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Abstract
Sarcomas, primary malignant tumors affecting most children and young adults, present high

metastasis recurrence and extremely poor clinical prognosis, posing an urgent need for new

treatment strategies for these young patients. Given the limited mutational burden of this

type of cancer, other types of dysregulation and potential therapeutic solutions need to be

addressed. This thesis investigates the dysregulation of splicing factors and alternative

splicing, considering their known implication in tumorigenesis in other cancers. Leveraging

both computational and statistical methodologies, this research offers a comprehensive

analysis of transcriptomic data from pediatric sarcomas, in particular, 8 Ewing sarcoma (EW)

and 18 Osteosarcoma (OS) samples (enrolled within the national clinical trial SAR-GEN_ITA

“Genomic Profiles Analysis in Children, Adolescents and Young Adult With Sarcomas”,

clinicalTrial.govid:NCT04621201), comparing them to publicly available osteoblast controls.

The investigation was conducted from three possible intervention points for personalized

RNA-based therapies in pediatric sarcomas: (i) identification of alternative splicing events

with negative effects on prognosis to be potentially targeted with splice-switching antisense

oligonucleotides (SSOs); (ii) detection of RBPs with deleterious effect on splicing, to be

targeted with small interfering RNA; and (iii) splicing derived neoepitopes discovery to guide

targeted immunotherapy specifically to cancer cells.

For the first point, differential splicing analysis and cross-intersection with public available

databases, identified alternative splicing events associated with patient prognosis, with 30

and 24 harmful events in OS and EW, respectively, and seven shared between the two

diseases. These events represent potential targets for SSO-based therapies aimed at

improving patient outcomes.

To address the second point, the RNAmars (RNA Motifs And cognate Regulators of

alternative Splicing) algorithm was developed. RNAmars enables the discovery of the

regulatory RBP in alternative splicing dysregulation and its motifs characterization. RNAmars

revealed RBFOX2 as the main exon inclusion enhancer and U2AF2 the primarily exon

silencers in both subtypes.

To tackle the last point, patient-specific splicing-derived neoepitopes were derived, with most

being unique to individual patients. The most common neoepitope, originating from an

alternative 3' splice site in the ATF6B gene, is shared among seven patients.

In conclusion, this research integrates computational and statistical methodologies to

propose therapeutic solutions for pediatric sarcoma patients. These solutions encompass

both personalized and shared strategies, demonstrating a comprehensive approach to

advancing treatment for this challenging patient population.
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Introduction

The genomic and transcriptomic landscape of pediatric

sarcomas

Sarcomas are primary malignant tumors affecting children and young adults ​(Tirtei et al.,

2020)​. They are a set of highly heterogeneous mesenchymal diseases with about 100

histological subtypes (Damerell, Pepper, and Prince 2021). They present a huge variety of

genomic abnormalities and gene expression complexity. The traditional therapy for this type

of tumors is a combination between radiation therapy, surgery and chemotherapy. However,

sarcomas have a 50% chance of developing metastasis and 20% of recurrence after the

treatment (Damerell, Pepper, and Prince 2021). The high metastasis recurrence and

extremely poor clinical prognosis pose an urgent need for new treatment strategies for these

young patients. Therefore the genomic investigation of these tumors is crucial for the

achievement of efficient and personalized therapies. In particular, osteosarcoma (OS) and

Ewing sarcoma (EW) present a high level of both inter- and intra-tumor heterogeneity

leading to multiple clinical and pathologic consequences.

OS and EW are the most frequent bone sarcomas within the pediatric population (Tirtei et al.

2020). OS is developing mainly within the long bones of the arms and legs, while EW occurs

in the pelvis, thigh, lower leg, upper arm, and rib. Furthermore, EW are characterized by a

chromosomal translocation that fuses an RNA-binding protein from the FET family (encoded

by FUS, EWSR1 and TAF15) with transcription factor from the ETS family (encoded mainly

by FLI1 and ERG), creating an aberrant transcription factor. The most common fusion

protein is EWSR1-FLI1 occurring 85% of the time (Grünewald et al. 2018).

These types of tumors are characterized by a limited number of somatic mutations.

(Venkataramany et al. 2022; Gröbner et al. 2018) and are negatively affected by alternative

splicing. Accumulating evidence highlights the relationship between alternative splicing and

with patient survival, suggesting a role of RNA defects in tumorigenesis (Li et al. 2021; Yang

et al. 2019)​.

For example, skipping exon 11 in the insulin receptor INSR gene in OS can lead to an

increase in cell growth, migration, and viability (Venkataramany et al. 2022). Moreover,

skipping exon 8 of the EWSR1 gene in EW is associated with the production of a functional

EWSR1-FLI1 fusion protein (“Functional Genomic Screening Reveals Splicing of the

EWS-FLI1 Fusion Transcript as a Vulnerability in Ewing Sarcoma” 2016).
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A study of 236 patients from the The Cancer Genome Atlas Program (TCGA) detected 9674

alternative splicing events that were negatively associated with patient survival (Li et al.

2021).

Moreover, deregulated RNA Binding Proteins (RBPs) produce negative clinical outcomes of

cancer treatment in sarcoma patients. For instance, the expression of HNRNPM in EW

correlates with treatment resistance and poor patient survival (Passacantilli et al. 2017)​.

Furthermore, the Serine-rich splicing factor 3 (SRSF3) has been proven to be a

proto-oncogene of osteosarcoma cell lines (U2OS). Specifically, SRSF3 controls the

expression of 60 genes and the inclusion of 182 splicing events which are primarily

associated with tumor cell proliferation (Ajiro et al. 2016).

For these reasons the comprehension of splicing regulation in this type of malignancies is

fundamental for supporting the clinical research.

The splicing code

Pre-mRNA splicing is the process by which parts of the RNA molecule are excised (introns)

and other parts are retained (exons). During constitutive splicing, introns are systematically

excised, while exons are retained in a sequential manner.

This process is mediated by a large macromolecular complex called the spliceosome. This

machinery recognizes specific sequences within introns and exons to perform splicing. Key

consensus sequences involved in splicing include the 5' splice site (5'ss) with a GU

dinucleotide at the intron's 5' end, the branch site typically containing an adenosine

nucleotide, and the 3' splice site (3'ss) composed of a polypyrimidine tract and an AG

dinucleotide at the intron's 3' end.

Alternative splicing refers to the process of selectively including or excluding different

combinations of exons and introns in a gene's mRNA transcript.

This combinatorial process allows a single gene to produce multiple mRNA variants, leading

to protein diversity within the cell. In particular, alternative splicing drives proteome diversity

in 95% of human genes and it is finely controlled by both cis-acting regulatory elements and

trans-acting splicing factors.

Specifically, RPBs bind to clusters of short sequences, referred to as multivalent RNA motifs,

to promote or repress a given splicing event in a position-dependent manner (Cereda et al.

2014). Being multivalent, these binding sites are recognized by distinct RBPs. The same

motif can facilitate the inclusion or the exclusion of an exon according to its location at the

exon/intron junctions, even if bound by the same RBP. The multivalency of RNA motifs

enlightened the presence of the 'splicing code' (Baralle and Baralle 2018; Barash et al.
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2010). The complexity of this code is exacerbated by cooperative and competitive

mechanisms exploited by RBPs for mRNA production (Corley et al, 2020).

For example, serine/arginine-rich proteins are usually exon enhancers while heterogeneous

nuclear ribonucleoproteins (hnRNPs) are silencers (Bradley and Anczuków 2023; Van

Nostrand, Freese, et al. 2020; Carazo, Romero, and Rubio 2019; Ule and Blencowe 2019;

Stanley and Abdel-Wahab 2022) (Figure 1).

Figure 1: Adapted from (Stanley and Abdel-Wahab 2022): key cis-acting features and trans-acting

splicing factors that govern splicing. Sequences that are required for spliceosome assembly include

the GU at the 5′ss, the AG at the 3′ss, and the branch site residue A. In light green the spliceosome

component U1 snRNP which initiates splicing by binding to the 5’ss consensus motifs. In brown

another spliceosome component U2 snRNP is recruited at the branch site by the U2AF heterodimer,

composed by U2AF1 and U2AF2 (orange), which in turn recognise the 3’ss motifs. Exonic splicing

and intronic splicing enhancer motifs (ESE and ISE) are represented by red cylinders, while exonic

splicing silencer and exonic splicing enhancers (ESS and ISS) are represented by green cylinders.

These motifs are recognized by specific trans-acting RNA-binding proteins, including SR proteins (for

enhancers) and hnRNPs (for silencers).

Therefore, cracking the splicing code requires a comprehensive characterization of all

possible multivalent RNA motifs (i.e. cis-acting element) and cognate RBPs (i.e. trans-acting

element).

Alterations of the RBPs-mRNA interactions can lead to cancer onset and progression (Julian

P. Venables, Tazi, and Juge 2012; Lee and Abdel-Wahab 2016). Moreover, the altered

expression of RBPs occurs in many different cancer types (Del Giudice et al. 2022; Kahles

et al. 2018). For example, the dysregulation of transcription factors regulating RBPs such as
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MYC and FOXA1 was shown to provoke a disruption of splicing landscape in prostate

cancer (Phillips et al. 2020; Del Giudice et al. 2022).

However splicing alterations are not only due to RBPs altered expression, but are also

caused by cis-acting mutation in the motifs and trans-acting alteration causing a loss or gain

of functional domains of the RBPs. The loss of function in RBPs can occur due to somatic

mutations in the RNA encoding the protein or as a result of alternative exon excision. This

feedback-loop mechanism, wherein splicing events lead to abnormalities in the RBPs that

govern splicing, is a well-known process used by proteins to regulate themselves (Del

Giudice et al. 2022; Guo, Jia, and Jia 2015; Pervouchine et al. 2019).

Proposed strategies for RNA-based therapies

Considering the strong connection between splicing and sarcomas, RNA-based therapy can

prove to be a possible solution for the cure of these tumors (Yuanjiao Zhang et al. 2021).

Furthermore, the integration of data analysis and computational methodologies has paved

the way for advancements in precision medicine (Del Giudice et al. 2021).

There are mainly three possible intervention points that could be targeted through drugs and

that can be identified using computational approaches (Figure 2): (i) splice-switching

antisense oligonucleotides (SSOs) binding to isoforms, (ii) small molecules targeting splicing

factors, and (iii) Immunotherapy targeting splicing derived neoepitopes. These strategies

tackle the tumor at three different levels: at the RNA level for the SSOs, the protein level for

the small molecules and at the cellular level for the immunotherapy. In particular:

1. SSOs have the ability to form complementary pairs with specific RNA sequences and

can induce the degradation of the targeted isoform. Consequently, the aberrant

transcript harboring the alternative splicing event is prevented from being translated

into protein, thereby neutralizing its potential harmful effects. This can be exploited to

target alternative splicing events associated with cancer progression or patients'

survival.

Moreover, SSOs can also be exploited to modulate inclusion and exclusion of an

exon by binding the cis-acting elements in the pre-mRNA sequence and preventing

trans-acting elements from binding (Zhu et al. 2022).

2. Small molecules can bind to proteins and they can modulate their levels. Specifically,

they can be exploited to inhibit splicing regulators that have deleterious effects on

splicing and therefore limit the production of alternative isoforms (Zhu et al. 2022;

Kim 2022).
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3. The immunotherapy strategy is founded on the concept that tumors and normal cells

possess distinct splicing junctions. When these splicing junctions are translated into

proteins, they lead to the production of different antigens that are presented on the

cell surface. Evidence suggests that splicing alterations have more potential to

produce neoepitopes with respect to somatic mutation (Wang et al. 2021; Oka et al.

2021). This can be exploited to guide T-cells to target tumor cells which are

specifically presenting tumor-specific neoepitopes.

Figure 2: Schematic illustration of the possible RNA therapies intervention points: A. Exploit

splice-switching antisense oligonucleotides (SSOs) to target poor prognosis-related isoforms. B.
Employ SSOs to modulate inclusion of exons by preventing RBPs from binding. C. Utilize small

interfering RNA to inhibit RBPs having deleterious effects on splicing. D. Leverage immunotherapy to

guide T-cells to target tumor cells presenting tumor-specific and splicing derived neoepitopes

The thesis is divided into three major chapters that are aimed at the identification of

candidates for the aforementioned intervention points via statistical and computational

strategies. In the first chapter of the thesis, I will elucidate the methodology employed to

identify alternative events that exhibit a negative correlation with patient survival, making

them potential candidates for targeted interventions using SSOs.

To address the challenge of identifying the proteins accountable for alternative splicing, I

developed a computational approach for the identification of multivalent RNA Motifs And

cognate Regulators of alternative Splicing (RNAmars) algorithm, which will be explained in

the second chapter. This tool is aimed at guiding the identification of the RBPs responsible

for the splicing alteration.
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In the third chapter, ISOTOPE pipeline is utilized to identify the splicing derived neoepitopes,

which can be potentially targeted by immunotherapy (J. L. Trincado et al. 2021).
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Data overview

Sarcomas have low tumor mutational burden

Within SAR_GEN-ITA (ClinicalTrial.gov id:NCT04621201), 46 young patients (up to 25 years

old) affected by Osteosarcoma (OS) and Ewing Sarcoma (EW) were enrolled.

All patients underwent whole exome sequencing (WXS), and among them, 34 individuals

also underwent total RNA sequencing (RNA-seq). WXS data revealed low tumor mutational

burden (number of somatic mutation within 1M base pairs) and high copy number burden

among patients (estimated by Sigminer, see methods) (Figure 3). In particular, 32 patients

showed amplification or high-level amplification (more than four amplified copies) of different

genes, indicating high genomic instability among these types of cancers. This observation

corroborated the previous findings that sarcomas exhibit infrequent mutations but high

genome instability (Gröbner et al. 2018).

Both OS and EW exhibited notable genetic heterogeneity, not only within individual tumors

but also across different tumors of the same type. Furthermore, within the genetic landscape

of these sarcomas, the pool of actionable targets, i.e. those genes that can be specifically

targeted with therapeutic interventions (see Methods), is found to be relatively limited. The

restricted mutational landscape poses the need to explore other types of dysregulations and

potential therapeutic intervention points through alternative sources, such as RNA.

By analyzing RNA-seq data, the majority of EW (8 out of 11, 72%) were characterized by

EWSR1–FLI1 fusion which occurs in 85% of the cases (Damerell, Pepper, and Prince 2021).

A patient also manifested the EWSR1–ERG fusion, which arises at a 5-10% rate (Damerell,

Pepper, and Prince 2021).
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Figure 3: Tumor mutational burden and Copy number variation derived from WXS on 46 Ewing and

Osteosarcoma patients. A. Tumor mutational burden expressed in the number of somatic mutations

within 1M base pairs. B. Copy Number Burden expressed in percentage of copy number variation in

the whole exome. Color code defines the disease subtype. C. The top heatmap collects patients in

columns and genes in rows and the colored square defines the presence of the driver somatic

mutation within the gene and the patient. Cell color is the mutation type. Lateral barplot measures the

number of somatic mutations across patients within the same gene. Single column heatmap at the

right is black for actionable genes. Middle heatmap represents the amplification level of each gene

across patients. Bottom heatmap indicates gene fusions. When the sample did not undergo RNA-seq

it was indicated by a gray cell.

Only 26 samples among all the RNA-sequenced had at least 5 million reads and were

retained for all the downstream analysis (Figure 4). The selected patients were 14 years old

on average at the moment of enrollment, with the youngest patient being two years old

(st033).
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Figure 4: Landscape of the 34 patients that underwent RNA-seq. On the left hand panel the number

of reads that were assigned to genes (units in million reads). Red bars are the samples with at least

50 million reads. On the right hand panel the age of the patients. Left side annotation and point color

code indicate the disease subtype.

Analysis on a clinical case of EW with Down syndrome

An individual with a unique characteristic of having Down syndrome was examined

separately among the patients in the study. This specific patient, referred to as "st033", is the

youngest among the entire group (two years old). RNA-seq confirmed the presence of the

EWSR1-FLI1 fusion (Figure 3). To understand the characteristics of this particular case

study, the sample was compared with samples of similar age taken from the St. Jude

database (McLeod et al. 2021). Over-representation analysis of pathways from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) revealed an enrichment of immune- and

infectious-disease related pathways in up-regulated genes. In particular, 20% of the

differentially expressed genes belonged to the cytokine-cytokine receptor interaction

pathway (Figure 5). Performing the same analysis using the Hallmark gene sets (Liberzon et

al. 2015) showed an enrichment of immune related pathways in up-regulated genes

(Figure 5). This work is available as a preprint in the MedRxiv portal (Peirone et al. 2023)
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Figure 5: Over-representation analysis results on: A. KEGG genes sets B. Hallmark gene sets.

