (Bonetta et al., 2021a), which improves
dialog generation by exploiting memorized information from the training data
without further model training. At inference, turn generation is enhanced by
interpolating the next word distribution based on the trained LM with the one
based on a kNN search system. A single LM forward pass over the training
data is preliminary conducted to compute context-target pairs and store them
in a key-value pair datastore, which will be queried to perform the kNN search.

The rest of the section is organised as follows: in the next Section 3.3.1 the
datasets used for experimentation are presented. In Section 3.3.2 the process
for building a datastore is described, and Section 3.3.3 shows how a kNN dis-
tribution is computed and used to augment the LM.

3.3.1 Datasets Description

Two different datasets are used as benchmarks for our method: a public dataset,
the Taskmaster-1 and a real, company collected, call center customer service
dataset. Both datasets contains dialogs between users and agents where the
agent role is to help users with their needs, answering specific questions, pro-
viding services or instructing users about different product possibilities. Since
these chats are driven by some user’s need, these datasets are know as task-
oriented or goal-oriented datasets.

Taskmaster-1 dataset. Taskmaster-1 (Byrne et al., 2019) is a crowsurced dataset,
released by Google in 2019, where Amazon turkers were asked to write dyadic
dialogs following some given set of instructions describing six tasks: order-
ing pizza, creating auto repair appointments, setting up rides for hire, order-
ing movie tickets, ordering coffee drinks and making restaurant reservations.
Workers were asked to play the role of both assistant and user. Specifically,
they were told to write a scenario in which they are speaking to their assis-
tant on the phone while the assistant accesses the services for one of the given
tasks.

The dataset is composed of 13,215 task-based dialogs (12,355 for the trainingset
and 770 for the test set), including 5,507 spoken and 7,708 written dialogs. The
input is also called context and contains agent-user utterances up to a user one;
the following agent utterance is the target. Note how some special tokens (i.e.
<user>, <enduser>, <agent>, <endagent>) are used to bound each utterance;
these delimiters are useful for the network to understand who is talking. A
Taskmaster-1 sample is shown in table 3.3; more info about the dataset are in
table 3.2.
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TABLE 3.3: A Taskmaster-1 sample.

Input
<user>Hi there, could you please help me with an order of Pizza?<enduser>
<agent>Sure, where would you like to order you pizza from?<endagent>
<user>I would like to order a pizza from Domino’s.<enduser>
<agent>What kind of pizza do you want to order? <endagent>
<user>What are the specials they have right now? <enduser>
<agent>There are family and party combos currently on offer <endagent >
<user>No, I just want a large pizza <enduser>
<agent>They have any large specialty pizza for 10.99 <endagent>
<user>What are their specialty pizzas? <enduser>
Target
<agent>Well, there is the Extravagazza, Meatzza, Philly Cheesesteak,
Hawaiian, Buffalo Chicken Ranch, and more. Would you like to hear more?
<endagent>

Proprietary (Prop.) dataset.2 This dataset contains dyadic agent-user chats
collected from a financial service call center over a one year time period, giv-
ing us the opportunity to test our approach in a real company scenario. It
contains 172 times the dialogs number of the Taskmaster-1, as shown in table
3.2, and comes with two meta-information for every utterance, the turn num-
bers and the agent-ids. The turn number is just the position of the specific turn
within the chat. The agent-id is a unique identifier for the agent speaking and
usually it is just its email address. These meta-information help the network
to discern different moments in the chats (like chat beginning/middle/end)
and ideally to model every agent’s style and nuances in how different agents
handle conversations. Meta-information are concatenated to the chat’s text as
prefixes to every turn, following the approach used in (Wolf et al., 2019). An
example is given in table 3.4.

TABLE 3.4: A proprietary dataset sample.

Input
<agent> 1 Rob@company | Hi! What questions can I help answer about our
products and services? <endagent>
<user> 1 | I would want to use the account by the end of the week . So should
I go into a branch office to sign the signature card? <enduser>
<agent> 2 Rob@company | Before we get started may I please have your name
and the name of you business? <endagent>
<user> 2 Tony Stark; Stark Industries <enduser>.
Target
<agent> 3 Rob@company | Hello and welcome! I’d be happy to assist you.
<endagent>
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FIGURE 3.3: Transformer-XL workflow. Given a dialog the
model processes it chunk by chunk from left to right creating

the dialog context embeddings.

3.3.2 Datastore Creation

The datastore is the source of information that allows the network to be more
precise during inference, lowering the model uncertainty about the next-token
distribution. A datastore contains context embeddings and the first token
which follows each context. Usually they are gathered from a training sub-
set, even though also other possibilities can be considered, like using another
dataset with a similar distribution to the training one. How to use this source
of information is better described in the next Section 3.3.3; here instead follows
a more precise description of what a datastore is made of and how to build it.

Let (ci
t, wi

t) ∈ D be the ith example in training data D. The context ci
t is a

sequence of dialog turns of a dyadic chat occurring between an agent and a
user; ci

t is represented as a sequence of tokens, i.e. ci
t = (wi

1, wi
2 . . . wi

t−1), and
wi

t is the target word.

Let f (ci
t) denote the context-encoder function, that maps the context ci

t to its
fixed-length vector embedding. More specifically, f (ci

t) represents the embed-
ding of token wi

t−1 after attending to all the previous tokens in the example.
We define f (·) as the input to the last feedforward layer in the final atten-
tion block of a Transformer-XL (see 3.2.3), as in (Khandelwal et al., 2020).
This achieves better performance than other options (e.g, the output of the last
transformer layer). In order to have a sensible embedding function f (·) we
need to train the Transformer-XL on the training data. This is achieved by
cross entropy minimization and controlling overfitting through well known
techniques like early stopping on validation data performance. Differently
from (Dai et al., 2019) and (Khandelwal et al., 2020), which train a LM by con-
catenating all the examples, we train the model by resetting the Transformer-
XL states at the beginning of each chat: this effectively prevents the model
from conditioning on previous unrelated contexts. Moreover, memories are
used to propagate information inside very long chats.

Finally, the trained LM is used to build the datastore (K, W) through one for-
ward pass on the training set, computing the embeddings of all the contexts

2The dataset can not be made public due to privacy constraints
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within it:
(K, W) :=(ki

t, wi
t)=( f (ci

t), wi
t), ∀(ci

t, wi
t)∈D

where ki
t = f (ci

t) is the vector representation of the context, and wi
t is the target

word id (i.e. integer number). Note that every context embedding is just the
embedding of its last token, and since we consider every possible context in
the training set, the datastore contains one embedding for each token within it.
In Fig. 3.3 it is shown an intuitive representation of the model workflow. Given
a dialog, it processes it chunk by chunk using the previous ones as memories.
The multi-head self attention mechanism is applied (2 times in the figure) to
generate the context embedding kt.

FIGURE 3.4: Illustration of the generation process. Given a
context qt, its embedding is computed with the pretrained
Transformer-XL and the same model generates a probability
distribution on the next word PLM. The embedding is used
to query the index (i.e. the datastore) for similar contexts. A
distribution PkNN is built using the words that come next to
the retrieved contexts; the closer the retrieved context to qt the
higher the word probability. Finally PkNN and PLM are interpo-

lated and the next token is sampled from P.
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3.3.3 Hybrid Probability Distribution

Here we see how the actual information from the datastore can be used at
inference time to improve the generative capabilities of a typical LM. At every
time step t, the trained LM receives a query (qt), i.e. a chat truncated at the end
of a user turn, and generates the next assistant turn token-by-token, according
to the following steps, also illustrated in Fig. 3.4:

a) Generate the context embedding f (qt) and the probability distribution
PLM(vt|qt) over next words in the vocabulary.

b) Issue a kNN search with f (qt) as query, to get from the datastore its
nearest neighbors Nt:

Nt = {(k1, w1), (k2, w2) . . . (kn, wn) . . . }

c) Compute the score SkNN(wn|qt) of the token wn over Nt, based on L2

distance between kn and f (qt):

SkNN(wn|qt) =
e−d(kn, f (qt))

∑k j∈Nt
e−d(k j, f (qt))

d) Aggregate the scores of each vocabulary token wn as the sum of all its
occurrences within the retrieved neighbors:

SAggr
kNN (wn|qt) = ∑

wn′∈Ntwn′=wn

SkNN(wn′ |qt)

e) Get the probability distribution PkNN over next words in the vocabulary:

PkNN(vt|qt)= ∑
(kn,wn)∈Nt

1vt=wn(S
Aggr
kNN (wn|qt))

where 1vt=wn is a vector whose dimension is equal to the vocabulary size
and whose elements are all zero except for the t-th one, equal to 1.

f) Interpolate PkNN with PLM, using a weighted sum based on the interpo-
lation hyperparameter λ, to get the final probability distribution P for
next word vt :

P(vt|qt)=λPkNN(vt|qt)+(1−λ)PLM(vt|qt)

g) output the next word v̂t by sampling from P(vt|qt) and concatenate v̂t
to qt to update the context: qt+1 = qt + v̂t. If v̂t is a terminal token the
generation process stops; otherwise the entire procedure is repeated.

