
Doctoral Dissertation

Doctoral Program in Computer Science (34thcycle)

Multimodal Learning and Feature
Fusion Methodologies for Real Case

Scenarios

By

Mirko Zaffaroni

Supervisor:
Prof. Marco Grangetto

Prof. Laura Toni, University College of London
Prof. Francesco Verdoja, Aalto University
Prof. Attilio Fiandrotti, Università di Torino

Università degli Studi di Torino

2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Mirko Zaffaroni
2023

I would like to dedicate this thesis to my loving parents

Acknowledgements

I would like to acknowledge Links Foundation for giving me the opportunity to carry
out my research activities at their research centre. Additionally, I want to express my
gratitude to my supervisor for guiding and supporting me throughout my doctoral
years

Abstract

The three key ingredients underlying most Machine Learning algorithms are features,
task, and model. The features describe the input data, and the model generates a
correct mapping between the features and the output. What makes this mapping
possible is the learning task. This thesis will deal extensively with the first of these
three ingredients: the features. Namely, we will analyze in depth how features from
multiple sources can be merged and used to solve the task with a specific focus on
Computer Vision tasks. Thanks to modern architectures based on Convolutional
Neural Networks, extracting rich hierarchies of features from images in a data-
driven fashion is becoming easier and more accessible. However, what happens
when multiple inputs come from different, possibly multimodal, sources? In this
thesis, we will try to answer these questions by exploring and designing various
methodologies for feature fusion and how these are essential tools for combining
multimodal inputs. The methodologies presented are the result of my research works,
mainly from the resolution of real problems in the emergency environment, where
combining all the information sources in a single predictive architecture is key to
supporting the decisions of the first responders. This thesis focuses on designing
novel methodologies for multimodal feature fusion through the concatenation of
different models (CNN, LSTM, etc ..) for multimodal input. The sources of the inputs
are of various origins, such as data extracted from video games, social networks,
tweets composed of images and text, and aerial images. Starting from a multi-
branch structure, with synthetic inputs extracted from Grand Theft Auto 5, we have
devised an architecture for the resolution of a regression task such as estimating the
distance and speed of the surrounding vehicles, obtaining good results thanks to the
combination of very different features as semantic, movement and spatial location
features. Following these results and moving from the automotive context to the
emergency one, we have extended the design of the architecture, which has become
multi-task, with the addition of more loss functions, one for each output. Thanks to

vi

the features fusion techniques, we have transformed a difficulty into a strength, since
thanks to the careful choice and the combination of the loss functions, it was possible
to force the features extraction to propose features of higher semantic quality. Finally,
as the last follow-up, we have enriched the previous architecture with a dedicated
loss function for the features in the merged layer. This function ensures that a more
compact representation is obtained within the latent space for very similar features.
The results of this last method are two-fold: the design of a multimodal feature
fusion methodology that can be applied regardless of the number of inputs or tasks
and the definition of a loss function that improves the mapping of the features within
the latent space. These represent the most significant contributions of my research
work to the multimodal feature fusion task.

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Features Fusion with Multimodal learning 6

2.1 Hand-crafted vs. Data-driven features 7

2.2 Fusion Strategies . 9

2.2.1 Direct Fusion/Early Fusion 9

2.2.2 Flow Fusion . 10

2.2.3 Adaptive Fusion . 11

2.2.4 Fusion Operations . 12

2.2.5 Loss Functions and Feature Fusion Methodologies 13

2.3 The Multimodal tasks . 15

2.3.1 Modalities fusion strategies 15

2.3.2 The template of a multi-branch architecture 16

2.4 What is next . 17

viii Contents

I Automotive 18

3 Automotive and synthetic datasets 19

4 Estimation of speed and distance of surrounding vehicles from a dash-
board camera point-of-view 22

4.1 Introduction . 22

4.2 Methodology . 23

4.2.1 Data collection . 23

4.2.2 Models . 25

4.3 Network training . 27

4.4 Experimental results . 28

4.4.1 Testing on synthetic dataset 28

4.4.2 Testing on real dataset . 30

4.4.3 Testing on the road . 31

4.4.4 Computational cost . 32

4.5 Conclusions . 32

4.6 Acknowledgement . 33

5 AA-SGAN: adversarially augmented Social GAN with synthetic data 34

5.1 Introduction . 35

5.2 Background and Related Works 37

5.2.1 Trajectory Prediction Methods 37

5.2.2 Real-World Datasets . 38

5.2.3 Data augmentation and synthetic datasets 39

5.3 Proposed Method . 40

5.3.1 Problem definition . 40

5.3.2 Architecture . 40

Contents ix

5.3.3 Training Procedure . 43

5.4 Experimental results . 45

5.4.1 Path Prediction Accuracy 47

5.4.2 Ablation Study . 48

5.5 Conclusions . 51

II Natural disasters management 52

6 The emergency scenarios 53

7 AI-based flood event quantification using online media and satellite data 57

7.1 Introduction . 57

7.2 Related Work . 58

7.3 Approach . 59

7.4 Results . 63

7.5 Analysis and conclusions . 64

7.6 Acknowledgments . 64

8 Road passability detection during flood events using social media data 65

8.1 Introduction . 66

8.2 Related Work . 67

8.3 Dataset . 69

8.3.1 Metadata . 71

8.3.2 Images . 71

8.4 Proposed Solutions . 71

8.4.1 Algorithm Based on Metadata Only 71

8.4.2 Algorithms Based on Image Only 76

8.4.3 Algorithm Based on Metadata and Visual Information . . . 83

x Contents

8.5 Evaluation and Results . 84

8.5.1 Results Using Metadata Only 85

8.5.2 Results Using Images Only 85

8.5.3 Results Using Images and Metadata 89

8.6 Conclusions . 90

9 Emergency scene description using deep learning approaches 92

9.1 Introduction . 92

9.2 LADI Dataset . 93

9.3 Models . 94

9.4 Experiments . 96

9.5 Conclusion . 100

9.6 Acknowledgements . 101

10 Water segmentation for flood detection and monitoring 102

10.1 Introduction . 102

10.2 Related Works . 103

10.3 The Water Segmentation Open Collection Dataset 104

10.4 Methodology . 106

10.5 Evaluation metrics and configurations 107

10.6 Results . 109

10.7 Conclusion and Future Works . 111

10.8 Acknowledgements . 112

11 Conclusions 113

References 117

Appendix A Compactness Loss equation derivation 130

List of Figures

2.1 Machine Learning (Hand-crafted) vs. Deep Learning (Data-driven
features) . 7

2.2 Direct fusion template . 10

2.3 Flow fusion template. Each box represents a feature map. 10

2.4 Example of multimodal architecture 16

3.1 Examples of synthetic datasets created with the aim of GTAV 20

4.1 Photorealistic frame extracted from the game environment, featuring
an overlay of the prediction . 24

4.2 Proposed model for vehicle distance prediction 25

4.3 Proposed model for vehicle speed prediction 26

4.4 RMSE on distance (a) and speed (b) estimate. 29

4.5 RMSE on distance estimate (synthetic and real images). 30

4.6 Example of distance estimate in real environment. 31

5.1 Real, synthetic, and synth-augmented trajectories. 36

5.2 Social GAN for pedestrian trajectories prediction adversarial archi-
tecture . 38

5.3 AA-SGAN for adversarially augmented pedestrian trajectories pre-
diction architecture . 41

xii List of Figures

5.4 Examples of frames from the JTA dataset and the corresponding
trajectories . 46

5.5 Visual comparison between the groud-truth and predicted trajectory 49

6.1 The occurrence of natural disasters and flood events since 1950 . . . 54

6.2 Examples of emergency events related to flooding disasters 55

7.1 Sample images extracted from articles from the NITD dataset 59

7.2 Ensemble architecture used for the NITD task 59

7.3 Sample from MFLE . 60

7.4 Architecture used for the MFLE task 61

7.5 Sample from CCSS . 62

7.6 Model used for the CCSS task . 62

8.1 Examples of images from the MediaEval2019 dataset 72

8.2 Correlation matrix of the features 75

8.3 Architecture of the neural network to process metadata 75

8.4 Schematic of the ensemble architecture 77

8.5 Representation of the double-ended architecture. 79

8.6 Examples of images created with Grad-CAM 80

8.7 Double-ended classifier with compactness loss 82

8.8 Combination of the Double-ended classifier with compactness loss
and the metadata system. 83

8.9 Evolution of F1-score on the road evidence task as we ensemble
more networks . 88

8.10 Evolution of F1-score on the road passability task as we ensemble
more networks . 88

8.11 Examples of tweets within the dataset 90

9.1 Examples of images contained in the LADI dataset 94

List of Figures xiii

9.2 Different class distributions for the LADI Dataset 95

9.3 Single classifier . 97

9.4 Five classifiers . 97

9.5 Five Networks . 98

9.6 Team scores in terms of MAP . 100

10.1 WSOC proposed experimental methodology 106

10.2 Examples of the best samples on the validation set 110

List of Tables

2.1 Overview of feature fusion methodologies examined in the following
chapter . 17

4.1 Execution time of different algorithmic steps. 32

5.1 Trajectory prediction accuracy in terms of ADE and FDE 44

5.2 Trajectory prediction accuracy of AA-SGAN versus independent
training of the Augmenter . 48

5.3 ADE and FDE values for 1-to-1 and 1-to-10 ratio between real and
synthetic . 50

7.1 MediaEval2019 results per subtask 63

8.1 MediaEval2018 dataset information 70

8.2 MediaEval2019 metadata description 73

8.3 F1-scores on the challenge test set for both tasks using metadata
information only . 85

8.4 F1-scores on the challenge test set for both tasks using only the
images from the tweet . 87

8.5 F1-scores on the challenge test set for both tasks using the metadata
and image information . 89

9.1 Best scores obtained during training 100

List of Tables xv

10.1 Water Segmentation Open Collection (WSOC) key metrics. 105

10.2 Model accuracy comparison . 108

10.3 Models performance comparison in terms of VRAM, size and pre-
diction speed. 108

Chapter 1

Introduction

In recent years in the field of computer vision, there has been a growing interest
in neural networks and Deep Learning (DL). This is after AlexNet’s results on the
benchmark ImageNet dataset [1, 2], managing to obtain a ten percentage point in-
crease in top-1-accuracy for the image classification task. The different approach to
extracting the features was ground-breaking in neural networks after the advent of
modern DL. We have gone from features handcrafted wisely by the data scientist
to a data-driven approach, where learning is left to the learning algorithm. In the
field of Computer Vision, the building block behind most Deep Learning algorithms
is the Convolutional Neural Networks (CNN) [3]. This type of network takes its
name from the convolutional layers, which take the information within the image
and transform it into features maps thanks to convolutional filters. The information
is spatially reduced as the layers follow one another, thanks to the pooling layers.
The progressive reduction of spatial resolution is called down-sampling. This pro-
cess makes it possible to obtain a compact representation of the information, the
embedding. With this term, we want to indicate a numerical vector representing a
point in the space of the features. This space is also called latent space. The feature
learning process involves identifying the best representation of the input data within
the latent space through the embedding that describes it. In this thesis, we will use
the term embedding and features interchangeably to indicate the same concept: a
compact numerical vector representation of the image content. Then we can define a
CNN as an extractor of features, which can then be used as the input of any classifier
(Decision Tree, SVM, etc ..). Another advantage introduced by deep learning models
is the ease with which features can be merged, obtaining input with more information

2 Introduction

for the next model layers. This can be done on different levels and in different
ways. In the following chapters, we will introduce some ideas behind feature fusion
with the related methodologies and approaches. Furthermore, we will also analyze
how feature fusion is a valuable and indispensable tool for multimodal tasks, i.e.,
when the inputs we feed to the model have been created using different sensors (e.g.,
LIDAR, IR, etc ..) or come from different domains (audio, text, images). This thesis
will present some application cases in which features fusion techniques have been
successfully applied to resolve multi-modal tasks.

In this thesis, we will explore my Ph.D. research studies pursued at LINKS Foun-
dation, a research institute located in Turin, in the “Data Science for Societal and
Industrial Application” department. The laboratory works mainly with projects
of the Societal Challenges of the Horizon 2020 (H2020) funding program of the
European Commission. The main scopes of the societal challenges in H2020 are to
protect the freedom and security of Europe and its citizens. In this context, I have
focused my research on deep learning for multi-modal imaging applied to security
and emergency application. In the following chapters, I will present the methods
used to develop deep learning systems capable of merging features from different
sources to solve real-case scenarios by dividing the presentation into two main topics:
1) the automotive task and the emergency scenario field. The thesis is structured as
follows:

– in Chapter 2: we will further define the concept of features and analyze
what differentiates the hand-crafted features of classic machine learning from
the data-driven features of modern deep learning. We will also explore how
deep learning uses and merges this information. Finally, we will present the
multimodal task and an example of architecture that combines multimodal
learning with the methodologies for feature fusion.

– in Chapter 3: we present the automotive task and the usefulness of synthetic
data in its context. In fact, the rapid transformation of the automotive industry
with new technologies such as autonomous vehicles, ADAS and connected
cars relies heavily on computer vision. To develop these technologies, large,
labelled datasets are needed to train and evaluate the performance of computer
vision models. However, collecting and labelling real-world data is costly, time-
consuming, and may not always be feasible. Computer graphics simulation

3

is emerging as a powerful alternative, quickly providing a large dataset and
inexpensive resources. It allows for the generation of diverse scenarios with
different weather and lighting conditions, making it a valuable tool for the
automotive industry to train and evaluate the performance of computer vision
models. Computer graphics simulation, such as the use of game engines, can
also provide data that is difficult to obtain in real-world scenarios and improve
the model’s robustness and generalization.

– in Chapter 4: we have developed a system capable of querying the game
engine of a popular automotive game. Leveraging that system, we created a
synthetic dataset containing the distance, position, and speed information of
the surrounding vehicles from a dashboard-camera point of view. The dataset
was used for training two multi-branch models to calculate the distance and
speed of the surrounding vehicles. The first model uses the vehicle crop and
the bounding box coordinates as input. The inputs are then transformed into
semantic and spatial features of the vehicle. The second model takes as input
the optical-flow frame and the spatial coordinates of the vehicle, thus obtaining
movement and spatial features. For both approaches, we applied a direct fusion
through concatenation. Finally, both models feed the merged features to a
regression branch, which predicts the required measure.

– in Chapter 5: We propose a method and architecture to augment synthetic
trajectories at training time with an adversarial approach, including an "ad
hoc" loss function to merge the features of real and synthetic trajectories in a
common feature space. This allows the model to learn better from real-world
and synthetic data, resulting in improved predictions for pedestrian trajectory
prediction in applications such as autonomous driving or service robotics.
Our proposed method improves the performance of state-of-the-art generative
models when evaluated on real-world trajectories.

– in Chapter 6: we present how interest in computer vision techniques for emer-
gency scenarios use cases to detect and predict natural disasters, particularly
floods, is growing. Computer vision algorithms can analyze satellite imagery,
drone footage, and other visual data to detect changes in land cover, water
levels, and other indicators of potential flooding. These algorithms can also
analyze social media images and videos to detect and track floods in real time.
Additionally, computer vision algorithms can be used in conjunction with other

4 Introduction

sensor data, such as weather forecasts and river flow measurements, to improve
the accuracy of flood predictions. Overall, computer vision algorithms have
the potential to significantly improve our ability to detect and predict floods
and thus help mitigate the impacts of these natural disasters.

– in Chapter 7: trying to solve a common problem in the emergency field,
namely the lack of simplicity of labels, we have extended the dataset provided
to us to develop a multi-branch model capable of obtaining better performance
for the use case. Starting from a simple binary label assigned to the image
to identify if there were people in the scenario with the water above their
knees. We annotated every single knee within the images and used the two
inputs: knee and full image, to refine a baseline model trained only with
scene images. This multi-branch model can learn context (the whole image)
and local (area around the knee) features and merge them with direct fusion
through concatenation to improve baseline predictions.

– in Chapter 8: we studied the problem of detecting blocked/open roads from
photos during floods by applying a two-step approach based on classifiers:
does the image have evidence of road? If it does, is the road passable or
not? We propose a single double-ended neural network (NN) architecture
that addresses both tasks simultaneously. Both problems are treated as a
single-class classification problem using a compactness loss. The study was
performed on tweets posted during flooding events containing 1) metadata,
2) textual data, and 3) visual information. We studied the usefulness of each
data feature and the combination of both. This analysis was carried out using
a dedicated loss function on the merging layer. The purpose of the function
is to provide a better characterization of the features and a better clustering
of similar features in the latent space. The compactness loss, in combination
with the merging of the features experimentally, proved to be the best model,
as the best scoring model, and won the challenge of MediaEval 2018 for the
Flood classification task.

– in Chapter 9: we present our proposed model for the Disaster Scene Descrip-
tion and Indexing (DSDI) Challenge of TRECVIDI2020. For the challenge,
we used the LADI Dataset, composed of images, each presenting 32 tags at
most. Each tag belongs to one of five macro categories: vehicle, infrastructure,
environment, water, and damage. We analyzed the best approach to use the

5

features extracted from the images and the best blending mode. The strategies
we have implemented are 1) common backbone and common classifier, 2)
common backbone but dedicated classifier for each dataset macro category,
and 3) dedicated backbone and classifier. All features have been combined
through concatenation and direct fusion. Experimentally, the last approach
was the best, dividing the features for each macro category and leaving the
multi-tagging to a dedicated model.

– in Chapter 10: we present a work for detecting flood events. For this task, it is
crucial to have a considerable amount of images containing water pixels. Since
there are not many available, we have created a collection of datasets, namely
WSOC, containing images with water elements. Subsequently, we made a
segmentation model analysis, trying to identify the best from an architectural
and feature extraction point of view. Many of these models have a standard
feature extractor combined with subsequent segmentation layers. These layers
use a flow feature fusion methodology to combine information from different
resolution scales. Thanks to this feature fusion approach, it was possible to
obtain good results in the segmentation phase, and we also presented the model
that best suits our scenario.

– in Chapter 11: we lay the conclusions for the thesis.

Chapter 2

Features Fusion with Multimodal
learning

In Machine Learning (ML), the term features refer to a piece of information obtained
from the input, allowing the resolution of a computational task such as prediction, re-
gression, or generation. The features are derived from the raw input and are typically
represented in the form of a numerical vector. We can define this transformation as
F(I) = En, where F represents a function or a set of functions, known as feature
extractor, that transform the input I into n set of embedding E (the features). In the
machine learning field, the number of features, or the size of the feature vector n,
depends on the number of analyses and processing methods performed on the raw
input. For example, for an RGB image, normally the raw input consists of values
of the pixels that compose it. While for Deep Learning algorithms, n will be the
size of the embedding created by the model and will be a hyper-parameter defined a
priori. In this chapter, we will explore the main advantages of using features derived
from a Deep Learning algorithm compared to a classic one. Furthermore, we will
present the various methodologies with which the information in the embeddings
generated by Deep Learning models can be easily merged and combined. We will
also analyze how these approaches can be successfully chained within a multimodal
training pipeline.

2.1 Hand-crafted vs. Data-driven features 7

DEEP LEARNING

MACHINE LEARNING

inputs feature extraction learning outputs

inputs feature extraction + learning outputs

Fig. 2.1 Machine Learning (Hand-crafted) vs. Deep Learning (Data-driven features)

2.1 Hand-crafted vs. Data-driven features

In classic machine learning, the choice and/or extraction of features is an engineering
work of very high precision. Carefully engineered features are necessary to solve
the task successfully. In Deep Learning, on the other hand, this feature extraction
work is left to the model in a data-driven fashion, which learns which features to use

8 Features Fusion with Multimodal learning

and how to apply them for prediction during the learning process. When working
with images, raw pixels are not fed directly to the algorithms, and this is due to the
poor correlation between pixels and the high computational cost of this operation.
The pixels in the neighbouring regions are highly correlated. Still, they cannot
capture correlations globally inside the image, which is why more complex image
descriptors are needed (e.g., shape, edges, lines, etc.). For this reason, computer
vision algorithms extract semantic information from the image content, and this
information is called feature image. Feature extraction is the starting point for many
computer vision algorithms. The features are, in fact, the main element for the
prediction calculation. Therefore the better the quality of the features, the better the
algorithm’s performance will be. Furthermore, in classic machine learning, the result
is highly dependent on the excellent selection and creation of the features for the
algorithm. Although there are techniques such as Principal Component Analysis
(PCA) to select quality features, these must still have been intelligently created by the
engineer. On the other hand, with a data-driven approach, the selection of features
is automated by the learning process. Thanks to a wise choice of the loss function,
the model can correctly discriminate between useful features and not as long as the
model’s capabilities allow them to be identified and the embedding of the features is
of a suitable size. Another difference between classic Machine Learning and Deep
Learning is feature vector creation. In the first case, the size of the vector depends
on the number of algorithms for the extraction of the features that you decide to
apply (Canny Edge Detector, SUSAN, SIFT, etc ...). While in the second case, the
size depends on the number of nodes present after the convolutional layers. In this
case, it is always decided a priori during the construction of the model. Furthermore,
in both cases, it is not guaranteed that all the features created will prove helpful in
the prediction, but the model selects the most suitable ones if its capacity allows it.
Each feature constitutes an element of the feature vector for both approaches. The
set of vectors, therefore, comprises what is called Latent Space. This vector space is
essential for the artificial intelligence model, and the decision boundaries are defined
and applied in this space for classification tasks. Instead, if we are trying to solve an
image generation task, we can use this space for sampling to generate new data.
One of the main challenges facing data-driven features today is the lack of explain-
ability of deep learning algorithms. Despite these algorithms’ many benefits, it
cannot be easy to trace precisely which features are responsible for a given predic-
tion. To address this issue, various techniques have been developed to visualize

2.2 Fusion Strategies 9

the regions within an image most important to the decision made by the model.
An example of this is Grad-CAM [4]. However, whether these methods provide a
sufficient level of explainability is still debated. As a result, researchers continue to
explore new ways to improve the interpretability of deep learning models, making it
an ongoing open issue in the field.

In conclusion, not only have the features extracted from Deep Learning models
shown in recent years to obtain results far superior to those obtained from classic
machine learning methods, but they have also proved to be much easier to create and
use from an applicational point of view. These are the reasons that build research
community interest in data-driven features that push the bar of artificial intelligence
further and further every day.

2.2 Fusion Strategies

Previously, we highlighted the capability of deep learning models to generate features
efficiently. In this section, we will explore various techniques that can be employed
to combine these features with improving the performance of a model. These
techniques range from simple methods, such as concatenation or averaging, to more
complex methods, such as feature fusion and selection with a dedicated loss function.
These techniques can be applied to different types of data and tailored to the specific
needs of a given task.

2.2.1 Direct Fusion/Early Fusion

Direct fusion [5] is the simplest way to merge features from different modes/branches.
This is applied simply by addition/subtraction or merging operations directly between
the embeddings, as shown in Fig 2.2. It remains one of the simplest methods but
also one of the most effective. The model is left responsible for processing the
merged features and deciding how to process the information to implement the
correct prediction in the layers following the extraction and merging layers. Typical
of this approach are multi-branch models, where each branch deals with a different
input, which can be of the same or of another modality, from which it derives a
semantic description represented by the feature embeddings. The representation will
be subsequently merged and processed by the final layers of the model.

10 Features Fusion with Multimodal learning

Merged

Features

Features

Input_1

Features

Input_n

Features

Input_1

Features

Input_n

Input_1

Input_n

Merge

Layer

Embedding

Layer

Fig. 2.2 Direct fusion template

2.2.2 Flow Fusion

L
a
y
e
r_

1

F_0 F_1 F_2

L
a
y
e
r_

2

L
a
y
e
r_

3

L
a
y
e
r_

4

Feature maps

Layers

Fig. 2.3 Flow fusion template. Each box represents a feature map.

Another method is called Flow Fusion [5]. As can be guessed from the name, the
work on the features is done during the flow of information through the layers. In
this case, the features are continuously merged with the information of the previous
layers. That technique allows obtaining a multi-scale representation of the images
(from low to high-level features). Thanks to this approach, the model can have a
general view of the content of an image. In Fig 2.3, we present a simple template of
the concept of flow fusion. Furthermore, the continuous propagation of information
helps the model avoid problems such as vanishing gradients. The vanishing gradient

2.2 Fusion Strategies 11

problem is a common issue in deep neural networks, mainly when training recurrent
neural networks (RNNs) or deep feedforward networks. In these networks, the
gradients of the parameters with respect to the error function can become extremely
small, making it difficult for the network to learn. This happens because the gradients
are calculated using the chain rule of calculus, which involves multiplying many
small numbers. As the number of layers in the network increases, the gradients
become increasingly small, making it difficult for the network to learn. This is
particularly problematic for RNNs, which have many layers of recurrent connections
and, thus, many opportunities for the gradients to become small. One way to mitigate
the vanishing gradient problem is to address the vanishing gradient problem is to
use methods that combine information from multiple layers, such as Flow Fusion,
such as feature fusion methods. These methods allow the network to take advantage
of information from different levels of abstraction, making it less likely that the
gradients will become small. The most striking example of this type of application
is the Features Pyramid Network (FPN) [6]. FPN is a deep learning architecture
for object detection. It combines features from multiple layers of a pre-trained
backbone network to create a multi-scale representation of the input image, allowing
the network to detect objects at different scales. The FPN includes a pyramid network
consisting of several layers, each corresponding to a different level of abstraction,
with down-sampling and up-sampling layers, lateral connections to fuse information
from different levels, and a top-down pathway to propagate information from high-
level features to low-level features, to improve the accuracy of object detection.

2.2.3 Adaptive Fusion

So far, we have feature fusion techniques that apply homogeneous combinations
between the inputs. However, there is also the possibility of combining features in
a weighted manner. In Adaptive Fusion [5], features coming from different layers
or branches will contribute differently to the merging layer. This application can
be helpful in multimodal contexts where, for example, it is necessary to combine
various modes prioritising a particular type of content or sensor. More formally, we
have:

UnweightedFusion FUW (I1, I2) = E1 +E2

12 Features Fusion with Multimodal learning

AdaptiveFusion FA(I1, I2) = αE1 +βE2

Where I is the input, F is the features fusion function and α,β represents the weights
learned from the feature maps to be fused.

2.2.4 Fusion Operations

Several operations can be performed on features embedding from different branches
of a model, each of them also has a different reason for use, the most common are
presented below.

Concatenation When you want to combine features from two different modalities,
the most spontaneous operation to perform is concatenation. Thanks to this operation,
it is possible to keep, completely intact, the information of the different modalities.
Through the learning process, it will then be the purpose of the subsequent layers to
select the discriminating features for the chosen task.