Shape size indicates the fraction of DEG in each pathway. The Rich Factor represents the fraction of

genes in a pathway that are differentially expressed divided by the genes annotated to that pathway.

Color key represents the statistical significance (FDR) of the enrichment. Only enriched pathways

(FDR<0.1), if any, are shown and sorted by statistical significance. No enrichment found for

down-regulated genes.
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Methods

Sequence alignment and variant calling

Somatic mutations were identified through the integration of the already published pipeline

(Cereda et al. 2016) with the GATK Best Practice guidelines as implemented in the HaTSPiL

framework (Morandi et al. 2019). In particular, reads from each sample were aligned to the

human genome reference (GRCh37/hg19) using Novoalign (http://www.novocraft.com/) with

default parameters.

At most three mismatches per read were allowed and PCR duplicates were eliminated using

the Picard Markduplicates tool (Broad Institute 2022).

To enhance the accuracy of variant identification, local realignment around indels was

performed using GATK RealignerTargetCreator and IndelRealigner tools.

Single nucleotide variants (SBSs) and minor insertion/deletions (IDs) were detected using

independent analyses on tumor and normal samples via MuTect v.1.1.17 (Cibulskis et al.

2013), Strelka v.1.0.15 (Saunders et al. 2012), and Varscan2 v.2.3.6 (Koboldt et al. 2012).

Only variants designated as 'KEEP' in MuTect and 'PASS' in Strelka were taken into

consideration. SBSs and IDs were retained if they met two criteria: (i) possessing an allele

frequency of at least 5%, and (ii) occurring at a genomic position with a minimum coverage

of 10 reads.

Copy number detection and purity and ploidy estimation

Somatic CNV regions were detected employing Sequenza v.3.0.0 (Favero et al. 2015) with

parameters window=5mb and min.reads.baf=4. Only positions covered by a minimum of 10

reads were retained in the analysis. To identify amplified and deleted genes, the genomic

coordinates of the aberrant regions were intersected with those of 20,297 human protein

coding genes of the GENCODE GRCh37 version 28 (Frankish et al. 2019). A gene was

deemed as altered if a minimum of 80% of its length fell within an aberrant region. Copy

Number burden was estimated using the “Sigminer” package starting from Sequenza results.

Identification of cancer driver mutations

In the tumor sample, SBSs and IDs from the three different tools were identified as somatic if

absent in the normal counterpart. Nonsilent mutations (i.e. nonsynonymous, stopgain,

stoploss, frameshift, nonframeshift and splicing modifications) were identified using
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ANNOVAR (K. Wang, Li, and Hakonarson 2010) with RefSeq v.64

(http://www.ncbi.nlm.nih.gov/RefSeq/) as a reference protein dataset.

SBSs and ID falling within 2 bp from the splice sites of a gene in one of the three datasets

were considered as splicing mutations.

The Network of Cancer Genes v.5 (An et al. 2016) (http://ncg.kcl.ac.uk/) was used to collect

a list of cancer genes. This list was exploited to select 183 and 518 pediatric and adult

cancer driver genes, respectively. Of these, 23 and 63 were pediatric and adult sarcoma

driver genes, respectively. Moreover, a compilation of 164 genes exhibiting actionable

alterations was assembled using the 'PrecisionTrialDrawer' R package (Melloni et al. 2018)

and subsequently regarded as actionable genes. Genes harboring nonsilent mutations were

annotated using these two gene lists.

All non-silent mutations, excluding frameshift substitutions, were preserved under two

conditions: (i) they were identified by a minimum of two variant callers, or (ii) they were

located within genes annotated as cancer drivers and/or actionable.

Gene fusion and expression analyses of RNA-seq data

Raw sequencing reads underwent trimming to eliminate nucleotide overlaps between read

pairs at both ends using the bbduck tool from bbmap (Bushnell 2014) v.38.18 with

parameters forcetrimright=50 and minlength=30. Trimmed reads were aligned to the human

genome reference GENCODE GRCh38 version 33 (Frankish et al. 2019) using STAR

v.2.7.3a (Dobin et al. 2013) in basic two-pass mode removing duplicates and preventing

multimappings (i.e. --bamRemoveDuplicatesType UniqueIdentical and

--outFilterMultimapNmax 1). Moreover, the following parameters were used:

--alignInsertionFlush Right --outSAMstrandField intronMotif --outSAMattributes NH HI NM

MD AS XS --peOverlapNbasesMin 20 --peOverlapMMp 0.25 --chimSegmentMin 12

--chimJunctionOverhangMin 8 --chimOutJunctionFormat 1 --chimMultimapScoreRange 3

--chimScoreJunctionNonGTAG -4 --chimMultimapNmax 20 and

--chimNonchimScoreDropMin 10. Gene fusions were identified using STAR-Fusion v. 1.9.0

with options --min_FFPM 0 --FusionInspector validate --examine_coding_effect. Only fusions

(FFPM≥0.1, LargeAnchorSupport=”YES”, LeftBreakEntropy≥1 and RightBreakEntropy≥1)

were retained for further analysis. Read counts at gene level were estimated using

featureCounts from Subread v. 2.0.0 (Liao, Smyth, and Shi 2014) with parameters -O

--primary -Q 1 -J -s 2 -p -B. The number of transcripts per million reads (TPM) was

calculated using the expression values of 19,923 protein coding genes.
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Chapter 1: Unveiling the transcriptomic alterations
In this chapter, I will thoroughly investigate the transcriptomic alterations landscape,

encompassing gene expression patterns and alternative splicing events. Considering the

lack of matched normal tissue, I have used publicly available osteoblast data that have

previously been used as controls within a study of osteosarcomas samples (Moriarity et al.

2015) (Accession code GSE57925).

Through gene set enrichment analysis, I will derive key characteristics specific to OS and

EW. Additionally, I will identify a subset of alternative splicing events that significantly impact

patient survival, designating them as potential targets for therapeutic intervention using

SSOs.

Results

Development and cancer genes are deregulated in sarcomas

Sarcomas and Osteoblast gene expression data were visually inspected through Principal

Component Analysis (PCA) which revealed a good separation between disease types and

controls (Figure 6). Differentially Expressed Genes (DEGs) were then defined with both a

parametric approach (DESeq2) and a non parametric approach (Wilcoxon test, see

Methods). These approaches were followed by bootstrapping simulations to mitigate the

impact of sample size disparities and estimate empirical significance levels similarly to a

previously described approach (Del Giudice et al. 2022). In both subtypes the number of

upregulated genes in sarcomas was higher than the downregulated genes. Interestingly,

there was a substantial overlap of commonly dysregulated genes between the two subtypes

(1376 genes with Jaccard index = 38,3%). The gene dysregulations were consistent

between the two sarcomas subtypes (R=0.95, p<2.2e-16) and there were no genes with

opposite log2 Fold Change. This finding suggests that even though OS and EW are distinct

diseases with unique clinical characteristics, they exhibit a coherent pattern of gene

expression alterations.
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Figure 6: A. Principal Component Analysis of gene expression of 18 OS patients (gold), eight EW

patients (light blue) and 3 OB cell lines (gray). B. Volcano plots of DESeq2 p-value adjusted and log2

Fold Change. Horizontal line represents p-value adjusted=0.01 and vertical lines represent absolute

log2 Fold Change = 2. Gray dots represent genes that are not defined as differentially expressed (see

Methods). C. Number of differentially expressed genes for OS and EW and their overlap. Percentages

represent the Jaccard index. D. Scatter plot and Pearson correlation between OS and EW log2 Fold

Change

To assess the biological processes affected by DEGs I performed gene ontology analysis.

Cell-adhesion related terms (leukocyte_cell_cell_adhesion and cell_substrate_adhesion)

were among the top five enriched terms in up-regulated genes in sarcomas compared to

osteoblast controls, suggesting a possible disruption of cells communication (Figure 7).

Indeed, cell-to-cell adhesion has been extensively associated with cancer progression

(Janiszewska, Primi, and Izard 2020; Farahani et al. 2014). Moreover, I also found immunity

related terms within up-regulated genes, such as leukocyte migration and cell activation

involved in immune response. Conversely, genes that experienced a reduction in expression

were associated with terms related to bone development, such as "response to BMP" (Bone
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Morphogenetic Protein), "ossification," "collagen fibril organization," and collagen metabolic

process. This observation reveals a deficiency in genes related to bone and tissues

development within Sarcomas.

Figure 7: Biological processes Gene Ontology. Columns are stratified by disease subtype (OS, EW)

and by direction of regulation (Up or Down). Rows represent biological pathways. Size and ball color

are proportional to -log10(p-value adjusted).

To take the pathways analysis further, I wondered whether other specific classes of genes

were enriched in DEGs.

In particular, I was interested in transcription related pathways such as Epigenetic Modifiers

(EMs), Transcription Factors (TFs) and RBPs. Moreover, due to the well-documented

disruption of these pathways in cancers, I took into account both the list of cancer genes and

development-related genes (Nwabo Kamdje et al. 2017; Dressler et al. 2022). Finally, in light

of the cell-adhesion pathway disruption identified in the previous analysis, I expanded the

investigation to incorporate the ligands and receptors derived from the FANTOM database

(Lizio et al. 2019). This additional step aimed to assess the extent of deregulation within the

cell signaling network. I tested the enrichment of DEGs within these six groups of genes

using the Fisher’s enrichment test.
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No enrichment was found in EM, TFs and RBPs (Figure 8). On the contrary, there was an

enrichment of DEGs in development and cancer genes (pv<1e-34 and pv<3.3e-9) for both

the cancer subtypes (Figure 8). Children's growth is characterized by an intense cell

proliferation and differentiation starting from the early fetal development (Moore 2009)

therefore, the disruption of developmental process has the potential to trigger oncogenesis.

In previous studies it has been suggested a link between cancer and developmental genes

(An et al. 2015). The significant enrichment of dysregulated developmental genes in this

analysis endorse this hypothesis.

Figure 8: Fisher’s enrichment test within different class of genes. Test if performed between DEGs

and non significant genes (ns). Y-axis represents the proportion of genes within the class and the

absolute number is noted inside the bar.

The results of this preliminary analysis on gene expression expose that the transcriptional

dysregulation is not affecting RNA nor DNA binding proteins. Instead, a significant portion of

the differentially expressed genes appears to be intricately linked to developmental

processes and intercellular communication pathways. However, to understand the

alterations more deeply, a finer and more comprehensive analysis at the transcripts level is

necessary.
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Landscape of alternative splicing in sarcoma

To retrieve alternative splicing events I exploited rMATS (Shen et al. 2014) software, which

enables the identification of exons skipping (ES), mutually exclusive exons (MXE), intron

retention (IR), alternative 3’ splice site (A3SS) and alternative 5’ splice site (A5SS). For each

event type rMATS produces three files: one for annotated events, one for novel junctions

(novel JN) and one for novel splice sites (novel SS). Therefore, each event can be labeled

as novel or annotated. However taken as it is, rMATS result does not clarify whether the

novelty relies on the inclusion junction or exclusion junction (or both).

To overcome this issue I developed a computational strategy to assign the novelty type to

each event (Figure 9). This method firstly creates a list of exons and introns coordinates and

a set of subsequential intron chains from each transcripts of the reference comprehensive

annotation (GRCh38 v33).

Figure 9: Strategy for right classification of novel junctions.
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Then it compares each inclusion and exclusion junction from all rMATS events to check

whether they are found in the reference lists. If none of them are matching the reference, the

event will be labeled as “always novel”. If only inclusion or exclusion JN are found then the

event is labeled as “exclusion novel” or “inclusion novel” respectively.

The aforementioned strategy allowed me to notice some false novel splice sites and false

novel junctions identified by rMATS. Indeed, I found 849 and 681 misclassified junctions out

of 348,325 and 214,028 total junctions in OS and EW respectively (Figure 10A). From

hereafter I used the corrected junction type assignment.

Alternative Splicing Events (ASEs) were detected through a process that involved filtering

events based on rMATS statistics, in conjunction with a non-parametric method, as detailed

in the Methods section. A total of 2158 and 1367 ASEs were found, prevalently composed

by MXE and ES (Figure 10B). Only 219 exons were common between the two diseases

(Jaccard index of 12%), but they showed high DPSI correlation (R=0.96, p<2.2e-16) and no

opposite behavior (i.e. opposite sign of DPSI) (Figure 11A-B).

Figure 10: rMATS events. A. Junctions rMATS misclassification, on the left side of the Sankey

diagram there are the original rMATS labels (also defined by color code), on the right side the
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corrected labels retrieve from annotation comparison. B. Number of alternative splicing events

stratified by junction type and event.

I wondered whether ASEs would enrich the same classes as DEGs. To address this

question I performed a one-tailed Fisher’s enrichment test (with alternative=’greater’) on

alternative versus constitutive exons in the same classes used in the DEG analysis in the

previous section. The results showed an opposite pattern with respect to DEG enrichments.

For example, both TFs and EMs displayed significant enrichment in both diseases, indicating

a more refined transcriptomic regulation by these classes through splicing rather than at the

gene expression level (Figure 11C). Conversely, RBPs were found enriched by ASEs only in

OS. Furthermore, developmental genes, cancer drivers and ligands and receptors genes

which exhibited pronounced enrichment in DEGs, were not enriched in alternative spliced

genes (Figure 11C). As a matter of fact, the intersection between differentially spliced genes

(DSGs) and DGEs was minimal in both subtypes, yielding a Jaccard index of 0.011 and

0.015 for OS and EW respectively (Figure 11D).

Figure 11: landscape of ASEs. A. Number of total ASEs in the two diseases and the intersection and

Jaccard index in percentage between the two. B. Scatter plot and Pearson’s correlation coefficient of

inclusion levels between OS and EW. C. Proportion of ASEs and Fisher’s enrichments within classes

of genes. D. Number of differentially expressed genes (DEGs) and differentially spliced genes (DSGs)

and their overlap in the two subtypes.

28



To identify the biological processes underlying the genes affected by splicing, I assessed the

over-representation analysis (ORA) of genes with at least one ASE in the list of KEGG

canonical pathways (Kanehisa and Goto 2000) and Biological Processes gene ontology term

up to 8th level. “Spliceosome'' appeared among the top 10 most significant terms (p-value

adjusted ≤ 0.1) in the KEGG pathways, and “mRNA processing” was the most enriched term

in biological processes in both disease subtypes (Figure 12). Also “RNA splicing” pathway

was heavily enriched in both OS and EW, suggesting a widespread alternative splicing

dysregulation in splicing regulation genes.

Figure 12: Over representation analysis of genes containing at least one alternative splicing event.

Top panel collects pathways from KEGG and bottom panel collects pathways from Biological Process

gene ontology terms. Shape and color define the disease. Point size defines -log10(p-value adjusted)

However, it is important to note that the classical ORA does not take into account the

number of alternative exons within a gene, potentially introducing bias toward genes with

numerous exons. Given that Spliceosome genes have significantly more exons (Figure 13)

(considering the longest transcript among genes) the classical ORA could lead to false

results.
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Figure 13: Number of exons within the longest transcript in genes. Wilcoxon test is performed

between spliceosome genes and the rest of protein coding genes

To overcome this problem I developed a binomial ORA inspired by previously published

analysis (Wang et al. 2021), (see Methods). Exploiting the binomial test enables to keep into

consideration multiple alternative exons within the same gene, thereby enhancing the

accuracy of the analysis. With the binomial ORA, “RNA Splicing” term is still highly

significant (FDR = 1.98e-08 for OS and FDR=9.98e-03 for EW). However, when ranking the

pathways by FDR this term is no more among the top 10 ranked terms being the 23-th place

for OS and 218-th place for EW (Figure 14). Same held true for the “mRNA processing”

pathway which was still significant but not among the top 10. In contrast, within the top

enriched terms I found cell cycle related terms (Figure 14). Also the “Spliceosome” term in

the KEGG pathway is still significant (FDR = 2.06e-4 for OS and 0.078 for EW) but no more

at the top 10 terms (16th and 34th for OS and EW). Interestingly, the top term in the KEGG

pathway is “MAPK signaling pathway” whose activation has been already related to cancer

proliferation (Yuan et al. 2020).
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Figure 14: Binomial tests on the number of alternative exons within the total number of exons in the

pathway. Shape and color define the disease. Point size defines -log10(p-value adjusted)

In summary, in pediatric sarcomas there exists a limited intersection of target genes between

transcriptional and splicing alterations. Notably, alternative splicing primarily influences

genes linked to transcription factors (TFs) and epigenetic modifiers (EMs), in addition to the

MAPK signaling pathways, while transcriptional alterations target developmental processes,

cancer genes and cell membrane proteins.