Since the Transformer-XL was built for Language Modeling purposes it lacks
a generation module that actually samples from P(vt|qt) and feed back the
token to the model in an autoregressive way, so we implemented this module
for greedy and beam search decoding.
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3.3.4 Retrieval Mechanism

To search the datastore, we use FAISS (Johnson et al., 2017), an optimized
open source library for fast nearest neighbor retrieval in high dimensional
space. FAISS’s central building block is the index, a structure which stores
millions of key-value pairs for efficient search. An issue with the index is that
the number of elements could easily grow to hundreds of millions, leading to
memory issues and hindering the search performance. However in practice,
we only need to store token embeddings for assistant turns, since we are only
interested in generating assistant responses. So we propose the simple but ef-
fective idea of filtering out from the datastore every token coming from a user
turn, so almost halving its size, and allowing the generation of consistent ut-
terances, resembling assitant specific style. The indexes are all implemented
as OPQ32,IVF8192_HWSW32,PQ32 as per FAISS index factory string 3. This
quite complex implementation provide a good tradeoff between search accu-
racy and speed by applying Optimized Product Quantization (Ge et al., 2013)
as a pre-processing step and Product Quantization (Gray & Neuhoff, 1998)
as post-processing, while using inverted lists to define cluster of vectors and
applying Hierarchical Navigable Small World indexing (Malkov & Yashunin,
2020).

3.4 Experiments

In this section the implementation details of our model Transformer-XL + kNN
are presented along with the results obtained for both datasets. We coded
the system using the PyTorch framework release 1.2.0, and FAISS release 1.6.1.
Training and inference were done using a single Nvidia Tesla V100 32GB GPU.

3.4.1 Transformer-XL + kNN on Taskmaster-1

For the Taskmaster-1 we used a Transformer-XL model with 12 layers, 8 heads,
512-dimensional hidden states and 2048 as inner attention dimension, result-
ing in 49M weights and trained for a maximum of 10k steps via Adam opti-
mizer. The training stopping criterion is based on perplexity on the develop-
ment set. Hyperparameter tuning, including optimal interpolation parameter
λ determination, is done through performance evaluation over the develop-
ment set. We adopted a BPE vocabulary consisting of 16K tokens generated
using the Sentencepiece library (Kudo & Richardson, 2018). All the training
set is used to build the datastore.

Our model is compared with two baselines: the Transformer, which is the best
performing model proposed for this dataset by (Byrne et al., 2019); and the
Transformer-XL, i.e. the LM used without the retrieval mechanism.

The first column of table 3.5 shows the corresponding BLEU scores4, obtained
as mean values of 10 different runs, and standard deviations. We can see that
our method gets more than two BLEU points over the Transformer baseline,
and more than one point over the Transformer-XL baseline. This result show

3more information on different FAISS indexes at https://github.com/facebookresearch/
faiss/wiki/The-index-factory.

4BLEU script at: https://github.com/tensorflow/tensor2tensor/blob
/master/tensor2tensor/bin/t2t-bleu

https://github.com/facebookresearch/faiss/wiki/The-index-factory.
https://github.com/facebookresearch/faiss/wiki/The-index-factory.
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TABLE 3.5: Average BLEU and standard deviations on test set.
The statistical significance is validated via Student’s t-test with

significance level of 99.8%.

Taskmaster-1 Prop. dataset
Models: Avg Std Avg Std
Transformer (Byrne et al., 2019) 6.115 - - -
Transformer-XL 7.09 0.14 39.96 0.36
Transformer-XL + kNN 8.30 0.05 41.72 0.20

TABLE 3.6: Example of inference query, along with results
from baseline and our best model. agent@company.com is the
agent-id, which is preceded by the turn number. Tokens be-
tween angular parenthesis indicate the beginning and end of

turns.

Query
. . .
<agent> 3 Luke@company | I am thrilled to hear that you would like to apply for a new card today.
Have you decided which card you would like to apply for?<agent>
<user> 3 | yes <enduser>
<agent> 4 Luke@company | Excellent! <endagent>
<user> 4 | basic credit card.<enduser>
Target
<agent> 5 Luke@company | Our credit card is a great card for e-shopping and balance transfer.
You can use the link below to begin the application today.<endagent>
Transformer-XL <agent> 5 Luke@company | That is very good to know! <endagent>

Transformer-XL + kNN
<agent> 5 Luke@company | That is a great card. I would be happy to stand by
while you apply should you have additional questions. <endagent>

that the interpolation is effective in improving generative performance even if
the datastore itself contains two order of magnitude less turns with respect to
the proprietary dataset.

Figure 3.5 depicts the BLEU trend curve when the interpolation parameter
λ varies through the selected range. We can see that kNN interpolation im-
proves the BLEU scores over the Transformer-XL baseline for every value of
λ in the selected range. The best result is with λ = 0.4, indicating LM and
context retrieval are almost equally contributing.

3.4.2 Transformer-XL + kNN on a Real World Scenario

For the proprietary dataset we used the same model hyperparameters as for
the Taskmaster-1 but augmented the hidden states dimension to 768 and the
inner attention dimension to 3072, resulting in ~116M weights. We trained for
a maximum of 400k steps.

Since using all the training set for the datastore would result in a prohibitively
large disk space usage we decided to build it using just the last 3 months of
the training set (1/4 of the entire data). This resulted in ~176M embeddings.
Also in this case the Transformer-XL + kNN improves over the LM model for
about 1.8 BLEU points, even with a datastore smaller then the entire training
set. These results are obtained interpolating with λ = 0.5 (best on dev. set).

5result from referenced paper.
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FIGURE 3.5: Taskmaster-1 BLEU trend at different λ interpola-
tion values (development set).

Table 3.6 shows a sample from the test data along with the expected target, the
turn generated by the Transformer-XL, and the turn generated by our Trans-
former + kNN. In this dialog a user wants some help for a credit card appli-
cation. Our proposed model generates a sensible and relevant continuation:
the agent conveys the intent to help the user apply for the credit card, as in
the target. On the other hand the baseline Transformer-XL model generates
a generic response which is not useful in advancing the dialog. The quality
of our model has been assessed more thoroughly by human volunteers who
evaluated the Transformer-XL + kNN outputs vs. a ranker model described in
our patent (D. Liu et al., 2021). A description of the human evaluation and its
findings is in Appendix A.2.

More experiments using different proprietary datasets and indexes are pre-
sented in Appendix A.1, where we assess the advantages of finetuning the
model on subsets of the training set. Finally in Appendix A.3 is discussed a
simple idea to constraint the system to generate train n-grams with the aim to
have a more controllable and reliable generation process.
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Chapter 4

Pruning Deep Language
Generation Models

As outlined in the previous chapters, over the past few years deep learning
models had been constantly establishing new state-of-the-art performance in
a flood of different domains, including Language Generation (Dusek et al.,
2020; Mei et al., 2016; Otter et al., 2018; Puduppully et al., 2019a), Machine
Translation (Bahdanau et al., 2015; Vaswani et al., 2017), Image Processing (K.
He et al., 2016; T. He et al., 2019; Simonyan & Zisserman, 2015; Szegedy et al.,
2015; K. Zhang et al., 2020) and Image Captioning (Feng et al., 2019; L. Guo
et al., 2020), just to name a few.

However, the resources required to properly train these systems can be pro-
hibitive; in fact the number of weights of such neural networks can easily sum
up to several millions. These growing performance costs have therefore in-
duced scientists to look for techniques to limit the size of neural architecture
parameters while keeping their powerful prediction properties.

An effective approach for reducing this complexity is via weights sparsification,
which is the process that allows to achieve sparsity in the models’ weights
tensors, which in turn is the property that indicates that a subset of their values
are set to zero. The major advantages of sparse models are:

• they have smaller computational requirements (specially on ad-hoc hard-
ware) (Dietrich et al., 2021).

• they have smaller memory footprint compared to regular networks and
can fit more easily in mobile devices.

• they are less prone to overfitting, potentially generalizing as well or even
better than the original networks.