Subtraction/addition Another widely used methodology is based on the combina-
tion of embedding through subtraction and addition operations. Obviously, for this to
be possible, the size of the two embeddings must coincide. For this reason, addition
and subtraction should be used with inputs from the same domain. An example
could be the case of facial recognition, where two images of the same person’s face
are used as input. Once the features have been extracted, an addition/subtraction
operation is then applied with the aim of accentuating/inhibiting certain features.

Element wise multiplication Another possible merger methodology is element-
wise multiplication. This does not differ much for addition and subtraction purposes
and requires the same premises, namely the size of the embedding and the domain
of the features. The multiplication operation can be seen as a combined addi-
tion/subtraction. In fact, features with very weak activation will be automatically
inhibited, and features with very high activations will be accentuated. The possible
applications remain the same for addition and subtraction (Face Matching, Signature
Verification, Anomaly Detection, etc ..)

2.2 Fusion Strategies 13

2.2.5 Loss Functions and Feature Fusion Methodologies

One of the key challenges in feature fusion methodologies is to effectively combine
information from multiple sources to improve the performance of a given task.
Loss functions provide a way to optimize the feature representations obtained from
different sources to ensure that they are complementary and that the final feature
representation is optimal for the task at hand.

For example, loss functions, such as the Compactness Loss [7], help to ensure
that the features from the same class are as close as possible in the feature space,
meaning that the deep feature representation of the class is distinctive and the intra-
class distance is low. This is particularly useful in one-class classification problems,
where the goal is to differentiate between the target class and all other classes. By
using the compactness loss in conjunction with other loss functions, such as the
descriptive loss function, it is possible to achieve an optimal feature representation
that is both distinctive and compact. Loss functions can also be used to regularize the
feature representations by encouraging them to be more robust to noise and variations
in the input data. This can help improve the model’s generalisation performance and
make it more robust to different scenarios. Another type of loss function for feature
fusion is based on Adversarial loss, a technique used in Generative Adversarial
Networks (GANs) to measure the difference between the generated and real data [8].
In feature fusion with adversarial loss, the goal is to generate data similar to real data
in multiple feature spaces.

Overall, loss functions are a powerful tool that can improve the performance
of feature fusion methodologies by optimising the feature representations obtained
from different sources, ensuring that they are complementary and optimal for the
task at hand.

Compactness Loss

Compactness loss is a function (referred to as C in the text) that is used to evaluate
the distance between deep features of objects from the same class in a one-class
classification problem. The goal is to have the features from the same class be as
close as possible in the feature space, meaning that the deep feature representation
of the class is distinctive and the intra-class distance is low. The compactness loss is
used in conjunction with the descriptive loss function (the cross-entropy) denoted as

14 Features Fusion with Multimodal learning

D to optimize the deep feature representation for the training data. The optimization
problem can be formulated as follows:

ĝ = max
g

D(g(t))+λC (g(t))

where g is the deep feature representation for the training data t, λ is a positive
constant D is the Descriptive loss function (within this approach, we used the cross-
entropy) C is the Compactness loss function, which evaluates the batch inter-class
deep feature distance to derive objects from the same class. The Compactness loss
function, C , evaluates the batch inter-class deep feature distance to ensure objects of
the same class are close to each other in the feature space. By combining the features
through the Compactness loss applied to the merging layer, it is possible to obtain the
most descriptive features of the combined inputs. This function effectively enhances
the representation capabilities of the deep learning model, leading to improved
accuracy and robustness in its predictions. With this feature composition, the model
is able to better capture the relationships between the inputs and produce more
meaningful results.

Adversarial Loss

The generator’s goal in a GAN is to produce data similar to the real data, as deter-
mined by the loss function. The loss function is typically a measure of the distance
between the generated and real data in some feature space. One way the loss function
in GANs can be used for feature fusion is by incorporating multiple loss functions
that measure the difference between the generated and real data.This can help the
generator learn to produce data similar to the real data in a combined feature space,
leading to more realistic generated data. For example, one loss function could
measure the difference between the generated and real data in the pixel space (L1

o L2). In contrast, another loss function could measure the distance (Wasserstein
distance) in the feature space [9]. In this context, the generator learns to produce
data similar to the real data in a combined multimodal feature space by training the
generator to minimise the combined loss of multiple loss functions. This approach is
called multimodal-GAN [10]. It has been used in many applications where multiple
data views are available, like synth-to-real adaptation, image-to-image Translation,
text-to-image synthesis, and many more. The combination of loss functions used in a

2.3 The Multimodal tasks 15

multimodal-GAN should be carefully chosen based on the specific characteristics of
the task and inputs being used. Factors such as the type of data being generated, the
desired output, and the overall goals of the model should all be taken into account
when selecting the appropriate loss functions.

2.3 The Multimodal tasks

With modality, we mean the nature of the inputs provided to our model. Generally,
the inputs are unimodal in a Computer Vision algorithm (raw pixels of the image).
However, additional information may be obtained during the gathering process, such
as a text description linked to the image caption or information from a different
sensor, such as a heatmap or infrared (IR). Adding these inputs of a different modality
from the RGB image makes our task a multimodal learning task.

2.3.1 Modalities fusion strategies

After defining what we mean by multimodal, we now face a further problem. How
can we merge inputs from different modalities? There are usually two applicable
methods: 1) direct concatenation of all inputs before using them for training and 2)
late fusion of input embeddings. The first method is the simplest and allows a single
model for all the inputs. The drawback is that the inputs must be all the same size,
a possible solution perhaps when we want to merge RGB images with IR, but it is
not feasible, for example, to combine images with text. For this reason, the second
approach is more used and has several advantages. Each input has its dedicated
features extraction model, which we call branch, and the features are then merged
with the techniques and approaches seen in Chapter 2. Having a dedicated branch
for each mode has advantages as each branch focuses on learning specific features
for that mode. We leave the discrimination of which features to use and which not
to the following layers after the block of features fusion. The only disadvantage is
that the model suffers from the complexity perspective, as this approach generally
requires models with multiple parameters.

16 Features Fusion with Multimodal learning

 Concat ClassClassifier

LSTM

MLP

CNN

LSTM

MLP

CNN

Text

Speech

Image

Text

Speech

Image

inputs merge layer
feature

extraction
output

decision

model
inputs merge layer

feature

extraction
output

decision

model

Fig. 2.4 Example of multimodal architecture

2.3.2 The template of a multi-branch architecture

Summarizing what has been defined so far, by multimodal, we mean a machine
learning task where the inputs belong to different modalities (text, audio, image, etc
...). While with multi-branch, we want to indicate a model composed of n feature
extractors, one for each modality. Each branch will take care of creating a specific
embedding for each modality. Feature fusion methodologies will be applied to all
the embeddings generated in this way. The merged embeddings will be used to
resolve the machine learning task (classification, regression, detection, etc ...) from
a decision model. Thanks to Deep Learning, this pipeline can be simultaneously
trained end-to-end depending on the loss function defined for the task. An example
of a multi-branch architecture for multimodal tasks can be seen in Fig. 2.4.

More formally, we have:

Fk
ext(Ik) = Ek k = {1,2,3, . . . ,n} (3.1)

E1 ⊗ ...⊗En = Emerged (3.2)

M f inal(Emerged) = Out put (3.3)

2.4 What is next 17

Where: Fk
ext(Ik) is the k-th feature extractor for the k-th input, Emerged is the result

obtained from the feature fusion strategies and M f inal is the final decisional model
responsible for producing the output.

2.4 What is next

As can be shown in Table 2.1 presents an overview of the feature fusion method-
ologies that will be examined in the following chapters. In these chapters, we will
focus on different feature fusion techniques and how they can be utilized to improve
the performance of deep learning models. We will also discuss the advantages and
limitations of each method, as well as their potential applications in real-world
scenarios. Additionally, we will provide experimental results that demonstrate the
effectiveness of these techniques in various benchmark datasets. Overall, this study
aims to provide a comprehensive understanding of feature fusion methodologies and
their role in deep learning.

Chapter Title Fusion Methodology

4
Estimation of speed and distance of surrounding
vehicles from a dashboard camera point-of-view

Direct Fusion

5
AA-SGAN: adversarially augmented Social GAN
with synthetic data

Adversarial Loss

7
AI-based flood event quantification using online
media and satellite data

Direct Fusion

8
Road passability detection during flood events
using social media data

Compactness Loss

9
Emergency scene description using deep learning
approaches

Direct Fusion

10
Water segmentation for flood detection and
monitoring

Flow Fusion

Table 2.1 Overview of feature fusion methodologies examined in the following chapter

Part I

Automotive

Chapter 3

Automotive and synthetic datasets

The automotive industry is experiencing a rapid transformation with the advent of
new technologies such as autonomous vehicles, advanced driver-assistance systems
(ADAS), and connected cars. These technologies rely heavily on computer vision,
responsible for perceiving the environment, understanding the context, and making
decisions. One of the key challenges in developing these technologies is the need
for large, labelled datasets to train and evaluate the performance of computer vision
models. However, collecting and labelling large datasets of real-world data is costly,
time-consuming, and may not always be feasible. Computer graphics simulation is
emerging as a powerful alternative to real-world data collection, providing a large-
sized dataset quickly and with inexpensive resources and allowing the generation
of diverse scenarios with different weather and lighting conditions. This makes it a
valuable tool for the automotive industry to train and evaluate the performance of
computer vision models in the automotive field.

As highlighted, the availability of many indexed and labelled images is key to
successfully designing complex vision tasks leveraging powerful DL techniques
based on CNNs. Creating a large dataset to represent the target scenario correctly
and allowing the trained neural network to generalize in real applications remains
a critical design step. Resorting to human visual inspection and manual labelling
is not viable in many scenarios. Manual labelling does not scale very well to large
datasets, except for simple and repetitive tasks that do not require particular expertise,
where one can resort to crowd-sourcing [11]. Moreover, doubts about the collected
information’s quality and potential unexpected bias may arise. Finally, manual

20 Automotive and synthetic datasets

(a) Road scene semantic segmentation (b) Pedestrian semantic segmentation

(c) Cars 3D bounding boxes (d) Pedestrians bounding boxes and body-joints

Fig. 3.1 Examples of synthetic datasets created with the aim of GTAV

labelling is impossible for some tasks, as in the automotive scenario targeted in this
work, where physical quantities such as distance and speed must be estimated from
images. One option in the automotive field is to use special vehicles with ad-hoc,
usually expensive, settings and sensors capable of gathering the information required
for training. Such real experiments’ setup and maintenance costs may represent a
significant barrier. In this context, computer graphics (CG) simulation is emerging
as a powerful source of visual information. CG allows for obtaining a large-sized
dataset in a short time and with the usage of cheap resources [12]. In addition,
modern video games are getting closer and closer to photorealism, thus promising
to bridge the gap between visual simulation and reality, which is likely to be the
key to training computer vision systems that are effective in real life. Moreover,
simulation makes experimental and environmental settings more flexible: i.e., in the
automotive field, datasets with heterogeneous driving scenarios can be generated
and subjected to different weather and lighting conditions. Higher heterogeneity
can significantly improve the trained model’s robustness and generalization. As
an example, by using a simple 3D rendering technique such as Ray-casting in a
virtual environment, one can get a simulation of a LIDAR scanner [13, 14] quickly
obtaining information on the distance of the elements within the image. Furthermore,

21

it is possible to get data that are usually difficult to obtain, such as measurements of
the speed of all the surrounding vehicles, which would require a complex setup in the
real field. To customize and generate a dataset for visual training, one needs to design
a complex CG simulation environment or exploit existing high-quality game engines.
The second option is viable if one has access to the source code to quickly extract
information on the entities and the elements that make up the gaming environment
(bounding box, size, distance from the observer, type of entity, etc...). Nowadays, few
open-source simulators can be used to extract synthetic datasets. In the automotive
environment, TORCS [15] can be used; however, this tool allows the representation
of only a few scenarios with limited photorealism. On the other hand, commercial
car video games run very realistic CG and are equipped with intelligent agents to
simulate entity actions, e.g. a pedestrian walking. For this reason, the research
community has recently got interested in Grand Theft Auto V (GTAV) [16–19], a
popular open world videogame that, thanks to the libraries developed by third parties,
allows one to extract data from the gaming environment. One of the main advantages
of using a game engine like GTAV is the high degree of realism and photorealism that
it can provide [16–19]. Additionally, the game’s open-world environment allows for
a wide variety of scenarios, such as different weather conditions and different types
of roads, which can help to improve the robustness and generalization of the trained
model. However, it’s important to note that the generated synthetic data should be
carefully evaluated for its realism and ability to improve the model’s performance in
real-world scenarios [18]. Combining synthetic data with real-world data through
domain adaptation or domain generalization techniques is essential to overcome the
lack of realism in synthetic data.

In conclusion, computer graphics simulation, specifically using game engines
like Grand Theft Auto V, can provide a powerful source of visual information for
training computer vision systems. The high degree of realism and photorealism
of these synthetic data, combined with the ability to generate a large-sized dataset
quickly and with inexpensive resources, makes it a valuable alternative to manual
labelling. However, it’s important to carefully evaluate the realism of the synthetic
data and combine it with real-world data to improve the model’s performance in
real-world scenarios.

Chapter 4

Estimation of speed and distance of
surrounding vehicles from a
dashboard camera point-of-view

In this chapter, we focus on computer vision aids for automotive applications and
target to estimate the distance and speed of the surrounding vehicles using a single
dashboard camera. We propose two multi-branch network models for distance
and speed estimation, respectively. In the first model presented, spatial features
are merged with semantic features to obtain an estimate of the vehicle, while in
the second, the semantic features are replaced by motion features, represented by
the optical flow of the scene, to obtain an estimate of the vehicle speed. For both
approaches, feature fusion takes place via direct fusion. Moreover, we show that
training them by using synthetic images generated by a game engine is a viable
solution that turns out to be very effective in real settings.

4.1 Introduction

In a similar fashion to work done in [17], in this chapter, we propose a work based
on two CNN architectures to estimate the distance and speed of the surrounding
vehicles from a single camera with windshield view (see Fig. 4.1). Training has been
achieved with GTAV simulations and performance validated in real life. The main
contributions of this work lie in the following:

4.2 Methodology 23

• a DL model that uses a pre-trained deep CNN to extract semantic features
from vehicles images and uses them to predict the distance of the surrounding
vehicles from a single camera with windshield view;

• a model which uses optical-flow information to predict the speed of surround-
ing vehicles from pixel motion between pairs of video frames.

• a training framework based on videogame simulation for the creation of
training and testing datasets in the automotive field;

• we show that training with synthetic but photorealistic images represents
a viable alternative to more expensive experimental data collection, with
promising results in the estimation of distance and speed of the vehicles on
the road observed with a single camera.

Dataset, code, and pre-trained model are publicly available and can be found at:
https://github.com/mirkozaff/DeepGTAPrediction.

4.2 Methodology

In this section, we will introduce the framework used to collect data, preprocess
them, and the models used to accomplish the vision task.

4.2.1 Data collection

Data have been collected from GTAV thanks to Script Hook V library (SHL), which
allows access to GTAV native function easily and extract information about the enti-
ties (vehicles) from the game environment. Images and corresponding information
have been generated by configuring an in-game agent that drives a vehicle and lets it
wander the streets; during the simulation, one can collect the required information
by querying the game engine through SHL calls. For our goal, we built a dataset by
collecting, for every vehicle in the range of 30 metres from the player, the following
items:

• Frame: 1920×1080 image captured at 30 Hz, gathered by setting the in-game
camera on the dashboard.

https://github.com/mirkozaff/DeepGTAPrediction

24
Estimation of speed and distance of surrounding vehicles from a dashboard camera

point-of-view

Fig. 4.1 Photorealistic frame extracted from the game environment, featuring an overlay of
the prediction

• Entity ID: identifier of the vehicle to track it in multiple frames.

• Entity speed, distance: speed and distance of the vehicle.

• Entity bounding box: pair of coordinates that define the bounding box B1 of the
vehicle in the captured frame; this is computed by projecting the 3D bounding
box obtained from the game engine into 2D screen coordinates.

We noted that the bounding boxes extracted by SHL are often inaccurate and
present a drift caused by the delay in response to each SHL query. To get precise
bounding boxes, we use the pre-trained Mask R-CNN [20] model to detect each
vehicle in the dumped frame (the same model will be used in the testing phase on
real-life images). For each detected vehicle Mask R-CNN output a bounding box B2.
To univocally map B2 onto previously computed B1 (and corresponding speed and
distance data) we set a threshold on the intersection over union IoU = B1∩B2

B1∪B2
. Only

the entities showing IoU ≥ 0.7 are included in the dataset. The selected threshold
also filters out some vehicles that cannot be reliably detected due to poor visual
conditions.

Dataset in numbers: we used a dataset consisting of ~250,000 frames captured
under various weather conditions. The dataset included a total of 10 different vehicle

4.2 Methodology 25

Feature Extractor

(ResNet50)

Cropped vehichles

bounding boxes

Spatial coordinates

Decoder

Merge

Layer

Distance

Predictor

Output

Distance

Bounding boxes

coordinates

Fig. 4.2 Prototype architecture of our proposed distance model. A CNN extracts semantic
features of the cropped vehicles, while the MLP branch is used to learn a spatial representation
of the coordinates. Then all this information is merged and decoded into output values
through the last MLP.

models and 5 different weather settings, including sunny, cloudy, rainy, snowy,
and foggy. GTAV features 348 different vehicles. We only considered frames that
contained at least one car, resulting in a dataset of over one million samples of cars.

4.2.2 Models

Distance

The first model we present is designed to estimate the distance from surrounding
vehicles using a single camera with a windshield view. The input is a single image
from which vehicle bounding boxes are detected, e.g. by using Mask R-CNN.

As shown in Fig. 4.2 the architecture is composed of two branches:

• First branch: pre-trained ResNet50 [21] used to extract semantic features of
the target vehicle from the corresponding frame. To this end, the classification
layers in ResNet50 are removed. The input is a frame crop based on the
bounding box B2. In particular, each vehicle is extracted from the frame by
cropping and resizing it at 224×224, which is the input resolution expected by
ResNet50.

26
Estimation of speed and distance of surrounding vehicles from a dashboard camera

point-of-view

Feature Extractor

(PilotNet)

Scene optical

flow

Spatial coordinates

Decoder

Merge

Layer

Speed

Predictor

Output

Speed

Bounding boxes

Coordinates pairs

Fig. 4.3 Prototype architecture of our proposed speed model. A CNN extracts optical flow
features, while the MLP branch is used to learn a spatial representation of the coordinates
pairs of two subsequent frames. Then all this information is merged and decoded into output
values through the last MLP.

• Second branch: Multi-Layer Perceptron (MLP), used to encode the coordinate
of the bounding box B2 into a higher multidimensional space. We selected the
ELU activation function [22] for each layer, in place of the classic ReLU; we
noted that in our scenario ELU is very effective in avoiding the dead-neuron
problem [23].

These two branches are then concatenated and processed through a final MLP
responsible for predicting distance from the fused information produced by image
pixels and bounding box coordinates. Semantic features provided by the first branch
are important because vehicles appearing at the same scale in the image may represent
different classes of an object; clearly, we cannot base the distance estimation on the
sole geometric information, i.e., bounding box dimension and position analyzed by
the second branch. In other words, as in real life, we must consider that cars are
smaller than trucks when guessing the corresponding distance.

Speed

The model proposed to estimate the speed of surrounding vehicles is designed with a
similar approach using two branches: (i) semantic based on images, (ii) geometrical
based on bounding boxes. When speed is regarded, one has to consider at least two

4.3 Network training 27

consecutive images to gather object displacement over time. One option would be
to process frames directly. In this chapter, we propose to use as input the Optical
Flow (OF) estimated from the current (and previous) frame under analysis. OF is
a dense vector field representing every pixel’s displacement, e.g., computed using
the Farneback method [24]. Moreover, we use the two bounding boxes of the same
vehicle tracked in two consecutive frames (tracking is obtained in our GTAV dataset
using entity IDs, while it will require additional processing in real setting). The
structure of the model for speed estimation is as follows:

• First branch: PilotNet [25], a CNN proposed to learn salient points of the road
for autonomous driving, is used to process the input OF. The OF vector fields
are represented as an image with two bands representing vector magnitude and
direction, respectively. The obtained OF image is cropped according to B2 and
resized to 200×66 (the resolution expected by PilotNet). We improved the
original PilotNet model by adding batch normalization to the convolutional
layer in order to speed up convergence and using ELU activation function and
Dropout on the last fully-connected layers.

• Second branch: same MLP structure used in the previous model to encode in a
higher multidimensional space the coordinates of bounding boxes; differently
from the distance estimation model, now the input is represented by two
bounding boxes associated with the same vehicle tracked in two successive
frames.

Finally, the features extracted on the two branches are concatenated and processed
by the final MLP as shown in Fig.4.2 to estimate speed. We adopted a heuristic
similar to the one proposed for distance: the lower branch extracts motion features
based on bounding box geometrical information and displacement; the PiloNet
branch encodes richer features that depend on the OF of all the pixels corresponding
to a vehicle and potentially also extract semantic characteristics.

4.3 Network training

Using the process presented in Sect. 4.2.1 it is possible to generate datasets com-
prising as many vehicles, labelled with distance and speed, as desired. We employ

28
Estimation of speed and distance of surrounding vehicles from a dashboard camera

point-of-view

training and validation sets with 250,000 and 2,500 samples to train the distance
model in this work. Regarding the speed model, we extract from the previous dataset
all vehicles visible in two consecutive frames generating a set of 180,000 OF images
for training and 1,500 for validation.

The proposed models have been trained using Mean Squared Error (MSE) as loss
function and Adam optimizer with the following parameters: lr = 0.001, β1 = 0.9,
β2 = 0.999. The training was stopped as soon as the loss computed on the validation
set ceased to decrease to avoid over-fitting; in our experiments, this usually occurred
after about 15 training epochs.

Training all MLP sub-networks has been done using Dropout with parameter
p = 0.4. In the distance model, ResNet50 weights pre-trained on ImageNet have
been kept fixed while optimizing only the other MLP sub-networks. In the speed
model, all the network has been trained since no pre-trained PilotNet useful in our
context was already available.

Training has been run on a PC with Intel(R) Core(TM) i9-7940X CPU, 128
GB RAM and NVIDIA GeForce GTX 1080 Ti (x4). Testing was performed on the
same machine and a lighter one with Intel(R) Core(TM) i5-6400, 8GB RAM, and
NVIDIA GeForce GTX 1050 Ti. This latter has been selected as representative of
the hardware one expects to have on board the vehicle, as opposed to the previous
higher-end server.

4.4 Experimental results

This section describes the experimental results obtained in different simulated and
real settings.

4.4.1 Testing on synthetic dataset

As a first step, the estimation accuracy of the trained models has been evaluated
on synthetic datasets of size 2,500 and 1,800 for distance and speed, respectively.
These testing sets have been generated using the GTAV simulation described in
Sect. 4.2.1. It is worth pointing out that training and testing sets have been generated
with different random simulations to make them independent.

4.4 Experimental results 29

The proposed models are able to predict distance with a Root MSE (RMSE) of
about 2.46 [m] and speed with RMSE of about 2.75 [mph]. In Fig. 4.1 we provide
an example of the obtained visual results. The image shows a car and a truck with
labels representing ground truth and predicted distance and speed. For the car, the
model predicts a distance of 3.8 m versus a real value of 3 m and 9.5 mph speed
versus 10.2 mph.

In Fig. 4.4, we analyze in more detail the estimation accuracy. In particular,
Fig. 4.4a shows the RMSE on distance as a function of the actual distance range;
to this end, we compute RMSE (the circle marker) and standard deviation of the
estimation error (vertical bars) by binning the collected results in increasing distance
ranges of 5 m in the interval (0,30) m (the top error bar indicates an overestimate,
whereas the bottom segment represents an underestimate). It can be noted that, as
one may expect, the RMSE increases for more considerable distances. Overall the
distance estimates are pretty accurate and unbiased (almost symmetric error bars)
within a range of 15 m: as an example, the RMSE in the range (0,5) m is 1.23 m,
and in the range (5,10) m is 1.57 m. For farther vehicles, the predictions are less
accurate, and the model underestimates the distance. This can be explained by the
fact that at distances greater than 15 m, vehicles are represented in the image by
fewer pixels limiting the information extraction capabilities of the convolutional
layers.

In Fig. 4.4b we show a similar RMSE analysis on the speed estimate as a function
of the speed up to 20 mph, which is the maximum value that can be simulated in

5 10 15 20 25 30

distance [m]

0

2

4

6

8

10

12

d
is

ta
n

c
e

 R
M

S
E

 [
m

]

(a)

5 10 15 20

speed [mph]

1

2

3

4

5

6

7

8

s
p
e
e
d
 R

M
S

E
 [
m

p
h
]

(b)

Fig. 4.4 RMSE on distance (a) and speed (b) estimate.

30
Estimation of speed and distance of surrounding vehicles from a dashboard camera

point-of-view

GTAV. It can be noted that speed RMSE increases as a function of speed. The results
show that the proposed network can reasonably guess the speed of the surrounding
vehicles by using a single-camera view. As an example, in the speed range (0,5) mph,
we get RMSE equal to 2.10 mph, and in the range (5,10) mph, we get RMSE equal
to 4.15 mph. We expect to be able to improve such results by increasing the number
of temporal frames analyzed by the model and using better OF representations.

4.4.2 Testing on real dataset

0-1 1-2 2-3 3-4 4-5 5-6

distance [m]

0

0.5

1

1.5

2

2.5

3

3.5

d
is

ta
n

c
e

 R
M

S
E

 [
m

]

synthetic

real

Fig. 4.5 RMSE on distance estimate (synthetic and real images).

As already mentioned in Sect. 4.1 one of the goals of this work is to understand if
CG simulation can be used to effectively train DL models employed in real settings.
To answer this question, we need vehicle videos with annotated data. To this end, we
used the video sequence provided in [26] and corresponding distance estimates as an
example of a real dataset. In Fig. 4.5 we compare the RMSE on distance prediction
obtained on the real and synthetic datasets subdivided in 2 m ranges (please note
that images from [26] are limited to a 6 m range). It can be noted that the proposed
model is quite robust and generalizes well in a real-life scenario, even if the actual

4.4 Experimental results 31

environment can be significantly different with respect to GTAV simulation. Indeed
it can be noted that, in the experimented distance range, the RMSE of the real dataset
increases by less than 0.5 m with respect to the synthetic testing set. Overall the
test RMSE was 1.21 on synthetic data and 1.40 on real data. We want to perform
a similar experiment with speed prediction, but unfortunately, to the best of our
knowledge, no publicly available dataset can be employed to this end. Indeed, the
setup of real road experimentation is quite complex.