Identification of survival related alternative splicing events

Given previous findings that demonstrated a connection between ASEs and patients'

prognosis (Li et al. 2021), my goal was to identify any splicing abnormalities in our patients

that could potentially affect their prognosis. To accomplish this, I utilized differential splicing

data from a previously published analysis that was conducted on the sarcomas cohort using

TCGA data (Kahles et al. 2018). I stratified 181 sarcomas patients with available clinical data

according to low and high cumulative event inclusion of each group (see Methods). I

considered four types of events: exon skipping, alternative 3’ and 5’ and intron retention and

then a univariate Cox proportional hazard model was used to estimate Hazard Ratio (HR)
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and log-rank p-value for each event. Events with log-rank p-value≤0.1 were considered as

significant related to patient survival. TCGA events were intersected with alternative events

as defined before by evaluating the junction similarity (see Methods). I found a highly

significant enrichment of survival related events in the alternative events for both diseases

(54 and 57 for OS and EW, respectively, Fisher’s p-value <1e-12) (Figure 15).

Figure 15: A. Proportion of survival related exons in alternative and constitutive exons. Number in the

bar is the absolute number of exons. B. Venn Diagrams of the subsequent filters to retrieve damaging

events candidates in the two diseases.

To obtain a list of potential events significantly correlated with patient survival, called

hereafter as “damaging events”, I employed a systematic filtering approach in order to

ensure a high level of confidence in the results. First, I narrowed down the survival-related

events to a specific set of exons characterized by detrimental levels of inclusion (Figure 15).

In particular, I adopted a previously established approach (Del Giudice et al. 2022), wherein I

defined as “harmful” those ASEs with DPSI>0 and HR>1 (bad prognosis with inclusion) or

DPSI<0 and HR<1 (bad prognosis with exclusion) remaining with 32 and 29 events for OS

and EW respectively.

To be more stringent with the prognostic candidates I wanted to further filter out transcripts

that could potentially undergo degradation. In some cases, the inclusion or the exclusion of

an exon alters the coding part of a transcript introducing a PTC. This phenomenon leads to

the activation of a surveillance system that degrades transcripts with Premature Termination

Codon (PTC) called Nonsense Mediated Decay (NMD) (Pervouchine et al. 2019).The exon

that leads to PTC formation through inclusion is referred to as a "poison" exon, while its

exclusion is termed an "essential" exon. Therefore, to delve deeper into this mechanism I

intersected the cassette exons with the previously annotated poison and essential exons

(Pervouchine et al. 2019). I defined poison exons with DPSI>0 or essential exons with

DPSI<0 as “NMD targets” in sarcomas. The transcripts containing these events are

presumably going to be degraded and therefore they are not going to produce an aberrant
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protein that could impact prognosis. Only a limited subset of harmful exons were targeted by

NMD and filtered out.

Following this filtering process, a total of 30 events in OS and 24 events in EW were

identified as having a negative association with patient prognosis. Notably, seven of these

events were found to be shared between the two diseases, indicating potential

commonalities in their impact on patient outcomes (Figure 16 and Table 1). These identified

events represent potential candidates for SSOs targeting. Such targeting has the potential to

induce degradation, ultimately favoring an improvement in patient prognosis.
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Figure 16: Selection of candidates of damaging events. A-B: Scatter plot between Hazard Ratio (HR)

and DPSI in OS (A) and EW. C. Common damaging events between the two diseases and their

HR-DPSI scatterplot.

Gene name TCGA event id surv.logrank_pval surv.hazard_ratio DPSI.OS DPSI.EW Alternative coordinates

CPSF1 alt_5prime_200901 1.3E-02 1.79 0.139 0.145 chr8:144398778-144398793

WSB1 exon_skip_150148 9.7E-02 0.61 -0.329 -0.394 chr17:27307743:27307919

RPL13A alt_5prime_112598 3E-02 0.52 -0.111 -0.146 chr19:49490090-49489912

SLC20A1 alt_5prime_123545 5.2E-02 1.72 0.247 0.217 chr2:112652947-112652798

SAP30L exon_skip_439030 8E-02 0.56 -0.119 -0.137 chr5:154452455:154452499

H2AC6 exon_skip_448494 6.2E-02 0.51 -0.425 -0.496 chr6:26127697:26127761

NF1 exon_skip_150654 8E-02 0.42 -0.184 -0.394 chr17:31252937:31253000

Table 1: Common damaging events candidates between OS and EW.

One of the common candidates, NF1 exon 23 (exon_skip_150654) that when skipped is

associated with worse prognosis (Figure 16 and Figure 17), is an interesting candidate as it

is a canonical cancer driver given NCG7 annotation, in particular a tumor suppressor gene.

NF1 is a negative regulator of RAS activity pathway arising from the RasGAP domain where

exon 23 falls in. RasGAP domain inactivates RAS making it shift from its active GTP-bound

form to its inactive GDP-bound (Biayna et al. 2021; Tomazini and Shifman 2023). Exon 23 of

NF1 gene is 63 nucleotides long, meaning that its skipping induces a loss of a part of the

RasGAP domain. This could lead to a malfunctioning of RAS repression, yielding a RAS

proteins activation. Hence, controlling the inclusion of NF1 exon 23 serves as a mechanism

to ensure Ras signaling remains at the right levels (Hinman et al. 2014). RAS proteins have

extensively associated with cancer since its mutations are found in 28% of human tumors

(Liu, Xie, and Chen 2023; “Comprehensive Pancancer Genomic Analysis Reveals

(RTK)-RAS-RAF-MEK as a Key Dysregulated Pathway in Cancer: Its Clinical Implications”

2019).
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Figure 17: NF1 exon 23 candidate: A. Kaplan Meier curve stratified by inclusion level. Crosses

represented censors. B. Sashimi plot of three samples, one EW, one OS, one OB respectively.

Number of reads are written over the splicing junction. Below the sashimi there are all the isoforms of

NF1 gene of the GENCODE comprehensive annotation.

Nonetheless, it is worth noting that the incorporation of exon 23 of NF1 has been associated

with the activation of RAS/MAPK oncogenic pathways, as observed in High-grade diffuse

glioma (Siddaway et al. 2022). Hence, the consequences of exon 23 inclusion may vary

across different cancer subtypes.

To assess the behavior of NF1 exon 23 across different tumor types I retrieved data from

Oncosplicing database (Yangjun Zhang et al. 2021) and checked the survival HR regarding

its inclusion. Only tumors with matched normal were available in the database. Interestingly,

NF1 exon 23 was always significantly associated with patient prognosis (log-rank p-value ≤

0.1). However, the impact of its inclusion on survival outcomes varied depending on the

specific tumor subtype. For instance, in Lung Squamous Cell Carcinoma (LUSC) and

Esophageal Carcinoma (ESCA), its exclusion correlated with lower survival (Figure 18), as

observed for sarcomas. Whereas, in Bladder Urothelial Carcinoma (BLCA), Brain Lower

Grade Glioma (LGG) and Skin Cutaneous Melanoma (SKCM) its inclusion led to a low

survival probability (Figure 18). This underscores the significance of exon 23 modulation

across a diverse spectrum of cancers, with distinct effects attributed to its inclusion or

exclusion.

The NF1 gene is also highly mutated in osteosarcomas and its loss promotes colony

formation (Moriarity et al. 2015). Its amplification is mainly related to the tumor predisposition

syndrome “Neurofibromatosis type 1” (Yap et al. 2014). This disease is thought to be the

precursor of many cancer types, also some types of sarcomas, such as Ewing sarcoma

(Fernandez et al. 2019; Chowdhry et al. 2009), osteosarcomas (Afşar et al. 2013) and

rhabdomyosarcoma (Brems et al. 2009). Considering its correlation with prognosis and
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consistency between the two diseases, it is reasonable to think that a relationship might also

exist with OS and EW as well.

Figure 18: Log-rank p-value and Hazard Ratio from Oncosplicing database of five cancer types.
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Methods

Differential expression analysis
Differential expression analysis was taken forward with two different approaches, similarly as

previously done in unbalanced datasets (Del Giudice et al. 2022): exploiting a parametric

method such as DESeq2 (Love, Huber, and Anders 2014) and a non parametric method

using Wilcoxon test to account for the imbalance between groups. First, DESeq2 was used

to compare OS vs OB and EW vs OB. Concomitantly, a Wilcoxon test was performed

between the same group and a permutation test was used to retrieve the null distribution.

Empirical p-value was defined as follows:

𝑝. 𝑒𝑚𝑝 =  
1+#(𝑝

𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
< 𝑝

𝑤𝑖𝑙𝑐𝑜𝑥𝑜𝑛
)

1+#𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

where is the p-value is Wilcoxon p-value between the non permuted groups, 𝑝
𝑤𝑖𝑙𝑐𝑜𝑥𝑜𝑛

is the Wilcoxon p-value of a single permutation. Differentially Expressed Genes𝑝
𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

(DEGs) were defined as those with DESeq2 p-value adjusted ≤ 0.01, absolute log2 Fold

Change > 2 and Wilcoxon p-value adjusted ≤ 0.1 and p.emp ≤0.1.

Gene annotations and enrichment analysis
Transcription factors (TFs), RNA-binding proteins (RBPs) and Epigenetic Modifiers (EMs)

lists were manually curated exploiting different studies (Huether et al. 2014; Van Nostrand,

Freese, et al. 2020; Gerstberger, Hafner, and Tuschl 2014; Attig et al. 2018; Lambert et al.

2014). Canonical Cancer Drivers (CCD) genes and putative CCD were retrieved from the

Network of Cancer Genes (NCG7.1) (Dressler et al. 2022). Development related genes were

retrieved from parsing the term “development” among all the ten branches of Biological

Processes of Gene Ontology (GO:0008150) using ‘GO.db’ v3.16.0 R package. Ligands and

receptors gene names were downloaded from FANTOM website (Lizio et al. 2019).

Enrichment of DEGs versus the non significant genes in each annotation class was

performed through a one-tailed Fisher’s enrichment test using fisher.test function in ‘stats’ R

package v4.2.3.

Binomial Over-representation analysis
The binomial over-representation analysis is evaluating the probability for a list of genes to

have at least X number of alternative exons, among all the possible exons Y in the same list

(or pathway), considering as background probability where K is the total number of𝑝
0

= 𝐾
𝑁
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alternative exons and N is the total number of exons across all pathways. In particular, the

probability P of having exactly number of alternative exons in a pathways with a𝑋 =
𝑖=1

𝑚

∑ 𝑘
𝑖

total number of exons :𝑌 =  
𝑖=1

𝑚

∑ 𝑛
𝑖

𝑃(𝑋 𝑎𝑚𝑜𝑛𝑔 𝑌 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦) = 𝑌
𝑋( ) 𝑝

0
𝑋(1 − 𝑝

0
)𝑋−𝑌 

where total number of exons (sum of constitutive and alternative) of gene i and total𝑛
𝑖

𝑘
𝑖

number of alternative exons in gene i, while m is the total number of genes in the considered

pathway. The p-value is the probability of having at least X alternative exons among Y

exons, considering as distribution under the null hypothesis the binomial distribution Bin(Y, p)

with . P-values are then corrected for multiple tests using the false discovery rate𝑝 = 𝑝
0

(FDR) by the Benjamini–Hochberg method.

“Gene Ratio” term is defined as the ratio between alternative exons in the pathway and all

the alternative exons.

Alternative spliced events
The software rMATS v4.1.1 (Shen et al. 2014) was used to retrieve splicing events with the

--novelSS flag to allow for the discovery of novel junctions. rMATS was run for OS and EW

samples using the OB as control. A non-parametric test, Wilcoxon test, was also used to

account for the unbalanced groups as previously proposed(Del Giudice et al. 2022). A

permutation test was used as done for differential gene expression to retrieve the null

distribution. I defined as Alternative Spliced Events ASEs those with rMATS FDR<0.1 and

|DPSI|>0.1 and with Wilcoxon p-value ≤ 0.05 and p-emp ≤ 0.05 (however all of the events

with Wilcoxon p-value ≤ 0.05 had the p-emp below as well). The constitutive events were

those with rMATS FDR ≥ 0.1 and |DPSI| ≤ 0.1 which were used as controls.

Sashimi plots were derived using ‘trackplot’ python script (Yiming Zhang, Zhou, and Wang

2022) setting the minimum number of reads supporting the junctions to 10 (-t 10).

Survival analysis
Differential splicing of the TCGA database elaborated in a previous pan-cancer analysis

(Kahles et al. 2018) were downloaded from Genomic Data Common. Only sarcoma patients

were selected, i.e. barcoded as ‘SARC’. Only patients belonging to the previously annotated

whitelist were considered (Kahles et al. 2018). Since TCGA data were mapped to hg19
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coordinates, all the rMATS events were transposed to hg19 using LiftOver R package

v1.22.0. All the exons coordinates involved in the event were transformed, in the case at

least one coordinate was not found in the target genome, the whole event was discarded. A

TCGA event was considered equivalent to an rMATS event if they shared the alternative

regions and the internal splice sites of the flanking exons. For example, for the exon skipping

case, the coordinates considered for the intersection were the start and the end of the

alternative exon and the end of the upstream and the start of the downstream exon.

Disease-free survival (DFS) was defined as the time between primary treatment and the

diagnosis of disease progression, as defined by biochemical or clinical recurrence, or the

end of follow-up. Patients were stratified into high and low expressors based on the 25th and

75th percentile of the exon PSI distribution. Exploiting this stratification, survival analysis was

performed by fitting a univariate Cox proportional hazards model with log-rank test

(Therneau and Grambsch 2013) using the coxph function in the R ‘survival’ package. To

ensure an adequate number of observations, only events that had a minimum of five patients

in both of the two inclusion groups were taken into account.
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Chapter 2: RNAmars - identification of multivalent

RNA Motifs And cognate Regulators of alternative

Splicing

Experimental methods for identifying RBPs-RNA interactions are traditionally based on RNA

immuno-preciptation (RIP) (Keene, Komisarow, and Friedersdorf 2006) and ultraviolet

cross-linking and immunoprecipitation (CLIP) (Ule et al. 2003; Underwood et al. 2005),

enabling RBPs binding site identification in their cellular contexts. Recently, the

Encyclopedia of DNA Elements (ENCODE) developed an enhanced CLIP protocol

(eCLIP-seq) to reveal RNA-RBP interactions of more than 150 different RBPs (Van

Nostrand, Freese, et al. 2020). Both methods have a low resolution (50-500nt) compared to

the short motifs on which RBPs bind (Carazo, Romero, and Rubio 2019). Integrating

sequence information can lead to a finer identification of binding. In silico, this can be

performed with RNAcompete (Ray et al. 2009) which uses a pool of randomly generated

k-mers to determine the high affinity RNA sequence of an RBP. In vitro, instead, binding

specificities can be assessed with RNA Bind-N-Seq (RBNS) where recombinant purified

RBPs reacting with pools of random RNA oligonucleotide are high-throughput sequenced.

RBNS facilitates the identification of RBPs binding motifs but lacks regulatory activity

information (Lambert et al. 2014).

However, these experimental methods are highly expensive and time consuming. The

development of computational methods is therefore essential to conveniently decipher

RBPs-RNA interactions. Various algorithms have been developed to discover cis-acting

motifs of RBPs. For instance, MEME software enables the motifs discovery starting from

unaligned RNA sequence (Timothy L. Bailey 1994). This software has then been improved

by GLAM2 which identifies gapped motifs (T. L. Bailey et al. 2009). Another recent tool which

enables gapped motifs discovery is RBPmap (Paz et al. 2022). RNAmotifs (Cereda et al.

2014) assesses clusters of repeated tetramers enrichment (multivalent motifs) allowing for

higher-order dependencies.