Numerous methods for inducing sparsity have been proposed over the past
few years, and a non-exhaustive review of different approaches can be found
in Section 4.1. Among them, those which are based on merely removing small
norm weights, like via L2 regularization, are the simplest ones, and have
demonstrated acceptable performances (Collins & Kohli, 2014; Han et al., 2015).
L2 regularization based techniques, detailed in Section 4.1.3, add a penalty
term to the cost functional in order to shrink parameters’ values. All parame-
ters dropping below a predefined threshold are then set to zero, thus obtaining
sparse architectures.
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A drawback of these methods is that neural weights’ norms are all driven close
to zero without taking account of weight relevance in the neural architecture,
as discussed in detail in Tartaglione et al. (2018) for the Image Classification
case.

The work we present in this chapter relies on this approach (Bonetta et al.,
2022): we propose a new loss functional holding a suited regularization term,
and demonstrate that application of stochastic gradient descent (SGD) algo-
rithm allows to derive a new weights’ update rule which selectively decreases
the norm of non relevant weights, while performing a classic update for rele-
vant ones. Weights’ update therefore directly follows from loss optimization,
not requiring the definition of ad hoc update rules, as frequently done in lit-
erature (Han et al., 2015; Tartaglione et al., 2018). Shrunk weights are then
pruned in order to sparsify the neural architecture.

Our technique is general, as the proposed regularization term can be added to
any loss functional regardless of its form, and constitutes a unified framework
potentially exploitable for many different applications.

We verify the effectiveness of our method in the context of Natural Language
Generation and Image Classification, respectively sparsifying self-attention
based and convolutional neural architectures. While the latter task has been
frequently addressed in literature, it is still rare to find sparsity techniques ap-
plied to language generation architectures. In particular we tested our method,
inter alia, on the dialog generation task outlined in Chapter4.4.3.

Our approach establishes, at the best of our knowledge, new state-of-the-art
performance for both the Language Generation tasks we dealt with, and gets
comparable to state-of-the-art results in two out of four Image Classification
tasks.

The Chapter is organised as follows: Sections 4.1 contains an overview of re-
lated works. Section 4.2 presents the theoretical foundations of our model and
Section 4.3 the actual pruning algorithm. Section 4.4 describes datasets, imple-
mentation details and results obtained in the framework of Language Gener-
ation; implementation details and results concerning Image Classification are
shown in appendix B.

4.1 Related Works

In literature there have been proposed many different techniques to prune
neural networks. Here follows a discussion of some of the main ones, where
algorithms which fall under similar theoretical frameworks are presented in
the same subsections.

4.1.1 Dropout Methods

The idea behind dropout is to temporarily eliminate neuron/weight form the
network with a preset probability. We distinguish two types of dropout tech-
niques:
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• Unit dropout randomly drops units (often referred to as neurons) at ev-
ery training step to reduce dependence between units and prevent over-
fitting.

• Weight dropout randomly drops individual weights in the weight ma-
trices at every training step. Intuitively, this connections dropping forces
the network to adapt to a different connectivity at every training step.

Variational Sparse Dropout Variational Dropout (Blum et al., 2015) refor-
mulates the learning problem with a Bayesian approach, where the dropout is
modelled as noise applied to the inputs of all the neural layers, as follows:

ḡ = (x̄ ⊙ Ξ)w̄, (4.1)

where x̄ is the input matrix, w̄ is the weights matrix, Ξ is the noise matrix and
ḡ is the output matrix.

Given a drop rate α, the formulation in (Blum et al., 2015) applies on a weight
wi,j a multiplicative Gaussian noise ξi,j ∼ N(1, p), where p = α

1−α .
This can be redrafted as:

wi,j = θi,j
(
1 +

√
p · ϵi,j

)
∼ N

(
wi,j | θi,j, pθ2

i,j

)
ϵi,j ∼ N (0, 1)

(4.2)

where θi,j is the value of wi,j in the precedent iteration.

In the original paper (Blum et al., 2015) only p ≤ 1 was taken into account,
which implies a dropout rate α ≤ 0.5: unfortunately, this formulation gen-
erates a large variance of the gradient, caused by multiplicative noise, when
p = +∞ =⇒ α = 1,.
The reformulation given by the Variational Sparse Dropout (Molchanov et al.,
2017) replaces the multiplicative factor with an exactly equivalent additive
noise term:

wi,j = θi,j
(
1 +

√
p · ϵi,j

)
= θi,j + σi,j · ϵi,j

ϵi,j ∼ N (0, 1)
(4.3)

where σ2
i,j = p · θ2

i,j is treated as a new independent variable. This new refor-
mulation solves the problem concerning the gradient, thus making it possible
to use dropout values close to 1.

A regularization term in the loss, working in conjunction with the dropout,
allows to reach very good results in terms of sparsification.

(Blum et al., 2015; Molchanov et al., 2017) are the first works in which dropout
is used to sparsify networks, paving the way for new research in the field
(Gomez et al., 2019; Salehinejad & Valaee, 2020)). Because of its easy im-
plementation, this sparsification technique is used in very complex models,
yielding optimal results (Gale et al., 2019) in many different tasks.

Targeted Dropout Targeted Dropout (Gomez et al., 2019) is another dropout-
based approach, which focus on disentangling important subset of weights
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from unimportant ones in order to get stable pruning. Before computing the
gradients for each weight update, targeted dropout stochastically selects a set
of units or weights to be dropped, using L1 and L2 norm as a proxy for weight
importance, and then computes the gradients for the remaining weights. The
authors use two importance criteria, one for unit pruning, the other for weight
pruning and a targeting rate γ for select the bottom γ|θ| weights and neurons
(i.e. the dropout candidates). Then the candidates are eliminated indepen-
dently with a drop rate α. Targeted Dropout was tested on several known
neural models, showing better performance than Variational Sparse Dropout.

4.1.2 Pruning using Weights’ Weight

In this family we have pruning techniques that associate a value of relevance
to the weights, based on their contribution in changing the output. The aim is
to eliminate, in the pruning phase, all those weights with low relevance.

Single shot network pruning based on connection sensitivity (SNIP) The
authors of SNIP (N. Lee et al., 2019) use a binary matrix r̄ to represent the rel-
evance of the weights. The relevance values of r̄ are learned together with the
value of the weights w̄, in the backpropagation phase. The model will have
twice as many parameters to be learned, but in a single step we can prune γ
weights, where γ is a hyperparameter decided by the user. The SNIP algo-
rithm proceeds as follows:

• Sample a mini-batch of training data.

• Calculate the weights relevance based on the magnitude of the deriva-
tives.

• Order the weights by their relevance in descending order.

• Set r̄ of the top-γ weights to 1, set r̄ of the others weights at 0.

• Train the network with r̄ applied.

The new optimization problem is defined as:

min
r̄,w̄

L(r̄ ⊙ w̄ | D) = min
r̄,w̄

1
|D|

|D|

∑
i=1

L (r̄ ⊙ w̄ | (xi, yi))

s.t. r̄ ∈ {0, 1}, ∥r̄∥0 ≤ γ

(4.4)

where D is the training dataset, xi is the i-th input and yi is the i-th expected
output.

The strength and weakness of this algorithm is that a predetermined amount
of weights are cut in a single step, resulting in models with limited sparsity
or degraded performance. Despite this, SNIP has been the basis for new tech-
niques (Y. Guo et al., 2016) which improved on this drawback.

Dynamic Network Surgery (DNS) According to the authors (Y. Guo et al.,
2016), assigning a relevance to the weight is a very complicated task, because
of the mutual influences and mutual activations among interconnected neu-
rons.
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In order to overcome this issue they propose a dynamic relevance calculation
based on a binary relevance matrix r̄ which, differently from (N. Lee et al.,
2019), can change during training, as well as the weights matrix w̄.
The DNS algorithm proceeds iteratively as follows:

• Perform the forward propagation and compute the loss with respect to
(r̄ ⊙ w̄), similarly to (4.4).

• Compute the backward pass from the model output.

• Update the relevancies rn
i,j(t + 1), one by one, according to (4.5) where t

is the time index and n the layer index. Once the new loss is calculated,
all weights w̄ are updated, even those with relevance equal to 0.

In the last step we see the dynamic property: after updating the weights, the
mistakenly pruned connections are re-established if they appear to be impor-
tant.
The matrix r̄ is calculated from the weight matrix w̄:

rn
i,j(t + 1) =



0 if α >
∣∣∣wn

i,j

∣∣∣
rn

i,j(t) if α ≤
∣∣∣wn

i,j

∣∣∣ < β

1 if β ≤
∣∣∣wn

i,j

∣∣∣
(4.5)

where α and β are two user-defined hyperparameters.