4.4.3 Testing on the road

Fig. 4.6 Example of distance estimate in real environment.

Finally, the model has been tested on a video recorded on the streets around
our city using a Go Pro Hero 6 placed on the car dashboard. This last experiment
was accomplished in real road environments (both urban and highway) to check the
meaningfulness of the obtained predictions. In this case, we do not have ground truth
data. By analyzing the proposed system’s operations in real life, we noted that the
predicted distances are plausible and coherent, i.e., vehicles appearing at the same
distance are assigned the same value, and approaching vehicles exhibit decreasing
distance. As in the previous experiment also, in this case, the model performance is
not significantly impaired by the road environment; that is very much different with
respect the GTAV scenario.

32
Estimation of speed and distance of surrounding vehicles from a dashboard camera

point-of-view

Work Station
290 ms Bounding box
15 ms Distance
45 ms Speed
120 ms Latency
500 ms Total

On Board PC
2 sec Bounding box
280 ms Distance
880 ms Speed
3 sec Total

Table 4.1 Execution time of different algorithmic steps.

4.4.4 Computational cost

In this section, we analyze the computational cost of the proposed solutions by
measuring the execution time of different algorithmic steps of the two hardware
architectures described in Sect.4.3; these are meant to be representative of a worksta-
tion performing remote computation and lower-end hardware compatible with the
in-vehicle system. In Tab. 4.1, we show the average time taken by the bounding box
calculation, speed, and distance estimate for an image with five vehicles (on average).
To get acceptable delays (compatible with real-time requirements of advanced driver-
assistance systems), it is necessary to use a powerful workstation. As expected, the
bounding box computation, so the distance estimate represents the slowest module.

4.5 Conclusions

In this chapter, we proposed two models to accomplish two different tasks: speed
and distance prediction using a single camera looking at the road from the driver’s
perspective. Since, for such tasks, it is either technically difficult or quite expensive
to get real video sequences for training CNNs, we proposed using simulated data
generated through a popular game engine. Such an approach allowed us to collect
photorealistic driving scenes, where all the visible vehicles can be labelled with
distance and speed information. We designed two DL models built around similar
ideas: one branch extracts feature from the input images, a second maps vehicles’
bounding boxes (dimension and position) to higher dimensional space, and the last

4.6 Acknowledgement 33

MLP network infers distance or speed from all the extracted features. Estimating
accuracy has been evaluated on both synthetic and real data showing that the simu-
lated images can train the proposed models effectively. For future work, we plan to
improve the models by substituting the bounding box detection network with a lighter
version and using a DL approach to estimate OF for speed prediction. Moreover, we
plan to enrich the input available to the network by including parameters that can be
logged on board a car, such as throttle, brake, and steering data, to mention a few.

4.6 Acknowledgement

The research leading to these results has received funding from the European Union
Horizon 2020 research and innovation programme under grant agreement No 713788
("optiTruck" project).

Chapter 5

AA-SGAN: adversarially augmented
Social GAN with synthetic data

Accurately predicting pedestrian trajectories is crucial in applications such as au-
tonomous driving or service robotics. Deep generative models achieve top perfor-
mance in this task, assuming enough labelled trajectories are available for training.
To this end, many synthetically generated, labelled trajectories exist (e.g., generated
by video games). However, such trajectories are not meant to represent pedestrian
motion realistically and are ineffective at training a predictive model. We propose a
method and an architecture to augment synthetic trajectories at training time and with
an adversarial approach. In addition to the standard adversarial loss, our proposed
method also adds "ad hoc" loss functions responsible for merging the features of the
real and synthetic trajectories in a common feature space. This allows the model to
learn better from real-world and synthetic data, resulting in improved predictions.
Our proposed adversarial loss is specifically designed to address the challenges of
merging the two different modalities, real and synthetic, and to achieve better perfor-
mance in terms of predictions. We show that trajectory augmentation at training time
unleashes significant gains when a state-of-the-art generative model is evaluated over
real-world trajectories.

5.1 Introduction 35

5.1 Introduction

Predicting pedestrian trajectories is of paramount importance in applications where
robots must dodge humans, e.g., to avoid collisions, as in the automotive field
or robot-human interaction environments. This task is inherently challenging due
to the complexity and, to some extent, the unpredictability of human movement
patterns. In detail, the task has three main technical challenges. First, given a
partial trajectory, multiple options for its continuation are possible, making the
problem intrinsically multivariate; second, an individual’s motion is conditioned by
bystanders’ behaviours, especially in crowded spaces; finally, different social and
cultural contexts may constrain what can be considered a plausible motion pattern.

Recently, deep generative models showed promising results in plausible human
motion prediction. For example, Social GAN [27] trains a trajectories Generator
using an adversarial approach where ad-hoc architectural elements and loss terms
promote trajectories that are socially plausible. This model is trained on pedestrian
trajectories extracted from crowds footages from different environments [28, 29]; in
Fig. 5.1a sample trajectories extracted from a set of tracked pedestrians in a video
scene are shown. However, such datasets exhibit limitations such as no camera
settings variability and yield comparatively few trajectories compared to the capacity
of some deep models. While collecting more videos to enlarge the training set may
bring benefits, data collection and annotation is a daunting, time-consuming activity.
Also, releasing datasets of real footage poses some privacy-related issues.

Synthetic training allows for large training sets without the burden of manually
collecting and labelling the samples. For example, the Joint Track Auto Dataset
(JTA) [30] provides a large body of pedestrian trajectories from the videogame Grand
Theft Auto V. However, such computer-generated trajectories lack the realism of
real human motion: as an example in Fig. 5.1b many deterministic straight patterns
present in the JTA dataset are visually evident. As a result, we experimentally show
that such trajectories cannot be directly used to improve learning for path prediction,
motivating the present research.

This work proposes AA-SGAN (Adversarially Augmented Social GAN), an
end-to-end adversarial approach for predicting trajectories over a combination of
real and synthetic trajectories in input. In a nutshell, we introduce a generative
Augmenter to manipulate synthetic trajectories. Such synth-augmented trajectories,

36 AA-SGAN: adversarially augmented Social GAN with synthetic data

(a) Real trajectories (b) Synthetic trajectories

(c) Synth-augmented trajectories

Fig. 5.1 Examples of real (a), synthetic (b), and synth-augmented (c) trajectories by the
AA-SGAN Augmenter.

interleaved with real ones, are input into a Generator that learns to predict a trajec-
tory continuation as in [27]. Notably, the whole architecture is trained end-to-end,
propagating the gradient of an adversarial loss from the Discriminator back towards
the Generator and the Augmenter. As a result, the Generator improves its prediction
accuracy while, at the same time, the Augmenter learns how to increase the diversity
of synthetic trajectories. As a qualitative example, the Augmenter modifies the
synthetic trajectories shown in Fig. 5.1b to those reported in Fig. 5.1c that bear more
resemblance to real ones. Our experiments over real test sets [28, 29] confirm that
our method yields significant gains over a reference SGAN architecture trained either
over real trajectories only or a hybrid of real and synthetic trajectories.

The chapter is organized as follows: Section 5.2 introduces relevant background.
Section 5.3 illustrates our proposed methodology, while Section 5.4 presents our
experimental evidence. Finally, Section 5.5 draws the conclusions of our work.

5.2 Background and Related Works 37

5.2 Background and Related Works

In this section, we present the background relevant to the understanding of this
work. Namely, we discuss existing approaches to pedestrian path prediction and the
datasets most commonly used for this task.

5.2.1 Trajectory Prediction Methods

Over the years, pedestrian trajectory prediction has been the subject of many endeav-
ours [31]. Early attempts tried to model this complex task with models borrowed
from classic Physics [32–34]. Recently, however, learning-based models have
outperformed such early approaches and represent the state-of-the-art in the field.
Therefore, our literature review will be limited to learning-based approaches. While
some based methods rely on multimodal inputs (e.g., video beside trajectories) to
boost performance, the present work relies on unimodal trajectories-based inputs, so
our review will also be constrained to such cases.

Given the sequential nature of predicting a future trajectory based on past obser-
vations, Recurrent Neural Networks (RNNs) based methods were among the first
to yield promising results among learning-based methods. Namely, [35] proposes
to rely on Long Short Term Memory (LSTM) RNNs enhanced by an ad-hoc so-
cial pooling layer. This layer models the interactions between nearby pedestrians.
It is responsible for guaranteeing that the predicted trajectories are also plausible
from a social perspective (e.g., paths should not interfere at the same time, social
conventions such as keeping the right way should be respected, etc.). While mod-
ern competitors usually outperform the above architecture, some key ideas were
borrowed and put to profit in later, adversarial learning-based approaches.

Social GAN (shortly, SGAN) [27] approaches trajectory prediction with an ad-
versarial approach [8]. Figure 5.2 shows the internals of the SGAN: the Generator
receives in input the first 8 steps (observed trajectory, "obs") of a 20 steps long
pedestrian trajectory and predicts the following 12 steps (predicted trajectory, "pred")
of the sequence. Within the Generator, both the encoder and the decoder are im-
plemented as recurrent LSTM networks, connected by a social pooling layer. The
Discriminator receives in input the 12 steps sequence output by the Generator and
the corresponding ground truth sub-sequence of the same length. SGAN is trained

38 AA-SGAN: adversarially augmented Social GAN with synthetic data

with an adversarial approach where the Generator learns to produce real-looking
path traces, whereas the Discriminator learns to tell generated from real trajectories.
The architecture is trained to minimize a novel variety loss that encourages diversity
among generated predictions. Other works using GAN [36] or synthetic data have
been proposed [37, 38]. However, these also integrate visual information into their
decision pipeline. We will not deal with these works as our approach is based on
using trajectories alone as input to the model. This approach outperforms prior work
in terms of accuracy, variety, collision avoidance, and computational complexity.

real/fake

observed

trajectory
pred

P
o

o
lin

g

M
o

d
u

le

Encoder Decoder

LSTM LSTM

(b
a
tc

h
,
8
,
2
)

(b
a
tc

h
,
12

,
2
)

Encoder

LSTM

(b
a
tc

h
,
12

,
2
)

(b
a
tc

h
,
1,

 2
)

real

fake

Generator Discriminator

ground truth

predicted

trajectory

obs pred

pred

Fig. 5.2 Social GAN for pedestrian trajectories prediction [27] adversarial architecture. The
Generator learns to generate real-looking trajectories, the Discriminator learns to tell real
from generated trajectories. A social pooling module and an ad-hoc loss function enforce the
social plausibility of generated trajectories.

5.2.2 Real-World Datasets

Common datasets used for pedestrian trajectory prediction include ETH [28], and
UCY [29]. These datasets consist of trajectories extracted from surveillance camera
videos and annotated every 0.4 seconds. Each dataset includes multiple trajectories
and each trajectory includes multiple pedestrians. Each dataset sample includes a
temporal index and, for each pedestrian, the pedestrian’s identification code and
its position in an (x,y)-plane. The ETH dataset includes two different environ-
ments called biwi_eth and biwi_hotel, whereas the UCY dataset includes five
different environments called crowds_zara01, crowds_zara02, crowds_zara03,
students001, students003 and uni_examples. These datasets include a total of
2,205 frames and 6,441 pedestrians. These datasets include crowded environments
with challenging scenarios such as group behaviour, people crossing each other,

5.2 Background and Related Works 39

avoiding collisions, and groups forming and dispersing. Therefore, these datasets
are commonly employed for researching pedestrian trajectory prediction.

5.2.3 Data augmentation and synthetic datasets

Classical data augmentation, which is based on the generation of additional data,
has become quite standard for visual data where manually designed transformations,
e.g. crop, colour jitter, rotation, etc., can be applied to images in order to increase
the variability in acquisition settings, thus promoting better generalization on real
data. GANs have recently attracted lots of attention in order to overcome the limits
of manual augmentation through the direct synthesis of new images. Nonetheless,
GAN models need to be trained on real data as well, thus limiting their applicability
in many cases. Other works have focused on automating data augmentation policies:
see as an example [39] and reference therein.

Data augmentation for path prediction can be very critical: also the authors
in [27] reported that synthetic data could potentially lead to worse performance.
Therefore, the use of simulated trajectories in this context, while very promising,
remains an open issue.

One attempt is based on creating a synthetic dataset starting from real trajectories.
This is achieved by randomly sampling a trajectory from real data, adding a small
perturbation with a translation, reverting the path by flipping the starting and ending
points, and truncating a random number of steps. This process creates synthetic
data highly dependent on real data that preserves many of its characteristics, making
the crafted trajectories not suitable for proper augmentation [40]. Another work in
this direction is based on modelling the underlying physiological, and psychological
factors that affect pedestrian movement with agents [41]. This attempts to develop
an algorithm based on density-dependent filters to generate human-like crowd flows.
The approach borrows deeply from the physical model based on reciprocal velocity
obstacles and social forces to create synthetic data.

Promising results were obtained using the synthetic dataset for visual tasks,
e.g. pedestrian tracking [42]. Extending this approach to path prediction can be
very critical: synthetic trajectories are likely to be simplified and too predictable,
e.g., due to game engine scripting. Although they are suitable for learning simple
path prediction models, they fail to mimic human behaviour correctly. Synthetic

40 AA-SGAN: adversarially augmented Social GAN with synthetic data

trajectories poorly represent avoidance paths that people typically and unconsciously
adopt when walking with others around. To overcome such limitations in this work
we propose to use synthetic data as input to a new Augmenter module that is trained
end-to-end along with the path prediction task.

5.3 Proposed Method

In this section, we describe our proposed approach towards learning to predict
pedestrian trajectories from both real and augmented synthetic trajectories.

5.3.1 Problem definition

Let us define a pedestrian trajectory as a sequence of tpred samples in the temporal
order. Each sample is a pair of coordinates in space, where each element (xt ,yt)

(i)

(i = {1, . . . ,N}) represents the position of the i-th pedestrian at time-instant t ∈
[1, tpred].

We have that t = {1, . . . , tobs, tobs +1, . . . , tpred}, where t = tobs is the number of
observed samples and (tpred −tobs) is the number of following sample to be predicted.
As a common practice in the related literature, all the trajectories coordinates are
preliminarily normalized to relative coordinates with respect to the starting point.

5.3.2 Architecture

Our proposed AA-SGAN architecture is shown in Fig. 5.3. As for [27], real trajecto-
ries r are fed in input to a Generator G, whose task it to predict the future samples.
The Generator receives as input the first tobs samples of a trajectory and predicts the
next (tpred − tobs) samples. However, in the proposed architecture, the Generator
receives in input also synth-augmented trajectories a. Synth-augmented trajectories
are generated by an Augmenter A that receives in input a synthetic trajectory s and
outputs an augmented trajectory a. Therefore, our Generator learns on a larger
variety of inputs than only real trajectories as in [27]. As for [27], a Discriminator
D attempts to discriminate if a trajectory is real or it is fake. However, our Dis-
criminator is fed with three different classes of fake trajectories, i.e. it is given the

5.3 Proposed Method 41

real/fake

P
o

o
lin

g

M
o

d
u

le

Encoder Decoder

LSTM LSTM

s

robs rpred

aobs apred

real trajectories (r)

synth-augmented

trajectories (a)

ro
bs

rp
re
d

ao
bs

ap
re
d

(b
a
tc

h
,
o

b
s+

p
re

d
,
2
)

(b
a
tc

h
,
o

b
s+

p
re

d
,
2
)

P
o

o
lin

g

M
o

d
u

le

Encoder Decoder

LSTM LSTM

(b
a
tc

h
,
o

b
s,

 2
)

(b
a
tc

h
,
p

re
d

,
2
)

Encoder

LSTM

(b
a
tc

h
,
o

b
s+

p
re

d
,
2
)

(b
a
tc

h
,
1,

 2
)

fake

real

fake

fake

synthetic trajectories

Augmenter Generator Discriminator

ˆ
ˆ

generator-predicted synth-

augmented trajectories (a)˜
generator-predicted synth-

augmented trajectories (a)˜

˜

generator-predicted

real trajectories (r)˜
generator-predicted

real trajectories (r)

Fig. 5.3 AA-SGAN for adversarially augmented pedestrian trajectories prediction architec-
ture. The Augmenter learns to augment synthetic trajectories into synth-augmented; the
Generator learns to generate trajectories prediction; the Discriminator learns to discriminate
real from generated and synth-augmented trajectories.

chance to learn over a significantly more challenging problem. Another peculiarity
of our proposal is that the above architecture allows us to train the Augmenter not
only end-to-end but also over an adversarial loss, rather than just minimizing the
difference between its input and output (e.g., MSE). Adversarial Augmenter training
is the key towards augmented synthetic trajectories that are practically useful for
training the Generator, as we experimentally show later on.

Augmenter The Augmenter A receives in input synthetic trajectories s of length
tpred and outputs synth-augmented trajectories a = A(s) of identical length. In detail,
the Augmenter relies on an encoder-decoder architecture. Thus, sequences with
length tpred are embedded into a Multi-Layer Perceptron layer φ(·) with ReLU non-
linearity to get fixed length vectors e(i)t = et , t ∈ [1, tpred],∀i. Subsequently, these
embedding vectors e are used as input to the RNN model - in this case, we use the
LSTM cell f (·) - of the encoder ε at time t with the following recurrence:

et = φ(xt ,yt ;W
(ε)
e)

h(ε)t = f (ht−1,et ;W (ε))
(5.1)

where W (ε)
e are the embedding weights and, W (ε) are the encoder weights shared

between all people in a scene. Once observed trajectories are encoded, we use the

42 AA-SGAN: adversarially augmented Social GAN with synthetic data

Pooling Module ρ(·) proposed by Gupta et al., 2018 [27] to model human-human
interactions: the idea is to obtain a pooled tensor pi = p,∀i - consistent with the past
- to initialize the hidden state of the decoder δ . Thus, we embed pedestrians through
an MLP layer γ(·) with ReLU non-linearity and embedding weights Wc.

ct = γ(p;Wc) (5.2)

Hence, we initialize the decoder state h(δ)t as concatenation of ct and z from N (0,1):

h(δ)t = [ct ,z] (5.3)

Now, it is possible to generate trajectories for all pedestrian A as follows:

et = φ(xt−1,xt−1;W (δ)
e)

p = ρ(h(δ)t−1, . . . ,h
(δ)
t)

h(δ)t = f (γ(p,h(δ)t−1),et ;W (δ))

(5.4)

where W (δ)
e are the embedding weights and W (δ) are the decoder weights shared

between all people in a scene. Then, the coordinates will be:

(x̂t , ŷt) = γ(h(δ)t) (5.5)

Generator The Generator G observes the first tobs samples of a trajectory of tpred

samples and predicts the next tpred − tobs samples. The architecture of the predictor
has an encoder-decoder structure that is entirely analogous to that of the Augmenter
A. However, unlike [27], the Generator takes two types of inputs: real trajectories r
and synth-augmented trajectories a output by the Augmenter. More in detail, the real
trajectory r is divided in two segments called robs (tobs samples) and rpred (tpred − tobs

samples). Then, robs is input into G that outputs the prediction r̂pred = G(robs), i.e.
the predicted continuation of robs. Similarly, synth-augmented trajectories are split in
aobs and apred . The Generator is similarly fed with aobs and predicts âpred = G(aobs).
The best trajectory is selected by calculating the L2-distance for each predicted
point, following the method proposed by [27]. Predictions r̂pred and âpred are then
concatenated with robs and aobs as r̂ and â, respectively.

5.3 Proposed Method 43

Discriminator The Discriminator D consists of a separate encoder with an MLP
layer as the last layer to classify if a trajectory is fake or not, i.e., whether a trajectory
is socially acceptable. To this end, D is designed as a binary classifier that takes in
input trajectories of tpred samples.
In our proposed architecture, the Discriminator has two peculiarities over [27]. The
first peculiarity is that the Discriminator is challenged to discriminate between true
or fake trajectories over four different classes of inputs rather than just two. Namely,
real trajectories r are the only ones that are labelled as real. Generator-predicted real
trajectories r̃ = [robs, r̂pred] = [robs,G(robs)], Generator-predicted synth-augmented
trajectories ã = [aobs,G(aobs)] = [aobs, âpred] and synth-augmented trajectories a that
go all under the fake label. This increased variety of false trajectories is expected to
provide the Discriminator with more challenging examples at training time. In turn,
the Discriminator will propagate better error gradients when the entire architecture
is trained as follows. Secondly, the Discriminator receives the entire trajectories as
input: in fact, the trajectories predicted by the Generator are concatenated with their
observed part (r̃ and ã) and the real trajectories r and synth-.augmented a are taken
in their entirety. In this way, it is possible to use the same Discriminator on both the
Generator output and the Augmenter output.

5.3.3 Training Procedure

The above-mentioned is trained end-to-end with an adversarial approach [8].

The Discriminator is trained with the following loss function:

LD = E[log(D(r))+ log(1−D(a))+

log(1−D(r̃))+ log(1−D(ã))]
(5.6)

with the aim of maximizing the average of the log probability of real trajectories r
and the log of the inverse probability for synth-augmented a, Generator-predicted
real r̃ and Generator-predicted synth-augmented ã trajectories.
Concerning the Augmenter, an L2-loss is computed between s and a overall tpred

samples, as proposed in [27]. Thus, the Augmenter is trained to minimize the loss:

LA = E[log(D(a))+L2(s,a)] (5.7)

44 AA-SGAN: adversarially augmented Social GAN with synthetic data

Metric Dataset
SGAN [27] AA-SGAN

real synthetic hybrid
ETH 0.85 (± 9×10−3) 1.28 (± 1×10−2) 0.93 (± 4×10−3) 0.71 (± 1×10−2)
HOTEL 0.63 (± 4×10−3) 0.88 (± 4×10−3) 0.63 (± 3×10−3) 0.42 (± 3×10−3)

ADE UNIV 0.67 (± 4×10−4) 1.19 (± 8×10−4) 0.62 (± 4×10−4) 0.60 (± 8×10−4)
ZARA1 0.42 (± 1×10−3) 1.22 (± 2×10−3) 0.41 (± 2×10−3) 0.34 (± 2×10−3)
ZARA2 0.40 (± 6×10−4) 0.51 (± 8×10−4) 0.42 (± 5×10−4) 0.34 (± 7×10−4)

Average 0.60 1.02 0.60 0.48
ETH 1.63 (± 2×10−3) 2.58 (± 2×10−2) 1.79 (± 8×10−3) 1.24 (± 3×10−2)
HOTEL 1.36 (± 4×10−3) 1.79 (± 1×10−2) 1.30 (± 6×10−3) 0.78 (± 6×10−3)

FDE UNIV 1.44 (± 9×10−3) 2.36 (± 2×10−3) 1.33 (± 9×10−4) 1.25 (± 2×10−3)
ZARA1 0.90 (± 4×10−3) 2.55 (± 6×10−3) 0.86 (± 3×10−3) 0.68 (± 3×10−3)
ZARA2 0.91 (± 2×10−3) 1.06 (± 2×10−3) 0.93 (± 2×10−3) 0.71 (± 2×10−3)

Average 1.24 2.07 1.24 0.93

Table 5.1 Trajectory prediction accuracy in terms of ADE and FDE for a reference SGAN
baseline trained on real, synthetic and hybrid (50% real/ 50% synthetic) dataset compared
with AA-SGAN.

Indeed, it may seem counterintuitive to introduce an L2-loss term when training the
Augmenter (we want to make these trajectories different, not identical). However,
we observed that, in combination with the Discriminator loss, this yields trajectories
that are more useful to train the Generator
Finally, concerning the Generator, two L2-losses are computed between r̃ and r and
between ã and a. However, the Generator shall be obviously trained only over the
tpred − tobs predicted samples. Thus, the Generator is trained to minimize the loss

LG = E[log(D(r̃))+L2(rpred, r̂pred)+

log(D(ã))+L2(apred, âpred)]
(5.8)

The above-described architecture is trained with the classical GAN training
procedure, yet extended to the Augmenter. As a first step, the Discriminator D is
first optimised over a real trajectory r, then over the Generator-predicted trajectory
r̃, next over synth-augmented trajectory a and finally over the Generator-predicted
synth-augmented trajectory ã. As a second step, the Generator G is optimised first
over real trajectories r and then over the synthesised trajectories. As a final step, the
Augmenter A is optimised through the synthetic trajectories.

5.4 Experimental results 45

5.4 Experimental results

In this section, we evaluate the performance of our AA-SGAN architecture on the
two publicly available real datasets ETH and UCY introduced in Sect. 5.2.2.

The experimental evaluation is based on the leave-one-out methodology used in
the related literature. In particular, we consider a total of 5 sets of real trajectories
(eth, hotel from ETH and univ, zara1 and zara2 from UCY dataset): we train on
4 sets and test on the remaining (left out) set. Other common settings are tobs = 8 (3.2
s) and tpred = 20 (8 s) which amounts to predicting 4.8 s of the future path followed
by each pedestrian (all possible 8 s long trajectories are extracted from datasets
using a sliding window with skip equal to 1 frame as in [35, 27, 36]). The trajectory
prediction accuracy is measured in terms of Average Displacement Error (ADE) and
Final Displacement Error (FDE) [43, 27, 8, 44]. Therefore, given a generic trajectory
ν , we have:

ADEνpred ,ν̂pred =
tpred

∑
t=tobs+1

∥ν̂t −νt∥
(tpred − tobs)

,∀i (5.9)

FDEνpred ,ν̂pred = ∥ν̂tpred −νtpred∥,∀i (5.10)

where νpred and ν̂pred are, respectively, the ground truth and the model prediction.

As a source of synthetic trajectories for AA-SGAN Augmenter, we use the
JTA Dataset [30]: it consists of a vast dataset of trajectories extracted from GTAV
(see sample frames in Fig. 5.4), containing 384 full-HD videos of 30 seconds and
recorded at 30 fps. Different environments (e.g., airports, stations, squares, and
parks), different climatic conditions (e.g., sun and rain), different angles (e.g., from
above, from human height, and in motion), and other lighting conditions (e.g., day,
night, artificial light) characterize each video. These characteristics make this dataset
highly versatile and usable for many purposes. One of the main advantages of
synthetic data is the ability to quickly and easily retrieve a large amount of data
and related labels. To match the structure of the real pedestrian trajectories used
for testing, we rely only on JTA trajectories characterized by a top view. In detail,
we track the head top skeleton joint to get pedestrian trajectories; also, we maintain
the same inter-samples time interval equal to 0.4 s. Overall, the synthetic dataset
includes a total of 4,488 frames from 3,834 pedestrians.

46 AA-SGAN: adversarially augmented Social GAN with synthetic data

Fig. 5.4 Examples of frames from the JTA dataset (top) and the corresponding trajectories
(bottom) we used as a synthetic training set.