While these softwares are exclusively based on the raw sequences, mCROSS (Feng et al.

2019) model RBP binding specificity exploiting CLIP data and resulting in a list of position

weight matrices (PWMs).

Several recent approaches exploit neural networks and deep-learning to overcome the

complexity of the task. Some methods such as DeepPN are based on the sequence
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information alone (J. Zhang et al. 2022). Other methods such as iDeepS, DeepRKE and

DeepRiPe integrate multiple convolutional neural networks to gather different RNA features

together, e.g. RNA sequence, secondary structure or transcript region (Pan et al. 2018;

Deng et al. 2020; Ghanbari and Ohler 2020).

These deep learning algorithms improve accuracy of predictions at the expense of

interpretability. Moreover, these methods do not take into consideration splicing alterations.

There are many softwares, such as rMATS(Shen et al. 2014), Whippet (Sterne-Weiler et al.,

n.d.), DiffSplice(Hu et al. 2013) that successfully identify alternative splicing events between

two conditions starting from RNA-seq data. Nevertheless, these tools do not give insights on

the actual regulatory mechanisms for which these alterations happen. A study from

Sebastién et al. extensively evaluated the associations of alternative splicing events and

RBP in TCGA data through motifs discovery and network analysis between their expression

and the splicing pattern (Sebestyén et al. 2016).

CoSpliceNet is another method to derive associations between splicing factors and their

putative mature transcript product via a co-expression and de novo motif prediction at the

splice junctions (Aghamirzaie et al. 2016).

However, these algorithms explore RBP-RNA interactions only through motif discovery,

which can be limiting considering that some RBPs can have overlapping consensus (Fu and

Ares 2014). Carazo et al. showed that using CLIP data narrows down the list of putative

regulatory RBPs of alternative splicing (Carazo et al. 2019). A more precise strategy could

be to integrate both the sequence information and eCLIP experiments. However, to my

knowledge, no technique exists for predicting RBPs utilizing both eCLIP experiment data

and motifs data.

RNAmotifs (Cereda et al. 2014), a software developed for the identification of clustered and

repetitive tetramers near and within alternative cassette exons, identifies cis-acting elements

related to input exons. However, it does not link the cis-acting elements (i.e. motifs) to the

putative trans-acting factors (i.e. RBPs). The user has to manually inspect the resulting

motifs and compare them to known PWMs to have insights into the putative regulatory RBP.

A robust and systematic method to overcome this problem was still to be developed. In this

section, I propose RNAmars an highly interpretable algorithm for the identification of RNA

Motifs And cognate Regulators of Alternative Splicing (RNAmars). RNAmars is an extension

of RNAmotifs, that enables the discovery of the RBPs underlying the alternative splicing

regulation. RNAmars exploits both the cis-acting element enrichments and the trans-acting

element preferences, taking advantage of eCLIP data from ENCODE (Van Nostrand,
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Freese, et al. 2020). Learning from binding sites and sequence preferences, RNAmars

provides a deeper understanding of cooperation mechanisms that regulate alternative

splicing. These findings are consistent with known motifs and binding preferences and

contribute to reveal RBP-RBP interactions.
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Results

Identification of RBPs-specific binding regions

To associate motifs to RBPs, I retrieved alternative splicing events upon RBP silencing

(short-harpin) and iCount peaks of eCLIP for HepG2 and K562 cell lines from the ENCODE

database (König et al. 2010; Van Nostrand, Freese, et al. 2020). Since both exons

coordinates and binding sites were needed, I kept only RBPs for which both the experiments

were performed, for a total of 70 and 80 RBPs in HepG2 and in K562, respectively

(Figure 19). Moreover, to avoid RBPs lacking binding specificity, I retained only the

experiments for which the PWMs were available in mCROSS database (Feng et al. 2019),

remaining with 64 and 72 RBPs for HepG2 and K562 (Figure 19). Finally, only RBPs

containing at least 50 ASEs were retained, for a total of 15 RBPs and 13 RBPs in the two

cell lines (Figure 19). Seven RBPs were common between the cell lines, namely U2AF1,

U2AF2, PTBP1, SRSF1, PRPF8, HNRNPU and SF3B4.

Figure 19: Number of proteins in the databases for HepG2 cell line (left) and K562 cell line (right).

PWMs are retrieved from the mCROSS database. eCLIP and shRNA are collected from ENCODE

database

The majority of the RBPs are splicing regulators or spliceosome components (Figure 20),

according to a previously curated annotation (Van Nostrand, Freese, et al. 2020). I noticed

that, in both cell lines, U2AF2 was among the RBPs with the highest number of regulated

events (Figure 20), 603 and 550 ASEs for HepG2 and K562 respectively, which was

expected since U2AF2 is required for the binding of U2 snRNP to the pre-mRNA branch site
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(Fu and Ares 2014). For four proteins no annotation was available. In particular, two of them

(UCHL5 and AGGF1) are known as “Novel RBP”, for which the function is yet unknown.

Figure 20: Number of alternative exons in the two cell lines. Color code defines the direction of

inclusion promoted by the protein. Left heatmaps are annotations of the RBP type, black if protein

belongs to the class, white if not.

To properly decipher motif enrichments around the RBP regulated exons, I had to take into

account the binding clustering properties of RBPs. In particular, RBP domains bind to

repeated and degenerated motifs that define their specificity (Stitzinger, Sohrabi-Jahromi,

and Söding 2023; Jolma et al. 2020; Dominguez et al. 2018). These motifs are about four

nucleotides (nts) and spaced a few bases apart (Cereda et al. 2014). RNAmotifs software

(Cereda et al. 2014) suited very well in discovering these types of motifs. Specifically,

RNAmotifs is a software that accounts for the ability to bind to multiple proximal and

degenerate motifs (multivalent motifs). To do so, the algorithm identifies clusters of tetramers

within scrolling windows centered on each considered position at exon-intron boundaries of

alternative exons. In particular, two internal parameters define the regulatory region features:

the scrolling window n and the enrichment window e. The scrolling window defines the

region in which the search for the repeated multivalent motifs is done, controlling in this way

the tetramer sparsity at each position; the enrichment window e is the region around the

alternative exons where to look for the tetramer. In other words, the algorithm evaluates the

enrichment of the tetramers’ instances across three regions ( , and ) surrounding the𝑅
1

𝑅
2

𝑅
3

splice sites of the alternative exons, compared to control ones and the enrichment window e

controls the width of the three regions, defining the alternative splicing regulatory principles

of RBPs.
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Since different RBPs can have different regulatory regions, I decided to fine-tune RNAmotifs

parameters to retrieve the optimal n and e for each RBP (see Methods). Briefly, I evaluated

the strength of the association between each tetramer and RBP using a weighted cosine

similarity (see Methods). Such similarity was defined as Association Score (AS), ranging

from 0 to 1, where 1 means that the protein is probably binding to that multivalent motif to

promote the alternative splicing event. It is the result of the multiplication between two terms:

(i) a profile similarity between the tetramer splicing maps and the binding profiles and (ii) a

signal recovery rate, that measures the ability for a dataset to recover the final binding profile

given a subset of randomly picked exons (see Methods). Binding profiles are derived from a

statistical procedure in which an enrichment test of binding peaks in alternative exons versus

constitutive ones is performed (see Methods). The derived profile similarity is specific to

each tetramer-RBP pair and evaluates the consistency of the sequence signal with the

expected binding signal (see Methods). On the other hand, the signal recovery rate does not

rely on RNAmotifs results, as it depends only on the regulated exons and the eCLIP peaks.

Two signal recovery rates for each protein were evaluated, for silenced and enhanced exons

respectively. The signal recovery rate goes from 0 to 1 and penalizes weak binding profiles

(i.e. those for which subsets of exons are not able to accurately represent the final signal). In

particular, the mean value of the signal recovery rate distribution was 0.78 with a maximum

of 0.92 for HNRNPC silenced exons in HepG2 which shows high robustness in binding

profile (Figure 21). Interestingly, U2AF1 and U2AF2 had higher signal recovery rate in

silenced exons, even though the majority of their regulated exons were enhanced. This

happened probably because the maximum Binding Strength (BS) (see Method) occurred in

silenced exons, promoting a stronger binding signal in these sets of exons.

45



Figure 21: Signal recovery rate for RBPs in the two cell lines and separated by enhanced and

silenced set of exons (point color code). Lateral annotation indicates in the first column if the exons

are prevalently silenced (blue) or enhanced (red). The second column whether the maximum binding

strength appear in silenced (blue) or enhanced (red) exons

Given T tetramers deriving from a RNAmotif run and P evaluated proteins, ASs were

computed for each pair, yielding a PxT matrix, defined as AS matrix. In the set of exons

regulated by a specific RBP, the ASs of enriched tetramers found by RNAmotifs and the

same RBP are expected to be the highest, while the ASs of the same tetramer and the other

protein are expected to be lower. This concept can be thought of as a classification problem:

each pair of parameters (e, n), i.e. each RNAmotifs run, is related to the AS matrix specific to

tetramers found in that run.

For each AS matrix I evaluated whether the AS values exceed a threshold for the expected

RBP and whether it remained below for the rest of RBPs (see Methods). The optimal set of

parameters were given by the run that yielded the highest AUROC for each RBP (see

Methods). The analysis produced a total of 14 unique sets of parameters across all datasets

(Figure 22). I noticed that some RBPs, such as PTBP1, HNRNPC, HNRNPK, SRSF1 and

U2AF2, presented almost invariant AUROC across parameters, meaning that the AS were

not dependent on clustering and enrichment windows for these proteins (Figure 22). In fact,

the corresponding AUROC curves changed by just a few percentage points among all the

parameter pairs (Figure 22). However, the majority of the proteins were highly affected by

the choice of parameters. For example, QKI had an optimal enrichment window of 100 nts,

same as RBFOX2 (Figure 22). This was expected since both of them are known to have a

large binding in the downstream region and to cooperate during the splicing process (D.

Zhou et al. 2021; Van Nostrand, Freese, et al. 2020). HNRNPK and TARDBP are known to

have a wide intron binding (Van Nostrand, Pratt, et al. 2020) and this was reflected in the

enrichment window of e=300 and e=200 nts, respectively (Figure 22).
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Figure 22: AUROC scores (y-axis) for different values of the scrolling window n (line color code) and

enrichment window e (x-axis). Triangles define the highest score within the RBP. Facet color indicates

whether the maximum BS is found in enhanced exons in both cell lines (red), silenced exons in both

cell lines (blue), or in different regulations type across the two cell lines.

Characterization of RBPs binding and motifs preferences

Given RNAmotifs optimal parameters specific for every RBP, I proceeded to validate whether

the tetramer enrichments in these optimal runs aligned with the expected binding profile. In

other words, my objectives were (i) confirming that the tetramer enrichments were located in

the same regions as the binding enrichments of the respective RBP, and (ii) to assess the

motifs peculiarity of each dataset to check their agreement with expected sequence

specificity of RBPs.

To evaluate the compatibility of tetramer enrichments with binding profiles I compared the

region-wise enrichments (tetramer strength) with the Binding Strength (BS) of the same

protein within the same cell line (see Methods). In detail, tetramer strength was defined as

the cumulative tetramer scores in , , in the silenced and enhanced exons, while BS𝑅
1

𝑅
2

𝑅
3

was proportional to the maximum binding profile enrichment in the same regions and

regulation type (see Methods). The two six-dimensional vectors, representing tetramer

strength and BS, were compared using the cosine similarity (Figure 23). In figure, each

vector was normalized to one for visualization purposes. Fourteen datasets presented a high
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cosine similarity with values above 0.75. For HNRNPU and PUS1, no tetramer resulted as

enriched under the optimal parameters, probably due to the low number of input exons (101

for HNRNPU and 69 for PUS1). Interestingly, among the highest similarity datasets

(similarity ≥ 0.75), the most frequent region of interest in which both the maximum binding

strength and maximum tetramer strength were found was for silenced exons in 9 over 14𝑅
1

cases (Figure 23). I next wondered whether datasets with enrichments in the same regions

also shared a sequence preference, therefore I created PWMs starting from tetramers

scores (see Methods). Surprisingly, I observed that in cases in which the maximum BS and

tetramer strength was in silenced exons, the tetramer PWMs were mainly pyrimidine-rich𝑅
1

or T-rich (Figure 23).

Figure 23: Comparison between tetramer strength and binding strength: Heatmap collects binding

strength (in blue) and tetramer strength (in orange), the maximum value is highlighted with black

border. Along the column there are the 28 input datasets i.e. 21 proteins among HepG2 and K562 cell

lines, along the rows there are the regulatory regions of the alternative splicing event. Gray barplot

indicates the cosine similarity between tetramer and binding strength. The two bottom barplots are the

number of input events and number of retrieved tetramers in the dataset (pink in tetramers barplot

indicates that the tetramer is enriched in both enhanced and silenced exons). Black cells indicate

whether the maximum binding strength is in the same region of the maximum tetramer strength.

Green cells are the non normalized values of the maximum binding strength. Bottom annotation is the

list of logos reconstructed from the enriched tetramers (see Methods).
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This finding reflects some already known interaction mechanisms of RBPs. For example,

PTBP1 and U2AF1 have similar binding affinity to pyrimidine-rich tract that can result in

actual competition for binding at the 3’ splice site (Izquierdo et al. 2005; Saulière et al. 2006).

HNRNPC, instead, binds to the upstream region to uridine rich sequences to prevent exon

inclusion (König et al. 2010) and it is also known to compete with U2AF1 for binding

(Zarnack et al. 2013). Overall, by collapsing all the enriched tetramer in the 6 regions (see

Methods), an enrichment of pyrimidine-rich PWMs in silenced exons and a minor enrichment

of serine-rich PWMs for enhanced exons emerged (Figure 24). In both silenced and

enhanced exons the Information Content (IC) of tetramers PWMs was higher in the 𝑅
1

region, in other words there was a stronger sequence signal in the upstream intron region

(Figure 24).

Figure 24: tetramers derived PWMs in the three regulatory regions for silenced and enhanced

separately. Y-axis is the Information Content.

The similarity between the binding strength and the tetramer strength became weaker as

fewer enriched tetramers were found. Under this light, I wondered whether the worsening of

the compatibility between motifs and binding enrichments were due to intrinsic aspects of the

dataset. I found a high correlation between the cosine similarity and both the number of

enriched tetramers (r=0.71, pv=4.0e-4) and the overall tetramer score (r=0.56, pv=2.5e-3)

within the dataset (Figure 25). Cosine similarity also correlated with the maximum binding

strength of the same protein (r=0.52, pv=6.4e-3) (Figure 25), which in turn showed a

relationship with overall tetramers score (r=0.69, pv=1.1e-4). These results suggested that in

the cases where a weak sequence signal (i.e. overall tetramer scores) is observed, the

binding signal (i.e. binding strength) is also weak.
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Figure 25: Pearson’s correlations of cosine similarities between tetramer strength and binding

strength and other features of the input dataset: number of tetramers, overall tetramer score,

maximum binding strength, PWM information content (IC). Lower triangular matrix is the value of

Pearson’s correlation coefficient. Upper triangular matrix is the p-value from the correlation test

(meaning: *** < 10e-3, ** < 10e-2)

To better understand the sequence specificity of an RBP, I made a list of tetramers for each

RBP across the two cell lines and performed an intersection between pairs of proteins. I

observed that some proteins, such as U2AF2, U2AF1 and SRSF1, had many tetramers in

common with others (80%, 79%, 64% tetramers are shared, respectively). On the contrary,

other RBPs showed a highly specific tetramer list, such as TARDBP, that presented 14

enriched tetramers and only 4 of them were shared with others, or HNRNPC (5 shared

tetramers among 23) (Figure 26).
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Figure 26: Number of common significant tetramers between each pair of RBPs. Lateral barplot

identifies the number of shared or protein specific tetramers

Pipeline overview and performance evaluation

Considering the reliability of RNAmotifs results in terms of sequence and region

enrichments, I developed the RNAmars algorithm to link tetramers with the cognate RBPs.

Given a set of alternative and constitutive exons, RNAmars aims at retrieving putative RBP

regulating the differential inclusion (see Methods). RNAmars is able to identify the splicing

regulators starting exclusively from exons coordinates. This allows users to perform solely

RNA-seq experiments upon conditions, dismissing the necessity of conducting expensive

eCLIP experiments.