Because the results are very competitive in terms of pruning and performance,
DNS is one of the most used weight relevance pruning techniques for compar-
ison with new methods.
Nevertheless, when dealing with very large models, other approaches are pre-
ferred, since pruning techniques based on weight relevance cause the model
doubles in size, because it is necessary to train also the relevance matrix r̄.

4.1.3 Regularization Techniques

Regularization methods turn an original unstable, ill-posed problem into a
well-posed one (Badeva & Morozov, 1991); they limit the capacity of models
by adding a parameter norm penalty to the loss functional L, to control over-
fitting and decrease the test error.

Adding a regularization term to the loss allows to obtain interesting sparsifi-
cation properties (Han et al., 2015). The new minimization problem becomes:

L̂(θ) = L(θ) + λF(θ), (4.6)

where L is any measure of Loss (like MSE, Cross Entropy) and λ is a hyper-
parameter that controls the contribution of the regularization term.
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L0 Regularization L0 regularization when applied to neural weights wn
i,j is

characterized by a factor F(θ) that penalizes all weights different from 0:

F(θ) ≡ F(w̄) = ∑
n,i,j

I
[
wn

i,j ̸= 0
]

(4.7)

wn
i,j indicates the j-th connection of the i-th neuron in layer n and w indicates

the weight matrix.
Unfortunately, the Loss is non-differentiable and intractable, due to combina-
torial nature of the 2θ possible states of the parameter θ.
In (Louizos et al., 2018) the problem is reformulated using a Bernullian distri-
bution and a hard-sigmoid to make it tractable, achieving interesting results
in terms of sparsity and performance.

Differently from L1 and L2 regularization, discussed in the following section,
L0 is very expensive from a computational point of view: moreover, the imple-
mentation is relatively complicated and difficult to generalize. Nevertheless,
L0 has been used in several models, even very complex ones, obtaining good
results (Gale et al., 2019).

L1 and L2 Regularization L1 regularization exploits a regularization term of
the form

F(θ) = ∑
n,i,j

∣∣∣wn
i,j

∣∣∣ . (4.8)

L2 regularization, one of the most common parameter norm penalty also known
as Tikhonov regularization, ridge regression or weight decay (Tikhonov, 1963;
Tikhonov & Arsenin, 1977), uses a quadratic regularization term:

F(θ) = ∑
n,i,j

∣∣∣wn
i,j

∣∣∣2 (4.9)

Substituting (4.9) in (4.6) the regularized loss L becomes:

L̃(w̄) = L(w̄) + λ∥w̄∥2 = L(w̄) + λ ∑
n,i,j

∣∣∣wn
i,j

∣∣∣2 (4.10)

As deeply analysed in the next section, in a neural context the iterative applica-
tion of stochastic gradient descent algorithm (SGD) results in the well known
weights’ update rule

wn
i,j(t) = wn

i,j(t − 1)− η
∂L(w̄)

∂wn
i,j

− 2λwn
i,j, (4.11)

where η is the learning rate and λ is the regularization parameter.

An analogous procedure for regularization L1 yields the update rule:

wn
i,j(t) = wn

i,j − η
∂L(w̄)

∂wn
i,j

− λ (4.12)
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FIGURE 4.1: The number of weights, after training, with the
value indicated by the x-coordinate. L1 regularization imposes
a much more sparse solution on the model, i.e. with many
weights set to 0, while the L2 regularization is much more per-
missive. Regularization functions (scaled) are also shown for

reference. Image from (Boyd & Vandenberghe, 2004).

In (Han et al., 2015), L1 and L2 term are tested and used to shrink weights
below a user-defined threshold. Those weights are removed and the sub-
network is retrained. The process is carried out several times, until perfor-
mance decreases.

L1 and L2 based pruning are widely used: they are easy to implement, do not
require a high computational cost and achieve good results in terms of sparsity
and performance (Tartaglione et al., 2018).

A disadvantage of these techniques is that the neural weights are driven close
to zero without taking into account their relevance in the neural architecture.

A first attempt to deal with this issue is presented in (Tartaglione et al., 2018),
where the idea of output-based sensitivity is introduced: weights are selec-
tively penalized depending on their capability to induce variations on network
output, when changed.
A limitation of this approach is that it can not be applied at training time, as
outputs of the network might not be satisfactory.
A solution to this problem is presented in Lobster (Tartaglione et al., 2022),
where the idea of loss-based sensitivity SL is introduced:

SL (L, y, wn,i) =
1
C

C

∑
k=1

∣∣∣∣ ∂L
∂yk

∣∣∣∣ · ∣∣∣∣ ∂yk

∂wn,i

∣∣∣∣ (4.13)

Because of the low computational efficiency of (4.13), authors approximate it
with the following lower bound

SL ≥
∣∣∣∣ ∂L
∂wn,i

∣∣∣∣ (4.14)

which allows to define the new update rule:

wt
n,i = wt−1

n,i − η
∂L

∂wt−1
n,i

− λΓ
(

L, wt−1
n,i

) [
1 −

∣∣∣∣∣ ∂L
∂wt−1

n,i

∣∣∣∣∣
]

(4.15)
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λ and η are two positive hyperparameters, and Γ is equal to:

Γ(y, x) = x · P
(

∂y
∂x

)
(4.16)

Using an algorithm composed of a regularization phase (in which the de-
scribed update rule (4.15) is applied) and a pruning phase (where parameters
are removed), Lobster yields a significant and competitive reduction of the
number of nonzero weights, with a minimal computation overhead.

4.2 The Relevance-Based Pruning Method: Theory

As seen in the previous section, in a neural context, the regularized loss L̃
depends on each weight wn

i,j belonging to layer n and connecting neurons i
and j, and has the form:

L̃(w̄) = L(w̄) + λ∥w̄∥2 = L(w̄) + λ ∑
n,i,j

∣∣∣wn
i,j

∣∣∣2 (4.17)

The iterative application of stochastic gradient descent algorithm (SGD) at
time step t

wn
i,j(t) ≡ wn

i,j(t − 1)− η
∂L̃(w̄)

∂wn
i,j

(4.18)

results in the well known weights’ decay update rule

wn
i,j(t) = wn

i,j(t − 1)− η
∂L(w̄)

∂wn
i,j

− 2λwn
i,j (4.19)

where η is the learning rate and λ is the regularization parameter. Therefore
the neural weights are driven close to zero without taking into account their
relevance in the neural architecture.

In this chapter we present a solution to account for weight relevance proposing
a new loss functional L̂ modified with respect to eq. (4.17) which leads, via
SGD, to a new selective weight decay rule which shrinks the magnitude of
only those weights that are not relevant to the final result. For this purpose
we modify the regularization term of eq. (4.17) multiplying it by a coefficient
which measures how much the final loss value is influenced by modification
of wn

i,j.

The quantity
∣∣∣∣ ∂L

∂wn
i,j

∣∣∣∣ would seem to be a good candidate for this, in fact small

derivative values indicate that even a large variation of wn
i,j do not cause large

loss variations, i.e. weight changes are not relevant to the final loss value. This
derivative anyway is not upper bounded, which is a possible issue in order
to preserve SGD convergence properties. Besides, large derivative values are
not interesting because we aim at driving to zero (and prune) only irrelevant
weights.
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Taking account of these requests we therefore define the coefficient of irrele-
vance In,i,j as:

In,i,j ≡ exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)

, 0 < In,i,j < 1. (4.20)

In,i,j is bounded and assumes values near 1 for irrelevant weights and near 0
for relevant ones. Moreover it has the useful property to be almost everywhere
differentiable.

We also define the new loss functional L̂, modified with respect to eq. (4.17) to
selectively limit the magnitude of weights:

L̂(w̄) ≡ L(w̄)+λ ∑
n,i,j

(
In,i,j ·

∣∣∣wn
i,j

∣∣∣2) = L(w̄)+λ ∑
n,i,j

(
exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)
·
∣∣∣wn

i,j

∣∣∣2)
(4.21)

The iterative application of stochastic gradient descent algorithm to L̂ allows
to calculate the new weights’ update rule:

wn
i,j(t) ≡ wn

i,j(t − 1)− η
∂L̂

∂wn
i,j

=

= wn
i,j(t − 1)− η

∂L
∂wn

i,j
− 2ηλ exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)

wn
i,j − ηλ

∣∣∣wn
i,j

∣∣∣2 ·
exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)
(−1)

∂

∂wn
i,j

∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣ =
= wn

i,j(t − 1)− η
∂L

∂wn
i,j
− 2ηλ exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)

wn
i,j + ηλ

∣∣∣wn
i,j

∣∣∣2 ·
exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)

sgn

(∣∣∣∣∣ ∂2L
∂wn

i,j
2

∣∣∣∣∣
)

(4.22)

As usually done in first order derivative optimization methods, we can neglect
the second-order derivative term, so that eq. (4.22) becomes:

wn
i,j(t) = wn

i,j(t − 1)− η
∂L

∂wn
i,j
− 2ηλ exp

(
−
∣∣∣∣∣ ∂L
∂wn

i,j

∣∣∣∣∣
)

wn
i,j (4.23)

Different weights’ updates are made in the two cases determined by the ex-
treme values of I:

• I ∼ 0: in this case the weight is relevant. The third term in eq. (4.23) is
roughly zero, so a classic update is performed, without targeted reduc-
tion of weight norm.