5.4 Experimental results 47

5.4.1 Path Prediction Accuracy

Table 5.1 shows the trajectory prediction accuracy obtained by our proposed AA-
SGAN scheme and the three baseline SGAN schemes. The AA-SGAN scheme refers
to the proposed architecture trained as described above. The three baseline schemes
refer to a standard SGAN trained, in turn, as follows. The real scheme corresponds
to the setup [27], where an SGAN is trained over real trajectories from UCY and
ETH. The synthetic scheme corresponds to the case where an SGAN is trained only
over synthetic trajectories from JTA. Finally, hybrid refers to the case where SGAN
is trained over a 50-50 mix of real and synthetic trajectories from JTA (the size of
this hybrid dataset is twice that of the former two). Notice that this mix of real and
synthetic trajectories is the same provided in input to our AA-SGAN scheme, as
discussed later on. The four schemes share the same training hyper-parameters and
configuration suggested in [27].
The results for the real scheme reflect those reported in [27], apart from some minor
differences on the zara1 and zara2. Please also note that all the results reported in
the following are averaged on 3 trials (corresponding standard deviation is shown
as well). As expected, performance drops when SGAN is trained over synthetic
data only. This performance loss shows that JTA synthetic trajectories are so simple
that they are not useful for training an SGAN. For example, on the ETH test, the
value for ADE increases from 0.85 to 1.28 when training on synthetic trajectories
only. The hybrid column in Tab. 5.1 shows that accuracy does not improve over the
real scheme. For the ETH experiment, we even report ADE equal to 0.93, which
is significantly worse than real. These preliminary experiments show that synthetic
trajectories cannot replace real ones at training times, nor do they bring any benefit
if mixed with them.
The last column shows that the proposed AA-SGAN method yields much better
accuracy in all cases, both in terms of ADE (20% reduction from 0.6 to 0.48) and FDE
(25% reduction from 1.24 to 0.93). We recall that the AA-SGAN scheme is trained
over the same mix of real and synthetic trajectories used for the hybrid scheme.
Such difference in accuracy despite the same training set can be brought down to the
job the Augmenter performs, which makes synthetic trajectories eventually useful
for training. In the AA-SGAN scheme, we used a 50-50 ratio of real and synthetic
trajectories: this is a reasonable choice as the Augmenter and Generator are fed with

48 AA-SGAN: adversarially augmented Social GAN with synthetic data

Metric Dataset AA-SGAN Independent
Augmenter

ADE

ETH 0.71 0.74
HOTEL 0.42 0.57
UNIV 0.60 0.61

ZARA1 0.34 0.36
ZARA2 0.34 0.37

AVG 0.48 0.53

FDE

ETH 1.24 1.45
HOTEL 0.78 1.09
UNIV 1.25 1.30

ZARA1 0.68 0.75
ZARA2 0.71 0.78

AVG 0.93 1.07
Table 5.2 Trajectory prediction accuracy of AA-SGAN (joint Augmenter training) versus
independent training of the Augmenter feeding reference SGAN.

a balanced mix. In the following ablation study, we will discuss whether it is useful
to alter such a real-synthetic ratio and to what extent.

Figure 5.5 illustrates some trajectories predicted by the four schemes in Table
5.1. The synth scheme predicted trajectories are the worst, diverging the most from
the ground truth other than being not acceptable due to collisions (see Fig 5.5b). On
the contrary, the results of the AA-SGAN scheme are the closest to the ground truth.

5.4.2 Ablation Study

Before moving further with the experiments, we recall that the experiments with
schemes real, synthetic and hybrid in Tab. 5.1 above can be already interpreted as an
ablation study. In fact, the standard SGAN architecture trained over a hybrid dataset
can be seen as equivalent to AA-SGAN minus the Augmenter, where synthetic
trajectories are fed directly into the Generator.

Independent Augmenter training In this first ablation experiment, we inves-
tigate the advantage of jointly training the Augmenter A and the Generator G in
an adversarial framework. We recall that in our architecture, G and A are jointly
optimized over the gradient of the adversarial loss function backpropagated by the

5.4 Experimental results 49

ground-truth

real

synthetic

hybrid

AA-SGAN

(a) univ

ground-truth

real

synthetic

hybrid

AA-SGAN

(b) zara1

Fig. 5.5 Visual comparison between the groud-truth (blue) and predicted trajectory by SGAN
with real (green), synthetic (magenta) and hybrid (yellow) training. Predictions by the
proposed AA-SGAN are in red and are the closest to the ground truth. The selected results
are taken from univ and zara1 testset.

50 AA-SGAN: adversarially augmented Social GAN with synthetic data

Real-Synthetic ratio
Metric Dataset 1-to-1 1-to-10

ADE

ETH 0.71 0.70
HOTEL 0.42 0.54
UNIV 0.60 0.69

ZARA1 0.34 0.35
ZARA2 0.34 0.34

AVG 0.48 0.52

FDE

ETH 1.24 1.25
HOTEL 0.78 1.09
UNIV 1.25 1.38

ZARA1 0.68 0.70
ZARA2 0.71 0.68

AVG 0.93 1.02
Table 5.3 ADE and FDE values for 1-to-1 and 1-to-10 ratio between real and synthetic (R/S)
trajectories used in AA-SGAN training (the number of real trajectories does not change).

Discriminator D. In order to investigate on this advantage, we removed G from the
AA-SGAN architecture and we train the resulting GAN, between A and D, using
their corresponding losses. As a consequence, in this ablated architecture the Aug-
menter will create synth-augmented trajectories without any feedback from G, i.e.
without being able to appreciate their contribution to solving the prediction task;
the obtained synth-augmented are stored offline for the subsequent training. Next,
these trajectories are used to train a reference SGAN in the hybrid scheme (50% real
and 50% synth-augmented trajectories). G and D are trained according to the same
adversary loss functions described in the previous section.

Tab. 5.2 compares the results of this scheme with AA-SGAN. Performance is
still above the real baseline. However, it is well below AA-SGAN. This experiment
confirms the importance of jointly training the Augmenter A with the rest of the
architecture.

Synthetic to real ratio Another aspect worth investigating is the ratio between
the real and the synthetic trajectories used to train AA-SGAN. Tab. 5.3 shows the
prediction accuracy when the synthetic trajectories increase by a 10-fold factor
(the number of real trajectories remains constant). On average, a drop of about
10% in ADE and FDE is observed, showing the importance of balancing real and

5.5 Conclusions 51

synthetic trajectories. We hypothesize that this predominance of synthetic traces
makes adversarial training less stable, explaining the performance drop.

5.5 Conclusions

This work proposed AA-SGAN, a generative architecture for predicting accurate
pedestrian trajectories leveraging synthetic trajectories beside real ones. We exper-
imentally showed that computer-generated synthetic trajectories bring no benefit
when used to train the state-of-the-art SGAN generative model. However, if synthetic
trajectories are first augmented before being fed to the Generator (synth-augmented
trajectories), they boost the diversity of the training set, improving the accuracy
of the predictions. Through an ablation study, we show that joint training of the
Augmenter with the rest of the architecture is the first key element towards accurate
trajectory predictions. Through ablation, we also show that a balanced ratio between
real and synthetic trajectories is another key element of our architecture.

Part II

Natural disasters management

Chapter 6

The emergency scenarios

In the last decades, the frequency and intensity of natural disasters have risen
significantly. According to worldwide data from the Centre for Research on the Epi-
demiology of Disasters [45], about 12 times more natural disasters were registered
in 2017 than in 1950. In Figure 6.1, the dramatic increase in these events is shown,
which comprise mass movements, volcanic activities, wildfires, landslides, earth-
quakes, extreme temperatures, droughts, extreme weather, floods, and epidemics.
It can be noted that flood events were persistent; in 2017 alone, floods represented
approximately 39% of global natural disasters. On top of the tragic loss of human
lives and infrastructures, natural disasters come at a high cost to governments. The
European Commission (EC) estimated that, since 2005, natural disasters have cost
the European Union (EU) close to 100 billion euros. However, this cost can be
significantly reduced by investing in risk prevention: the EC stated that for every
1 euro spent on prevention, 4 euros or more could be saved in response. In this
respect, with the “cohesion policy”, the EU allocated 8 billion euros for climate
change adaptation, risk prevention, and management over the 2014–2020 period [46].
Those investments generated several projects and research opportunities from which
this work is taken. The ability to detect the insurgence of such problems promptly
is a powerful tool for the bodies in charge of protecting and guaranteeing citizens’
safety.

A flood occurs when an overflow of water inundates a portion of land that is
usually dry, which can happen in several ways. For example, a flood can be caused
by excess rainwater in saturated ground, overflow of water bodies such as rivers

54 The emergency scenarios

Fig. 6.1 The occurrence of natural disasters and flood events since 1950. Natural disasters are
characterized by the following phenomena: mass movements, volcanic activities, wildfires,
landslides, earthquakes, extreme temperatures, droughts, extreme weather, floods, and
epidemics. The chart shows a moderate increase in this kind of event, which, by 2017,
has increased by over a factor of 10 with respect to 1950. Another important aspect is the
percentage of incidence of flood events, representing, on average, 30% of the overall natural
disasters [47].

and lakes, rapid snow or ice melting, storm surge, or tsunami. Such events are
exacerbated by climate change effects, including more intense precipitation and
higher temperature variations. Also, lousy water management can cause floods, e.g.,
an excess discharge from dams can cause surges in rivers downstream; negligent
bank maintenance can result in their failure during water discharge peaks, and a
poor sewage system will not be able to handle extreme rainfall events in urban areas.
Most floods are induced by extreme rainfall and can be predicted to a certain extent.
Usually, floods take several days to develop, giving residents time to prepare and
follow evacuation plans. Less often, floods can develop in just a few hours, i.e., the
so-called flash floods, which are extremely dangerous and more difficult to predict.

During these phenomena, a quiet river can rapidly turn into a flood, bringing
debris and rubble along with water in its downstream path. It is not easy to quantify
how human activities affect extreme weather events. However, it is increasingly
evident that climate change has influenced several variables related to flood events

55

(a) (b)

(c) (d)

Fig. 6.2 Examples of emergency events related to flooding disasters

[48]. Over the last century, the steady increase in temperatures has changed the
hurricanes travelling mechanics, making them slower and consequently letting them
cause intense rainfalls. At the same time, the melting of permanent ice zones
and glaciers is contributing to the worldwide sea-level rise, creating an increasing
threat to coastal areas and cities like Venice (Italy), which was recently hit by a
flood event of historic proportions. Annually, floods cause more than $40 billion
in damage worldwide [49]. From 2007 to 2016, 5553 people died because of
floods, while in 2017 alone, the death toll reached 3331 [50]. The abovementioned
figures demonstrate the increasing severity of floods, indicating the need for novel
approaches and tools to reduce their impact worldwide. Monitoring water flows is
critical to implementing adequate early warnings. At the same time, the analysis of
in-field data can contribute to early event detection and the real-time understanding
of flood impacts. To achieve these goals, the automated analysis of images and
videos through algorithms based on Artificial Intelligence can be of great importance,
mainly when applied to heterogeneous data coming from multiple sources, including
fixed surveillance cameras installed near river beds or shores, geolocated images
taken from drones or other aerial vehicles [51], posts extracted from social media
[52], in-field pictures generated by ad-hoc crowdsourced mobile applications [53].

56 The emergency scenarios

In conclusion, investing in risk prevention and management with computer vision
algorithms can play a role in helping with natural disasters such as floods. These
algorithms can analyze images and videos from cameras and drones to detect and
monitor flood events in real-time. This information can provide early warning alerts,
track the progression of the flood, and support rescue and recovery efforts. Computer
vision algorithms can also be used to analyze satellite imagery to detect changes
in land use, water levels, and vegetation, providing valuable information for flood
prediction and management. Overall, computer vision algorithms can be a valuable
tool for natural disaster management, providing real-time information and helping to
reduce the impact of floods on communities.

Chapter 7

AI-based flood event quantification
using online media and satellite data

In this chapter, we study the problem of flood detection and quantification using
online media and satellite data. We present three approaches, two based on neural
networks and a third based on the combination of different bands of satellite images.
The second approach is the most interesting for the thesis topic. We developed
a multi-branch model, and as we will see in the chapter, it can learn context and
local features and merge them with direct fusion through concatenation to improve
baseline predictions. This work aims to detect floods and give relevant information
about the flood situation, such as the water level and the extension of the flooded
regions, as specified in the three subtasks, for which we propose a specific solution.

7.1 Introduction

The frequency and intensity of natural disasters have risen significantly due to climate
change. Flood events alone represent about 39% of the natural disasters occurred
worldwide. During this type of natural disaster, emergency responders must have
as much information as possible about the magnitude, the areas affected, and the
situation and location of people in danger. To extract this information, we consider
two sources: online news articles and satellite spectral imagery. Thanks to rapid
access to the internet, online news contain information about natural disasters in
almost real-time. At the same time, satellite spectral imagery can give information

58 AI-based flood event quantification using online media and satellite data

about the extension of the flood. Using these two information sources, we propose
approaches for flood event understanding and quantification:

• An algorithm that determines if an image extracted from an online news article
contains relevant information about the flood. For example, images of the flood
itself, but also images of emergency responders, people in danger, etc.

• An algorithm that gives an image extracted from online news determines if there is
water in the image and, in the case of containing water, if the water level is above
or below the knee level of the people in the scene if there are. It also contemplates
the use of news text as additional data for inference.

• An algorithm that, given spectral imagery from satellites, segments the images’
water regions and gives a flood/no flood prediction and an estimation of the flood
extension.

This work has been done in the context of MediaEval 2019 as a participation in
the Multimedia Satellite task. Detailed information about the task and data can be
found in [54].

7.2 Related Work

Emergency prevention, detection, assistance, and understanding through computer
vision and image processing techniques have been an open problem since the early
stages of this field [55]. In particular, in the flood detection domain, scientific work
mainly focuses on flood detection either in social media or satellite data [56–58].
Among the latest, several approaches are known in the literature and exploit spectral
bands and other sensor measurements [59–63] to retrieve good indicators.

This work builds on top of the Multi-modal deep learning approach for flood
detection in [64], which used social media images together with their metadata to
determine if a social media post contained visual information about a flood, and the
deep learning models for passability detection of flooded roads in [65, 66], which
went a step further and gave information about the state of the roads during a flood
event, information that is of utmost importance during a flood to build a map of
accessible roads for rescue and supply operations. Moving in this direction, we aim
to estimate the water level in this work.

7.3 Approach 59

Fig. 7.1 Sample images extracted from articles from the NITD dataset. This task aims to
classify into two classes whether they belong to a flooding event or not.

7.3 Approach

In this section, each stage of the solution will be briefly introduced.

News Image Topic Disambiguation (NITD): during flooding, the media usually
updates the information about the situation to keep the reader updated. Due to
many online newspapers and media, searching for these relevant articles can be
time-consuming. Optimizing the search using natural language processing (NLP)
algorithms or keyword searches is possible. Since most of these articles contain
images, in this first stage, we want to refine the search using a computer vision
algorithm to classify those images as flood event related/not flood event related.

MobileNet

VGG19

VGG16

InceptionV3

Avg pool FC Softmax

Avg pool FC Softmax

Avg pool

Avg pool FC Softmax

FC Softmax

A
g
g
re

g
a
ti
o
n
 p

o
lic

y

Fig. 7.2 Ensemble architecture used for the NITD task.

60 AI-based flood event quantification using online media and satellite data

To train the classifier, we use the training set for this task, composed of 5145
images retrieved from online news containing information about a flood by an NLP
or keyword algorithm and then manually classified, as shown in Figure 7.1. As for
the algorithm, we use an ensemble of 4 state-of-the-art networks, as in Figure 7.2,
(InceptionV3 [67], MobileNet [68], VGG16 and VGG19 [69]) and cross-validation
using two folds. Since the dataset is highly imbalanced, we balance the dataset
during training by randomly undersampling the negative class for each epoch. This
way, the dataset stays balanced, but we use all the samples from both categories.
Finally, we combine the networks by majority voting.

(a) (b)

Fig. 7.3 Sample flood-event related images from articles of MFLE dataset. The goal of this
task is to classify images based on text and visual information, whether there are people
standing in water that is above knee level.

Multimodal Flood Level Estimation (MFLE): given online articles with visual
and textual information, as shown in Figure 7.3, we developed a textual, textual-
visual, and only visual model to estimate the flood level by predicting if the water is
above or below the knee of the people in the scene. The latter model is composed
of two branches: (i) it takes as input image crops of a person’s knees extracted by
a state-of-the-art pose estimator [70] and predicts if the knee is under or above the
water; (ii) it takes as input a full image of the scene and predicts if the image has
people with knees underwater.
To create the training data for the first branch, we used the pose estimator algorithm
to extract a region around all the knees from the training set. Knees from images
labelled as 0 (water below the knee) were labelled as 0 by default. In contrast, the
ones belonging to images labelled as 1 were manually labelled since there could
be people in the same image with water levels above or below the knee. Both
networks use a VGG19 [69] pre-trained on ImageNet [71] to extract deep features

7.3 Approach 61

Feature Extractor

(VGG19)

Cropped

knee

Merge

Layer

Knee

Class

Context

Image

Feature Extractor

(VGG19)

Context

Class

Context

Class

Context

Classifier

Knee

Classifier

Fig. 7.4 Architecture used for the MFLE task.

of the images, followed by a fully-connected (FC), as in Figure 7.4. Then the
information is concatenated to combine the semantic features of the knee with the
context information provided by the full-resolution image. This way, the first branch
gets information about the context, while the second gets information about the
knees. Finally, an FC estimates if the knee is above or below the water, and another
FC if the water is above or below the knee level. The two-branch system is proposed
because a simple one-branch Convolution Neural Network (CNN) would greedily
learn to predict flooded images as the “water above the knee” class since it lacks
specific data about the knees in the scene. So it would associate the features of a
flooded area as “water above the knee” class because it is solely composed of these
examples.

Finally, an image is classified as “water above the knee” if there is at least one
knee in the scene that is classified as “water above the knee” by the knee branch,
and the context branch also classifies the image as “water above the knee”. We also
combined textual data from the articles to verify if it could lead to a better predictor.
This was achieved by building an ensemble composed of the previous model and
an NLP module. This module comprises a bidirectional Long Short-Term Memory
(LSTM) network. The result of the LSTM is concatenated with the last FC layer of
the image classifier. The only textual model is composed of the module described
above alone.

62 AI-based flood event quantification using online media and satellite data

(a) (b)

Fig. 7.5 Sample images for different cities from CCSS dataset. This subtask aims to classify
image sequences into two classes, whether they belong to a flooding event or not.

Fig. 7.6 Model used for the CCSS task.

City-centered Satellite Sequences (CCSS): given a sequence of Sentinel-2 satel-
lite images depicting a certain city over a certain length of time, this task aims to
classify whether a flooding event was ongoing in that city.
We built an expert system which leverages both the spectral and the related metadata
information. Firstly, it computes a binary mask for each layer, as in Figure 7.5, in
which white pixels represent areas with the presence of water while black pixels
represent the other regions. The binary masks are obtained: (i) by computing, for
each pixel, the Modified Normalized Difference Water Index (MNDWI) [72] adapted
for Sentinel-2 bands (S2), according to Equation (7.1); (ii) by setting to white the

7.4 Results 63

pixels having MNDWIS2 ≥ 0, black the others.

MNDWI =
ρgreen −ρswir1

ρgreen +ρswir1
, MNDWIS2 =

B03−B11
B03+B11

(7.1)

Assuming that the dataset does not have missing values lasting for the whole time
series, we set the pixels related to uncovered areas to white. Then, we performed the
pixel-wise intersection among two layers: (i) the computed binary layers marked as
FLOODED and (ii) the ones marked as NON-FLOODED in the metadata file.

The two images depict the water persistence in case of flood and non-flood.
Finally, a pixel-wise difference between the two sets is computed to discriminate
flooded regions from normal water sources (like rivers or lakes). Even if a binary
mask representing the residual flood extent is available, to comply with the CCSS
subtask, the approach returns 1 if there is still any white region in the resulting binary
mask and 0 otherwise, as in 7.6.

7.4 Results

The results, split by subtask, are reported in Table 7.1. For the subtasks NITD and
MFLE, the F1-Scores are referred to as the 20 % of the development set, used as
the validation set. Conversely, the CCSS proposed to approach an expert system,
and the whole devset was used. In this latest subtask, the confusion matrix on the
devset, TP:108, FP:0, FN:33, TN:127, shows that the approach is robust against false
positives, having a precision of 1.0.

Subtask Data DevSet F-Score TestSet F-Score
NITD Visual 0.8062 0.6628

MFLE
Visual 0.7667 0.5428
Text 0.5213 0.4956

Visual & Text 0.5454 0.5284

CCSS Satellite 0.8850 0.9118
Table 7.1 Results per subtask

64 AI-based flood event quantification using online media and satellite data

7.5 Analysis and conclusions

Conclusions present our insight on the subtasks. As can be seen in Table 7.1: (NITD),
balancing the dataset during training and combining different models significantly
improves the performance. (MFLE) (i) Merging global and local classifiers improve
the performance; (ii) the text does not bring any information. It is so noisy that it even
degrades the results compared to the visual-only model; (iii) people’s water reflection
degrades the performance of the pose estimation algorithm. (iv) the importance of
the two branches approach is supplied by an ablation study in which the two-branch
model achieved 0.79 F1-score on validation, while the entire image branch alone
achieved 0.71 and the branch using the cropped knees achieved 0.76. (CCSS) (i)
B03 and B11 are highly informative for water segmentation; (ii) the approach is an
expert system; therefore, there is no need for a training set, and it is computationally
fast;

7.6 Acknowledgments

This work was supported by the European Commission H2020 SHELTER project,
GA no. 821282, and by the Spanish grant TIN2016-75404-P.

Chapter 8

Road passability detection during
flood events using social media data

During natural disasters, situational awareness is needed to understand the situation
and respond accordingly. An essential need is assessing open roads for transport-
ing emergency support to victims. This can be done by analyzing photos from
affected areas with a known location. This work studies the problem of detecting
blocked/open roads from photos during floods by applying a two-step approach
based on classifiers: does the image have evidence of a road? If it does, is the road
passable or not? We propose a single double-ended neural network (NN) architecture
that addresses both tasks simultaneously. Both problems are treated as a single-class
classification problem using a compactness loss. The study was performed on tweets
posted during flooding events containing (i) metadata and (ii) visual information.
We studied the usefulness of each data source and the combination of both. This
analysis was carried out using a dedicated loss function on the merging layer. The
purpose of the function is to provide a better characterization of the features and a
better clustering of similar features in the latent space. The compactness loss, in
combination with the merging of the features experimentally, proved to be the best
model, as the best scoring model, and won the challenge of MediaEval 2018 for the
Flood classification task. Finally, we studied the performance gained from different
ensembling networks. Through the experimental results, we prove that the proposed
double-ended NN makes the model almost two times faster and the load on memory
lighter while improving the results concerning training two separate networks to
solve each problem independently.

66 Road passability detection during flood events using social media data

8.1 Introduction

In this work, we will focus on flood events and, specifically, on assessing the status
of roads after floods since knowing the best route to access the affected areas is
crucial to transport emergency support to victims. This can be done by analyzing
photos from affected areas with a known location. Such photos can be: (i) solicited
via dedicated apps, such as UN-ASIGN [73] and I-REACT [74], or (ii) harvested
from unsolicited sources, such as social media, as people frequently share pictures
during emergencies. Using apps and social media to engage the civil population is
of increasing interest and can be helpful for first responders.

Indeed, social media is not primarily known and adopted as an emergency
reporting tool, but there is evidence [75] of a large number of posts that provide
direct proof of natural disasters, which, if properly processed, could help in the
handling of emergencies. The need for sensibility regarding natural disasters and the
variety of data to deal with make the research community an active player in those
topics and generate numerous important and influential conferences.

The objective is, given a collection of posts (including images) related to floods,
to determine whether: (i) there is Evidence of Roads and, in a positive case, (ii) there
is Evidence of Road Passability. In the first case, we are more interested in asserting
the presence of a road in the picture: this means the road can be directly visible, or
enough elements are justifying its existence, such as the presence of traffic lights
or vertical signs. On the other hand, the second goal aims to determine whether
the identified road is in good condition to be transited. In the flooding context,
the evidence of road passability means that the road is completely clean or can be
partially or totally covered by water. However, there must be evidence that vehicles
or people can still pass through it.

This work has been inspired by the Flood classification challenge from MediaE-
val 2018, where we presented an algorithm that predicted if there was evidence of
road and, if so, if the road was passable. We presented an algorithm that achieved
the best results in the challenge [66]. The work has three goals:

• Provide a more detailed explanation of the work presented in [66], which was
published as an extended abstract due to the page limitation.

• Contextualize our results with all the results from the challenge participants.

8.2 Related Work 67

• Introduce two significant modifications to the algorithm, namely a new loss
and new architecture, which combines the two problems into a single network,
which introduces an almost 10% gain in performance for the passability task
while maintaining the road evidence task performance. Moreover, we make
the problem end-to-end and the solution almost 90 times faster and lighter,
obtaining a model that can be feasibly integrated into a real-life solution.

The chapter is organized as follows. Section 8.2 introduces state-of-the-art tech-
niques, focusing on the ones presented in the same competition. Then, Section 8.3
focuses on the quantitative and qualitative analysis of the available data and how they
are used to build the dataset. The approaches developed specifically to deal with tex-
tual, and picture information is explained in Section 8.4 and evaluated in Section 8.5,
where the results are compared with those of the other techniques presented in the
MediaEval 2018 competition. Finally, the conclusions and future improvements are
described in Section 8.6.