The idea behind RNAmars is to connect cis-acting elements' enrichments with trans-acting

factors' enrichments. The first is given by the position-wise enrichment scores of RNAmotifs

tetramers (tetramer specific splicing map), while the second is retrieved from ENCODE

RBPs binding profiles (see Methods). The strength of the association between tetramers and

RBPs is given by the AS (see Methods). The final result of RNAmars is a matrix in which

each column corresponds to an enriched tetramer and each row is a protein. The proteins

are ranked from the top-associated to the lowest (see Methods).

Given a set of exons regulated by a specific RBP, the top associated protein is expected to

be the RBP itself. Therefore, to evaluate RNAmars performance I used input exons
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regulated by the RBPs discussed in the previous section, for which I found the set of optimal

parameters. Since tetramers are actually clusters of degenerated sequences of four

nucleotides, and they are not specific to only one protein, it can be possible to have strong

associations with multiple RBPs, nevertheless I expected that the strongest associated

protein was the actual regulatory one.

As an example of the resulting visualization of RNAmars, I showed PTBP1 silenced exons

heatmap in Figure 27. Considering that the PTBP1 splicing map is well established,

characterized by Pyrimidine motif enrichment at 3′ splice sites of silenced exons, I thought it

could fit well as a benchmark for explanatory purposes (Cereda et al. 2014). RNAmars

accurately predicted PTBP1 as the major regulator, since it had the highest association

score mean across tetramers (Figure 27). PTBP1 was mainly associated with pyrimidine-rich

tetramers found in the upstream region, consistently with the already known PTBP1 exon

skipping mechanisms (Llorian et al. 2010; Saulière et al. 2006; Xue et al. 2009).

Figure 27; Final visualization heatmap for PTBP1 regulated exons. Enriched tetramers in the

columns, RBPs in the rows and matrix values are the association scores. Point size and color gradient

are proportional to the AS. Left annotation contains the absolute log2 Fold Change of differential gene

expression. Triangle pointing up means up-regulated after the silencing, pointing down means

down-regulated after the silencing (sign of gene expression is user defined). Green squares on the left

are the BS of each protein (binding peaks are taken from the HepG2) cell line. Left barplot indicates

the final RBP score computed as the mean(AS). Top barplot is the cumulative tetramer of the tetramer

(Fisher’s Method aggregation of p-values from different regions and runs). Upper annotation heatmap

refers to the tetramer strength in the three regulatory regions. Tetramer splicing maps on the right in

the RNAmotifs run with the optimal parameters of the row protein.

The results for all the proteins are summarized in Figure 28. The number in the cells

represents the position in the ranking of each predicted protein, where 1 means that the
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predicted protein is the best predictor for the considered dataset. Only datasets for which at

least one enriched tetramer was found are shown, therefore datasets for which it was

possible to compute the association matrix, for a total of 39 records over 56 records. Among

the 39 datasets, 17 of them were top-associated with the actual regulatory protein, which is

ranked as first. Considering only the regulation type in which the maximum BS is found, 14

out of 24 datasets were perfectly predicted (Figure 28). Nevertheless, 11 datasets presented

the actual regulatory protein ranked after the third place.

Figure 28: Final scores of each dataset. bottom annotation represents the mean(AS) of the protein

regulating the input exons in red and the maximum mean(AS) in black if it is the score of another

protein. Numbered cells are the ranking of the proteins in the heatmap, ordered by decreasing

mean(AS). Distributions of input exons absolute DPSI depicted by boxplots. Barplot is the total

number of input exons. Black cells annotation indicates whether the regulation type is where the

maximum BS is. Top annotations indicate cell lines and regulation type.

I wondered whether the low accuracy could be due to the technical features such as the

|DPSI| distributions and number of input exons, since the stronger the signal, the easier it

might be to find the actual regulators. I also asked whether the motif strength could impact

on RNAmotifs tetramers detection and the transcriptional secondary effect of the proteins

silencing could pollute the alternative exons with other proteins’ targets. To answer this

question I built a linear model, fitting the final protein score as a function of mean(|DPSI|),

number of input alternative exons, IC of the selected mCROSS PWM and number of

differentially expressed RBPs (see Methods). I found that mean(|DPSI|) was the strongest

positive predictor of the final protein score (Figure 29A). I also measured the relative
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importance of regressors, that confirmed the importance of mean(|DPSI|) (Figure 29B).

Pearson’s correlation analysis also showed a significant correlation between the final score

and the mean(|DPSI|) (R=0.52, 3.4-05) (Figure 29C).

Figure 29: Linear model analysis. A. Coefficients of the linear model having as dependent variable

the mean(AS) of the protein of the input exons and as features the y-axis variables. B. Bootstrap

results with percentage of for each regressor. C. Scatter plot between mean(AS) of the input𝑅2

protein and the mean absolute DPSI of the input exons.

Testing RNAmars on HNRNPK silencing in PC3 cell line

Having proved RNAmars accuracy on ENCODE data, I was interested in testing its

robustness with unpublished data. Thus, we performed a RBP silencing experiment followed

by RNA-seq, to see whether RNAmars was capable of predicting the actual regulator (see

Methods). In particular, we were interested in evaluating the RNA binding protein HNRNPK,

since we previously discovered that HNRNPK is upregulated by the oncogenic transcription

factor FOXA1 (Del Giudice et al. 2022), which is responsible for a wide alternative splicing

dysregulation in prostate cancer. Moreover, HNRNPK was reported to be associated with

cancer development and proliferation in different cancer subtypes (W. Zhou et al. 2023). We

therefore conducted a HNRNPK transient silencing in PC3 cell line (see Methods). A total of

4,641 exons were defined as alternatives and 3,601 as constitutive (Figure 30A). These

events were used as input for RNAmars (see Methods).
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Figure 30: Alternative exons from HNRNPK silencing in PC3 cell line. A. Number of constitutive,

enhanced and silenced exons used as input for RNAmars. B. Intersection between HNRNPK

regulated exons in PC3 cell line from our experiment and the HNRNPK regulated exons in HepG2 cell

line from ENCODE data

Since HNRNPK binding profile was not available for K562 because of the limited number of

exons (38 exons) (thus not passing filters (see Methods)), I used the HepG2 eCLIP data

from ENCODE in RNAmars pipeline. Only a limited subset of exons was common to HepG2

HNRNPK regulated exons in ENCODE data (only 46 enhanced and 44 silenced are shared

with ENCODE dataset, among a total of 152 and 4,641 alternative exons in HepG2 and PC3

respectively), (Figure 30B). The high rate of unseen exons in PC3 cell lines could allow me

to test the robustness of RNAmars across different exons of the same regulatory protein.

RNAmars was run and the two resulting heatmaps were retrieved, for silenced and

enhanced events respectively. The algorithm accurately associated both silenced and

enhanced exons to HNRNPK, which was found at the first place in the RBP ranking

(Figure 31A-B). For silenced exons, the top tetramer enrichments were retrieved mostly in

the exon region and the upstream region, as expected from the BS (Figure 31B).
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Figure 31: RNAmars results on HNRNPK regulated exons in PC3 cell lines. Annotations are as

previously explained in Figure 27. Down-facing triangles indicate down-regulation upon HNRNPK

silencing. Up-facing triangles indicate up-regulation upon HNRNPK silencing. A. Enhanced exons

RNAmars result. B. Silenced exons RNAmars result.

Considering only the tetramers enriched in the run with HNRNPK optimal parameters

(scrolling window of 35 and enrichment window of 300), in HepG2 and PC3 cell data, they

were almost the same for the silenced set of exons (Figure 32A). Tetramers enriched in the

enhanced events analysis, instead, were more heterogeneous, nevertheless presenting a C

in the second position. Most importantly, the majority enriched tetramers in the silenced

exons resembled the canonical HNRNPK motif which is C-rich and flanked by A or T

(Figure 32A) (D. Zhou et al. 2021; Feng et al. 2019), in particular, 15 out of 16 tetramers had

CC nucleotides in the center of the tetramer.

Figure 32: Enriched tetramers of HNRNPK regulated exons in PC3 and HepG2 cell line: A.
Enrichment scores of tetramers in the two cell lines, separated by regulation type. B. Same tetramers

collapsed into a single PWM and compared between cell lines using a Pearson’s correlation

coefficient.

Tetramers were then collapsed into a PWM and compared using Pearson Correlation

Coefficient (PCC) (see Methods), which is one of the methods traditionally used to quantify

similarity between PWMs (Gupta et al. 2007). Highest correlation was found in the silenced

set with a mean correlation of 0.94, while for enhanced was 0.33 (Figure 32B), which is

expected since only 1 out of 4 tetramer (SCCW) in enhanced exons is in common between

the two cell lines. Considering that HNRNPs proteins have a predominant effect on exons

silencing rather than enhancing (Van Nostrand, Freese, et al. 2020), it was expected to find

a stronger signal in silenced exons and therefore higher compatibility between the two

datasets.
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Then, I wondered whether the enriched tetramers were located in the same regions of the

HepG2 enriched tetramers. In other words, I was interested in assessing the similarity

between the tetramer splicing maps deriving from the two datasets. First, I collected the

tetramer splicing maps combining all enriched tetramers from RNAmotifs runs with HNRNPK

optimal parameters for both PC3 and HepG2. I used as a benchmark splicing map the

binding profile of HNRNPK in HepG2. As expected from the binding profile, tetramer splicing

maps of both HepG2 and PC3 presented a high enrichment within the exon in silenced

events and in the flanking introns of enhanced exons (Figure 33).

Figure 33: Splicing maps of RNAmotifs tetramers enrichment scores of HNRNPK regulated exons in

PC3 (orange) and HepG2 (cyan), and binding profile of eCLIP peaks of HNRNPK in HepG2. Pairwise

cosine similarities of the profiles are annotated in the top right corner.

I evaluated the similarity between the splicing maps using the cosine similarity. The

agreement between PC3 and HepG2 tetramer splicing maps was particularly high

(cosine=0.87) in silenced exons (Figure 33). The PC3 tetramer splicing map resembled the

expected binding profile with a cosine similarity of 0.73 for silenced and 0.71 for enhanced. I

also pondered on how comparable the ASs related to HNRNPK in the two cell lines were.

Therefore, I computed PCC on the final AS associated with HNRNPK on the two datasets

Figure 34. On enhanced exons, it was not possible to compute PCC because only one

tetramer was in common between the two datasets, while for the silenced exons the

correlation was high (r=0.72, pv=0.018). Given the high similarities in terms of sequences,

binding and AS between HepG2 and PC3 datasets, despite the fact that the input exons

were very different, RNAmars results were promising. In fact, RNAmars was able to predict

the actual regulator starting from different cell type and input sets, showing high robustness

and reproducibility.
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Figure 34: Scatter plot of association scores related to enriched tetramers that were associated to

HNRNPK in HepG2 and PC3 cell lines. Color code defines regulation type.

RBFOX2 and U2AF2 regulate alternative splicing in sarcomas

Having confirmed the trustworthiness of RNAmars, it was now suitable to employ it within the

Sarcoma dataset.

ASEs were defined as previously described (See Chapter 1). Only the top 2000 constitutive

exons ordered by decreasing FDR were kept as controls to avoid imbalance between the

two classes (Figure 35).

Figure 35: Number of constitutive and alternative exon skipping events in sarcoma data given as

inputs to RNAmars algorithm.
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These sets of exons were used as input to RNAmars algorithm. Enhanced crosslinking and

immunoprecipitation data (eCLIP) from HepG2 cell line was used to compute the

Cross-linking Enrichment Score (CES) of all the RBPs to be compared with RNAmotifs

Enrichment Score (ES) and retrieve the profile similarity as explained in the Methods

section.

EW enhanced exons presented RBFOX2 as top protein which was associated with GC

tetramers (Figure 36). In particular, GC tetramers enrichments were mainly within the

downstream region , where the BS is maximum, i.e. where RBFOX2 is expected to bind.𝑅
3

Moreover GC motifs resemble the canonical consensus motif (U)GCAUG of RBFOX2

(Ponthier et al. 2006; Lambert et al. 2014).

Figure 36: RNAmars results on alternative exons skipping events in EW for enhanced (top heatmap)

and silenced (bottom heatmap) exons. Annotations are as previously explained in Figure 27. Log2

Fold Change is positive (triangle pointing up) when the gene is higher expressed in EW and negative

(triangle pointing down) when the gene is higher expressed in OB.

In EW silenced exons the top ranked protein was U2AF2 which was highly associated with

TT-rich tetramers in the upstream region . This result was in accordance with the expected𝑅
1

binding of U2AF2 which exhibits maximum BS in . Moreover, U2AF2 mCROSS PWM𝑅
1
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presents high information content in two consecutive thymines, validating RNAmars results

on the sequence enrichment (Figure 37).

Figure 37: PWMs for RBFOX2 and U2AF2 in HepG2 cell line from mCROSS database.

Also for OS RNAmars predicts RBFOX2 as the top enhancer of alternative exons

(Figure 38). However, the multivalent motifs enrichments are less region specific with

respect to EW, suggesting the possibility of multiple regulations involving different proteins

with different binding preferences. Interestingly, the final protein score, measured as the

mean of the association scores (see Methods), for both RBFOX2 and the second most

associated protein, HNRNPK, are remarkably similar, with RBFOX2 scoring 0.216 and

HNRNPK scoring 0.212. Given the closeness in their rankings, it is advisable to consider

both RBFOX2 and HNRNPK as potentially influential factors. Additionally, it is worth noting

that previous research has indicated an indirect influence of HNRNPK on RBFOX2 binding

(D. Zhou et al. 2021), further underscoring the interplay between these proteins in the

context of alternative exon regulation. Enriched motifs in this case are more heterogeneous

with respect to EW, presenting enrichments in all three regulatory regions and with a

prevalence of CG motifs and are not perfectly resembling the mCROSS PWMs (Figure 37).

However, it is a well-established fact that when there is cooperative interaction between

RBPs the binding motifs can change considerably (Lang et al. 2021).
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Figure 38: RNAmars results on alternative exons skipping events in OS for enhanced (top heatmap)

and silenced (bottom heatmap) exons. Annotations are as previously explained in Figure 27. Log2

Fold Change is positive (triangle pointing up) when the gene is higher expressed in OS and negative

(triangle pointing down) when the gene is higher expressed in OB.

Silenced exons were predicted to be regulated by U2AF2 by its association to TT rich

sequences. However the most enriched tetramer TTTC is not associated to U2AF2, but to

the second top ranked protein U2AF1, which suggests there might be its involvement as

well. This is further confirmed by the fact that the highest association score (AS=0.33)

happened between WTTS tetramer and U2AF1. This fits with the fact that the two U2AFs

cooperate together and share most of the regulated exons (Shao et al. 2014). Moreover, the

TT rich motifs are in line with the mCROSS PWM which shows a high preference for

consecutive Thymines for both U2AF1 and U2AF2 (Figure 37 and Figure 39).

Figure 39: PWMs for HNRNPK and U2AF1 in HepG2 cell line from mCROSS database.
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In summary, RBFOX2 and U2AF2 were the top exon enhancer and silencer respectively for

both diseases. Furthermore, HNRNPK and U2AF1 appeared to be moderately engaged in

splicing regulation in OS. However, it is noteworthy that among the predicted regulators only

U2AF1 exhibited differential expression, as indicated by the "log2FC" panel. I wondered

whether there might be another source of dysregulation within these proteins, therefore I

examined the alternative events occurring within these genes. RBFOX2 displayed three

distinct ASEs in EW, specifically A3SS, ES and MXE. OS had only one ASE which coincided

with the MXE event observed in EW (Table 2). Intriguingly, this particular event was also

overlapping with two RNA Recognition Motifs Domains (RRM_1 and RRM_5) from the

PFAM database (Figure 40 and Table 2).

Alternative Flanking Event PFAM DPSI(EW) DPSI (OS)

chr22:35756104-35756144
chr22:35752612-35752655
chr22:35759887-35760020 ES Fox-1_C -0.121 -

chr22:35781599-35781746
chr22:35781599-35781743 chr22:35809779-35810004 A3SS - 0.131 -

chr22:35768256-35768349
chr22:35778024-35778078

chr22:35765422-35765483
chr22:35781599-35781743 MXE RRM_1, RRM_5 0.205 0.152

Table 2: Alternative splicing events occurring within RBFOX2 gene.