• I ∼ 1: in this case the weight is irrelevant. Because I ∼ 1 implies
∂L

∂wn
i,j

∼ 0, the second term in eq. (4.23) is roughly zero, and the update
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rule becomes:
wn

i,j(t) ≃ wn
i,j(t − 1)− 2ηλwn

i,j (4.24)

We can see that in this case the weight is actually driven to zero at each itera-
tion, because if wn

i,j > 0 then ∆wn
i,j < 0 (i.e. the norm of a positive irrelevant

weight is decreased); on the other hand if wn
i,j < 0 then ∆wn

i,j > 0.

4.3 The Relevance-Based Pruning Method: the Algorithm

The pruning algorithm proceeds this way:

1. We get a state-of-art checkpoint, either founding it in literature or train-
ing it on our own.

2. We finetune the checkpoint by using our proposed regularization term,
as in equation (4.21). In this step any optimizer can be used. During fine-
tuning we regularly evaluate the model performances on the validation
set every evaluation-interval steps, and:

• prune. If the validation performance is higher than a user-defined
lower-bound, a fixed percentage (pruning-percentage) of the remain-
ing model parameters is pruned, choosing from the ones with lower
magnitude.

• not prune. If the validation performance is lower than the user-
defined lower-bound, the model is not ready to be pruned, so the
finetuning proceeds normally.

3. These last two steps of the finetuning process are iteratively repeated
until the model reaches a validation performance plateau (so it can not
be pruned further).

4. We perform a final finetuning phase without regularization, aiming to
get the best performing checkpoint.

For this process is necessary to define some hyperparameters:

• evaluation-interval: number of steps between two validation performance
assessments.

• lower-bound: performance lower-bound. For the Image Classification
task the performance is measured by accuracy, while for the Language
Generation task we use BLEU Papineni et al., 2002. The lower-bound is
chosen as slightly lower than the state-of-the-art performance.

• pruning-percentage: The percentage of remaining non-zero parameters to
be pruned at every pruning step.

If not stated otherwise, training and finetuning hyperparameters are chosen
via grid-search.

When advanced in training, usually the model reaches an accuracy plateau
making difficult for the algorithm to hit a pruning step. Because of this we
introduce an exponential decay schedule on λ which decreases the regulariza-
tion term between two validation step. This procedure favours accuracy with
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respect to sparsification and helps the model to break the performance plateau
and to cross over the lower bound leading to further pruning.

4.4 Experiments

The first studies concerning sparsity in language architectures appeared re-
cently (Gale et al., 2019; Molchanov et al., 2017), following the progressive re-
placement of recurrent architectures by transformer-based models, and mainly
focused on attention heads pruning (Michel et al., 2019; Voita et al., 2019).
Nonetheless, with respect to the great amount of available sparsity techniques
for imaging, it is yet rare to find as many results in the context of language
generation.

We tried to fill this gap sparsifying a Transformer architecture in the frame-
work of two different language tasks: Dialog Learning and Machine Transla-
tion. Since our sparsification algorithm is not architecture-specific, no modifi-
cations are needed with respect to what described in Sec. 4.3.

We implemented the model using the Huggingface1 library which provides
easy access to different datasets, tokenizers and output generation techniques.
We made all our experiments using one Nvidia TITAN RTX 24Gb GPU.

4.4.1 Datasets

WMT14 (Bojar et al., 2014) is a collection of datasets presented in the Ninth
Workshop on Statistical Machine Translation. It is made by parallel corpus
i.e. dataset with the same sentences translated in different languages. It is de-
rived from many different sources, among which there are the Europarl corpus
Koehn, 2005 (created from the European Parliament Proceedings in the official
languages of the EU), the News Commentary Tiedemann, 2012 corpus and the
Common Crawl corpus CommonCrawl, 2012 (which was collected from web
sources).

For our experiments we use the English to German translation dataset En-
De WMT14, provided by the Stanford Natural Language Processing Group 2,
which is more than 300x bigger than the Taskmaster-1; it contains 4468840
training samples and 3000 test samples. Some source-translation examples is
shown in Table 4.1.

TABLE 4.1: Example of translation pairs from En-De WMT14.

Source
Translation

Iron cement protects the ingot against the hot, abrasive steel casting process.
Nach der Aushärtung schützt iron cement die Kokille gegen den heissen, abrasiven Stahlguss.
Goods and services advancement through the P.O.Box system is NOT ALLOWED.
der Vertrieb Ihrer Waren und Dienstleistungen durch das Postfach System WIRD NICHT ZUGELASSEN.
Their achievement remains one of the greatest in recent history.
Das bleibt eine der größten Errungenschaften in der jüngeren Geschichte.

Taskmaster-1 Already described in Section 3.3.1.

1https://huggingface.co/
2https://nlp.stanford.edu/

https://nlp.stanford.edu/
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TABLE 4.2: Transformer hyperparameters.

Hyperparameters Taskmaster-1 WMT14
vocabulary 32k 32k
# encoder layers 2 6
# decoder layers 2 6
# attention heads 4 8
feed forward dim 256 2048
embedding dim. 256 512
# weights 10M 61M
max sequence len. 256 256
beam size 6 4
length penalty - 0.6

4.4.2 Transformer on WMT14

Transformer architecture details are described in Table 4.2 and follow the set-
tings from Gale et al., 2019.

In order to obtain the initial checkpoint, we train the model for 10 epochs
with batch size = 120, η = 5e − 05, using Adam optimizer (β1 = 0.85, β2 =
0.997, eps = 1e − 8) and reach comparable BLEU performance with the base-
line defined in Gale et al., 2019.

Starting from the checkpoint described above, the finetuning with regulariza-
tion phase continues for 16 epochs with batch size = 100, η = 2.5e − 05 and
λ = 2.22e − 07. Evaluations on the validation set is done every 6000 steps
(24 times each epoch) with BLEU lower-bound = 27.3 and pruning 1% of the
remaining weights when required. Finally we finetune without regularization
for 5 more epochs. With respect to Gale et al., 2019, we stop pruning when
the validation performance reaches a plateau (or drop) and never re-climb the
user-defined lower-bound, as described in Section 4.3. This criterion causes
the pruning to stop at ∼80 % of sparsity.

As can be seen from Figure 4.2, our pruning technique performs better than all
other methods, preserving BLEU values up to ∼75% of sparsity while drop-
ping at most 0.5 with respect to the baseline. It also seems to be more resilient
at higher compression levels since BLEU scores start to degrade visibly only
after ∼75 % of sparsity is reached, whereas the other five pruning methods
degrade earlier.

TABLE 4.3: Layer-by-layer and global pruning results on
WMT14.

Residual Weights (%)
Model Encoder Decoder Encoder Decoder Embedding/ BLEU Sparsity (%)

Attention Attention FFN FFN Classification Head

Baseline 100 100 100 100 100 27.20 –
Our model 24.70 27.54 21.27 20.10 12.43 25.56 79.93

Table 4.3 shows in detail layer-by-layer and global pruning percentages at the
higher compression level reached.
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FIGURE 4.2: BLEU results comparison at different sparsity lev-
els on WMT14 dataset. Except for our technique, the data-
points are taken from Gomez et al. (2019) for targeted dropout
and from Gale et al. (2019) for the others methods, for which

we take only their best runs (in terms of BLEU).

4.4.3 Transformer on Taskmaster-1

Following Byrne et al., 2019 we use as input-data the dialog context up to the
last user turn, and as target the subsequent assistant utterance. An example of
this format is shown in Table 3.3.

Our Transformer has the same architecture details presented in Byrne et al.,
2019, and shown in Table 4.2. We train it for 15 epochs using the Adam opti-
mizer (β1 = 0.85, β2 = 0.997, eps = 1e − 8) with batch size = 150 and dropout
= 0.2. The final checkpoint we obtain shows comparable BLEU performance
to the author’s one.