8.2 Related Work

In the twenty-first century, our social interaction habits mainly revolve around smart-
phones and IoT devices. The Internet, in general, and social media represent a new
way for us to learn and communicate. In a personal Facebook or Twitter profile, it
is easy to find personal information about daily activities and news about real-time
events. During natural disasters, social media represents a huge source of information
from which, if properly processed, it is possible to extract valuable data for emer-
gency management organizations. Indeed, the research literature presents several
studies to detect, collect and process valuable information [76–78]. Concerning
flood events, general approaches aim to detect flood events [79, 80, 64], to segment
water regions [81], or to estimate water level [82]. Other approaches aim to examine
details, such as the presence of people [83, 84], the the identification of the most
affected areas [77], or the identification of flooded roads and their viability. This last
topic is addressed in our work and is thought to be an extension of the approaches
presented at the MediaEval 2018 conference. Therefore, this section introduces the
methods submitted to the MediaEval challenge. The techniques are developed to
deal with the two main kinds of data available from social media—metadata and
images. As extensively described in Section 8.3, metadata is composed of textual

68 Road passability detection during flood events using social media data

information (e.g., the text of the post, title) and punctual information (e.g., coordinates,
post creation date, post author reference), while the images are PNG or JPG pictures.
The metadata information was approached in many ways. A simple approach was
proposed by Zhao et al. [85]. They manually created a set of rules which, leveraging
on the textual part of the tweets, look for n-grams (a subset of n contiguous words in
the same sentence) representing strings of lexical items they would expect to occur
in tweets related to road passability. Other works, such as the ones proposed by
Hanif et al. [86] and Moumtzidou et al. [87] started with a pre-processing of the tweet
texts—first removing hyperlinks, punctuations and symbols and performing the word
tokenization, then removing the stop-words and performing word stemming. The
processed information was enriched by adding other metadata features, such as user
tags. Another work by Kirchknopf et al. [88] proposed to check the metadata language
feature, and it increased the number of English tweets by translating the ones written
in other languages. This simple step avoids the need to handle multiple languages
simultaneously, which is still an open problem in Natural Language Processing. To
properly process by classifiers, words in tweets are then translated into numerical fea-
tures. This step was made through the use of (i) pre-trained word embeddings, which
convert words into numerical vectors, such as fasttext [85, 89], Word2Vec [90] or
GloVe [91], and/or (ii) statistical features, like Term Frequency—Inverse Document
Frequency (TF-IDF) [92]. Numerical features are then used to train models such as
Support Vector Machines (SVM) or Convolutional Neural Networks (CNNs) [93] for
the final classification.

Regarding the visual information, two approaches were mainly adopted on
pictures: (i) using visual descriptors and (ii) extracting features from pre-trained
CNNs. In the first case, the aim was to describe the images through a set of dis-
crete information that could lead the classifier to improve performance on the tasks.
Several descriptors were already available from the dataset: Color and Edge De-
scriptor (CEDD) [94], Color Layout (CL) [95], Fuzzy Color and Texture Histogram
(FCTH) [96], Edge Histogram (EH) [97], Joint Composite Descriptor (JCD) [98]
and Scalable Color Descriptor (SCD) [99]. In the latter case, hidden layers of
CNNs are used as feature descriptors. State-of-the-art CNNs such as AlexNet [1],
DenseNet201 [100], InceptionV3[67], InceptionResNetV2 [101], ResNet [102],
VGG [103] or YOLOv3 [104] were taken after they had been pre-trained on popular
and wide datasets such as ImageNet [2], Places365 [105] or VOC [106] , and then
fine-tuned on the dataset of this work. Leveraging on pre-trained networks is a

8.3 Dataset 69

common practice in deep learning research: training a single model from scratch
requires prohibitive computational performances, nearly inaccessible to most re-
search centres or universities. Within the context of this work, using CNNs that were
pre-trained on datasets containing a variety of places, environments, and buildings
enables them to represent and recognize objects and shapes in their internal layers.
Fine-tuning such networks on a smaller dataset for specific tasks, such as the ones
used in this work, allows them to reuse the pre-trained knowledge to achieve the goal
more effectively. Most of the works proposed during the MediaEval competition
used the CNNs mentioned above to extract visual features from the last layers of
the networks. Moreover, besides extracting global features (pertinent to the whole
image), Bischke et al. [107] and Zhao et al. [108] also combined information related
to single entities (i.e., cars, boats, persons), named local features.

Then, extracted features were used for classification in several manners. One
option [85, 87, 109] was to feed them as input for a neural network having few
fully connected layers and using softmax for classification. Other approaches used
other state-of-the-art machine learning algorithms, such as Support Vector Machine
(SVM) [86, 88, 107, 108, 110], Multinomial Naive-Bayes, Random Forest and
SRKDA [86]. The best approaches exploited ensemble models, whose final output
was determined by majority voting or averaging each model’s prediction. Ensemble
models were also used for feature extraction, combining features extracted from
the same picture by several CNNs [85]. Finally, two strategies were used to merge
metadata and visual information: early and late fusion. The early fusion combines
the features before being computed by the classifier(s), while late fusion averages
the prediction of the approaches separately developed for the two domains.

In our work, we introduce a novel lightweight network architecture that achieves
comparable results of the winner approach, namely an ensemble model of 45 CNNs
per task. The proposed approach leverages a custom loss function and accomplishes
both tasks simultaneously, reducing the number of needed parameters.

8.3 Dataset

The dataset used to train, validate and test the algorithms was distributed by Me-
diaEval 2018 for the Multimedia Satellite Challenge [111, 65]. It consists of 7387
tweet ids for the development set and 3683 tweet ids for the test set. By the time the

70 Road passability detection during flood events using social media data

images were downloaded for this competition, a significant number of tweets were
no longer available, which resulted in a development set of 5818 tweets and a test
set of 3017 tweets. However, since the work done corresponds to an extension to
work done for the Multimedia Satellite Challenge, and we do not have the ground
truth for the test set data, we will divide the training set into training (4074 images),
validation (872 images) and test (872 images). The images for the test set will only
be used to report the final results to make the setup as close as the original challenge.

The tweets have been collected by retrieving all the tweets with images containing
the tags flooding, flood and floods during the hurricanes Harvey, Irma, and Maria.
Since the image information is crucial to this work and many images were duplicated
in the tweets, the dataset distributors carried out a process to remove duplicate
images. This process is described in detail in [111].

The provided ground truth for the tweets was manually generated through a
crowdsourcing task and consists of a binary class label for the evidence of road pres-
ence and only for those images classified as containing a road, a second binary class
label for the actual passability of the road. Positive road passability is considered
when the road is practicable by conventional means (no boats, off-the-road vehicles,
monster trucks, Hummer, Landrover, or farm equipment), and it is, therefore, related
to the water level and the surrounding context.

The annotators made the decisions based only on the content of the analyzed
images. The dataset is significantly imbalanced towards the non-evidence of road,
having only ∼36% of the tweet images containing roads. In ∼45% of the tweets
labelled as containing roads, there is evidence of positive road passability. In
Table 8.1, the absolute number of images about each class is displayed.

Table 8.1 Information about the number of images of each set and the number of images
with evidence of road and the number of images with passable roads.

Dataset # Tot. Imgs
Evid. of Roads # Passable Roads

YES NO YES NO

development set 5818 2130 3688 951 1179
test set 3017 - - - -

8.4 Proposed Solutions 71

8.3.1 Metadata

Each tweet has a set of metadata associated with it, including the user who tweeted
it and the text shared by the user. In Table 8.2, we briefly describe each tweet’s most
relevant fields (metadata). Since many of them are empty or semi-empty, we only
report the fields (16 out of 29) without missing values in the MediaEval 2018 tweets.

8.3.2 Images

Since the tweets have been retrieved using flood-related tags, most of the images
contained in the dataset are related to floods. Among the images that have been
classified as not containing roads, some contain charts or weather maps, others
contain information about floods unrelated to roads, whereas some images contain no
flood information. The images containing evidence of passable roads, in many cases,
show cars crossing the road or have enough surrounding contextual information to
infer that the water level is not very high. In contrast, the images containing evidence
of roads with negative passability contain cars stuck on roads and people crossing
the street with boats in many cases. Some examples of the images contained in the
dataset are given in Figure 8.1. Sometimes the differences between positive and
negative road passability are very subtle and subjective (e.g., see Figure 8.1i,j), while
we believe others are wrongly classified (e.g., see Figure 8.1k,l).

8.4 Proposed Solutions

In this section, we describe a solution using only metadata information, a solu-
tion using only the tweeted image, and a solution that combines both sources of
information.

8.4.1 Algorithm Based on Metadata Only

As explained in Section 8.3, each tweet contains 29 different fields, but only 16 had
non-empty values in at least 90% of the tweets. Therefore, the other 13 features
were discarded since they do not contain enough information to give any statistically
significant information. Moreover, we discarded the following features: (i) “Created

72 Road passability detection during flood events using social media data

(a) ER: no (b) ER: no (c) ER: no (d) ER: no

(e) ER: yes; EPR: yes (f) ER: yes; EPR: yes (g) ER: yes; EPR: no (h) ER: yes; EPR: no

(i) ER: yes; EPR: yes (j) ER: yes; EPR: no (k) ER: no (l) ER: no

Fig. 8.1 Examples of images from the dataset. The first row (a-d) contains images classified as
not containing Evidence of Roads (ER), while the second row (e-h) contains images classified
as containing evidence of roads and their corresponding Evidence of Road Passability (ERP).
The third row (i-l) corresponds to images that were difficult to classify or wrongly classified.

at”, which contained the date on which the tweet was posted. Since the tweets were
collected during specific hurricane events (namely, Harvey, Irma, and Maria), we
considered this field to have minimal time coverage with the risk of being biased
and, therefore, useless. Specifically, the development set contains tweets from 38
different days. (ii) “Extended entities”, which contains structural information about
the tweet, such as the icon and image sizes, their URLs and ids, and, therefore,
it does not provide any relevant information; (iii) “Id” and “Id str” fields are
automatically generated to guarantee uniqueness to the tweet; thus, they do not
contain any meaningful information; (iv) “Truncated” contains a constant value,
which is equal for each tweet in the development set; (v) “Source” and “User”:
contained features pertinent to Twitter and the user profile, such as “id", “profile
image URL", “friends count", which is information not relevant to our purposes.
Additionally, we verified that the development set rarely contained multiple posts
from the same user: this lack of information prevented the extraction of data for
determining a possible positive (or negative) influence on our goals.

8.4 Proposed Solutions 73

Table 8.2 Brief description of the metadata fields that have non-empty values in at least 90%
of the given tweets.

Field Description Type

Created at UTC time when this tweet was created object

Entities
Dictionary of the entities which have been parsed out

object
of the text, such as the hashtags

Extended entities
Dictionary of entities extracted from the media,

object
such as the image size

Favorite count Indicates how many times the tweet has been liked int64

Favorited Indicates whether the tweet has been liked bool

Id Unique identifier of the tweet int64

Id str String version of the unique identifier object

Is quote status Indicates whether this is a quoted tweet bool

Lang Indicates the language of the text (machine-generated) object

Possibly sensitive
When the tweet contains a link it indicates if the content of

object
the URL is identified as containing sensitive content

Retweet count Indicates how many times has the tweet been retweeted int64

Retweeted Indicates whether the tweet has been retweeted bool

Source Utility used to post the tweet object

text Text written by the user object

Truncated Whether the value of the text parameter was truncated bool

User Dictionary of information about the user who posted the tweet object

As for the “Lang” feature, since most of the tweets were in English and all the
other languages were very minority, we transformed it into a binary value “originally_en”
to state whether the language of the tweet was English. To ensure that all features
would contribute equally to the loss function used to train our proposed approaches,
we normalized the features “Favorite count” and “Retweet count” between 0 and 1,
which we named “favorited_norm” and “retweeted_norm”, respectively. Finally, we
also discarded the features corresponding to “Favorited” and “Retweeted” since the
former ones subsume them.

To determine a correlation between the normalized fields: “favorited_norm”,
“is_quote_status”, “originally_en”, “possibly_sensitive” and “retweeted_norm” and
the task at hand, we built a point-biserial correlation matrix between each feature
and the “ER” and “ERP” ground truth using the Pearson correlation coefficient. As

74 Road passability detection during flood events using social media data

seen on the point-biserial correlation matrix from Figure 8.2, none of the features
has a robust correlation with the ground truth; however, we decided to keep the fields

“favorited_norm”, “originally_en” and “retweeted_norm” since they are the highest
correlated features. This result can be correlated to the fact that highly liked and
highly shared tweets usually are very informative for the users.

We expected the text written by the user (“Text”) and the hashtags of the tweet
(“Entities”) to be the most informative features, which we concatenated, obtaining a
single sentence. To help the training, we translated all the texts into English, tokenized
the words, filtered stopwords (i.e., emojis, URLs, special characters, articles, conjunc-
tions), and lemmatized the sentence. Finally, the sentences were transformed into a
matrix using a word embedding initialized with GloVe [91] weights, transforming
each word into a vector of 200 dimensions. To be processed by a neural network, the
matrices generated from text and Entities have been standardized to have the same
number of word vectors—sentences shorter than 30 words (the maximum length of
a processed sentence in the dataset) have been filled with zero padding. As other
state-of-the-art works [112], the 30x200 matrices have been fed into a Bidirectional
Long Short-Term Memory (BiLSTM) network. Then, the output was concatenated
with the extra fields and fed into two parallel fully-connected (FC) layers with a
softmax classifier, one per task. In each FC layer, we used the cross entropy H(y,y) as
loss function, where y is the class annotation and y is the model prediction. Denoting
by HER(y,y), the loss function for the ER task and HERP(y,y) the loss function for the
ERP task, the overall loss HTOT (y,y) is set to be the sum of the preceding two. Finally,
the outputs from the two FC networks have been thresholded (with the threshold set to
0.5, which is the typical threshold in these contexts since the output ranges between 0
and 1). The first FC layer output is the prediction for the ER task, while the second
FC layer output, which represents the prediction for the ERP task, is combined with
the first output through a logical AND operation. This operation prevents the network
from predicting inconsistent situations, such as having Evidence of Roads Passability
while there is No Evidence of Roads. A representation of the architecture is shown in
Figure 8.3.

8.4 Proposed Solutions 75

Fig. 8.2 Correlation matrix between the ground truth features, “ER” (Evidence of Roads) and
“ERP” (Evidence of Roads Passability) as two different binary values, with the numerical
features that were not discarded.

Input matrix

BiLSTM
FC

FC AND

ER

ERP

Cross-entropy loss

[,]

favorited_norm
originally_en

retweed_norm

(30x200)

Fig. 8.3 Architecture of the neural network to process metadata. The input matrix, composed
of stacked word embeddings representing the tweeted text and hashtags, is processed by a
Bidirectional Long Short-Term Memory network (BiLSTM). Its output is concatenated with
other metadata information representing whether: (i) the tweet has been favorited, (ii) the
tweet was originally written in English, (iii) it was retweeted. Then, two Fully Connected
(FC) layers are dedicated to dealing with each task: the FC on the top will determine
the Evidence of Roads (ER), while the other one will determine the Evidence of Roads
Passability (ERP). The classification is obtained by thresholding their output. Finally, to
guarantee consistent classifications, the output of the ERP classifier is combined with the
output of the ER classifier by a logical AND operation.

76 Road passability detection during flood events using social media data

8.4.2 Algorithms Based on Image Only

In this subsection, we first explain the “ensemble image base architecture”, which is
the solution we presented in the Flood classification challenge. Then, we present the
new proposed architecture, which will be referred to as a “double-ended network”,
and finally, we will introduce the extra loss that we have applied to the learning
process, which will be referred to as “compactness loss”.

Ensemble Image Base Architecture

For this solution, we considered both tasks as two separated, two-class classifica-
tion problems. Since performance is prioritized over computation and operational
time, we created an ensemble of networks, using 9 state-of-the-art networks: Incep-
tionV3, Xception, VGG16, VGG19, InceptionResNetV2, MobileNet, DenseNet121,
DenseNet201, NaSNetLarge. Since the dataset was too small to train the networks
from scratch, we pre-trained all the networks on ImageNet [1], freezing the parame-
ters from the network’s first and fine-tuning the parameters from the second half. All
nine models were separately trained for both classification problems: one network for
road passability and one for the classification of positive or negative road passability.
The networks, trained on detecting positive or negative road passability, were trained
using only the images with evidence of road passability according to the ground truth.
Moreover, to prevent overfitting, the dataset was randomly divided into training
(75%) and validation (25%) sets. The validation set was used to prevent the networks
from overfitting to the training set—after training the networks in the training set; we
stored the models that performed better in the validation set. Finally, we performed
cross-validation using 5 different train-validation folds to prevent overfitting while
exploiting the whole dataset. Each fold was generated using a random split of the
development set into 75% train and 25% validation; this means some splits overlap.
Each network was trained in each fold and for each task separately, resulting in a
total of 90 networks, 45 convolutional neural networks for each task (or 5 networks
per network architecture and task). The network architecture is shown in Figure 8.4a.

8.4 Proposed Solutions 77

Pre-trained
CNN

Picture

Frozen
layers

Fine-tuned
layers

Evidence
classification

Pre-trained
CNN

Picture

Frozen
layers

Fine-tuned
layers

Passability
classification

(a)

Picture

Task-dependent
fine-tuned

layers

Evidence
classification

Passability
classification

Task-dependent
fine-tuned

layers

Common frozen
layers

(b)

Fig. 8.4 (a) Schematic of the “ensemble base image architecture” which is composed of two
separate pre-trained networks in which their last layers were fine-tuned on their respective
task. (b) An equivalent architecture shares the first layers and then diverges into two separate
branches for each task.

The output of each network is a number between 0 and 1, representing the
probability of the picture containing evidence of road passability and whether the
road has a positive or a negative passability, respectively. In order to ensemble the
results of all the networks, we decided to allocate the same weight to each sub-
model, and we applied two different aggregation methods. On the one hand, we
applied a classical average aggregation prediction. On the other hand, we applied a
combination of an average aggregation with a majority voting aggregation. These
two aggregation methods are defined, respectively, by

pred1(p1, . . . , pn) = (p > 0.5),

and pred2(p1, . . . , pn) =

1 if

(
p > 0.45 and voting(p1, . . . , pn)≥ n

2

)
or(

p > 0.5 and voting(p1, . . . , pn)>
n
2 −2

)
,

0 otherwise,

where n is the number of networks, pi is the probability given by the ith-network of
the picture belonging to Class 1, which corresponds to having positive Evidence of
Road (ER) for the first task and having positive Evidence of Passable Road (EPR)

78 Road passability detection during flood events using social media data

for the second task, and p is the average of pi for all 1 ≤ i ≤ n and voting is given
by voting(p1, . . . , pn) = ∑

n
i=1[pi > 0.5].

Thresholding over the average of the predictions p or taking the majority vote
is two largely adopted approaches to deal with ensemble model predictions [113].
However, their combination through a logical “and” tends to benefit the prediction
of negative outcomes (no ER nor ERP) with the result of lowering the number of
matches with the ground truth. Therefore, we added two variables x and y to weaken
the constraints, defining the following function pred2(p1, . . . , pn,x,y) =

1 if

(
p > 0.5− x and voting(p1, . . . , pn)≥ n

2

)
or(

p > 0.5 and voting(p1, . . . , pn)>
n
2 − y

)
,

0 otherwise.

To determine the best values for the two variables, we applied the aggregation
methodology with the grid search [114] approach in the validation set: the variable
x was set to range from 0 to 0.5 with a step of 0.05, while y was set to range from
0 to n

2 with a step of 1. As a result, the assignments that maximized the number of
matches between the model’s predictions and the dataset annotations were x = 0.05
and y = 2.

Despite being a simple and effective model, the winning solution to the challenge,
this solution requires a lengthy training process as well as high computation cost
and time during testing. Moreover, the solution requires a lot of storage space since
parameters trained on 90 different networks are saved.

Double-Ended Network

The ensemble base image architecture relies on two networks that were trained and
tested separately to solve each task individually. This architecture is represented
in Figure 8.4a. However, since we are using a pre-trained network and freezing
half of the model, both tasks share the first parameters of the model. Thus, we
reorganized the solution as a single model where the first part of the model has the
shared parameters and then diverges into two branches, each one with the specific
parameters learned for each task, as represented in Figure 8.4b. This solution is
equivalent to the two separate networks in terms of performance, but it is lighter, end-
to-end, and computationally less expensive since we do not run the image through

8.4 Proposed Solutions 79

the same layers twice. Starting from this idea, and knowing that in the literature, it
has been stated that networks trained to perform two related tasks simultaneously can
achieve better performance on both tasks than if they were trained separately [115],
we decided to propose the model represented in Figure 8.5. This architecture is
similar to the one from Figure 8.4b, but the division of the two branches is at the
end of the last convolutional layer. After the last convolutional layer, the network is
divided into two branches, one for each task with two consecutive fully connected
layers. In this case, the first half of the shared parameters are frozen during training
while the other half are fine-tuned jointly.

Pre-trained
CNN FC

FC

FC AND

ER

ERP
Picture

Frozen
layers

Fine-tuned
layers

FC

FC

Fig. 8.5 Representation of the double-ended architecture.

To validate that, as hypothesized, both tasks are indeed related, and what has been
learned for one task could benefit the other, we decided to check the activation maps
triggered by the networks trained on both tasks separately. We used the gradient-
weighted class activation mapping (Grad-CAM) to do so. This is a technique
proposed in [4] which highlights the regions which triggered the Convolutional
Neural Network (CNN) to make its classification by analyzing the activations of
a convolutional layer of the network. We extracted the heatmap of the gradient
activations from the last convolutional layer of the single network trained on both
tasks separately. In Figure 8.6, we present the corresponding activation heatmaps
for four images from the validation set. As seen in Figure 8.6, the activation
scale ranges from blue to red in the images, where red corresponds to the most
significant activation (MAX) and blue to the minimum one (MIN). The upper row
of images corresponds to the network’s activations trained on evidence of road
classification, while the second row corresponds to the activations of the same
images on the network trained on road passability classification. As the figure shows,

80 Road passability detection during flood events using social media data

while the activations from both networks are different, the reddish area is located in a
different part of the image because one focuses more on the water in general and the
surroundings to determine if it corresponds to a road. The other tends to give more
importance to the objects in the water to determine if the road is passable or not,
and even though both networks were trained separately, their activations are highly
correlated since both tasks are highly correlated. This supports our hypothesis that
by training both tasks simultaneously and having both tasks share more parameters,
one task could benefit from what the other has learned.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8.6 Examples of images created with Grad-CAM. The first row (a-d) corresponds to
the activations triggered by the network trained on the evidence task (ER), while the second
(e-h) has the activations for the same image, of the network trained on the passability task
(ERP). At the bottom of the figure, there is a scale that is used to highlight the activations of
the model, where red represents a higher activation and purple means minimal activation.
As seen in the first row, the activations for the evidence of the road task are maximal in the
water regions. In the second row, which corresponds to evidence of road passability, there
is greater activation of the elements in and outside the flooded area. This is because it is
necessary to rely on these elements to identify the height of the water.

Compactness Loss

As previously explained, the problem is divided into two tasks: (i) detecting if the
image has evidence of roads and (ii) if the image has been classified as containing

8.4 Proposed Solutions 81

a road, determining whether the road is passable or not. The first task could be
considered as a binary classifier (“evidence of road passability” and “no evidence of
road passability”), but the concept of “not having any evidence of road passability”
could also be subsumed by “anything which is not contained in the first class”. Thus,
the problem could also be considered as a one class classification or as an out of
distribution problem, where “evidence of road passability” would be the class to
classify (or the in distribution class). The advantage of considering the problem
as a one-class classification problem rather than a binary classification problem is
that one-class classification algorithms take into account that the out-of-distribution
class is not only defined by the images used for the training but that it could be
anything that has not previously been seen during the training phase. Similarly, the
second task could be considered as a binary classification problem (“passable” and
“impassable” roads) or as a one class classification problem “passable road”.

For this solution, we considered both tasks as a one-class classification problem.
Taking inspiration from [7], we wanted the features extracted from the first fully
connected layer to be as descriptive as possible for the class, meaning that the feature
representation of the class will be distinctive from the feature representation of
images not belonging to that class. Moreover, at the same time, we would like
a low intra-class distance, meaning that features from the same class should be
as close as possible in the feature space. This optimization can be described as
ĝ = maxg D(g(t))+λC (g(t)), where: g is the deep feature representation for the
training data t, λ is a positive constant and D is the Descriptive loss function (within
this approach, we used the cross-entropy) and C is the compactness loss function,
which evaluates the batch inter-class deep feature distance to derive objects from
the same class. This compactness loss can be applied to the ensemble base image
architecture or the double-ended architecture of the two previous models. In the first
case, we would add the compactness loss to the first fully connected layer. For the
double-ended architecture, we would replace the last fully connected layer with a
fully connected layer followed by two fully connected layers in parallel—one for
each task—and add a compactness loss for each task, as shown in Figure 8.7. The
outputs of both final fully connected layers are two real values in the range (0,1).
They represent the percentage of which the evidence is believed to be of roads and
of passable roads, respectively. The two outputs are then rounded according to a
threshold of 0.5. Therefore, the first output is the classifier for the ER class. On the
other hand, to avoid inconsistent classifications (i.e., ER = false and ERP = true), the

82 Road passability detection during flood events using social media data

second output is multiplied by the first, determining the ERP class’s classifier. Note
the decision of which fully connected layer accomplishes the ER and which ERP
tasks are taken during the network training phase.

For the compactness loss, we implemented the same loss as the one proposed
in [7], which is given by

lc =
1
nk

n

∑
i=1

zi
T zi (8.1)

where zi = xi −mi, being xi ∈ Rk the samples of the batch of size n for all 1 ≤ i ≤ n

and mi =
1

n−1

n

∑
j=1
j ̸=i

xj, the mean of the remaining samples. As it is proved in [7], this

compactness loss is, in fact, a scaled version of the sample variance given by

lC =
1
nk

n

∑
i=1

n2σ2
i

(n−1)2 , (8.2)

where σ2
i is the sample variance for all 1 ≤ i ≤ n.

Pre-trained
CNN FC

FC

FC AND

ER

ERP

C(g(t)) D(g(t))

Picture
(299x299x3)

FC

FC

Fig. 8.7 Double-ended classifier with compactness loss. The model is based on the Inception
V3 network, replacing the last fully connected layer with a 1024 fully connected layer
that extracts the image features and two parallel fully connected layers, one for each task.
Two losses are trained simultaneously, a compactness loss to ensure low intra-class feature
distance and a descriptiveness loss to ensure a high inter-class feature distance.

In order to implement the backpropagation, we need to compute the gradient of
lc with respect to the input xi j. In [7], the derivation of the backpropagation formula

8.4 Proposed Solutions 83

obtained from the gradient of lC with respect to xi j contains a mistake. Indeed, in
Appendix A in [7], it is stated that the following equation gives the gradient

∂ lC
∂xi j

=
2

(n−1)nk

[
n×

(
xi j −mi j

)
−

n

∑
l=1

(xil −mil)

]
. (8.3)

In Appendix A, we prove that the following equation gives the gradient:

∂ lC
∂xi j

=
2

(n−1)nk

[
n ·

(
xi j −mi j

)
−

n

∑
l=1

(
xl j −ml j

)]
.

8.4.3 Algorithm Based on Metadata and Visual Information

To combine the information from the metadata and the images, any of the previ-
ously proposed solutions for the image-only architecture can be combined with
the metadata-only architecture by concatenating the features extracted from the
bi-directional LSTM with the features extracted by the convolutional network, as
seen in Figure 8.8.