This particular MXE event involves two different isoforms, one including exon five and

skipping of exon six (isoform 1 in Figure 40) and another including exon 6 and excluding

exon five (isoform 2 in Figure 40).

In particular, sarcomas promote higher inclusion isoform 1 and controls isoform 2. It was

previously shown that the skipping of exon 6 deletes a portion of the RRM, reducing the

binding capability of the protein. Moreover, the isoform 1 and the full length isoform are also

thought to compete for the binding to enhance exon inclusion (Damianov and Black 2010).

Specifically, isoform 1 has a weaker binding affinity with RNA than the full length isoform

including both exon five and exon 6. However, it is yet unknown how isoform 1 interacts with

isoform 2 and which one has stronger impact on binding and splicing activity.
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Figure 40: RBFOX2 mutually exclusive exon skipping events. Isoform 1 is the most included form in

sarcomas. Above the regions where PFAM domains are found.

Given that sarcomas exhibit higher expression of isoform 1 and RNAmars has detected an

increase in RBFOX2-enhanced exons, it is reasonable to presume that skipping exon 6 has

a lesser impact on exon inclusion compared to the skipping of exon 5. Expression of

RBFOX2 isoform 1 has therefore an overall enhancing of regulated exons.

U2AF1 effects on OS exon silencing can be easily explained by its upregulation in

sarcomas. Specifically, the expression of U2AF1 is usually promoting exon exclusion by

binding in the 3’ splice site ( region), which is coherent with RNAmars results.𝑅
1

HNRNPK presented two significant exon skipping events in OS, however they both impacted

the 5’UTR, therefore without affecting the coding sequence and the protein domains.

Moreover, neither differential expression nor significant differential splicing in U2AF2 were

not found, suggesting that the deficiencies in these proteins rely on other sources, not

directly measurable with standard RNA-seq. As an example, RNA modifications can

influence the alternative splicing regulation. In particular, N6-Methyladenosine (m6A)

modification disrupts splicing activity by modifying the affinity between RBPs and RNA (Wei

et al. 2021; Louloupi et al. 2018). To gain insight in this idea I checked differential expression

analysis of a literature curated list of m6A related genes. m6A methylation is a reversible

process: there exist some proteins that deposit m6a into RNA (writers), some others that

read it (readers) and lastly some that erase it restoring the original nucleotide (erasers)

(Jiang et al. 2021). Only the reader RBM15 was found differentially expressed in OS

(DESeq2 p-value adjusted = 6.71e-09 & Wilcoxon p-value = 0.018), suggesting that there

might be a differential m6A load between cases and controls (Figure 41). Since RBM15 was

up-regulated, the m6A load is expected to be higher in sarcomas. However, it is challenging

to formulate additional hypotheses in the absence of a comprehensive m6A experiment.
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Figure 41: log2 Fold Change of m6A related genes expression, colored by their functions and divided

by the two sarcomas subtypes. Star means that the gene is differentially expressed as defined in the

previous section.
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Methods

RNAmars software employs the RNAmotifs algorithm (Cereda et al. 2014) and it is

implemented in the R programming language.

RNAmars algorithm per se relies on a priori knowledge, in particular on the RBPs binding

preferences around their regulated exons. Therefore, preliminary steps are needed to

retrieve the binding features for each RBP, in order to train the ultimate algorithm. The

workflow can be divided into four major steps, explained in detail in the next paragraphs

following Supplementary Figure 1. Briefly, the steps are organized as follows: (i) data

retrieval: which types of data have been used and which filtering conditions have been

applied to them; (ii) data preprocessing: how to identify the binding preferences of the

proteins and evaluate the strength of the signal; (iii) tuning of RNAmotifs parameters: grid

search and optimization strategy to identify the optimal parameters for each dataset; (iv)

RNAmars algorithm: starting from unseen user defined alternative exons, it describes the

strategy to retrieve the putative regulatory protein of AS events.

Selection of RBPs and regulated exons

RBPs cross-linking sites, as iCounts peak instances, from eCLIP experiments in HepG2 and

K562 cell lines were collected (Curk, 2019). Concomitantly, differential splicing data upon

RBPs depletion (i.e. shRNA or CRISPR) deriving from rMATS software (Shen et al. 2014) in

the same cell lines were retrieved from ENCODE (Van Nostrand, Freese, et al. 2020)

(accession number ENCSR413YAF, Supplementary Table 3). To select RBPs that were most

likely to bind the multivalent RNA motifs, a list of 64 and 80 11-nt long position weight

matrices (PWMs) eCLIP data derived from HepG2 and K562 respectively were collected

from the mCross database (Feng et al., 2019). For each RBP, the PWM with lowest (i) Allelic

Interaction p-values and (ii) highest consistency were selected. Only RBPs with an

associated PWM were retained for further analyses.

Only cassette exons (CEs) were considered in the analysis, since they are the most frequent

alternative splicing events in human cancers (Yangjun Zhang et al. 2021).

The percent spliced in (PSI) value was used as a measure of exon inclusion in the mature

mRNA (J. P. Venables et al. 2009).

CEs with (i) significant inclusion changes (i.e. |DPSI|>0.1 and FDR<0.1) upon RBP

depletion, (ii) annotated as “cassetteExon” in the UCSC hg19 “knownAlt” table (Navarro
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Gonzalez et al. 2021), and (iii) with at least one iCounts peak instance within 300 and 30

nucleotides (nts) into introns and exons, respectively, from the splice sites (if introns and

exon were shorter than 600 and 61 nts, respectively, then the whole introns and exon were

evaluated) were considered as alternatively spliced, or RBP-regulated exons.

Sizes of putative regulatory regions were defined following previously published indications

to best capture the motifs and binding preferences of the RBPs (Barash et al. 2010; Van

Nostrand, Freese, et al. 2020). Cassette exons with DPSI>0.1 or DPSI<-0.1 were defined

respectively as enhanced and silenced exons (Figure 42).

Constitutive exons were defined as previously proposed ((Attig et al. 2018). Briefly, CEs with

(i) no significant inclusion changes (i.e. |∆μ(PSI)|<0.01 and FDR>0.1) upon RBP depletion

and (ii) annotated in the RefSeq database version 210 (Frankish et al. 2019) but not in the

UCSC hg19 “knownAlt” table (Navarro Gonzalez et al. 2021) were considered as

constitutively spliced and used as controls.

Since at least 50 exons are required to disentangle RBPs regulatory patterns (Yee et al.

2019), only datasets with more than 50 Alternative Splicing Events (ASEs) were retained for

the downstream analyses (Figure 42).

Figure 42: Selection of exons diagram.

RNA splicing maps of crosslinking sites

To assess the binding preferences of each RBP, an enrichment profile of iCounts peaks,

hereafter called “splicing map” (Cereda et al. 2014), around the ASEs with respect to the

constitutive exons was generated as previously proposed with minor modifications (Del

Giudice et al. 2022). First, the regulatory regions for the splicing map were defined
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considering 300 and 30 nts into introns and exons, respectively (upstream, alternative and

downstream exons) as previously reported (Van Nostrand, Freese, et al. 2020), see

Figure 43. Since RBPs generally bind at different positions to promote or prevent exon

inclusion (Cereda et al. 2014), for each RBP two splicing maps were built separately, for

silenced and for enhanced exons respectively, both against constitutive exons.

At each position along the map, the cross-linking enrichment score (CES) was computed

comparing the proportion of enhanced, or silenced, and constitutive CEs having at least one

iCounts peak of protein p using a one-tailed Fisher’s exact test:

​​​​𝐶𝐸𝑆(𝑝, 𝑎)
𝑖

=  − 2 · 𝑙𝑜𝑔(𝑝𝐹𝑖𝑠(𝑝, 𝑎)
𝑖
)

where is the Fisher’s exact test p-value at i-th position along the map, p refers to the𝑝𝐹𝑖𝑠
𝑖

protein and a refers to either enhanced or silenced exons.

The collection of all the CESs along the splicing map defines the binding profile of𝐵(𝑝, 𝑎)

protein p for regulation type a (silenced or enhanced).

To account for the ability of RBPs to bind multiple proximal (i.e. multivalent) motifs (Cereda

et al. 2014), all binding profiles were averaged in a scrolling window of 15 nts using the filter

function of “stats” R package v4.2.3 and visualized as RNA splicing map.

To evaluate the value of RNA maps in predicting exon inclusion by the corresponding RBP, a

bootstrap procedure with downsampling was implemented. For 500 iterations, a percentage j

of randomly selected CEs ranging from 10% to 100% with 10% increasing step ( j = {10%,

20%, …, 100%} ) was selected. For each subset of exons, a binding profile of protein p (i.e.

) was calculated as described above and compared with the observed one (i.e.𝐵(𝑝, 𝑎)
𝑗

) using the cosine similarity as follows:𝐵(𝑝, 𝑎)

𝑐𝑜𝑠(𝐵(𝑝, 𝑎)
𝑗
,  𝐵(𝑝, 𝑎)

100%
) =  

𝐵(𝑝,𝑎)
𝑗
 ·𝐵(𝑝,𝑎)

100%

|| 𝐵(𝑝,𝑎)
𝑗
||  || 𝐵(𝑝,𝑎)

100%
|| 

For each percentage of exons, cosine similarities were averaged. Area under the curve

(AUC) was calculated and used to interpret the ability of the eCLIP-based RNA splicing map

(i.e. the binding profile) to predict RBP-mediated splicing regulation (Figure 43).
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Figure 43: Diagram showing the procedure to retrieve the signal recovery rate. Firstly, binding profiles

are built from silenced and enhanced exons pairwise compared to constitutive exons. Then the

binding profile derived from subsets of the original exons are compared with the complete profile with

a cosine similarity. When examining the mean cosine similarity on the y-axis against the

downsampling percentage on the x-axis, the AUC serves as a metric to quantify the rate of signal

recovery.

Quantification of RBP binding activity at regulated exons

Impact of RBP regulation on exon inclusion was evaluated at three canonical regions around

the splice sites (ss) of CEs as previously proposed (Cereda et al. 2014). These regions were

defined as follows: R1 [-300;0] nts of intronic sequence upstream of the 3′ss; R2 of exonic

sequence [1;30] nts downstream of the 3′ss and [-30;-1] nts upstream of the 5′ss; R3 [1;300]

nucleotides of intronic sequence downstream of the 5′ss. If introns and exon were shorter

than 600 and 61 nts, respectively, then the whole introns and exon were evaluated. A

bootstrap procedure was implemented to define an empirical background distribution of

CESs at each position along the RNA splicing map (i.e. CESemp). For each RBP and each

iteration, exon labels (i.e. enhanced/silenced and constitutive) were randomly shuffled and

the CES was calculated for every position of the map. Positions at regions R1, R2, and R3

with observed CESs greater than the 95th percentile of the corresponding CESemp were

considered as significantly bound by the RBP of interest. To define the propensity of RBPs to

bind these positions, the difference between the observed and empirical CES (i.e. ΔCES)

was measured:
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∆𝐶𝐸𝑆(𝑝, 𝑎)
𝑖
 =  𝐶𝐸𝑆(𝑝, 𝑎)

𝑖
 −  𝐶𝐸𝑆(𝑝, 𝑎)

𝑒𝑚𝑝,𝑖
 

where i is the i-th position in each region, p corresponds to the protein for which iCounts

peaks are being examined, and a denotes the type of regulation. Finally, to quantify RBP

preferential binding around splice sites, the maximum was evaluated for each region∆𝐶𝐸𝑆
𝑖
 

and referred to as “binding strength” (BS):

𝐵𝑆(𝑝, 𝑎)
𝑟
 =  𝑚𝑎𝑥 { ∆𝐶𝐸𝑆(𝑎)

𝑖
}

where r is the regulatory region (i.e. R1, R2, R3), and i is the i-th position in the region. For

each protein, the binding strength is a six dimensional vector collecting BSs within each of

the three regulatory regions in both the regulation types a.

To allow comparisons across different RBPs, the BSs were normalized to the maximum one.

Figure 44: Diagram showing the idea behind the BS and the region of interest

Identification of multivalent RNA motifs
Since different RBPs can have different binding properties, tuning RNAmotifs enrichment

window e and scrolling window n parameters to best suit each considered protein was

needed. In the original RNAmotifs algorithm, the parameters were set to n=15 and e=30 as

they well described the Nova1 and Nova2 binding preferences (C. Zhang and Darnell 2011).

The best n and e windows of each RBP were defined through a grid search considering

n={5, 15, 25, 35} and e={30, 50, 100, 200, 300} for a total of 20 combinations

(Supplementary Figure 1C). For each set of RBP-regulated exons, in each cell line, and for

each combination of parameters, RNAmotifs was run with 10,000 bootstrap iterations for

empirical p-value (Cereda et al. 2014). In order to widen the splicing map, RNAmotifs script

was modified to consider intronic regions of 300 nts and exonic regions of 30 nts. Each

RNAmotifs result consists of 512 tetramers, each of them having six p-values, three related

to , and in enhanced exons and three for the same regulatory regions for silenced𝑅
1

𝑅
2

𝑅
3
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exons. Only tetramers with one-tailed Fisher’s Exact Test p-values ≤ 0.05 (or ≤ the 1st

percentile of the p-value distribution was used as threshold when the first percentile was

lower than 0.05) and empirical p-values ≤ 0.0005 were considered as significantly enriched

and retained for further analysis.

Non-significant region-specific enrichment p-values were set equal to 1.

A tetramer was denoted as or if it was enriched in enhanced exons or silenced exons𝑡
𝑒

𝑡
𝑠

respectively. In case it was significant in both enhanced and silenced, it got double

annotation separately.

Given all tetramers, region-specific enrichment p-values were combined into one

goodness-of-fit ( ) statistics for each region R producing a six dimensional vectorχ2

representing the global tetramers enrichment in the three regulatory regions Ri in both

enhanced and silenced exons. This vector was called tetramer strength (TS).

𝑇𝑆
𝑖
 =  − 2 

𝑡
∑  𝑙𝑜𝑔(𝑝𝐹𝑖𝑠

𝑡|𝑖
)

where t is an enriched tetramer, is the Fisher’s p-value of tetramer t in region𝑝
𝑡|𝑖

(where the subscript e refers to the region of enhanced𝑖 ∈ {𝑅
1,𝑠

, 𝑅
2,𝑠

, 𝑅
3,𝑠

, 𝑅
1,𝑒

, 𝑅
2,𝑒

, 𝑅
3,𝑒

}

exons and s to silenced exons).

The overall tetramer score was defined as the Fisher method’s aggregation of the TS,

representing the overall enrichment score of the input dataset.

The cumulative tetramer score (CTS) was defined as the sum of tetramer scores across the

six regions and considered as a unique value for the tetramer.

𝐶𝑇𝑆(𝑡) =  − 2 
𝑖

∑  𝑙𝑜𝑔(𝑝𝐹𝑖𝑠
𝑡|𝑖

)

where i is the regulatory region ( ), t is the enriched tetramer,𝑖 ∈ {𝑅
1,𝑠

, 𝑅
2,𝑠

, 𝑅
3,𝑠

, 𝑅
1,𝑒

, 𝑅
2,𝑒

, 𝑅
3,𝑒

}

is the Fisher’s p-value of tetramer t in region i.𝑝
𝑡|𝑖

RNAmotifs enrichment scores ( ) representing the preferential location of tetramers around𝐸𝑆

alternative exons were converted into two distinct scores, representing RNA splicing maps

for enhanced and silenced exons separately (Figure 45A), as follows:

𝐸𝑆(𝑡
𝑎
)

𝑖
=  − 2 

𝑡∈𝑟
∑ 𝑙𝑜𝑔(𝑝𝐹𝑖𝑠

𝑖
(𝑡

𝑎
))
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where t is the tetramer of interest, i is the position along the map, a refers to either enhanced

or silenced CEs. Denote the collection of the along all the position i in the map as𝐸𝑆(𝑡
𝑎
)

𝑖

.𝑀(𝑡
𝑎
)

The tuning object function had to maximize the compatibility between the splicing maps of

tetramer , , where , and the binding profile of protein p restricted to exons𝑡
𝑎

𝑀(𝑡
𝑎
) 𝑎 ∈ {𝑠, 𝑒}

for which is found enriched, . The more the two splicing maps are similar the more𝑡
𝑎

𝐵(𝑝,  𝑡
𝑎
)

probable it is that the protein p is responsible for AS of the input exons.