Starting from this checkpoint, we finetune with regularization for 40 epochs
with η = 0.0005. We rely on a small λ = 1e − 05 not to lose performance
during the early stages. We find that checking every 300 training steps (i.e. 4
times every epoch) is a good compromise to get frequent pruning steps while
retaining generation ability. The BLEU lower-bound is set to 6.03, which is
very close to the author’s baseline result of 6.11, and we prune with pruning-
percentage = 0.1. After 30 epochs, the algorithm makes the last pruning, and
the last 10 epochs are used to recover BLEU score.

As discussed above, to the best of our knowledge there are no achievements
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TABLE 4.4: Layer-by-layer and global pruning outcomes on
Taskmaster-1.

Residual Weights (%)
Model Encoder Decoder Encoder Decoder Embedding/ BLEU Sparsity (%)

Attention Attention FFN FFN Classification Head

Baseline 100 100 100 100 100 6.11 –
L1 2.53 18.57 1.17 53.08 20.99 6.15 79.49
L2 17.71 21.20 15.21 26.61 6.28 6.15 90.10
Our model 21.53 21.77 21.68 26.93 7.12 6.21 90.09

yet in literature about weights sparsity in dialog generation tasks. We there-
fore establish in this context the first results, testing our method along with
two baselines (regularization L1 and L2), resumed in Table 4.4.

Our sparsification technique allows to obtain a highly sparsified model, with
a sparsity level greater than 90%. Moreover, our final BLEU is higher than
the original result, suggesting that in some cases a sparsified model is able to
generalize better then a non-sparsified one.
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Chapter 5

Conclusions and Future Work

This thesis discusses about some important features and properties a neural
language generation system should have in order to output faithful and in-
formative text. We propose that a reliable model should have the ability to
copy information from the input, to be more precise and specific, and to avoid
generating dull or not informative text by relying more on previous experi-
ence, like the one coded in the training set. Both these ideas are explored: in
Chapter 2 we presented an end-to-end generative model paired with a charac-
ter based copy mechanism. This system successfully deals with the rare word
problem, and it is further improved by a specific training procedure which
squeezes data more efficiently, exploiting the double-way alignment between
input and output. In Chapter 3 the focus is on augmenting the generative
abilities of a Transformer-based model by retrieving precise information dur-
ing inference and leveraging the training data to disambiguate possible next
turn continuations in the dialog learning framework. This solution makes the
system less prone to output general inconclusive sentences like "Thank you"
or "I don’t know" as confirmed by a human evaluation experiment (detailed
in Appendix A). Overall the techniques presented in this thesis thrive to use
the available data at its maximum; being it exploiting some biases like using
the data time period to finetune the model or choosing more suitable retrieval
datastores, or by leveraging fine grained information via token-level retrieval
or via a copying mechanism.

On the other hand deep learning models show the tendency to require more
and more layers and parameters, leading to difficulties in integrating them
in normal hardware, or more simply heading towards overfitting or over-
parametrization issues. In Chapter 4 we argue that "big models" are not a
strict requirement for good or even state of the art results and show how
our sparsification-pruning techinique can shrink generative language mod-
els down to one tenth of their original weight number, still resulting in well
trained and effective deep learning networks. Moreover,t our algorithm is
very general and can be used for other architectures and tasks as well, like
image classification with convolutional deep learning models (see Appendix
B).

Still our solutions have drawbacks that we plan to tackle in future works. For
example, the overhead of integrating a retrieval system with a language model
is not negligible both in terms of memory and computational-time. One solu-
tion could be to use a sentence-level retrieval system instead of our token-
level index; this could lead to smaller datastores and faster inference since the
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search time would be lowered significantly. Nonetheless, this will practically
lead to a ranker model, losing the generation ability of our solution, which
we argue being important for real general dialog models. On the sparsifi-
caiton side, it would be interesting to test our algorithm on specific hardware
architectures which expose routines made ad hoc for efficient operations on
sparsified matrix, improving both training and inference speed. We hope that
the advent of specialized hardware in future years will make this possibility
easily implementable.



58

Appendix A

Deepening Transformer-XL +
kNN Performance on Dialog
Generation

A.1 Playing with Different Data

For this experimentation we use two different proprietary datasets called D1
and D2, which are all collected from real customer care agent-user dialogs over
a 1 year period. Test and development sets are built from the more recently
collected chats in the datasets. We want to assess models’ performance on data
which show the most similar distribution to data it will face at deployment
time (production). Focusing on modeling data too old in the past would lead
to degrading performance since the model would learn biases that may not
apply anymore. For example some call center agents may have left and other
may have joined, some products that were available in the past may not be
present anymore, or agent may be instructed to answer differently to specific
user questions. For this reason we explore different indexes (see Sec. 3.3.4)
and finetuning sets always collected from the end of the year-period going
backward (not overlapping with test and development sets).

The model used is a Transformer-XL as described in 3.4.2 and all the experi-
ments presents meta-information (i.e. turn-number and agent-id) within chat
texts. Moreover, all the names in the datasets were swapped with a special
PERSON token beforehand.

Information about the two datasets used for our experiments are shown in
Tab. A.1. The indexes, derived from sub-sets of the training data are collected
over different time periods (i.e. 3-months, 1-month and 2-weeks) differing in
their number of embeddings and the amount of disk space they use, as shown
in Tab. A.2. Figures A.1 and A.2 present our model results when it is used
paired with different indexes (labeled as described above) and different λ val-
ues. Both figures show that the Transformer-XL + kNN greatly improve BLEU

TABLE A.1: Details of D1 and D2 datasets.

name train chats dev. chats test chats

D1 2M 6k 6k
D2 1.3M 6k 6k



Appendix A. Deepening Transformer-XL + kNN Performance on Dialog
Generation

59

TABLE A.2: number of contexts’ embeddings in the datastore
and dimension of the relative indexes on disk.

index # embeddings dimension on disk
3 months 82M 3.3GB

D1 1 month 26M 1.1GB
2 weeks 12.5M 520MB
3 months 90M 3.9GB

D2 1 month 30M 1.3GB
2 weeks 15M 620MB
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FIGURE A.1: BLEU test results comparison at different inter-
polation λ levels on D1 dataset.
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FIGURE A.2: BLEU test results comparison at different inter-
polation λ levels on D2 dataset.
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FIGURE A.3: BLEU test results comparison at different interpo-
lation λ levels on D2 dataset. 1m and 2w in the legend mean 1-
month and 2-weeks respectively and, as an example, the label
"1m 2w" means that the model has been finetuned on 1-month

data before using it to create the 2-weeks index.



Appendix A. Deepening Transformer-XL + kNN Performance on Dialog
Generation

61

performance with respect to the Transformer-XL baselines (λ = 0 in the fig-
ures). For D1 dataset the best interpolation point is at λ = 0.6 when using
the 1-month index with a gain of 4.2% over the baseline, and for D2 the best
interpolation points are at λ = 0.7 and λ = 0.8 when using the 2-weeks in-
dex, with a BLEU gain of 15.7%. As a further step, we study what happens
when our model is finetuned on the same indexes’ data before the index cre-
ation. So, in other words, the trained Transformer-XL is finetuned on subsets
of the training data itself and then it is used to encode these datastores. So
doing we suppose that the model could have a better ability to encode the
actual indexes’s data since it has been overtrained on them. Subsequently
index search precision should improve and lead to better generation perfor-
mance. Figure A.3 shows BLEU results when the finetuning and index data
are the last 1-month or 2-weeks of the training set. Comparing with the base-
line BLEU=33.1 shown in Fig. A.2, finetuning gives some improvements even
without kNN interpolation, reaching BLEU=35.3 and BLEU=38.3 respectively
for 1-month and 2-weeks. Looking at different interpolation levels it seems
that using the 2-weeks data is a good choice no metter if they are used as data-
store or for finetuning, but the best combination is finetuning for 1-month and
indexing 2-weeks which lead to BLEU=40.1.

A.2 Human Evaluation

In order to better understand the quality of the Transformer-XL + kNN gen-
eration we performed a qualitative analysis via a human evaluation. We used
two datasets: the D2 dataset (already presented in A.1) and the D3 dataset (see
Table A.3). Similarly to previus datasets, D3 is a proprietary collection of data
which contains agent-users chats gathered from a real customer center service.
The peculiarity of this dataset is that it comes with two different test sets: the
beta test set which contains all the possible agent-ids as usual, and the alpha
test set which contains the top-84 agents according to an internal metric from
the customer service.