FC

InceptionV3

Picture

Input matrix

BiLSTM FC

FC

FC AND

ER

ERP

C(g(t)) D(g(t))

FC

[,]

favorited_norm
originally_en

retweed_norm

Fig. 8.8 Combination of the Double-ended classifier with compactness loss and the metadata
system.

84 Road passability detection during flood events using social media data

8.5 Evaluation and Results

As we have already commented, part of this work has been carried out for a compe-
tition in the MediaEval 2018 workshop, in which nine teams participated. In this
section, we will compare not only the results of the different methods proposed in
this work but we will also compare them with the results of all the other workshop
participants. However, since this chapter is an extension of the work done for the
competition and we do not have access to the ground truth of the test set, we had to
divide the training set into training and test sets, as explained in Section 8.3. There-
fore, the results given for our models will be tested on a different set than the ones for
the competition. To make the comparison as fair as possible, we created a validation
set from our training set to validate the models and tune the hyperparameters. The
test set was only used to provide the final results.

In addition, we asked four people to perform the task on a subset of 50 images
to have an understandable baseline to compare the results. These persons were
external to the project but knew artificial intelligence and computer vision. They
received a verbal explanation of the task along the lines of the explanation given by
the challenge organizers, and they were not given any examples before starting the
annotation.

All the results in this section will be given in terms of F1-score, the harmonic
mean of precision, and recall. We will give the results as the average of their F1-
score for the human annotators. It is important to note that the second task, the
classification between passable and not passable roads, depends on the first task since
if an image has been classified as not containing evidence of road passability, it will
not be considered for the second task. Therefore, a false negative detection in the
first task (an image wrongly classified as not containing evidence of road passability)
will also count as a false negative in the second task, regardless of its ground truth.
At the same time, a false positive in the first task (an image wrongly classified as
containing evidence of road passability) will also count as a false positive for the
second task. Due to this error propagation, the performance of the second task cannot
be higher than that of the first task.

We will evaluate the results of the proposed models in this work in the same
order that we have presented them in the previous section.

8.5 Evaluation and Results 85

8.5.1 Results Using Metadata Only

In Table 8.3, the model’s results using metadata information only are provided. As
can be seen from the table, the performance, in general, is quite low, even in the
case of human annotators. We believe this is because many of the tweets have little
information about the tasks in their metadata.

Table 8.3 F1-scores on the challenge test set for both tasks using metadata information only.
We understand that results on different test sets are not comparable. However, to make the
comparison as fair as possible, we created a validation set from our training set to validate
the models and tune the hyperparameters. The test set was only used to provide the final
results. The results of the challenge are reported for completeness only. * Results are given
on our own test set. ** Results on a subset of 50 images.

Approach\Data
Evidence of Road [%] Ev. of Road Passability [%]

Validation Set Test Set Validation Set Test Set

Human annotation 51.48 ** - 18.18 ** -
Metadata only 59.93 62.56 * 56.82 57.05 *

Y. Feng et al. [85] - - - 32.8
M. Hanif et al. [86] - 58.30 - 31.15
Z. Zhao et al. [108] - 32.60 - 12.86

A. Moumtzidou et al. [87] - - - 30.17
A. Kirchknopf et al. [88] - - - 20

8.5.2 Results Using Images Only

In the case of images where we have proposed several models, first, we will comment
and compare the results of the different models we proposed in this article and then
compare them with the algorithms proposed by the rest of the participants. Firstly,
we presented the “ensemble base image architecture”, the algorithm presented for the
competition. This algorithm is mainly based on performing iterative cross-validation
to train models and ensemble them, for which we proposed a new ensembling
technique. Since we have carried out a new training and test split for this work,
we have retrained this architecture on the new training set and tested on the new
test set to make the comparison as fair as possible. In Figures 8.9 and 8.10, we
show how the F1-score evolves for both tasks as we ensemble more models and the
difference between the different ensembling techniques. As seen from the curves,

86 Road passability detection during flood events using social media data

both tasks benefit from the ensembling, particularly for the first networks, then the
performance stabilizes. The evidence of road benefits more from this technique
than the passability of road task, and the curves for the passability task are less
stable. We believe this is due to the difference in the difficulties of both tasks. As
can be seen towards the end of the graphs, the results of both tasks begin to worsen
slowly. That is because (i) we are adding different architectures, and some of them
yield better results on average than others; (ii) we have stacked the networks in
order of the architectures’ average performance, and thus it gets the point in which
adding more architectures starts degrading the results. Given the information from
both graphs, the ensemble of more than 30 models (up to 90, in our test case) does
not significantly improve the performance. The ensemble of 90 networks (45 per
task) was the winning architecture presented in the MediaEval competition, and its
performances are presented in Table 8.4. This is the only architecture for which we
have results on both the challenge and our test sets. The results of the MediaEval
test set are very similar to the results obtained for our own test set, which indicates
that the difficulty of both sets is quite similar, allowing us to make a fair comparison
with the results of the other participants. Some differences might be since we have
had to retrain all the networks to fit them to the new training, validation, and test set.
As for the ensembling technique, voting seems to have slightly worsened the results
in the evidence of road task, while averaging led to worsening results in the road
passability task. For this reason, we decided to use the ensembling technique that we
proposed in this work for the final results since it is the technique that has the most
stable results.

The ensemble models make sense for competition; however, they might not be
suitable for real-life applications since they tend to be computationally expensive and
time-consuming. Therefore, we focused our analysis on comparing the best available
model, obtained without considering computational limitations, with a lightweight
version proposed in this work. We started using an “ensemble of one model per
task” that we named “single-network image base image architecture”, and then
compared it with the “double-ended architecture” presented in the previous section.
To reduce the randomness associated with the training process, both architectures
were initialized with the same weights and used the same hyperparameters and
stopping criterion. As seen from Table 8.4, the improvement is quite significant,
particularly in the passability task. We believe that this is because the passability task
has significantly fewer images to train when trained separately, so it is more difficult

8.5 Evaluation and Results 87

for the model to generalize to new data, and when trained together, the passability
task can benefit from the evidence task has learned. On top of obtaining better results
than the single network base image architecture”, the “double ended architecture”
has fewer parameters, making it lighter and computationally less expensive, and it is
an end-to-end architecture.

Then, we proposed to use the “compactness loss” to make the model more robust
to unseen data. We retrained the previous model with the compactness loss on
each branch, as shown in Figure 8.7. The results of both the validation and test set
are in Table 8.4. Although we cannot extract direct evidence from this table that
the compact loss improves the results, it does seem to generalize better to the test
set since the results from validation to test are more similar than the ones without
compactness loss.

Finally, by combining the improvements using the double-ended classifier and
the compactness loss, we can reach almost the same performance as we had obtained
using the ensemble of 30 models, meaning that we have a model almost 30 times
lighter and faster with a comparable performance.

Table 8.4 F1-scores on the challenge test set for both tasks using only the images from the
tweets. We understand that results on different test sets are not comparable. However, to
make the comparison as fair as possible, we created a validation set from our training set to
validate the models and tune the hyperparameters. The test set was only used to provide the
final results. The results of the challenge are reported for completeness only. * Results on a
subset of 50 images.

Approach\Data

Evidence of Road [%] Ev. of Road Passability [%]

Validation Set
Test Set Test Set

Validation Set
Test Set Test Set

(MediaEval) (Own) (MediaEval) (Own)

Human annotation 87.32 * - - 47.71 * - -
Ensemble image base architecture (90) 90.14 87.79 90.17 64.33 68.38 65.91
Ensemble image base architecture (30) 88.91 - 89.45 70.18 - 65.28
Single network image base architecture 86.48 - 84.88 62.84 - 59.99

Double-ended architecture 88.73 - 85.00 67.51 - 67.91
Double-ended with compactness loss 87.78 - 86.42 67.49 - 68.53

Y. Feng et al. [85] - - - - 64.35 -
M. Hanif et al. [86] - 74.58 - - 45.04 -
Z. Zhao et al. [108] - 87.58 - - 63.13 -

A. Moumtzidou et al. [87] - - - - 66.65 -
A. Kirchknopf et al. [88] - - - - 24 -

N. Said et al. [110] - - - - 65.03 -
D. Dias [109] - - - - 64.81 -

B. Bischke [107] - 87.70 - - 66.48 -

88 Road passability detection during flood events using social media data

Fig. 8.9 Evolution of F1-score on the road evidence task as we ensemble more networks and
compare the three different ensembling techniques.

Fig. 8.10 Evolution of F1-score on the road passability task as we ensemble more networks
and compare the three different ensembling techniques.

Remarkably, the results using images are considerably better than the ones using
metadata, not only in our case but also for humans or other participants. That is
because the dataset has been built and annotated using only visual information. Thus,
we know that the images should have enough information to solve the problem, but
the metadata does not always have this specific information.

8.5 Evaluation and Results 89

8.5.3 Results Using Images and Metadata

As a final step, we combined the previous best model with the metadata information.
As it was not clear from the previous results if the compactness loss provided a signif-
icant boost in performance, we tried combining the metadata with the double-ended
classifier with and without compactness loss. The results are given in Table 8.5. In
this case, we can notice a considerable improvement in the model with compactness
loss relative to the one without it. In fact, this model achieves only 3% below the
best score in the evidence of road task, while it obtains almost a 10% improvement
in evidence of road passability compared to the second best participant. Finally,
it seems like adding the metadata information improves the road passability task.
To understand how the metadata information can help to improve the results, in
Figure 8.11, some tweet examples are given that were incorrectly classified by the
image-only model but correctly classified by the model, which combined visual and
metadata information. These tweets contain some very informative keywords, such
as flooded streets, stalled cars, and drive-through.

Table 8.5 F1-scores on the challenge test set for both tasks using the metadata and image
information. We understand that results on different test sets are not comparable. However,
to make the comparison as fair as possible, we created a validation set from our training set
to validate the models and tune the hyperparameters. The test set was only used to provide
the final results. The results of the challenge are reported for completeness only. * Results
given on our own test set.

Approach\Data
Evidence of Road [%] Ev. of Road Passability [%]

Validation Set Test Set Validation Set Test Set

Double-ended architecture 78.96 86.99 * 61.06 62.96 *
Double-ended with compactness loss 77.85 84.56 * 73.61 75.93 *

Y. Feng et al. [85] - - - 59.49
M. Hanif et al. [86] - 76.61 - 45.56
Z. Zhao et al. [108] - 87.58 - 63.88

A. Moumtzidou et al. [87] - - - 66.43
A. Kirchknopf et al. [88] - - - 35

90 Road passability detection during flood events using social media data

(a) (b) (c)

(d) (e)

Fig. 8.11 Examples of tweets within the dataset allowed to disambiguate the visual content
for a correct ERP prediction. In (a-e), the text of the tweets allowed to resolve ambiguous
ERP images thanks to keywords such as "flooded" concerning roads and "drive through"
about vehicles.

8.6 Conclusions

We extended the work conducted for the Flood classification challenge in MediaE-
val 2018, in which we presented a winning architecture based on fine-tuning and
ensembling 45 models for each task. This work, evaluates the algorithm’s perfor-
mance evolution as we ensemble more models. It is determined that by ensembling
models in order of average performance, we can improve F1-score for both tasks.
However, as we ensemble networks, at some point, adding more networks to the
ensemble starts worsening the results. Thus, by reducing the number of ensembled

8.6 Conclusions 91

models to 30, we can reduce the number of ensembled networks, making the solution
faster and lighter while improving the results. Then, we proposed a double-ended
architecture that trains both tasks simultaneously to further reduce the number of
parameters composing the solution and to let the network share knowledge between
tasks. We also propose the usage of a compactness loss. Said loss is proposed to
convert a binary classifier network into a one-class classification network. In the
original work, this loss’s derivation contained a mistake we corrected. Through
experiments, we conclude that, by combining the double-ended architecture and
the compactness loss, we can obtain a single network that solves both problems,
achieving comparable results for the evidence of road task and better results for the
road passability estimation compared to the ensemble models. Since this solution
does not rely on ensemble networks, it is almost 90 times faster and lighter than the
originally proposed architecture, making it a viable solution for real-life applications.

Chapter 9

Emergency scene description using
deep learning approaches

This chapter presents our proposed model for the Disaster Scene Description and
Indexing Challenge of TRECVIDI2020. We analyzed the best approach to use the
features extracted from the images and the best blending mode. The strategies we
have implemented are 1) common backbone and common classifier, 2) common
backbone but dedicated classifier for each dataset macro category, and 3) dedicated
backbone and classifier. Direct fusion through concatenation was the feature fusion
strategy of choice. This involved combining the features extracted from the images
by directly joining them. This allowed the model to learn specific features for each
category and improved the overall performance of the model.

9.1 Introduction

The TRECVID2020 [116] Disaster Scene Description and Indexing (DSDI) Chal-
lenge involves using a newly developed dataset to solve a multi-labelling task. The
task consists of detecting all the labels detected as feasible for an emergency sce-
nario. Labels can be grouped into five macro-categories: Damage, Environment,
Infrastructure, Vehicles, and Water; each category is composed of different elements,
each of which distinguishes a concept or an object. The peculiarity of this challenge
lies in the fact that not all the classes that must be predicted consist of entities, as
infrastructure and vehicle others concern more extensive elements that can also cover

9.2 LADI Dataset 93

all the area of the image, like the elements of the environment or water categories.
Finally, in damage, there are primarily abstract classes that are difficult to define at
the local level (it is difficult to define a bounding box that envelops all the interesting
areas) and can be evaluated by a person only by analyzing the image in its entirety.
These conceptual labels are also the most difficult to predict because their features
can often be heterogeneous. These are the challenges this dataset poses, but if they
can be overcome, the dataset can become an essential element in classifying and
analyzing images of natural disasters and a helpful tool for first responders. This
challenge is, therefore, the first step to better understanding the dataset and what
work must be done to improve the first intervention in emergency scenarios, thanks
to open data now available online.

9.2 LADI Dataset

The dataset developed for the challenge comprises images gathered by Civil Air
Patrol during missions for various natural disasters. It presents various challenges
due to the angle from which the images were collected. The change in the angulation
is a problem because if it differs too much from the one used to train state-of-the-art
neural networks, there is a great chance they will perform poorly. Usually, the
images they are trained on are collected from land, not from an aerial point of view.
Furthermore, the type of label of the dataset is not homogeneous. The data are divided
into entities, environmental elements, and concepts. This represents another of the
challenges for this dataset. Suppose some entities (house, road, bridge, truck, car,
etc ...) can be easily described with features. In that case, it is slightly complicated
for environmental elements that can extend over the whole image (tree, river, ocean,
etc ...) to be identified since, being background elements, they can contain within
them entities that are still part of the set of features for the environmental element.
While in the damage category, there are all elements of damage to structures or other
elements. However, the damage is conceptual, so even a person would find it difficult
to classify and define it with a set of features. This type of label is the most difficult
to classify within the dataset. Figure 9.1 presents examples of the dataset’s images.

While in Figure 9.2, the distributions of the dataset are presented, in the first
image 9.2a, the distributions of the dataset provided for the challenge are presented.
In the second image 9.2b, the distributions for the extended dataset we have collected

94 Emergency scene description using deep learning approaches

(a) (b) (c)

(d) (e) (f)

Fig. 9.1 Examples of images in the dataset. It can be noted that the lighting, orientation,
perspective, and resolution vary across the examples. These changes are a key component of
the LADI Dataset and are part of this dataset’s main challenges.

are represented by taking a non-labelled subset of the LADI Dataset and having it
labelled using Amazon Mechanical Turk as a service.

As seen from Figure 9.2, the distributions for the dataset and its extension are
unbalanced in the classes. Some are predominant (trees, grass, roads), while others
have few examples (lava, snow/ice, aircraft). For this reason, given the scarcity of
examples for specific classes, it will not be easy to get good detections for those with
very few examples.

9.3 Models

We used ResNet152 [21] as a feature extractor. ResNet allows the extraction of
the features trained on Imagenet [71]. The features learned from the model with
the pre-training on Imagenet are mostly features of images taken from the ground.
Some of these features, although very similar to aerial ones, in some cases, may be
different. For example, a tree can have similar leaf features when viewed from above,
but a house or any other building can change a lot. For this reason, we trained our
models from scratch. A first vanilla model, represented in Figure 9.3, consisted of
using a single backbone network to extract the features of all the classes and then
passing these features to a classifier capable of identifying the presence or absence
of a certain class. However, this approach obtained the worst results in the validation

9.3 Models 95

(a)

(b)

Fig. 9.2 We propose using Amazon Mechanical Turk as a labelling service for the different
class distributions for the LADI Dataset and the dataset extension. As seen from the images,
the classes are very unbalanced, and for some classes, the examples are very few.

96 Emergency scene description using deep learning approaches

phase. Most likely, the complexity of the dataset is too high for the model to handle.
Although numerous, about 30k, the images provided during the training step were
insufficient to ensure correct learning of all the dataset’s features. The model used
was Resnet152, a fairly complex model, able to learn features for the 1000 classes
of Imagenet, so if it fails to learn the correct features for the LADI Dataset, this is
most likely due to the need to have a much larger dataset. The other proposed model,
in 9.4, consists of a single feature extractor and five different classifiers, one per
category. This model, under validation, was able to achieve better results. Finally, as
the last step, we decided to try a different approach for each category and combine
the results. This model, which is represented in Figure 9.5, is the one that obtained
the best results in the validation phase and is the one we have selected as the final
model. In the experiments section, the implementation choices and the experiments
carried out using these models will be presented in more detail.

9.4 Experiments

We tested different classifier configurations before proposing the optimal variant for
the challenge. A first experiment was performed using a single network as a features
extractor. In our case, we used ResNet152, followed by a classifier, a simple Multi-
Layer Perceptron (MLP). Our study used an MLP as the classifier. The MLP was
composed of 4 layers, with the first layer taking as input the 2048 features extracted
from the ResNet model. These features were then passed through the subsequent
layers of the MLP. The output of the final layer consists of all the possible labels of
the prediction. Even in the testing phase, this model has yielded very unsatisfactory
results. However, our purpose was to evaluate the tasks’ complexity and have a
baseline from which to advance our work. Following these results, we thought that
maybe the problem was in the classifier, which is too simple and unable to find a
correct division between classes. The inability of the model is due to its failure
to both memorize and accurately discern the features of the dataset caused by its
dimension and the simplicity of the model. For this reason, we have separated the
classifier into five distinct networks, one for each category. Although they are very
heterogeneous, within the same category, the classes are very similar; therefore,
with this configuration, we have tried to make sure that each classifier is specific for
the features of that category. The experimental results showed that this approach

9.4 Experiments 97

Input

Image

Feature Extractor

(ResNet152)

Multiclass

Output

Category

Classifier

1

0

1

.

.

.

0

0

1

Fig. 9.3 Single classifier

Input

Image

Feature Extractor

(ResNet152)

Multiclass

Output

1

0

1

.

.

.

0

0

1

Enviroment

Classifier

Vehicle

Classifier

Infrastructure

Classifier

Damage

Classifier

Water

Classifier

Aggregated

Output

Fig. 9.4 Five classifiers

98 Emergency scene description using deep learning approaches

Input

Image

Feature Extractor

(ResNet152)

Multiclass

Output

1

0

1

.

.

.

0

0

1

Enviroment

Classifier

Vehicle

Classifier

Infrastructure

Classifier

Damage

Classifier

Water

Classifier

Aggregated

Output

Feature Extractor

(ResNet152)

Feature Extractor

(ResNet152)

Feature Extractor

(ResNet152)

Feature Extractor

(ResNet152)

Fig. 9.5 Five Networks

was better than the previous one since the scores obtained were improved. These
results prompted us to try a further split of the model, also dividing the feature
extraction part, dedicating one for each category. The idea was very similar to that
of the previous case. If the model benefits from having a dedicated classifier for
each feature, it could also benefit from having more specific features learned for that
category. This would lead the classifier to have the possibility to specialize further for
that specific set of features of the category. The experimental results showed that this

9.4 Experiments 99

configuration based on backbones and separate classifiers was the best, as the scores
improved further. Having defined the best model, we wanted to try some variations
in the dataset. The first variation consisted of extending the dataset with an additional
6k examples. To obtain this data, we used the Amazon Mechanical Turk platform
[117] on a random set of examples that had not already been labelled. We have seen
that an improvement can be achieved by extending the dataset. This suggests that
given the complexity of the task, the 35k examples provided by the challenge are
not enough and, therefore, that the algorithms would undoubtedly benefit from a
more significant amount of data. This observation is valid for this case, and it has
been shown several times that the performance of convolutional networks is also
often correlated with the number of examples available during training. Another
experiment that we tried, which did not produce significant benefits, but we report for
the record and experimental interest, consisted in carrying out a pre-training phase
using images taken by Google. The images were collected using an automatic system
based on a keyword query, and the first 1000 images were downloaded per keyword.
This was done using the label name as a keyword. After downloading the 32k images
(1k for each class), the model backbone was pre-trained on a classification task on
the 32 classes of the LADI Dataset. In this way, the network should have had a
pre-training of the features of the target dataset. But, the perspective problem persists.
Images perspective is from the ground and the air. Following this pre-training, the
backbone network was reinserted into the five separate network models to see if
this pre-training phase had given any benefit in identifying better features for the
task. However, from the experimental results, this process does not influence the
final scores. The results are presented in terms of Mean Average Precision (MAP)
as requested by the challenge organisers. In Table 9.1, it is possible to see the
experimental results obtained on the challenge test set. Figure 9.6 shows the scores
obtained by each team in the challenge. Our team results for each run are highlighted
in red. For each run, the training approach was the same. The only difference was
the aggregation mode of the label for the test set and the last run based on a pre-
training on Google Images. From left to right, the runs are the following: 1): 1000
video sequences, aggregated by max correspondence in the sequence; 2): sequences
were aggregated with mean but filtered out with a threshold t=0.25; 3): the same as
the previous run, but with max as aggregation function and t=0.5; 4): done with a
pre-train on Google Images and by using max and the first 1000 sequences.

100 Emergency scene description using deep learning approaches

We perform the training and the testing on a desktop workstation with an Intel(R)
Core(TM) i9-7940X CPU, 128 GB RAM, and 4 NVIDIA GeForce GTX 1080 Ti.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

FI
U

_U
M

FI
U

_U
M

FI
U

_U
M

V
A

S

N
II

_
U

IT

V
A

S

V
A

S

V
A

S

N
II

IC
T

V
C

L

N
II

_
U

IT

N
II

IC
T

SH
IE

LD

FI
U

_U
M

SH
IE

LD

SH
IE

LD

SH
IE

LD V
C

L

V
C

L

U
TS

V
id

eo

U
TS

V
id

eo V
C

L

N
II

_
U

IT

U
TS

V
id

eo

U
TS

V
id

eo

SH
IE

LD V
C

L

V
C

L

C
O

V
IS

IT
I_

C
ER

TH

M
A

P

Team

Teams MAP scores

Fig. 9.6 Team scores in terms of MAP, our team results for each run are highlighted in red.

Model Training Dataset MAP score
Single Classifier LADI + MTurk LADI 0.232
Five Classifiers LADI + MTurk LADI 0.258
Five Networks LADI 0.306
Five Networks LADI + OTHER 0.297
Five Networks LADI + MTurk LADI 0.314

Table 9.1 Best scores obtained during training

9.5 Conclusion

This work presents the solutions we have used to address the multi-labelling problem
on the LADI dataset and an extension of the dataset that we created using crowd-
sourcing platforms. After trying various settings, we found that the best solution

9.6 Acknowledgements 101

consisted of a model based on five different classifiers. This analysis pipeline is
the best we analyzed because it allowed us to divide the features by categories and
analyze them correctly for multi-labelling. Furthermore, we found that more samples
provided by our dataset extension allowed the solutions to perform better. We think
that future work on this dataset could have two directions; first: it is to improve
the dataset labels by adding more refined ones, which could cost more resources to
create, but at the same time, would allow using more sophisticated algorithms. One
type of these labels could be segmentation maps. This would enable learning the
areas within the image and which semantic features belong to which area. If this
task proves too expensive, the segmentation maps could be limited to background
elements, such as water and environment. At the same time, simple bounding boxes
could be used for the other categories, which in any case, would allow for localized
learning of the features for that particular class.

9.6 Acknowledgements

The European Commission partially funded this work through the FASTER project,
grant agreement n.833507, SHELTER project, grant agreement n.821282, and
SAFERS project, grant agreement n.869353.

Chapter 10

Water segmentation for flood
detection and monitoring

In this chapter, we compare recent Deep Learning algorithms’ accuracy and predic-
tion performances for the pixel-wise water segmentation task. Many of these models
have a standard feature extractor combined with subsequent segmentation layers.
These layers use a flow feature fusion methodology to connect information from
different resolution scales. Thanks to this feature fusion approach, it was possible to
obtain good results in the segmentation phase, and we also presented the model that
best suits our scenario. Moreover, we release a new dataset that enhances well-known
benchmark datasets for multi-class segmentation with specific flood-related images
taken from drones, in-field observations, and social media.

10.1 Introduction

In this work, we study Deep Learning models’ accuracy and prediction performances
for detecting water in images. Specifically, we target the pixel-wise semantic seg-
mentation of images to separate water elements from everything else, which we
consider as background. This approach cannot only understand if a given image
contains a water element but also quantify the number of water pixels and delineate
the shape of water elements. These capabilities enable multiple use cases, span river
monitoring through a fixed camera, flood mapping from drones, data validation in
case of crowdsourced data collection activities, and social media analysis. Note that

10.2 Related Works 103

image water segmentation can be effectively used within early warning systems,
which can be triggered to send alerts when a certain threshold of water is reached, as
well as in the emergency response phase, to monitor the flood evolution. However,
existing machine learning models trained for the semantic segmentation task may
perform poorly in detecting water in a heterogeneous scenario. The images to be
analyzed could be produced at different resolutions, angles, lighting conditions,
altitudes, and distances from the observed phenomena.

The contribution of this work is two-fold. First, we introduce a new dataset that
increases the water segmentation performances when images from different sources
are considered. As highlighted [118], the more data the model is trained on, the
better it can learn the patterns and features relevant to the task. This can lead to
increased water segmentation performances when images from different sources are
considered, as the model can better generalize to new examples it hasn’t seen before;
second, we study the accuracy and prediction performances of the most recent and
advanced Deep Learning models for the semantic water segmentation tasks with and
without the use of our dataset.

We first review the related works in the following sections and then introduce
our new dataset. Next, we describe the methodology we applied in our analysis,
briefly explaining the selected Deep Learning algorithms. Then, we present the
evaluation outcomes, comparing the performances of the selected algorithms when
using previous datasets and ours. Finally, we outline the main conclusion of our
study.