The function used to measure the similarity between tetramer and protein p was derived𝑡
𝑎

separately for each set of parameters as follows. For each enriched tetramer , in the region𝑡
𝑎

Ri of the splicing map, where i={1, 2, 3}, the subset of the input exons containing at least one

occurrence in Ri was retrieved. In case the tetramer was enriched in more than one region,

the union of exons was considered. Starting from this set of exons, the binding profile was

created as described above, resulting in the binding profile of protein p restricted to exons

containing tetramer , .𝑡
𝑎

𝐵(𝑝, 𝑡
𝑎
)

For each tetramer and protein p, the tetramer splicing map and the restricted binding𝑡
𝑎

profile were then compared using a cosine similarity (Figure 45B), resulting in a profile

similarity score :β(𝑝, 𝑡
𝑎
)

β(𝑝, 𝑡
𝑎
) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑀(𝑡

𝑎
),   𝐵(𝑝,  𝑡

𝑎
)) =

𝑀(𝑡
𝑎
) ·𝐵(𝑝,𝑡

𝑎
)

|| 𝑀(𝑡
𝑎
) ||  || 𝐵(𝑝,𝑡

𝑎
) || =  𝑖

∑ 𝑀(𝑡
𝑎
)

𝑖
 𝐵( 𝑝, 𝑡

𝑎
)

𝑖

𝑖
∑𝑀(𝑡

𝑎
)

𝑖

2

𝑖
∑𝐵(𝑝, 𝑡

𝑎
)

𝑖

2

where i represents the position along the map and a indicates the regulation type (i.e.

silenced or enhanced). The cosine similarity was chosen as it is invariant to amplification of

the signal (“Learning Similarity with Cosine Similarity Ensemble” 2015), i.e. it favors the

shape of two vectors rather than their norm.

The profile similarity score was then weighted by the signal recovery rate toβ(𝑝, 𝑡
𝑎
) α(𝑝)

𝑎

penalize proteins for which subsets of exons did not give a robust signal. The final score was

called association score and calculated as follows (Figure 45C):𝐴𝑆(𝑝, 𝑡
𝑎
)

𝐴𝑆( 𝑝, 𝑡
𝑎
) = 𝐴𝑆

𝑎
= α(𝑝)

𝑎
· β(𝑝, 𝑡

𝑎
)  

𝑎 ∈ {𝑠, 𝑒}
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The association score describes the strength of the association between tetramer and𝑡
𝑎

protein p. In particular, the higher the score, the higher the probability that the protein is

regulating the input set of exons by binding to that motif.

This procedure was carried out for all the combinations of parameters, yielding to 40

different AS matrices (20 for silenced and 20 for enhanced exons) for each RNAmotifs run

(Cereda et al. 2014) and for each set of RBP-regulated exons in the two cell lines,

separately.

To evaluate the optimal set of parameters for each dataset (RBP-regulated exons in one of

the two cell lines), the sensitivity and specificity in associating the enriched tetramer to the

actual regulatory protein were calculated using a Receiver Operating Characteristic curve

strategy (ROC). In particular, for each dataset of input exons controlled by RBPinput, and for

each RNAmotifs run r (Cereda et al. 2014), two matrices of association scores, one for the

enhanced exons, , and one for the silenced exons, , were produced. For each cell𝐴𝑆
𝑒

𝐴𝑆
𝑠

line, the matrix showed on the columns the enriched tetramers found by RNAmotifs in

RBPinput regulated exons (Cereda et al. 2014), and on the rows the available proteins for that

cell line. In the dataset of exons regulated by RBPinput, ASs relative to that protein are

expected to be high. ASs are normalized to range from zero to one for each association

score matrix in run r, defining the normalized AS (ASn):

𝐴𝑆𝑛(𝑝, 𝑡
𝑎
)

𝑟
=

 𝐴𝑆(𝑝,𝑡
𝑎
)− 𝑚𝑖𝑛(𝐴𝑆

𝑎
)

𝑚𝑎𝑥(𝐴𝑆
𝑎
) − 𝑚𝑖𝑛(𝐴𝑆

𝑎
)

⎡⎢⎣
⎤⎥⎦𝑟

 

Given a threshold the protein p is defined as associated to tetramer t if𝐿 ∈ [0, 1] 𝐴𝑆𝑛(𝑝, 𝑡
𝑎
)

𝑟

> L, ranging between 0 and 1 with 0.01 step. As this procedure can be viewed as a

classification algorithm, performance metrics were defined. Given the protein RBPinput,

consider the AS matrix resulting from its own regulated exon (either silenced or enhanced).

Metrics can be defined as:

● Positives: length of , where p = RBPinput, the number of enriched tetramers𝐴𝑆𝑛(𝑝, 𝑡
𝑎
)

(i.e. number of columns of the AS matrix).

● Negatives: length of , where p ≠ RBPinput, i.e. the number of associations𝐴𝑆𝑛(𝑝, 𝑡
𝑎
)

where p ≠ RBPinput.

● True Positives (TP): number of tetramers associated with PA with a score greater or

equal to L ( ≥ L with p = RBPinput).𝐴𝑆𝑛(𝑝, 𝑡
𝑎
)
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● False Positives (FP): number of tetramers associated with the other proteins with a

score greater or equal to L ( ≥ L with p ≠ RBPinput)𝐴𝑆𝑛(𝑝, 𝑡
𝑎
)

Since these quantities were computed separately for the two cell lines, the overall accuracy

metrics were obtained by averaging the two metrics from the cell lines.

The ROC curve was then built starting from the metrics, making L ranging from 0 to 1 with a

step of 0.01 (Figure 45D). This process was performed for each RNAmotifs (Cereda et al.

2014) run and separately for each dataset of RBP-regulated exons.

The set of parameters that maximized the Area Under the ROC curve (AUROC) was

selected as the optimal one. Since two ROC curves for each RBP were evaluated (already

aggregated across cell lines), for the enhanced and silenced exons respectively, the

regulation type for which the region of interest was found was considered (i.e. where the

maximum BS is located). In other words, the accuracy metrics and respective AUROC

curves were taken from the regulation type where the maximum BS is found. In cases in

which the two cell lines had different regions of interest, the optimal set of parameters was

defined as the one that presented the maximum AUROC across the two regulation types.

Moreover, when AUROC was less than 0.5, meaning that the prediction performed worse

than a random classifier, the default RNAmotifs parameters were considered as optimal

parameters (n=15, e=30) (Cereda et al. 2014).
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Figure 45: VIsual explanation of RNAmotifs parameters tuning procedure. A. RNAmotifs splicing map

splicing map. B. Profile similarity between binding profile and RNAmotifs splicing map. C. Association

scores between tetramers and proteins. D. Evaluation of ROC curves across different combinations of

RNAmotifs parameters.

RNAmars algorithm
Given the set of optimal parameters and the signal recovery rate for each protein,

representing the base knowledge used by the tool, RNAmars per se can be used to identify

which proteins regulate the alternative splicing process of differentially included exons

retrieved from an RNAseq experiment. Required inputs are: (i) a list of coordinates of exons

with their differential inclusion direction (1 for differentially included, -1 for differentially

excluded and 0 for constitutive), (ii) the cell line to be used for the eCLIP peaks data (K562

or HepG2).

A differential gene expression table in DESeq2 format (Love, Huber, and Anders 2014) can

also be supplied to be used in the summary visualization in the DESeq2 format. Since gene

expression is not used for the purpose of retrieving the associations between tetramers and

proteins, the latter is totally optional.

RNAmars workflow is composed of three main parts.
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(i) First, RNAmotifs (Cereda et al. 2014) is run with the parameters n and e equal to all the

optimal parameters previously found, since a priori the regulatory protein of splicing events is

still unknown.

(ii) Given a tetramer enriched in at least one run of RNAmotifs (Cereda et al. 2014), to𝑡
𝑎

evaluate its association with protein p, the is computed as described above,𝐴𝑆(𝑝,  𝑡
𝑎
)

considering only the run matching the optimal parameters of p. In other words:

● 𝐴𝑆( 𝑝, 𝑡
𝑎
) = 𝐴𝑆

𝑎
= α(𝑝)

𝑎
· β(𝑝, 𝑡

𝑎
)  

if is enriched in run with optimal parameters𝑡
𝑥

of protein p

● 𝐴𝑆( 𝑝, 𝑡
𝑎
) = 0 if is not enriched in run with optimal𝑡

𝑥
parameters of protein p

(iii) All the AS are then collected into a final AS matrix, in which each row is a different RBP

and columns are the tetramers that were found as enriched in at least one of the runs of

RNAmotifs (Cereda et al. 2014) under different parameter configurations. The AS matrix is

the main output of RNAmars. The AS matrix is also visualized through a heatmap, where cell

color and cell size represent the association score between the row protein and the column

tetramer (Figure 46). The cell is empty if the column tetramer is not enriched in the run with

corresponding optimal parameters of the row protein. The heatmap is built using the

‘Complex Heatmap’ R package v2.14.0 (Gu, Eils, and Schlesner 2016). The barplot on top

depicts a score that combines p-values from the different runs of RNAmotifs (Cereda et al.

2014) through the Fisher's method.

𝑇𝑒𝑡𝑟𝑎𝑚𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =  −
𝑟 ∈ 𝑟𝑢𝑛𝑠

∑  
 𝑖 ∈ {𝑅

1
,𝑅

2
,𝑅

3
}

∑ 2 𝑙𝑜𝑔 𝑝𝑣
𝑖, 𝑟( )[ ]

where is one of the three regulatory regions and of RNAmotifs (Cereda et al.𝑖 𝑅
1
,  𝑅

2
𝑅

3

2014) and r is a RNAmotifs run with a combination of (e, n) parameters.

The resulting vector containing tetramer scores is also provided as an output to the user.

The three-rows heatmap under the barplot represents the aggregation of tetramer

enrichments of different runs by Fisher’s method, separately for the three regulatory regions

(Figure 46). The heatmap with differently sized green squares on the left represents the BS

and, hence, in which region the binding of the row protein is expected. Rows are sorted by

values reported in the barplot on the left. Such values are the row-wise averages of the
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association scores of tetramers found enriched in the optimal parameters of the row protein

(Figure 46). They represent the final protein scores, interpreted as the level of confidence

that the protein is related to the input alternative exons. If the differential expression table is

provided as input by the user, the log2 Fold Changes of the genes coding for the row

proteins are plotted aside. The sign of the log2 Fold Change is given by the shape and color

of the triangles: upwards red triangles for positive log2 Fold Changes and downwards blue

triangles for negative ones. The triangles are filled if p-value adjusted is lower than 0.05,

empty otherwise. On the right hand side of the heatmap the tetramer splicing maps resulting

from the RNAmotifs runs with optimal parameters of the corresponding protein are depicted.

Figure 46: Visual explanation of RNAmars algorithm. First alternative and constitutive exons are

defined by the user. RNAmotifs are run with the combinations of optimal parameters. Then,

Association Scores are computed comparing RNAmotifs splicing maps with binding profiles from

HepG2 or K562 eCLIP data. Visualization step: enriched tetramers are in the columns, RBPs are in
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the rows and matrix values are the association scores. Point size and color gradient are proportional

to the AS. Left annotation contains the absolute log2 Fold Change of differential gene expression.

Triangle pointing up means up-regulated , pointing down means down-regulated (sign of log2 fold

change of gene expression is user defined). Green squares on the left are the BS of each protein cell

line. Left barplot indicates the final RBP score computed as the mean(AS). Top barplot is the

cumulative tetramer of the tetramer (Fisher’s Method aggregation of p-values from different regions

and runs). Upper annotation heatmap refers to the tetramer strength in the three regulatory regions.

Tetramer splicing maps on the right in the RNAmotifs run with the optimal parameters of the row

protein.

Information content of PWMs

The Information Content (IC) was measured at each of the 11 positions i following:

𝐼𝐶
𝑖

= 2 +
𝑗 ∈{𝐴,𝐶,𝑇,𝐺}

∑ 𝑝
𝑗
 · 𝑙𝑜𝑔

2
(𝑝

𝑗
)

where pj is the probability of having the letter j in the position i. IC ranges from 0 (i.e. all the

nucleotides have the same probabilities to occur) to 2 (i.e. certainty of a given nucleotide in a

specific position). The overall IC of the protein in the cell line was defined as the mean

across all positions.

PWM of multivalent RNA motifs

To collapse a list of enriched tetramers into a singular PWM two steps were used:

1. Each tetramer was converted into a probability matrix made of 4 columns (the

nucleotide of the tetramers) and 4 rows (the nucleotide dictionary). In the case the

tetramer was non-degenerate (containing exclusively A, C, T, G), values were set to

1 in correspondence of the position for each letter of the tetramer. For degenerate

tetramers (containing Y, R, W, S), instead, a value of 0.5 was given to both the

nucleotides composing the degeneracy.

2. Given the list of probability matrices, they were collapsed together by performing a

weighted average of the letter frequencies at each position. The weight used was the

cumulative tetramer score of the tetramer as defined before. The resulting matrix was

composed by occurrences of nucleotide i at position j.𝑓
𝑖,𝑗

Tetramer PWMs were compared between each other using Pearson Correlation Coefficient

(PCC). Specifically, at each position PCC of nucleotide frequencies was computed between
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the two PWMs, resulting in a four dimensional vector of correlations. In particular, for each

position j in the PWM (i.e. the column index):

𝑃𝐶𝐶(𝑋
𝑗
,  𝑌

𝑗
)

where and and are four dimensional vectors of nucleotide weights f in𝑗 ∈  {1, 2, 3, 4} 𝑋
𝑗

𝑌
𝑗

the position j . The mean of these correlations was then used as a(𝑓
𝐴,𝑗

,  𝑓
𝐶,𝑗

,  𝑓
𝐺,𝑗

,  𝑓
𝑇,𝑗

)

measure of similarities between the two lists of tetramers.

Multivariable covariance analysis
Relative contributions of the technical features to the correlation with a response variable

(e.g. the mean score of the input regulatory protein) were measured using the following

approach. The technical features, or regressors, considered were: |DPSI| levels, number of

input exons, IC of PWMs and number of deregulated RBPs. The number of dysregulated

RBPs was determined by identifying splicing-related genes within the dataset of interest that

exhibited an adjusted p-value of ≤ 0.05. This was done among the selection of RBPs

considered for this study. (15 RBPs for HepG2 and 13 for K562, see Supplementary table 4).

Regressor values were normalized using a near-zero variance filter, Yeo-Johnson

transformation, centering around their mean, and scaling by their standard deviation using

the preProcess function in the R ‘caret’ package v6.0-94 (Kuhn 2008) with parameters

method = c("center", "scale", "YeoJohnson", "nzv"). The response variable mean score was

set to 0 for datasets without enriched tetramers. A generalized linear regression model

(GLM) was fitted to the response variable based on the normalized values of regressors

using the glm function in the R ‘stats’ package v4.2.3. Relative importance of each regressor

to the correlation measured by the model was calculated using the function calc.relimp in the

R ‘relaimpo’ package v2.2-6. In practice, the coefficient of determination was divided into𝑅2

the contribution of each regressor using the averaging over orderings method (Lindeman,

Merenda, and Gold 1980). Confidence intervals were measured using a bootstrapping

procedure implemented in the function boot.relimp. For 1,000 iterations, the full observation

vectors were resampled and the regressor contributions were calculated.

HNRNPK splicing analysis
HNRNPK was silenced in PC3 cell line and RNA-seq library preparation and sequencing

was performed as previously described (Del Giudice et al. 2022). Raw sequencing reads

from HNRNPK silencing RNAseq were aligned to the human genome reference GENCODE
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GRCh37 version 28 (Frankish et al. 2019) using STAR v.2.7.3a (Dobin et al. 2013) in basic

two-pass mode using the following parameters: --alignInsertionFlush Right

--outSAMstrandField intronMotif --outSAMattributes NH HI NM MD AS XS

--peOverlapNbasesMin 20 --peOverlapMMp 0.25 --chimSegmentMin 12

--chimJunctionOverhangMin 8 --chimOutJunctionFormat 1 --chimMultimapScoreRange 3

--chimScoreJunctionNonGTAG -4 --chimMultimapNmax 20 --chimNonchimScoreDropMin 10

--outFilterIntronStrands RemoveInconsistentStrands --outFilterMultimapNmax 1

--bamRemoveDuplicatesType UniqueIdentical.