TABLE A.3: Details of the D3 dataset.

train chats dev. chats test chats # embeddings dim. on disk

54k 6k
6k (alpha)
6k (beta)

6M (1-month index) 260MB

The human evaluation is carried out comparing outputs from the Transformer-
XL + kNN and from a proprietary ranking model which is described in our
patent (D. Liu et al., 2021). This latter model, called BLSTM + KD-tree, is
based on a Bi-LSTM encoder architecture which encodes contexts and entire
turn continuations while learning to minimize the cosine distance between re-
lated embeddings. During inference, a trained ranker scores a set of turn con-
tinuations which are chosen from the specific agent turns and are organized
by a KD-tree structure.

Since the proprietary system is a ranker model, while the Transformer-XL +
kNN is a generative one, we decided to compare the top-5 output candidates
from the ranker with the top-5 beam generated candidates from our model,
simply scored by the probabilities given by the beam search, in order to have
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a more complete evaluation. We collected the outputs from our system and
the BLSTM + KD-tree for 300 samples (randomly chosen) from each of the 3
different test sets, two from D3 and one from D2. These 9000 utterances (i.e.
300 samples * 3 test sets * 10 systems outputs) are organized and presented to
human evaluators to annotate as described in the next Section A.2.1.

A.2.1 Data Preparation

Data is divided in 9 chunks and every human evaluator gets to annotate 1 of
them. Each chunk is composed of 100 blocks and one block is composed by a
test sample with its own systems’ continuations. A block example is shown in
Figure A.4 and presents the following information:

• Header: it contains the question-id and a counter which are information
needed to easily gather the results once the annotation is done.

• Agent alias: it is the name of the agent talking to the user.

• Context: it contains a sequence of agent-user turns. This is the input
context given to the two models.

• Reference: it is the real next agent turn following from the context (i.e. the
target).

• First stage: it usually contains 2 candidate agent turns and their indexes
(i.e. 0 and 1). This utterances are the top-1 output from the Transformer-
XL + KNN and the BLSTM + KD-tree. The annotators need to choose
which one is the best.

• Second stage: contains a variable length list of candidate agent turns with
their indexes starting from the last index in first stage. These turns are
the other candidates but the ones in first stage. Here the annotators are
asked to point which of them are acceptable.

In order to make the annotation process more slim and quick for the evalua-
tors, if two or more candidates are equal just one of them is presented in the
block. If the two top-1 candidates are equal (i.e. both system exactly agree on
the next agent turn) the entire first stage is dropped, since showing just one of
them would make the question "which one is the best?" meaningless. Instead
the top-1 candidate is added to the second stage to be evaluated as ok, or not
ok, among the others. Moreover, the candidates are not presented in a prede-
fined order since this could lead to the rise of unwanted annotator’s biases.
For example, if the first top-1 turn in first stage is always the output of a spe-
cific system, and this usually is preferable against the second top-1, then the
annotator could lead more easily toward choosing the first turn as best when
in doubt.

A.2.2 Annotator’s Instructions

Human evaluators1 are 9 employees from the same company the proprietary
datasets come from. They are asked to follow some instruction to annotate the
chunk files assigned to them.

1. Read the Context.
1"evaluators" is used as a synonym of "annotators".
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FIGURE A.4: A block example, ready to be annotated.

2. Read the Reference.

3. Read the 2 sequences in first stage (if it is present) and choose which
one is the best as a possible continuation for the context.

• If you can not decide because the two candidates share the same
meaning, or they are equally bad, just leave the "[]" after "Which
one is the best?" as it is.

• Otherwise write the chosen sentence’s index within the square brack-
ets. Example of the syntax "Which one is the best? [1]".

4. Read the sequences in Second stage and for each one evaluate if it is
acceptable as context continuation or not.

• This evaluation must be done also for the two sentences in the first
stage (if it is present).

• Write the chosen sentences’ indexes next to "Which ones are ok?"
between the square brackets. Example of the syntax "Which ones
are ok? [0 1 4 5]".

Other info given to the annotators:

• Please, try to give a preference in the first stage.

• Weird punctuation formatting like "it ’ s" or the presence of tags like
"__PERSON__" in text should not be taken into consideration for the final
judgment.

• When evaluating a sentence, compare it to the reference to check if the
reference information are shown. If the sentence shows more informa-
tion then the reference, use your own knowledge of the world to assess
if it is sensible or not.

– Example: candidate -> "i don’t know", even though it is a grammat-
ically correct utterance and can fit virtually any context, it is not an
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acceptable next turn if the reference contains more interesting infor-
mation like: reference -> "I don’t know, but could check and verify
your amount at this URL:...".

– Example: candidate -> "There is no minimum balance required to
open or maintain the account", reference -> "There is no minimum
investment required to open the account". In this case we do not
know if there is a cost in maintaining the account since the reference
does not say it. So using our knowledge we could still evaluate it
as ok.

A.2.3 Results

The results obtained by the Transformer-XL + kNN and the BLSTM + KD-tree
are shown in Table A.4 for the BLEU and Exact Match metric. Exact Match
metric it is just the percentage of times the model output is equal to the refer-
ence turn after both are lowercased and normalized for punctuations tokens.

The results about the evaluation of the first stage are shown in Table A.5 where
there is the total amount of times each system’s top-1 candidate has been cho-
sen as best. The results show high agreement between the automatic metrics
and the human evaluation giving the Transformer-XL + kNN as superior with
respect to the BLSTM + KD-tree. In the first stage our model is evaluated as
best up to 66% more times then the BLSTM + KD-tree (i.e. D3 alpha case).
However, more than half of the times the evaluators preferred not to take a
decision, considering the two systems very similar.

The second stage, in Table A.5, shows that even though our model seems to
be superior by human annotators, the BLSTM + KD-tree is not giving much
worse sentences. In fact, the difference between the number of times our
model has generated acceptable sentences vs. the BLSTM + KD-tree is 10.7%
on average, among the 3 test sets evaluated utterances. For the Transformer-
XL + kNN case, on average choosing the top-1 sentence, without considering
the other candidates, is increasing the probability to miss a good continuation
by 57,6% with respect to considering all the possible continuations among its
top-5. For the ranker model the increase in missed chances is 56,8%. This sug-
gests that the retrieved utterances are as different among them as the beam
generated ones.

TABLE A.4: BLEU and Exact Match metrics for our model and
the BLSTM + kD-tree.

Dataset
BLEU Exact Match
BLSTM + KD-tree Transformer-XL + kNN BLSTM + KD-tree Transformer-XL + kNN

D2 35.6 40.1 28.8 32.7
D3 beta 24.8 26.2 20.2 21.0
D3 alpha 24.6 30.4 20.4 24.4

A.3 Template Constrained Generation

It is not guaranteed that a generative model, like the Transformer-XL (+kNN),
actually outputs sensible sentences every time. Hallucinations are surely an
issue, but they are not the only problem that a generated output may present.
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FIGURE A.5: Number of times the top-1 solution has been cho-
sen as best. The maximum value would be 300 if the given

model is best 100% of the times.

TABLE A.5: Cumulative number of times the top-1, top-3 and
top-5 solutions have been evaluated acceptable as next turns.
The maximum value would be 300*x if the given model top-x

candidates are always acceptable next turn.

Second Stage model D2 D3 beta D3 alpha

Top-1
BLSTM + KD-tree 96 109 148
Transformer-XL + kNN 103 121 165

Top-3
BLSTM + KD-tree 147 149 196
Transformer-XL + kNN 165 168 224

Top-5
BLSTM + KD-tree 166 166 215
Transformer-XL + kNN 184 178 236



Appendix A. Deepening Transformer-XL + kNN Performance on Dialog
Generation

66

TABLE A.6: D4 dataset dimensions.

train chats dev. chats test chats # embeddings dim. on disk
100k 6k 6k 12M (1-month index) 550MB

For example, it is possible to - output word loops, where the system is repeat-
ing a certain n-gram over and over; - output not entailing sentences where one
piece of text does not follows from the hypothesis; - output non grammati-
cally correct sentences or mixed words if using vocabulary which allows for
that. One simple solution we tried that alleviates all this problems is to force
the model to generate n-grams already seen in training. This allows to get a
trade off between the generalization capability of the model and its reliabil-
ity. We call this method template constrained generation since the utterances are
conforming to a predefined set of possibilities, similar to templates.

We test this idea by gathering all the possible 100-grams from the training
set and then, at inference time, forcing the Transformer-XL + kNN to discard
answers which do not conform to them. In order to check if a sentence is
actually a valid n-gram we perform a check at every model generation step;
the probability to generate a specific token is set to 0 if this would generate
an invalid n-gram. The datasets used are the D2 dataset (already presented
in A.1) and the D4 dataset (see Table A.6), which is another proprietary dataset
similar to the ones already presented. It is a collection of data which contains
agent-users chats gathered from a real customer center service, it comes with
meta-information for every turn and has been pre-processed to swap names
with __PERSON__ tags.