10.2 Related Works

Social media platforms offer the possibility of quickly obtaining many data about
natural disasters- However, information extracted from open systems such as social
media platforms would require validation before being trusted and operationally
used in emergency management contexts. For this reason, previous works focused
on using Artificial Intelligence to analyze and classify this kind of data [119–121].
However, most such works mainly use the text of social media posts to implement
a binary classifier that retains only informative content. Another kind of previous
work can be found in the computer vision domain [122, 123], where the use of
a machine learning algorithm with handcrafted features is coupled with image

104 Water segmentation for flood detection and monitoring

processing techniques such as background subtraction, morphological operators, and
color probability, light intensity, texture or color clustering. The shortcomings of
such approaches are mainly linked to the use of handcrafted features, which usually
tend not to generalize well and to perform poorly when applied to data coming from
different data sources or contexts. Moreover, comparing the majority of such works
is often impossible because they were evaluated in particular scenarios and with
non-publicly available datasets.

Our goal is different, and we want to study the performances of recent Deep
learning models for the pixel-wise water segmentation task in order to allow the au-
tomatic analysis of images coming from multiple sources, namely from social media,
surveillance cameras placed near the water beds, drones, and from in-field operators.
Moreover, we do not rely on handcrafted features but apply a data-driven semantic
segmentation approach with automatic feature selection. Semantic segmentation
is a common task in image processing and analysis, and it consists in assigning to
each pixel a label, thus obtaining a set of regions in output. Image segmentation
can be used to separate the foreground from the background or cluster pixels re-
gions based on common properties, such as color or shape. Therefore, we compare
the performances of recent Deep Learning models used for multi-class semantic
segmentation [124–129] trained on well-known benchmark datasets, showing how
their performances can be increased through a dedicated dataset designed to fit the
water segmentation task. We also include the Tiramisu model in our performance
analysis, which resulted in the best algorithm for the water segmentation task when
trained a specific dataset containing riverine flood images [130]. We compare the
classification accuracy and the prediction performances of four state-of-the-art Deep
Learning algorithms using different combinations. We train such algorithms on a
novel dataset we create by extending a collection of previous benchmark multi-label
datasets with a set of new labelled images covering the abovementioned data sources.
Our new dataset, as well as the tested algorithms, are presented in the following
sections.

10.3 The Water Segmentation Open Collection Dataset

This section introduces the Water Segmentation Open Collection (WSOC), a new
dataset that effectively trains deep Learning water segmentation algorithms. WSOC

10.3 The Water Segmentation Open Collection Dataset 105

Table 10.1 Water Segmentation Open Collection (WSOC) key metrics.

Metric Value

Min size of image [147, 150] px
Max size of image [2448, 3264] px
Mean size of image [612, 465] px
Min percentage of water 10%
Max percentage of water 95%
Mean percentage of water 35%
Number of images 120061
Number of images with water presence 11900

is composed of a collection derived from pre-existent publicly available datasets for
image segmentation, which have been binarized to be used for the water segmentation
task and enhanced with an additional dataset specifically created to increase the
performance of the water delineation task. The public collection is composed by
well-known benchmark multi-class segmentation datasets, namely COCO [131], the
Semantic Drone Dataset [132], the Microsoft Research in Cambridge v2 (MSRC
v2) [133], as well as by other open datasets containing water-related classes (e.g.,
sea, shore, river, lake, etc..), namely the Video Label Propagation [134] and the
River Dataset [135]. We extend this aggregated dataset with additional 490 images,
which we gather from Twitter and online news using "floods" as a keyword for the
search query. We label the new images using human annotators with the aid of a
segmentation tool as well as by using crowdsourcing online annotation services.
For each image, we select three human annotators: the first to realize the initial
annotation, the second to refine it, and the third to validate it. In case the final
validation fails, the labelling is discarded and re-assigned. Overall, the WSOC
dataset comprises 120061 images and their labelled ground truth, consisting of binary
masks where zero is assigned to the background pixels and one to the water pixels.
We openly publish WSOC at the following link: https://zenodo.org/record/3642406
so that it can be further extended and used in future works.

In Table 10.1 we report the key WSOC metrics, including the amount of water in
the images and the variation in image size. The biggest images are the drone aerial
images, while the smallest ones are the pictures shared on social media.

https://zenodo.org/record/3642406

106 Water segmentation for flood detection and monitoring

10.4 Methodology

TRAINING

EVALUATION

OUTPUT

MASK

Mean

Intersec�on

Over Union

Pixel

Accuracy

METRICS WSOC

Test Set BACKBONE

FEATURE

EXTRACTOR

SEGMENTATION

ALGORITHM

MODEL EVALUATION

PREPROCESSING
DATASETS

(COCO, River,

WSOC)

BACKBONE

FEATURE

EXTRACTOR

SEGMENTATION

ALGORITHM

MODEL TRAINING

Fig. 10.1 A graphical example of our proposed methodology: images inside the dataset are
preprocessed and then used to train the model, composed of a backbone network responsible
for the features extraction, and a segmentation algorithm uses the features to create a
segmentation mask. Then the trained model is evaluated on Mean Intersection over Union
(MIoU) and Pixel Accuracy (PA). Those metrics are used to score the model performances.

We decided to test WSOC with four different Deep Learning algorithms for
image segmentation, testing each of them with different backbones, namely: VGG16
[136], ResNet50 [137] and MobilNet [138]. A backbone is the initial part of a deep
learning model for image segmentation and is usually used for feature extraction.
A suitable feature extractor is crucial because it has been demonstrated that high-
quality features enable better performance on many machine learning tasks [139].
We selected VGG16, ResNet50, and MobilNet because they are among the most
recent and performing models for image classification that allows being re-trained
and specialized for semantic the segmentation task by substituting the last classifi-
cation layers with other Deep Learning models. Therefore, we use such backbones
to exploit the features they learned on another dataset. VGG16 is a classic CNN,
one of the first Deep learning networks that outperformed classic machine learning
algorithms on image classification. Instead, ResNet50 is a more recent model that

10.5 Evaluation metrics and configurations 107

uses a new kind of connection between subsequent layers called residual block,
which has been proven to increase the performance on very deep models by allowing
better information transfer through layers. MobileNet is a simplified CNN that has
been designed to be used in embedded systems at the cost of a slight performance
loss. The backbone is usually pre-trained on well-known benchmark dataset such
as ImageNet [140], COCO [131] or PascalVOC [141]. We used all the backbones
mentioned above pre-trained on ImageNet, because it contains 1000 classes, and
therefore it is able to create very rich and different features. For this reason, models
pre-trained on ImageNet are considered good feature extractors. We evaluate each
backbone in combination with recent Deep segmentation models designed for se-
mantic segmentation, namely: SegNet [125], PSPNet [126], UNet [124] and FCN32
[142]. SegNet is a fully convolutional autoencoder [143], where each encoding
layer is connected with his decoding layer with which pooling information is shared.
This particular architecture allows the model to share higher-resolution information
between layers, leading to better segmentation accuracy. The UNet was developed
for biomedical image segmentation, and its architecture was created to work with
few training images without sacrificing segmentation accuracy. Its name is due to
its U-shaped architecture, where the network uses connections between layers to
propagate context information to higher resolution layers. PSPNet uses a pyramid
pooling module to transfer information from the higher layer to the lower one. The
pyramidal structure aims at passing additional contextual information between layers.
FCN32 uses a deep, fully convolutional network that combines semantic informa-
tion from coarse layers with outputs of fine layers to produce accurate and detailed
segmentations. Our goal is to test and evaluate all the aforementioned segmentation
networks with different backbones and compare them with Tiramisu, which has been
previously trained and evaluated for the water segmentation task using only the River
Dataset. We evaluate each model combination based on accuracy, prediction speed,
and memory usage (size and VRAM).

10.5 Evaluation metrics and configurations

We divided the WSOC dataset between training and test sets that we use to train
the models and evaluate their performances. The training set is composed of all
WSOC images, including at least one water pixel (11900 images), excluding the test

108 Water segmentation for flood detection and monitoring

Table 10.2 Model accuracy comparison in terms of average and standard deviation of Mean
Intersection over Union (MIoU) and Pixel Accuracy (PA) with different training datasets
(COCO, River, and WSOC) and with WSOC test set.

COCO River WSOC
MIoU [%] PA [%] MIoU [%] PA [%] MIoU [%] PA [%]
µ σ µ σ µ σ µ σ µ σ µ σ

Tiramisu 0.35 0.20 0.65 0.22 0.33 0.19 0.63 0.22 0.38 0.17 0.73 0.24
SegNet-M 0.80 0.10 0.90 0.05 0.64 0.13 0.75 0.17 0.85 0.07 0.92 0.05
UNet-M 0.76 0.12 0.86 0.08 0.64 0.13 0.75 0.20 0.83 0.09 0.92 0.03
FCN32-M 0.62 0.15 0.73 0.17 0.67 0.13 0.74 0.17 0.77 0.11 0.86 0.08
PSPNet-M 0.75 0.12 0.88 0.08 0.62 0.13 0.74 0.19 0.81 0.08 0.90 0.07
SegNet-R 0.82 0.10 0.90 0.05 0.74 0.12 0.83 0.13 0.85 0.08 0.94 0.01
UNet-R 0.81 0.10 0.92 0.01 0.55 0.14 0.69 0.23 0.88 0.06 0.94 0.03
FCN32-R 0.79 0.12 0.75 0.12 0.59 0.13 0.74 0.19 0.79 0.10 0.87 0.08
PSPNet-R 0.81 0.10 0.90 0.04 0.62 0.12 0.74 0.22 0.83 0.08 0.90 0.07
SegNet-V 0.71 0.16 0.87 0.05 0.69 0.13 0.79 0.15 0.82 0.09 0.90 0.05
UNet-V 0.49 0.27 0.68 0.13 0.30 0.03 0.59 0.31 0.50 0.26 0.67 0.15
FCN32-V 0.67 0.19 0.90 0.03 0.58 0.16 0.70 0.19 0.76 0.13 0.91 0.02
PSPNet-V 0.61 0.23 0.91 0.02 0.12 0.10 0.61 0.38 0.82 0.09 0.92 0.02

X: Best score model-wise X: Best score metric-wise

Table 10.3 Models performance comparison in terms of VRAM, size and prediction speed.

ResNet50 MobileNet VGG16

Size [Mb] VRAM [Mb]
Prediction
time [ms] Size [Mb] VRAM [Mb] Prediction Size [Mb] VRAM [Mb]

Prediction
time [ms]

SegNet 57 2461 27 21 2665 9 44 1193 22
UNet 62 2563 29 24 2674 10 47 1792 21
FCN32 1732 4188 250 867 3255 115 516 3334 56
PSPNet 114 2557 24 37 4352 11 65 1824 16

ones, which we select as the 10% (139 images) of a WSOC subset composed of the
following categories: the River, the Semantic Drone Dataset and the newly added
images. We select this subset as the test set because such images represent the flood
monitoring scenarios we are considering most. We use only images containing at
least one water pixel because this configuration leads to the best accuracy, although
the test set contains images with no water element. The models have been trained
using Tversky loss function [144] with α = 0.2 and β = 0.8. Note that a high value
for β leads to higher sensitivity (recall) and to lower specificity [145], which is the
desired condition for our task because we want to predict as many water pixels as
possible while accepting lower performance on the background ones. As optimizer
was used Adadelta with the following parameters: lr = 0.001 and ρ = 0.95 [146].
In order to avoid over-fitting, we stop the training as soon as the loss computed on
the validation set ceases to decrease for five epochs. We evaluate the results of each

10.6 Results 109

algorithm on the test set with the two most commonly used metrics for segmentation
tasks [147, 148], namely the Mean Intersection over Union (MIoU):

MIoU =
1
k ∑

k
i nii

ti +∑
k
j(ni j −nii)

and the Pixel-wise Accuracy (PA):

PA =
∑

k
i nii

∑
k
i ti

where ni j corresponds to the number of pixels from class i that have been wrongly
classified as belonging to class j, nii represents the pixels from class i that have been
correctly classified, k is the total number of classes (k=2 in our case, because we are
only trying to predict water pixels in the scene) and ti = ∑ j ni j is the total number
of pixels belonging to class i. We calculated the mean value and the standard
deviation for each of these metrics. We perform the training and the testing on a
desktop workstation with an Intel(R) Core(TM) i9-7940X CPU, 128 GB RAM, and
4 NVIDIA GeForce GTX 1080 Ti.

10.6 Results

In Table 10.2 we report the results in terms of prediction accuracy, where we highlight
the best model both metric-wise and model-wise. Such results are obtained by scoring
all the models on the same test set while varying the training set. Each model is
scored in terms of Pixel-wise Accuracy and Mean Intersection over Union. Model-
wise, SegNet has the higher number of best scoring entries, although sometimes
it was slightly worse than the UNet. Metric-wise, the models with ResNet50 as
backbone result consistently as the best performing. This increase in performance
is due to the residual layers of ResNet50, which, as reported in the original paper,
allow a better backpropagation of the gradient during training, thus increasing the
model’s accuracy. Moreover, model-wise and metric-wise, the models trained with
WSOC achieve increased accuracy against the training done with COCO and the
River Dataset. Moreover, the Tiramisu model, which was our reference benchmark,
achieved by far the worst performance.

110 Water segmentation for flood detection and monitoring

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 10.2 Results of the best-performing algorithms on the best sample of the validation set,
where (a-d) corresponds to the original images, (e-h) are the ground truths, (i-l) SegNet with
ResNet50 as the backbone, (m-p) SegNet with MobileNet as the backbone, (q-t) UNet with
ResNet50 as the backbone.

In Table 10.3 we present the model’s performance in terms of model size and
prediction time for one image. Such results depict a different situation, where SegNet
is clearly the lightest model in terms of size (memory usage) and is also the fastest
when coupled with MobilNet as the backbone. This combination (MobileNet plus

10.7 Conclusion and Future Works 111

SegNet) is the winning one in size, VRAM, and speed, being three times faster
compared with ResNet50 as the backbone.

Overall, we can state that the ResNet50 backbone is the best in terms of accuracy.
While we do not have a unique winner model-wise, UNet and Segnet are the best
options, provided that there are no particular needs regarding memory and prediction
speed. Whenever the application requires faster prediction and lighter models, able
to get good results in a shorter time, SegNet with MobileNet is the best choice.
Moreover, we note that the introduction of WSOC increased the performances of all
models in the considered test scenario.

Figure 10.2 shows representative images from the test set (first row) with their
relative ground truths (second row) and the predicted binary masks (third, fourth,
and fifth rows) of the following backbone-model combinations: SegNet-ResNet50,
SegNet-MobileNet, and Unet-ResNet50. In Figure 10.2 (a) is taken from Twitter,
(b) from the River dataset, (c) from online news and (d) from the drone dataset. As
it can be seen, the models that use ResNet give more fine-grained masks, whereas
results with MobileNet are slightly coarser. Specifically, it can be observed that in
(k) and (s), people’s legs are clearly defined; the same applies in (j) and (r), where
the shape of the structure of the tree is at least sketched, although it is not completely
identified.

10.7 Conclusion and Future Works

In this chapter, we presented and released a new dataset for water segmentation
(WSOC), enhancing a previous collection of publicly available datasets composed
of water-related labels (river, sea, waves, waterdrops, etc...). This collection of
data is helpful for the task of water segmentation, in particular for implementing
services aimed at flood event monitoring and information validation. Moreover, we
studied several state-of-the-art Deep Learning models for semantic segmentation,
combining different backbones used for image labeling with semantic segmentation
models. We trained and tested all models with WSOC, comparing their performances
against training done with previously available datasets. SegNet ad UNet, both with
ResNet as the backbone, performed slightly better than the other algorithms in terms
of accuracy, while SegNet was the best performing in terms of prediction speed
and memory usage, VRAM, and size. Considering accuracy, ResNet was the best

112 Water segmentation for flood detection and monitoring

performing backbone overall, but it was also the slowest. Therefore, the model
used for the water segmentation task should be selected according to the application
requirements regarding accuracy and prediction speed.

Future works will include creating an operational service to monitor flood-prone
areas and support social media analysis. Moreover, we plan to improve the dataset
by evaluating the possibility of using synthetically generated data.

10.8 Acknowledgements

The European Commission partially funded this work through the FASTER project,
grant agreement n.833507, and SHELTER project, grant agreement n.821282.

Chapter 11

Conclusions

In this thesis, we analyzed some possible methodologies of feature fusion and then
explored some application use cases to evaluate their effectiveness. In Chapter 2, we
have introduced the advantages of Deep Learning over classic Machine Learning
in the context of Computer vision. We compared the difference between data-
driven and hand-crafted features, highlighting how the former is much easier to
obtain thanks to modern technologies and how they fit perfectly into the learning
pipeline to obtain an end-to-end trainable method that includes feature fusion from
different modalities. Subsequently, we introduced the concept of deep multimodal
learning, explaining how it is necessary for some applications and highlighting how
feature fusion techniques are essential for constructing an architecture for solving
multimodal tasks.

In Chapter 3, we introduce the automotive field and related tasks in computer
vision. Specifically, we delve into synthetic datasets for training and evaluating
models for tasks such as vehicle speed and distance estimation and pedestrian
trajectory prediction in the context of autonomous vehicles. We discuss the benefits
and limitations of synthetic data and the various methods and techniques used
to generate these datasets. Specifically, in Chapter 4, a multimodal model was
presented that combines the semantic features contained within the bounding box of
a vehicle with those of its spatial location. This combination of spatial and semantic
features made it possible to estimate the distance of the vehicles. Similarly, the
vehicle’s speed was obtained, replacing the semantic input, providing as data no
longer the content of the RGB image but the optical flow of the same area. In

114 Conclusions

Chapter 5, we proposed our method for augmenting synthetic trajectories at training
time with an adversarial approach and custom loss function as a promising solution
for addressing the challenges of using synthetic data for training predictive models
in pedestrian trajectory prediction. It allows the model to learn better from real-
world and synthetic data, resulting in improved predictions, and it can address the
limitations of using only real-world data and provide a diverse set of training data.
Our proposed adversarial loss allows synthetic data to be used effectively by merging
it with real-world data in a common feature space, resulting in improved predictions
for pedestrian trajectory prediction.

In Chapter 6, we have introduced the emergency scenarios field, and we have
analyzed some real case scenarios, often linked to the emergency contest, carried
out during my time within the Links Foundation research team. In these works, we
have shown how Deep Learning can be a valuable tool for analyzing and solving
real problems and how feature fusion techniques, often combined with multimodal
architectures, can obtain excellent results in identifying flooded areas or in identifying
objects and their properties. Encouraged by the good results obtained in Chapter 4,
in Chapter 7, we also applied a similar methodology to an emergency case to get an
estimate of the water level, to assess whether it was above or below the knee of the
individuals on the scene. For this problem, we have combined two images, one local
of the knee area and one global of the whole scene. The union of global and local
contexts, through the fusion feature, has allowed us to improve the performance of
our classifier, obtaining good results in the prediction phase compared to a model
trained only with images of the entire scene. In Chapter 8, we extended the same type
of architecture by adding a loss function, the compactness loss, which would improve
the quality of the features created in the merging layer. The purpose of the function
is to provide a better characterization of the features and a better clustering of similar
features in the latent space. The compactness loss, in combination with the merging
of the features experimentally, proved to be the best model, as the best scoring model,
and won the challenge of MediaEval 2018 for the Flood classification task. A final
work based on direct fusion but with a different type of application was explored in
Chapter 9, where we analyzed the best approach to use the features extracted from
the images and the best blending mode. The strategies we have implemented are
1) common backbone and common classifier, 2) common backbone but dedicated
classifier for each dataset macro category, and 3) dedicated backbone and classifier.
All features have been combined through concatenation and direct fusion. In this case,

115

we have not limited ourselves to the fusion feature alone. Still, we have also focused
on analyzing which type of architecture for the multi-tagging task is the best when
combining features from macro categories with micro categories. Experimentally,
the last approach was the best, dividing the features for each macro category and
leaving the multi-tagging to a dedicated model. Finally, in Chapter 10, we made a
segmentation model analysis, trying to identify the best from an architectural and
feature extraction point of view. Many of these models have a standard feature
extractor combined with subsequent segmentation layers. These layers use a flow
feature fusion methodology to combine information from different resolution scales.
We have therefore seen with this analysis the possibilities of extracting and merging
features for models with flow fusion approach. This type of blending mode remains
one of the best, mainly when applied to the segmentation task where combining
information from different levels of resolution scale is necessary.

To conclude, we have represented various machine algorithms in which the
development of feature fusion and multimodal learning techniques go hand in hand.
The most significant result obtained during this research path is represented by
the evolution of a baseline multi-branch architecture to a multi-branch, multi-task,
and multimodal learning architecture with a dedicated loss function that ensures
good quality compact features. We started from a multi-branch structure, with
synthetic inputs extracted from GTAV. We have designed an architecture to resolve
two regression tasks, such as estimating the distance and speed of the surrounding
vehicles. We obtained good results for both thanks to the combination of semantic and
spatial location features for the distance and movement and spatial location features
for the speed. Following these results and moving from the automotive context to the
emergency one, we have extended the design of the architecture to handle multiple
outputs by adding more loss functions, one for each output. Thanks to a careful
choice and combination of the loss functions, it was possible to obtain an excellent
result by forcing the feature extraction to propose more representative features of
higher semantic quality. Worth noting is also the importance that approaches based
on Adversarial Functions can have when merging different feature modalities. Our
proposed method includes a custom adversarial loss function specifically designed
to merge and align the features of real and synthetic trajectories in a common feature
space, allowing the model to learn better from both real-world and synthetic data.
This results in improved performances for pedestrian trajectory prediction, but it can
also be easily generalized to many other tasks where merging different modalities is

116 Conclusions

necessary. The use of the adversarial loss function allows the model to handle better
the variations and discrepancies between the training and unseen data, resulting in a
more robust model that can perform well thanks to the augmentation of synthetic
data.

Finally, as the last follow-up, in the evolution process of designing a general
template for multi-task and multi-branch multimodal learning. We have enriched the
previous architecture with a dedicated loss function for the features in the merged
layer. We have proposed the Compacteness Loss. Thanks to this function, we can
ensure that a more compact representation is obtained within the latent space for
similar features. As stressed several times in this thesis, extracting good features and
merging them correctly to generalize for the task is the key to success in designing
a good machine learning model. The definition of a loss function that improves
the mapping and the generalization of the features within the latent space and the
design of a multimodal feature fusion methodology that can be applied regardless
of the number of inputs or tasks represent the most significant contributions of my
research work to the multimodal feature fusion task. Future works can start from this
template and improve it further, especially by testing other pre-existing functions in
the field of Metric Learning (Contrastive Loss, Cosine Loss, etc ...) and applying
them to the merging layer. Further improving the quality and representation of the
merged features in the latent space is the key to designing good predictive models
for multimodal tasks.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. IEEE, 2009.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[4] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the
IEEE international conference on computer vision, pages 618–626, 2017.

[5] Jiang Deng, Sun Bei, Su Shaojing, and Zuo Zhen. Feature fusion methods
in deep-learning generic object detection: A survey. In 2020 IEEE 9th Joint
International Information Technology and Artificial Intelligence Conference
(ITAIC), volume 9, pages 431–437, 2020.

[6] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan,
and Serge J. Belongie. Feature pyramid networks for object detection. CoRR,
abs/1612.03144, 2016.

[7] Pramuditha Perera and Vishal M Patel. Learning deep features for one-class
classification. IEEE Transactions on Image Processing, 28(11):5450–5463,
2019.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Y. Bengio. Generative adversarial
networks. Advances in Neural Information Processing Systems, 3, 06 2014.

[9] Xiaodong Liu, Zhi Gao, and Ben M. Chen. Mlfcgan: Multilevel feature
fusion-based conditional gan for underwater image color correction. IEEE
Geoscience and Remote Sensing Letters, 17(9):1488–1492, 2020.

118 References

[10] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain general-
ization with adversarial feature learning. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5400–5409, 2018.

[11] Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon’s
mechanical turk: A new source of inexpensive, yet high-quality, data? Per-
spectives on Psychological Science, 6(1):3–5, 2011.

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision.
Springer, 2014.

[13] Xiangyu Yue, Bichen Wu, Sanjit A. Seshia, Kurt Keutzer, and Alberto L.
Sangiovanni-Vincentelli. A lidar point cloud generator: From a virtual world
to autonomous driving. In Proceedings of the 2018 ACM on International
Conference on Multimedia Retrieval, ICMR ’18, pages 458–464, New York,
NY, USA, 2018. ACM.

[14] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. SqueezeSeg: Convo-
lutional neural nets with recurrent CRF for real-time road-object segmentation
from 3d LiDAR point cloud. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, may 2018.

[15] Torcs, http://torcs.sourceforge.net/, 2007.

[16] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. Driving in the matrix: Can virtual
worlds replace human-generated annotations for real world tasks? In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages
746–753. IEEE, 2017.

[17] Andrea Palazzi, Guido Borghi, Davide Abati, Simone Calderara, and Rita
Cucchiara. Learning to map vehicles into bird’s eye view. In International
Conference on Image Analysis and Processing. Springer, 2017.

[18] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alex
Yablonski, and Alain L. Kornhauser. Beyond grand theft auto V for training,
testing and enhancing deep learning in self driving cars. arXiv, 2017.

[19] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceed-
ings of the 2015 IEEE International Conference on Computer Vision (ICCV),
ICCV ’15, pages 2722–2730, Washington, DC, USA, 2015. IEEE Computer
Society.

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask
r-cnn. 2017 IEEE International Conference on Computer Vision (ICCV),
pages 2980–2988, 2017.

References 119

[21] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[22] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (elus). arXiv,
2015.

[23] Raniah Zaheer and Humera Shaziya. Gpu-based empirical evaluation of acti-
vation functions in convolutional neural networks. In 2018 2nd International
Conference on Inventive Systems and Control (ICISC), pages 769–773, 2018.

[24] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expan-
sion. In Proceedings of the 13th Scandinavian Conference on Image Analysis,
SCIA’03, page 363–370, Berlin, Heidelberg, 2003. Springer-Verlag.

[25] Mariusz Bojarski, Philip Yeres, Anna Choromańska, Krzysztof Choromanski,
Bernhard Firner, Lawrence D. Jackel, and Urs Muller. Explaining how a
deep neural network trained with end-to-end learning steers a car. ArXiv,
abs/1704.07911, 2017.

[26] Vasileios Karagiannis. Distance Estimation between Vehicles Based on Fixed
Dimensions Licence Plates. PhD thesis, UNIVERSITY OF PATRAS, 2017.