Alternative splicing events were detected using rMATS v4.1.1 (Dobin et al. 2013; Shen et al.

2014). Cassette exons with FDR<0.01 and |DPSI|>0.1 were defined as alternatively

included. Events with FDR>0.1, |DPSI|<0.005, belonging to the gencode comprehensive

annotation (Frankish et al. 2019) and not labeled as ‘alt’ in UCSC hg19 database (Navarro

Gonzalez et al. 2021) were considered as constitutive.
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Chapter 3: Splicing derived neoepitopes
Immunotherapy is the process by which engineered T cells reject tumor cells by binding to

antigenic peptides. These peptides are characterized by high affinity with the major

histocompatibility complex (MHC) which presents them on the cell surface. Traditionally,

therapies have focused mainly on mutations-derived neoantigens. However, expanding the

neoepitopes repertoire to alternative splicing derived neoantigens results in an increased

immunotherapy target space.

The standard approach to find splicing derived neoepitopes involves several steps

(Figure 47). Firstly, it required the identification of tumor-specific splicing junctions

(neojunctions). To achieve this, all splicing junctions are compared with junctions from a

comprehensive database of human healthy tissues, including the matched normal samples

when available. Next, the peptides encoded by the neojunctions are tested for their binding

affinity with MHC-I and MHC-II complexes. This process can be done by exploiting prediction

tools such as NetMHC and NetMHCpan (Andreatta and Nielsen 2016; Jurtz et al. 2017). The

neoepitopes with the highest binding affinities are then selected for validation through mass

spectrometry and T cell activation or cytotoxicity assays. Finally, the remaining validated

neoepitopes can be employed for vaccination to stimulate a T-cell response in the patient, or

they can be utilized to identify antigen-specific T cell receptors (TCRs) for engineering T

cells for direct cancer therapy in patients.

Figure 47: Schematic workflow of the identification of splicing derived neoepitopes and the following

steps for therapies design. Taken from (Frankiw, Baltimore, and Li 2019)
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Recently, some researchers opened the way in this direction: the analysis of 8,705 patients

from TCGA showed that 68% of tumors contained at least one alternative splicing derived

neoepitopes, while only 30% of tumors contained somatic mutation derived neoepitopes

(Kahles et al. 2018). In a study on melanoma patients it was experimentally shown through

mass spectrometry immunopeptidome analysis that intron retention events lead to the

production of neoepitopes which were presented on the surface of cancer cells (Smart et al.

2018). Moreover Jayasinghe et al. suggested that the neoantigens derived from mis-spliced

junctions are more immunogenic than the missense mutations (Jayasinghe et al. 2018).

They also showed that a substantial number of neojunctions are recurrent across patients,

including events in cancer driver genes such as TP53 and PTEN. In mouse models, the

pharmacologic perturbation of RNA splicing has been shown to induce splicing-derived

neoepitopes which enhanced the anti-tumor immunity (Lu et al. 2021).

In the case of pediatric EW and OS where the tumor mutational burden is low (Gröbner et al.

2018), studying mRNA alterations can be a promising strategy for expanding the

immunotherapy target space. It is crucial to widen the neoantigen space because it was

shown that high neoantigen burden implies an increased immune response (Turajlic et al.

2017). In this chapter I will delve into an extensive examination of splicing-derived

neoepitopes within the OS and EW cohort.
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Results

Alternative splice sites and exon skipping are major sources of

neoepitopes

In chapter 1 it was shown that the alternative events generate also to novel junctions that are

not found in the genome annotation. Therefore, there could be margin to identifying

tumor-specific junctions that potentially become neoepitopes to target with immunotherapy.

To do so I exploited ISOTOPE software (J. L. Trincado et al. 2021) which effectively

identifies junctions absent in the annotation as well as in control samples, and for which the

encoded peptides exhibit high affinity with the MHC. Being sample specific, ISOTOPE helps

at finding patient-specific candidates, holding significant promise for advancing the field of

personalized medicine.

Not all the novel junctions can lead to an isoform Open Reading Frame (ORF) change if the

junction does not fall into the coding part of the transcript. Even if the ORF changes, the

novel Peptide affinity is tested against MHC and only those with enough affinity (less than

500nM) are kept. Figure 48 shows the number of novel junctions categorized by these three

groups: (i) Junctions where the novel isoform does not result in an ORF change, hence no

neoepitopes are generated; (ii) cases where the isoform lead to an ORF change, but the

peptides lack the affinity with the patient's MHC; (iii) the isoform undergoes a ORF change

and the peptides exhibit affinity with the patient's MHC, These junctions are defined as

neoepitopes related events. On average, only 8% of all the novel junctions are found to

harbor neoepitopes, while 38% lead to an ORF change but do not produce peptides with

high MHC affinity (Figure 48). The remaining 54% correspond to isoforms where the ORF

remains unchanged. The proportion of the neojunctions harboring neoepitopes is compatible

with what was already found in different cell lines types (J. L. Trincado et al. 2021).
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Figure 48: Number of events per sample stratified by their ORF change and their predisposition to

form neoepitopes.

The junctions identified by ISOTOPE are divided into four categories: intron retention,

alternative 3’ splice site or 5’ splice site (a3a5), exonization (i.e. creation of a novel exon)

and neoskipping (i.e. a novel exon skipping event).

Figure 49: Number of detected neoepitopes and related neojunctions. A. Number of alternative

events per patient harboring a neoepitope. B. Number of neoepitopes per patient. C. Scatter plot of

assigned reads to genes versus number of events harboring neoepitopes. R is Pearson’s correlation

coefficient

The most frequent neoepitope related junction types in samples were either neoskipping or

a3a5 (Figure 49). Each junction was on average harboring three neoepitopes. The patient

sg050 had the highest number of junctions harboring neoepitopes, with a total of 106 events.
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The number of discovered neoepitope-related junctions depends strongly on coverage of the

samples. In particular the number of assigned reads (i.e. sum of all the counts assigned to

genes) is correlated with the number of neoepitope-related junctions (Figure 49). Overall

there were 413 unique genes with 546 novel junctions harboring a total of 1698 different

neoepitopes across patients.

Neoepitopes are patient specific

The majority of junctions was private, i.e. specific only to that sample, emphasizing the

underlying heterogeneity among the patients (Figure 50). Nonetheless, it was crucial for me

to prioritize the pursuit of a strong consensus among patients. This meant focusing on

identifying candidate neoepitopes that were commonly shared across multiple patients, thus

increasing the likelihood of developing a broadly applicable immunotherapy for pediatric

sarcomas. The two most shared neoepitopes were found in seven different samples of both

subtypes (Figure 50), and they arose from the same alternative event. It is a 26 nucleotides

long alternative 5’ splice site within the ATF6B gene.

Figure 50: Neoepitopes specificity. A. Pie chart indicating the amount of neoepitopes that are shared

and that are patient specific (private). B. Histogram showing the number of neoepitopes shared by N

patients, with N takes values in x-axis.

To decipher which biological pathways were involved in genes containing neoepitopes I

conducted an over-representation analysis of gene ontology terms. Intriguingly, I observed

that the most enriched pathways overlapped with those identified as the top enriched

pathways in the down-regulated genes within sarcomas, as detailed in the transcriptional

alteration section. Specifically, the top enriched term “External encapsulating structure

organization”, had 32 genes harboring neoepitopes in OS. This pathway was also among the

top pathways for down-regulated genes in OS.

However, it is important to note that the genes falling within this category exhibited only

modest absolute fold changes, with only four of them demonstrating significant

downregulation (one gene) or upregulation (three genes), as illustrated in Figure 51.
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Consequently, this pathway appeared to be affected by both an overall gene expression

downregulation and the formation of splicing-derived neoepitopes, although there was

limited overlap in terms of targeted genes between these two mechanisms (only four genes

out of the 32).

Figure 51: Over-representation analysis of neoepitopes related genes, divided by disease subtype.

Biological processes enrichments in the left panel, point size proportional to p-value adjusted and the

number over the point defines the number of genes belonging to that pathway. Central panel is a

density of the log2 Fold Change distribution from DESeq2 results of the genes within that pathway. In

the right hand panel there are the number of significant differentially expressed genes in the

corresponding pathway.

Inspecting the number of differentially expressed genes within the neoepitopes related

genes I observed that the majority (82% for EW and 90% for OS) were not differentially

expressed (Figure 52).

Figure 52: Proportion and number of up-regulated (salmon), down-regulated (cyan) and non

significant differentially gene expressed neoepitopes related genes.

Therefore, the origin of these neoepitopes is not due to a different gene activation,

considering the low change in expression, between the two tissues, but rather from

variations in junction patterns between the tumor and normal tissues. This finding aligns with
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the observations in Chapter 1, underscoring the substantial dissimilarity between the targets

of splicing modifications and those of transcriptional alterations. This disparity extends to

splicing changes resulting in neoepitope formation.
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Methods

Neoepitopes discovery
HLA genotyping at four digits resolution was estimated for each patient from RNA-seq Fastq

files using seq2HLA (Boegel et al. 2012) which internally uses bowtie (v. 0.12).

Junction files from STAR output were merged together using Junckey (“GitHub -

comprna/Junckey: Collection of Scripts for Computing PSI of Junction Clusters” n.d.).

Transcript counts were computed using Salmon (Patro et al. 2017). ISOTOPE pipeline (J. L.

Trincado et al. 2021) was then run to classify splicing-derived neoepitopes in four types of

novel junctions: exonizations, neoskippings, retained introns and alternative 3’ or 5’ splice

sites (A3A5). Junctions were classified as novel if all these conditions were satisfied (i) they

had at least 20 supporting reads in at least one tumor sample (ii) either one or both of the

splice-sites were not present in the human annotation (GENCODE complete annotation

GRCh38.v33) (iii) did not appear in any of the normal samples from comprehensive datasets

like Intropolis and CHESS-2.2 (iv) the junctions were not present in control samples (with a

20 reads coverage threshold). Since matched normal samples have not been extracted,

publicly available osteoblast data were used as controls (Moriarity et al. 2015) (Accession

code GSE57925).

Suppa generateEvents function was used to retrieve splicing events from CHESS GTF

(Juan L. Trincado et al. 2018). Since Intropolis junctions were only available in hg19, the

custom function liftover_intropolis.py from GitHub repository of (Nellore et al. 2016) was

used to convert the coordinates to hg38. To retrieve intron retention the reference annotation

was widened to also include introns coordinates using KMA software with parameter

--extend 40. Raw reads were then mapped to this augmented annotation with Bowtie2 with

parameters -k 200 --rdg 6,5 --rfg 6,5 --score-min L,-.6,-.4 and intron retentions were

quantified with eXpress -1.5.1 (Roberts and Pachter 2013).

Repeated elements intervals were downloaded from UCSC portal

(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/)
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Discussion
This project has been conducted with the aim of broadening the repertoire of suitable targets

for osteosarcomas (OS) and Ewing (EW) pediatric sarcomas using a statistical approach.

Given the limited effectiveness of current therapies for these tumor types and their high

recurrence rates, there is a need to explore new therapeutic strategies using a more

personalized and genomic approach. The conventional approach for addressing these

tumors involves identifying somatic mutations that act as cancer drivers, guiding targeted

therapies (Yu, O’Toole, and Trent 2015). However, pediatric sarcomas are notably lowly

mutated cancers (Gröbner et al. 2018). Therefore, the objective of this thesis was to uncover

additional irregularities within the transcriptomic landscape as potential avenues.

The project tackles the issue from three different perspectives: (i) Exon levels: finding a set

of poor survival related events (Chapter 1); (ii) Protein level: identifying the proteins that are

majorly involved in alternative splicing dysregulation (Chapter 2); and (iii) Cell level:

detecting tumor specific splicing derived neoantigens (Chapter 3).

From a preliminary inspection of transcriptomic data, both OS and EW showed a divergent

landscape between transcriptional and splicing alterations targets, highlighting two different

levels of regulations.

The integration of The Cancer Genome Atlas TCGA clinical data and the respective survival

analysis identified seven alternative splicing events strictly significantly related to a poor

patient prognosis in both diseases. In particular, an exon skipping within the tumor

suppressor gene NF1 stands out. The skipped exon is 63 nts long and falls within a RasGAP

domain, whose activity is to inactivate the oncogenic RAS proteins function. Depletion of this

domain could therefore lead to a loss of function of NF1 protein provoking an activation of

RAS proliferation pathway. Considering their strong correlation with patient survival, these

events are promising candidates for targeted intervention using Splice Switching antisense

Oligonucleotides (SSO) (Yuanjiao Zhang et al. 2021). Such technology can potentially lead

to a degradation of the damaging isoform, holding the promise of improving patient survival.

In order to pinpoint the key RNA binding proteins (RBPs) that were majorly associated with

alternative splicing, RNAmars algorithm was developed. This statistical approach assesses

the association of an RBP's involvement in alternative splicing by comparing the positional

enrichments of cis-acting elements with those of trans-acting factors exploiting RBP

depletion followed by RNA-seq and eCLIP data from ENCODE database (Van Nostrand,

Freese, et al. 2020). The results generated by RNAmars are collected within an interpretable

heatmap. This heatmap not only includes the ranking of the proteins that are primarily
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responsible for splicing dysregulation but also provides valuable details regarding pre-mRNA

sequences, binding preferences, and differential gene expression.

RNAmars was tested on unpublished data by transiently silencing HNRNPK in PC3 cell

lines. RNAmars was able to identify HNRNPK as the top regulator of its exons, as expected.

It also retrieved the expected CC rich motifs of HNRNPK downstream the alternative region

for enhanced exons and within the exon itself for silenced ones. This analysis revealed how

RNAmars successfully identifies RBPs that are highly probable to bind to the identified

motifs, thus playing a pivotal role in the regulation of alternative splicing.

RNAmars was used to analyze alternative exons in sarcomas and it identified RBFOX2 as

the major exon enhancer and U2AF2 as the main silenced in both OS and EW. Notably, in

OS, HNRNPK and U2AF1 also exhibited some level of involvement, albeit with a lesser

degree of impact, influencing cassette exon inclusion and exclusion, respectively.

RBFOX2 in was associated mainly to Serine rich tetramers (-GC-, -CG-, or -GG-), while

U2AFs were predicted to be associated mostly with T-rich motifs in both diseases.

With the insights gained from RNAmars results, it becomes feasible to design a small

interfering RNA (siRNA) strategy aimed at suppressing the identified deleterious RBPs and

restore normal splicing regulation. Furthermore, leveraging the ability of RNAmars to

associate RBPs to enriched tetramers, it is also possible to design a SSO to modulate

inclusion of RBPs splicing targets by interfering with their binding.

Lastly, the antigens analysis unveiled the patient-specific nature of splicing derived

neoepitopes, particularly arising from alternative splice sites of novel exon skipping events.

The highest degree of overlap between different samples were two neoepitopes, which were

shared among seven patients and originated from an alternative 5’ splice site of ATF6B

gene. This analysis on splicing derived neoepitopes expands the repertoire of possible

targets for engineered T-cells targeted immunotherapy.

The major limitation of this study stems from the absence of matched normal controls within

the clinical trial. The only samples that were available from the patients, apart from the tumor

biopsies, were blood specimens utilized for the DNA analysis. Nonetheless, employing blood

as control in differential transcriptomic analysis lacks validity due to significant expression

level variations between vastly distinct tissues.

The second option was to use publicly available data of bone cell types, such as osteoblasts,

osteocytes, osteoclasts and bone lining cells. Unfortunately, I did not find any data from

these cell types in databases such as GTEx (The GTEx Consortium* 2013). I was only able

to find osteoblast data that had already been used as controls in a study about

osteosarcomas (Moriarity et al. 2015).
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Additionally, this study could benefit from a larger sample size especially given that there are

only 26 tumor samples which can be limiting for robust statistical analyses. However it is

worth noting that the clinical trial is ongoing with an estimated completion date in the next

few years (ClinicalTrial.gov id:NCT04621201), and new patients are currently being enrolled.
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Conclusions
In this thesis, alternative splicing has been demonstrated as a valuable source of potential

targetable candidates at the isoform, protein and cellular level. The computational and

statistical approaches employed in this project have helped not only enhance the

comprehension of transcriptomic abnormalities in sarcomas, but have also identified three

different intervention points and their corresponding candidates for potential personalized

therapeutic strategies.
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