Figure A.6 presents the BLEU results for the template constrained generation.
A minimal drop in BLEU is evident when using the template generation on
the D2 dataset. On the D4 dataset instead, we see that for low interpolation
(λ ≤ 0.3) the model have a minimal BLEU gain. More interestingly, for higher
λ the template generation seems to force good quality outputs while the stan-
dard generation would drop performance for overinterpolation. Overall it is
difficult to assess if the template generation is leading to significant change in
BLEU metric with respect to the standard one, but surely it gives more guar-
antees about the generated output leading to more reliable results.
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Appendix B

Sparsity on Imaging

B.1 Imaging

We test our sparsity method on four different Image Classification datasets
chosen among the most popular benchmarks in literature for sparsity research.

B.1.1 Datasets

MNIST LeCun and Cortes (1990) is composed of 70,000 grey-scale images
containing handwritten numbers, whose dimensions are 28x28; the database
is split into training set (60,000 images) and test set (10,000 images).

Fashion-MNIST Xiao et al. (2017), based on the assortment of Zalando’s
website, is a dataset comprising of 28x28 grayscale images of 70,000 fashion
products from 10 categories, with 7,000 images per category. Like MNIST,
the training set has 60,000 samples and the test set 10,000. Fashion-MNIST,
although similar to MNIST, is more challenging.

CIFAR-10 (from Canadian Institute for Advanced Research) Alex Krizhevsky
and Hinton (2009) is a subset of the Tiny Images (Torralba et al., 2008) dataset
and consists of 60,000 32x32 color images labelled with one of 10 mutually ex-
clusive classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. There are 6000 samples per class, split in 5000 for training and 1000 for
testing.

ImageNet Deng et al. (2009) Arranged according to the WordNet (Miller,
1995) noun hierarchy, ImageNet is a real image database, in which each node
of the hierarchy is represented by thousands of images; it contains more than
20,000 categories. In total, 14 million pictures were hand-annotated and for
one million of those the bounding boxes were also provided. The RGB im-
ages have an average size of 469x387 pixels, but are usually preprocessed by
sampling them at 256x256 pixels.

The above described datasets have been processed using the neural architec-
tures which produce current state-of-art results; they are detailed in the fol-
lowing.



Appendix B. Sparsity on Imaging 69

TABLE B.1: Hyperparameters used in imaging experiments.

Hyperparameters LeNet-5 ResNet32 VGG16
# epochs 120 290 30
# batch size 100 128 100
η 0.001 0.0005 0.0001
Optimizer Adam SGD SGD
lower-bound 98.7 92.9 68.5
λ 0.001 1e-6 1e-4
pruning-percentage 4 % 4 % 1 %
eval-interval 250 25 2500

B.1.2 LeNet-5 on MNIST

LeNet-5 (LeCun et al., 1989) consists of a Convolution (Conv) layer with 6 5x5
filters, a 2x2 Pooling layer, a Convolution layer with 10 5x5 filters, another 2x2
Pooling Layer and three fully connected (FC) layers (120, 84, 10), for a total of
431080 parameters.

Since MNIST is an easy dataset, a pretrained checkpoint is not necessary, so
we directly trained with regularization from scratch, using hyperparameter
values resumed in table B.1. Finally we finetuned without regularization for
5 additional epochs. Results from our model and competitors are shown in
table B.2, together with the performance of the not sparsified baseline model.

TABLE B.2: Test results for LeNet-5 architecture on MNIST
dataset.

Residual Weights (%) Accuracy (%) Sparsity (%)
Methods Conv1 Conv2 FC1 FC2

Baseline 100 100 100 100 99.32 –

Han et al., 2015 66 12 8 19 99.23 91.59
Tartaglione et al., 2018 67.6 11.8 0.9 31.0 99.22 98.04
Y. Guo et al., 2016 14 3 0.7 4 99.09 99.09
Ullrich et al., 2017 - - - - 99.03 99.38
Tartaglione et al., 2022 22 2.38 0.22 5.98 99.21 99.56
Louizos et al., 2018 45 36 0.4 5 99.00 98.57
Molchanov et al., 2017 33 2 0.2 5 99.25 99.64
Our method 29 1.82 0.11 3.35 99.23 99.71

Performances on the MNIST dataset are very similar to each other since accu-
racy and sparsification on this simple task have reached the top possible ones,
i.e. very close to 100 %. With our method we obtain less than 1,5k non zero
residual weights, a result primarily due to a better sparsification of the fully
connected layers, where the majority of the weights are. We obtain almost the
best accuracy with the only exception of Sparse VD even though with higher
sparsity. We also note that we get the same result of Han et al. (2015) but with
8% less weights.
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B.1.3 LeNet-5 on Fashion-MNIST

We obtain the initial checkpoint after training for 21 epochs. We then use the
same hyperparameters shown in table B.1 for finetuning with regularization,
except for lower-bound = 90.5 and epochs = 75; finally we finetune without
regularization for 50 additional epochs. Table B.3 compares performances on
this dataset.

As we can see our method reaches the best performance both in terms of accu-
racy and compression, which is obtained thanks to high sparsification of the
fully connected layers.

TABLE B.3: LeNet-5 on Fashion-MNIST.

Residual Weights (%) Accuracy (%) Sparsity (%)
Methods Conv1 Conv2 FC1 FC2

Baseline 100 100 100 100 91.90 –

Tartaglione et al., 2018 76.2 32.56 6.5 44.02 91.50 91.48
Han et al., 2015 - - - - 91.56 93.04
Tartaglione et al., 2022 78.6 26.13 2.88 32.66 91.53 95.70
Our method 78.84 17.84 1.20 6.26 91.70 97.66

B.1.4 ResNet32 on CIFAR-10

ResNet32 (K. He et al., 2016) is composed of a Convolution layer with 16 3x3
filters, a batch normalization layer, 3 ResNet layers and a final dense layer, for
a total of 464154 trainable parameters. All the ResNet layers are composed of
5 ResNet blocks, with different configuration: they all share 2 Batch Normal-
ization layers, but differ in the number of kernels generated by the 2 Convo-
lutional layers (16 3x3 filters for the blocks of the first ResNet layer, 32 3x3 for
the second ResNet layer, 64 3x3 for the second ResNet layer).

We finetune with regularization using the hyperparameters shown in table
B.1, and subsequently finetune without regularization for 1 last epoch with a
batch size = 64 and η = 6e-5. The initial checkpoint is obtained with the same
hyperparameters, but training for 200 epochs with η = 0.1.

Table B.4 show that our technique on this more challenging task, which in-
volves a deeper neural architecture and real images, outperforms in terms
of sparsity all competitors. With respect to accuracy, both our method and
Tartaglione et al. reach the the baseline values.

B.1.5 VGG-16 on ImageNet

VGG-16 is composed by 13 Convolutional layers with 3x3 filters followed by
Relu activations. These layers are interleaved by 5 MaxPooling layers. Finally
an AdaptiveAveragePool layer with 7x7 dimension is used before a sequence
of 3 Linear layers with Relu activations which lead to the 1000-dimensional
output. The model consists of 138357544 parameters and for our experiment
we start our regularized finetuning from a pretrained checkpoint1 using the

1https://pytorch.org/vision/stable/index.html
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TABLE B.4: ResNet-32 on CIFAR-10.

Methods Accuracy (%) Sparsity (%)

Baseline 92.67 –

Molchanov et al., 2017 92.12 50.11
Louizos et al., 2018 91.20 60.00
Han et al., 2015 91.92 71.51
Gomez et al., 2019 92.54 80.00
Tartaglione et al., 2022 92.67 80.11
Our method 92.67 81.27

hyperparameters shown in table B.1. We further finetune for other 30 epochs
without regularization to get the best accuracy.

TABLE B.5: VGG-16 on ImageNet.

Residual Weights (%)
Method Convolutional FC Accuracy (%) Sparsity (%)

Baseline 100 100 71.30 –

Han et al., 2015 32.77 4.61 68.66 92.49
Tartaglione et al., 2018 56.49 2.56 69.08 92.91
Our model 37.48 3.57 69.48 92.82

Results show that VGG-16 is highly overparameterized for the task, since all
methods are able to prune almost 93% of the network’s parameters, shrinking
them from ∼138M to less than 10M. Our method confirms its ability to scale
to big model (∼100M weights) obtaining the best accuracy among the shown
methods.
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