[27] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan:
Socially acceptable trajectories with generative adversarial networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2255–2264, Los Alamitos, CA, USA, jun 2018. IEEE Computer Soci-
ety.

[28] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In Proceedings of the
IEEE International Conference on Computer Vision, pages 261–268, 09 2009.

[29] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by Example.
Computer Graphics Forum, 2007.

[30] Matteo Fabbri, Fabio Lanzi, Simone Calderara, Andrea Palazzi, Roberto
Vezzani, and Rita Cucchiara. Learning to detect and track visible and occluded
body joints in a virtual world. In European Conference on Computer Vision
(ECCV), 2018.

[31] Raphael Korbmacher and Antoine Tordeux. Review of pedestrian trajec-
tory prediction methods: Comparing deep learning and knowledge-based
approaches. IEEE Transactions on Intelligent Transportation Systems, 11
2021.

[32] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics.
Physical Review E, 51(5):4282–4286, May 1995.

120 References

[33] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data associ-
ation by joint modeling of pedestrian trajectories and groupings. In ECCV,
2010.

[34] Hema Swetha Koppula and Ashutosh Saxena. Anticipating human activities
using object affordances for reactive robotic response. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38:14–29, 2016.

[35] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,
Li Fei-Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in
crowded spaces. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 961–971, 2016.

[36] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid
Rezatofighi, and Silvio Savarese. Sophie: An attentive gan for predicting
paths compliant to social and physical constraints. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[37] Junwei Liang, Lu Jiang, and Alexander Hauptmann. Simaug: Learning robust
representations from simulation for trajectory prediction. In Proceedings of
the European Conference on Computer Vision (ECCV), August 2020.

[38] Junwei Liang, Lu Jiang, Kevin Murphy, Ting Yu, and Alexander Hauptmann.
The garden of forking paths: Towards multi-future trajectory prediction. In
The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[39] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial au-
toaugment. In International Conference on Learning Representations, 2020.

[40] Cyrus Anderson, Xiaoxiao Du, Ram Vasudevan, and Matthew Johnson-
Roberson. Stochastic sampling simulation for pedestrian trajectory prediction.
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4236–4243, 2019.

[41] Sahil Narang, Andrew Best, Sean Curtis, and Dinesh Manocha. Generating
pedestrian trajectories consistent with the fundamental diagram based on
physiological and psychological factors. PLOS ONE, 10(4):1–17, 04 2015.

[42] Matteo Fabbri, Guillem Brasó, Gianluca Maugeri, Aljoš an Ošep, Riccardo
Gasparini, Orcun Cetintas, Simone Calderara, Laura Leal-Taixé, and Rita
Cucchiara. Motsynth: How can synthetic data help pedestrian detection and
tracking? In International Conference on Computer Vision (ICCV), 2021.

[43] Rohan Chandra, Uttaran Bhattacharya, Christian Roncal, Aniket Bera, and
Dinesh Manocha. Robusttp: End-to-end trajectory prediction for heteroge-
neous road-agents in dense traffic with noisy sensor inputs. ACM Computer
Science in Cars Symposium, 2019.

References 121

[44] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher Bongsoo Choy,
Philip H. S. Torr, and Manmohan Chandraker. Desire: Distant future predic-
tion in dynamic scenes with interacting agents. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2165–2174, 2017.

[45] EM-DAT. The international disaster database, 2019.

[46] EU-Commission. Funding opportunities to support disaster risk prevention in
the cohesion policy 2014-2020 period, 2014.

[47] EM-DAT Data. The international disaster database - data access, 2019.

[48] S. I. Seneviratne, N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae,
J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sor-
teberg, C. Vera, and X. Zhang. Changes in climate extremes and their impacts
on the natural physical environment: An overview of the IPCC SREX report,
page 12566. Provided by the SAO/NASA Astrophysics Data System, April
2012.

[49] OECD. Financial Management of Flood Risk. OECD, 2016.

[50] Below R. and Wallemacq P. Annual disaster statistical review 2017, 2018.

[51] A. Restas. Drone applications for supporting disaster management. In World
Journal of Engineering and Technology, pages 316–321. Scientific research,
2015.

[52] Flavia Sofia Acerbo and Claudio Rossi. Filtering informative tweets during
emergencies: A machine learning approach. In Proceedings of the First
CoNEXT Workshop on ICT Tools for Emergency Networks and DisastEr
Relief, I-TENDER ’17, pages 1–6, New York, NY, USA, 2017. ACM.

[53] Q. N. Nguyen, A. Frisiello, and C. Rossi. Co-design of a crowdsourcing
solution for disaster risk reduction. In Proceedings of the First CoNEXT
Workshop on ICT Tools for Emergency Networks and DisastEr Relief, I-
TENDER ’17, pages 7–12, New York, NY, USA, 2017. ACM.

[54] B. Bischke, P. Helber, S. Brugman, E. Basar, Zx Zhao, M. Larson, and
K. Pogorelov. The multimedia satellite task at mediaeval 2019: Estimation of
flood severity. In Proc. of the MediaEval 2019 Workshop, Sophia Antipolis,
France, 2019.

[55] L. Lopez-Fuentes, J. van de Weijer, M. González-Hidalgo, H. Skinnemoen,
and A. D. Bagdanov. Review on computer vision techniques in emergency
situations. Multimedia Tools and Applications, 77(13):17069–17107, 2018.

[56] B. Bischke, P. Bhardwaj, A. Gautam, P. Helber, D. Borth, and A. Dengel.
Detection of flooding events in social multimedia and satellite imagery using
deep neural networks. In Proc. of the MediaEval 2017 Workshop, Dublin,
Ireland, 2017.

122 References

[57] K. Avgerinakis, A. Moumtzidou, S. Andreadis, E. Michail, I. Gialampoukidis,
S. Vrochidis, and I. Kompatsiaris. Visual and textual analysis of social media
and satellite images for flood detection@ multimedia satellite task mediaeval
2017. In Proc. of the MediaEval 2017 Workshop, Dublin, Ireland, 2017.

[58] B. Bischke, P. Helber, Z. Zhao, J. De Bruijn, and D. Borth. The multimedia
satellite task at mediaeval 2018. In Proc. of the MediaEval 2018 Workshop,
Sophia Antipolis, France, 2018.

[59] S. Qiu, Z. Zhu, and B. He. Fmask 4.0: Improved cloud and cloud shadow
detection in landsats 4–8 and sentinel-2 imagery. Remote Sensing of Environ-
ment, 231:111205, 2019.

[60] Z. Zhu and C. E. Woodcock. Object-based cloud and cloud shadow detection
in landsat imagery. Remote sensing of environment, 118:83–94, 2012.

[61] A. Farasin and P. Garza. Perceive: Precipitation data characterization by
means on frequent spatio-temporal sequences. In ISCRAM, 2018.

[62] K. Osumi. Detecting land cover change using sentinel-2. Abstracts of the ICA,
1, 2019.

[63] C. Rossi, F. S. Acerbo, K. Ylinen, I. Juga, P. Nurmi, A. Bosca, F. Tarasconi,
M. Cristoforetti, and A. Alikadic. Early detection and information extraction
for weather-induced floods using social media streams. International journal
of disaster risk reduction, 30:145–157, 2018.

[64] L. Lopez-Fuentes, J. van de Weijer, M. Bolanos, and H. Skinnemoen. Multi-
modal deep learning approach for flood detection. In Proc. of the MediaEval
2017 Workshop, Dublin, Ireland, 2017.

[65] B. Bischke, P. Helber, Z. Zhao, J. de Bruijn, and D. Borth. The multimedia
satellite task at mediaeval 2018: Emergency response for flooding events. In
Proc. of the MediaEval 2018 Workshop, Sophia-Antipolis, France, 2018.

[66] L. Lopez-Fuentes, A. Farasin, H. Skinnemoen, and P. Garza. Deep learning
models for passability detection of flooded roads. In Proc. of the MediaEval
2018 Workshop, Sophia Antipolis, France, 2018.

[67] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826,
2016.

[68] A. G Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. ArXiv, 2017.

[69] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. ICLR, 2015.

References 123

[70] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7291–7299, 2017.

[71] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[72] G. Donchyts, J. Schellekens, H. Winsemius, E. Eisemann, and N. van de
Giesen. A 30 m resolution surface water mask including estimation of posi-
tional and thematic differences using landsat 8, srtm and openstreetmap: a
case study in the murray-darling basin, australia. Remote Sensing, 8(5):386,
2016.

[73] AnsuR Technologies AS. UN-ASIGN. App: https://play.google.com/store/
apps/details?id=ansur.asign.un&hl=en_US, FP7 Project: https://cordis.europa.
eu/project/rcn/94375/factsheet/en, 2019.

[74] Istituto Superiore Mario Boella (ISMB). I-REACT. App: https://play.google.
com/store/apps/details?id=it.ismb.iReact&hl=en_US, H2020 Project: https:
//cordis.europa.eu/project/rcn/203294/factsheet/en, 2019.

[75] Clayton Wukich et al. Social media use in emergency management. Journal
of Emergency Management, 13(4):281–294, 2015.

[76] Anita Saroj and Sukomal Pal. Use of social media in crisis management: A
survey. International Journal of Disaster Risk Reduction, page 101584, 2020.

[77] Nayomi Kankanamge, Tan Yigitcanlar, Ashantha Goonetilleke, and Md Kam-
ruzzaman. Determining disaster severity through social media analysis: Test-
ing the methodology with south east queensland flood tweets. International
journal of disaster risk reduction, 42:101360, 2020.

[78] Nayomi Kankanamge, Tan Yigitcanlar, and Ashantha Goonetilleke. How
engaging are disaster management related social media channels? the case of
australian state emergency organisations. International Journal of Disaster
Risk Reduction, page 101571, 2020.

[79] Cornelia Ferner, Clemens Havas, Elisabeth Birnbacher, Stefan Wegenkittl,
and Bernd Resch. Automated seeded latent dirichlet allocation for social
media based event detection and mapping. Information, 11(8):376, 2020.

[80] Anna Kruspe, Jens Kersten, and Friederike Klan. Detection of informative
tweets in crisis events. Natural Hazards and Earth System Sciences Discus-
sions, pages 1–18, 2020.

[81] Mirko Zaffaroni and Claudio Rossi. Water segmentation with deep learn-
ing models for flood detection and monitoring. In Proceedings of the 17th
ISCRAM Conferen, pages 66–74, 2020.

https://play.google.com/store/apps/details?id=ansur.asign.un&hl=en_US
https://play.google.com/store/apps/details?id=ansur.asign.un&hl=en_US
https://cordis.europa.eu/project/rcn/94375/factsheet/en
https://cordis.europa.eu/project/rcn/94375/factsheet/en
https://play.google.com/store/apps/details?id=it.ismb.iReact&hl=en_US
https://play.google.com/store/apps/details?id=it.ismb.iReact&hl=en_US
https://cordis.europa.eu/project/rcn/203294/factsheet/en
https://cordis.europa.eu/project/rcn/203294/factsheet/en

124 References

[82] Laura Lopez-Fuentes, Claudio Rossi, and Harald Skinnemoen. River segmen-
tation for flood monitoring. In 2017 IEEE International Conference on Big
Data (Big Data), pages 3746–3749. IEEE, 2017.

[83] Dan Bînă, George-Alexandru Vlad, Cristian Onose, and Dumitru-Clementin
Cercel. Flood severity estimation in news articles using deep learning ap-
proaches. MediaEval 2019, 2019.

[84] Mirko Zaffaroni, Laura Lopez-Fuentes, Alessandro Farasin, Paolo Garza, and
Harald Skinnemoen. Ai-based flood event understanding and quantification
using online media and satellite data. MediaEval 2019, 2019.

[85] Yu Feng, Sergiy Shebotnov, Claus Brenner, and Monika Sester. Ensembled
convolutional neural network models for retrieving flood relevant tweets. In
Proc. of the MediaEval 2018 Workshop (Oct. 29-31, 2018)., Sophia-Antipolis,
France, 2018.

[86] Muhammad Hanif, Muhammad Atif Tahir, and Muhammad Rafi. Detection
of passable roads using ensemble of global and local features. In Proc. of
the MediaEval 2018 Workshop (Oct. 29-31, 2018)., Sophia-Antipolis, France,
2018.

[87] Anastasia Moumtzidou, Panagiotis Giannakeris, Stelios Andreadis, Athana-
sios Mavropoulos, Georgios Meditskos, Ilias Gialampoukidis, Konstantinos
Avgerinakis, Stefanos Vrochidis, and Ioannis Kompatsiaris. A multimodal
approach in estimating road passability through a flooded area using social
media and satellite images. In Proc. of the MediaEval 2018 Workshop (Oct.
29-31, 2018)., Sophia-Antipolis, France, 2018.

[88] Armin Kirchknopf, Djordje Slijepcevic, Matthias Zeppelzauer, and Markus
Seidl. Detection of road passability from social media and satellite images. In
Proc. of the MediaEval 2018 Workshop (Oct. 29-31, 2018)., Sophia-Antipolis,
France, 2018.

[89] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146, 2017.

[90] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient es-
timation of word representations in vector space. In Proceedings of the
International Conference on Learning Representations (ICLR 2013), 2013.
Workshop poster. Available at https://arxiv.org/pdf/1301.3781.pdf.

[91] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532–
1543, 2014.

[92] Max Bramer. Principles of data mining, volume 180. Springer, 2007.

https://arxiv.org/pdf/1301.3781.pdf

References 125

[93] Yoon Kim. Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[94] Savvas A Chatzichristofis and Yiannis S Boutalis. CEDD: color and edge
directivity descriptor: a compact descriptor for image indexing and retrieval.
In International Conference on Computer Vision Systems, pages 312–322.
Springer, 2008.

[95] Hamid A Jalab. Image retrieval system based on color layout descriptor and
Gabor filters. In 2011 IEEE Conference on Open Systems, pages 32–36. IEEE,
2011.

[96] Savvas A Chatzichristofis and Yiannis S Boutalis. FCTH: Fuzzy color and
texture histogram-a low level feature for accurate image retrieval. In 2008
Ninth International Workshop on Image Analysis for Multimedia Interactive
Services, pages 191–196. IEEE, 2008.

[97] Dong Kwon Park, Yoon Seok Jeon, and Chee Sun Won. Efficient use of local
edge histogram descriptor. In Proceedings of the 2000 ACM workshops on
Multimedia, pages 51–54. ACM, 2000.

[98] Konstantinos Zagoris, Savvas A Chatzichristofis, Nikos Papamarkos, and
Yiannis S Boutalis. Automatic image annotation and retrieval using the joint
composite descriptor. In 2010 14th Panhellenic Conference on Informatics,
pages 143–147. IEEE, 2010.

[99] Bangalore S Manjunath, J-R Ohm, Vinod V Vasudevan, and Akio Yamada.
Color and texture descriptors. IEEE Transactions on circuits and systems for
video technology, 11(6):703–715, 2001.

[100] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4700–4708,
2017.

[101] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[102] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[103] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations, 2015, 2015. Available at https://www.robots.ox.ac.uk/~vgg/
publications/2015/Simonyan15/simonyan15.pdf.

https://www.robots.ox.ac.uk/~vgg/publications/2015/Simonyan15/simonyan15.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2015/Simonyan15/simonyan15.pdf

126 References

[104] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

[105] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. Places: A 10 million image database for scene recognition. IEEE
transactions on pattern analysis and machine intelligence, 40(6):1452–1464,
2018.

[106] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

[107] Benjamin Bischke, Patrick Helber, and Andreas Dengel. Global-local fea-
ture fusion for image classification of flood affected roads from social mul-
timedia. In Proc. of the MediaEval 2018 Workshop (Oct. 29-31, 2018).,
Sophia-Antipolis, France, 2018.

[108] Zhengyu Zhao, Martha Larson, and Nelleke Oostdijk. Exploiting local se-
mantic concepts for flooding-related social image classification. In Proc. of
the MediaEval 2018 Workshop (Oct. 29-31, 2018)., Sophia-Antipolis, France,
2018.

[109] Danielle Dias and Ulisses Dias. Flood detection from social multimedia and
satellite images using ensemble and transfer learning with cnn architectures. In
Proc. of the MediaEval 2018 Workshop (Oct. 29-31, 2018)., Sophia-Antipolis,
France, 2018.

[110] Naina Said, Konstantin Pogorelov, Kashif Ahmad, Michael Riegler, Nasir
Ahmad, Olga Ostroukhova, Pål Halvorsen, and Nicola Conci. Deep learning
approaches for flood classification and flood aftermath detection. In Proc. of
the MediaEval 2018 Workshop (Oct. 29-31, 2018)., Sophia-Antipolis, France,
2018.

[111] Mediaeval 2018 multimedia satellite task. http://www.multimediaeval.org/
mediaeval2018/multimediasatellite/, 2018. Data released: 31 May 2018.

[112] Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao. Learning
distributed word representations for Bidirectional LSTM recurrent neural
network. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 527–533, 2016.

[113] Thomas G Dietterich. Ensemble Methods in Machine Learning. Springer,
2000.

[114] PM Lerman. Fitting segmented regression models by grid search. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 29(1):77–84, 1980.

http://www.multimediaeval.org/mediaeval2018/multimediasatellite/
http://www.multimediaeval.org/mediaeval2018/multimediasatellite/

References 127

[115] Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and Junjie Yan. Fots:
Fast oriented text spotting with a unified network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5676–5685,
2018.

[116] George Awad, Asad A. Butt, Keith Curtis, Yooyoung Lee, Jonathan Fiscus,
Afzal Godil, Andrew Delgado, Jesse Zhang, Eliot Godard, Lukas Diduch,
Jeffrey Liu, Alan F. Smeaton, Yvette Graham, Gareth J. F. Jones, Wessel
Kraaij, and Georges Quénot. Trecvid 2020: comprehensive campaign for
evaluating video retrieval tasks across multiple application domains. In
Proceedings of TRECVID 2020. NIST, USA, 2020.

[117] Kevin Crowston. Amazon mechanical turk: A research tool for organizations
and information systems scholars. In Anol Bhattacherjee and Brian Fitzgerald,
editors, Shaping the Future of ICT Research. Methods and Approaches, pages
210–221, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[118] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effec-
tiveness of data. IEEE Intelligent Systems, 24:8–12, 2009.

[119] Muhammad Imran, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. Pro-
cessing social media messages in mass emergency: A survey. ACM Comput.
Surv., 47(4):67:1–67:38, June 2015.

[120] Muhammad Imran, Carlos Castillo, Ji Lucas, Patrick Meier, and Sarah Vieweg.
Aidr: Artificial intelligence for disaster response. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14 Companion, pages
159–162, New York, NY, USA, 2014. ACM.

[121] C. Rossi, F.S. Acerbo, K. Ylinen, I. Juga, P. Nurmi, A. Bosca, F. Tarasconi,
M. Cristoforetti, and A. Alikadic. Early detection and information extraction
for weather-induced floods using social media streams. International Journal
of Disaster Risk Reduction, 30:145 – 157, 2018. Communicating High Impact
Weather: Improving warnings and decision making processes.

[122] C. L. Lai, J. C. Yang, and y.h. Chen. A real time video processing based
surveillance system for early fire and flood detection. 2007 IEEE Instru-
mentation and Measurement Technology Conference IMTC 2007, pages 1–6,
2007.

[123] Alexander Filonenko, Wahyono, Danilo Cáceres Hernández, Dongwook Seo,
and Kang-Hyun Jo. Real-time flood detection for video surveillance. In
IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics
Society, pages 004082–004085, 2015.

[124] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

128 References

[125] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. CoRR,
abs/1511.00561, 2015.

[126] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. CoRR, abs/1612.01105, 2016.

[127] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs. CoRR,
abs/1606.00915, 2016.

[128] Huikai Wu, Junge Zhang, Kaiqi Huang, Kongming Liang, and Yizhou Yu.
Fastfcn: Rethinking dilated convolution in the backbone for semantic segmen-
tation. CoRR, abs/1903.11816, 2019.

[129] Towaki Takikawa, David Acuna, Varun Jampani, and Sanja Fidler. Gated-
scnn: Gated shape cnns for semantic segmentation. CoRR, abs/1907.05740,
2019.

[130] L. Lopez-Fuentes, C. Rossi, and H. Skinnemoen. River segmentation for flood
monitoring. In 2017 IEEE International Conference on Big Data (Big Data),
pages 3746–3749, December 2017.

[131] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.

[132] Christian Mostege, Michael Maurer, Nikolaus Heran, Jesus Pestana Puerta,
and Friedrich Fraundorfer. Semantic drone dataset, 2019.

[133] A. Criminisi. Msrc-v2 image database, 2005.

[134] A. Y. C. Chen and Corso J. J. Propagating multi-class pixel labels through-
out video frames. In Proceedings of Western New York Image Processing
Workshop, 2010.

[135] Laura Lopez-Fuentes and Claudio Rossi. River segmentation dataset, October
2017.

[136] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv 1409.1556, 09 2014.

[137] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[138] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

References 129

[139] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet
models transfer better? CoRR, abs/1805.08974, 2018.

[140] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bern-
stein, Alexander C. Berg, and Fei-Fei Li. Imagenet large scale visual recogni-
tion challenge. CoRR, abs/1409.0575, 2014.

[141] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,
2012.

[142] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, June 2015.

[143] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In
Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel
Silver, editors, Proceedings of ICML Workshop on Unsupervised and Transfer
Learning, volume 27 of Proceedings of Machine Learning Research, pages
37–49, Bellevue, Washington, USA, July 2012. PMLR.

[144] Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour. Tver-
sky loss function for image segmentation using 3d fully convolutional deep
networks. CoRR, abs/1706.05721, 2017.

[145] Alan G. Glaros and Rex Bryan Kline. Understanding the accuracy of tests
with cutting scores: the sensitivity, specificity, and predictive value model.
Journal of clinical psychology, 44 6:1013–23, 1988.

[146] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

[147] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338, June 2010.

[148] Martin Thoma. A survey of semantic segmentation. CoRR, abs/1602.06541,
2016.

Appendix A

Compactness Loss equation
derivation

In Appendix A from [7], it is stated that the gradient results from the following
equation

∂ lC
∂xi j

=
2

(n−1)nk

[
n×

(
xi j −mi j

)
−

n

∑
l=1

(xil −mil)

]
. (A.1)

However, there are some mistakes in that equation. The first mistake is within
the summation since the samples xi have k components, not n. However, as we will
prove, this is not a unique mistake.

Let us compute the gradient of lC with respect to xi j. Using the definition of the

inner product, we have that zi
T zi =

k

∑
t=1

z2
it . Thus, lC can be written as

lC =
1
nk

n

∑
l=1

k

∑
t=1

(xlt −mlt)
2.

Now, taking partial derivatives of lC with respect to xi j for all 1 ≤ i ≤ n and
1 ≤ j ≤ k, we obtain

∂ lC
∂xi j

=
2
nk

n

∑
l=1

(xl j −ml j) ·
(

∂ (xl j −ml j)

∂xi j

)
.

131

This first step is already incorrect in [7]. The rest of the proof follows similarly.
Let us check it. Note that

∂ (xl j −ml j)

∂xi j
=

 1 if l = i,

− 1
n−1

otherwise.

Thus, we obtain that

∂ lC
∂xi j

=
2
nk

xi j −mi j −
1

n−1

n

∑
l=1
l ̸=i

(
xl j −ml j

)
=

2
nk

[
n

n−1
· (xi j −mi j)−

1
n−1

n

∑
l=1

(
xl j −ml j

)]

=
2

(n−1)nk

[
n · (xi j −mi j)−

n

∑
l=1

(
xl j −ml j

)]
,

retrieving finally

∂ lC
∂xi j

=
2

(n−1)nk

[
n ·

(
xi j −mi j

)
−

n

∑
l=1

(
xl j −ml j

)]
.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Features Fusion with Multimodal learning
	2.1 Hand-crafted vs. Data-driven features
	2.2 Fusion Strategies
	2.2.1 Direct Fusion/Early Fusion
	2.2.2 Flow Fusion
	2.2.3 Adaptive Fusion
	2.2.4 Fusion Operations
	2.2.5 Loss Functions and Feature Fusion Methodologies

	2.3 The Multimodal tasks
	2.3.1 Modalities fusion strategies
	2.3.2 The template of a multi-branch architecture

	2.4 What is next

	I Automotive
	3 Automotive and synthetic datasets
	4 Estimation of speed and distance of surrounding vehicles from a dashboard camera point-of-view
	4.1 Introduction
	4.2 Methodology
	4.2.1 Data collection
	4.2.2 Models

	4.3 Network training
	4.4 Experimental results
	4.4.1 Testing on synthetic dataset
	4.4.2 Testing on real dataset
	4.4.3 Testing on the road
	4.4.4 Computational cost

	4.5 Conclusions
	4.6 Acknowledgement

	5 AA-SGAN: adversarially augmented Social GAN with synthetic data
	5.1 Introduction
	5.2 Background and Related Works
	5.2.1 Trajectory Prediction Methods
	5.2.2 Real-World Datasets
	5.2.3 Data augmentation and synthetic datasets

	5.3 Proposed Method
	5.3.1 Problem definition
	5.3.2 Architecture
	5.3.3 Training Procedure

	5.4 Experimental results
	5.4.1 Path Prediction Accuracy
	5.4.2 Ablation Study

	5.5 Conclusions

	II Natural disasters management
	6 The emergency scenarios
	7 AI-based flood event quantification using online media and satellite data
	7.1 Introduction
	7.2 Related Work
	7.3 Approach
	7.4 Results
	7.5 Analysis and conclusions
	7.6 Acknowledgments

	8 Road passability detection during flood events using social media data
	8.1 Introduction
	8.2 Related Work
	8.3 Dataset
	8.3.1 Metadata
	8.3.2 Images

	8.4 Proposed Solutions
	8.4.1 Algorithm Based on Metadata Only
	8.4.2 Algorithms Based on Image Only
	8.4.3 Algorithm Based on Metadata and Visual Information

	8.5 Evaluation and Results
	8.5.1 Results Using Metadata Only
	8.5.2 Results Using Images Only
	8.5.3 Results Using Images and Metadata

	8.6 Conclusions

	9 Emergency scene description using deep learning approaches
	9.1 Introduction
	9.2 LADI Dataset
	9.3 Models
	9.4 Experiments
	9.5 Conclusion
	9.6 Acknowledgements

	10 Water segmentation for flood detection and monitoring
	10.1 Introduction
	10.2 Related Works
	10.3 The Water Segmentation Open Collection Dataset
	10.4 Methodology
	10.5 Evaluation metrics and configurations
	10.6 Results
	10.7 Conclusion and Future Works
	10.8 Acknowledgements

	11 Conclusions
	References
	Appendix A Compactness Loss equation derivation

