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1. Abstract 

bRo5 (beyond-Rule-of-5) compounds such as PROTACs, macrocycles and non-
macrocyclic compounds exhibit revolutionary mechanisms of action but possess 
challenging physicochemical properties (i.e., extreme polarity and lipophilicity). As a 
result, they face in vitro ADME limitations (i.e., low water solubility and cell permeability) 
that impact their oral bioavailability. However, nature has provided some examples of 
bRo5 molecules that can behave as “molecular chameleons”. This behavior can make 
the compound adapt to the environment by simultaneously displaying decent water 
solubility and cell permeability. Nevertheless, despite the interest in bRo5 compounds, 
the lack of property-based strategies slows down their development as oral drugs. 
Therefore, this thesis aims to design and implement experimental and in silico molecular 
property strategies, tailored for bRo5 compounds. 
 
First, the experimental property profile (i.e., ionization, lipophilicity, polarity, 
intramolecular hydrogen bond formation) of a large set of bRo5 compounds was 
evaluated. Then, an innovative strategy combining polarity and lipophilicity was 
proposed to monitor the thermodynamic solubility of PROTACs. Furthermore, a novel 
chromatographic method to measure the chameleonicity of bRo5 compounds was 
disclosed. In practice, this method is able to capture the property change of a 
compound, when modifying the polarity of the environment. Notably, it is a high-
throughput (HT) method that deserves to be included in any drug discovery program. 
Moreover, these molecular property strategies were integrated to rationalize oral 
bioavailability. Finally, the obtained experimental proofs provided a reasonable 
opportunity to rationalize or model bRo5 properties from in silico predictions.  
 
Consequently, the thesis shifted its focus towards in silico approaches. 2D descriptor-
based strategies (i.e., chemical space analysis) were tentatively employed to detect 
subregions of reference compounds with privileged permeability or bioavailability. 
Moreover, several 2D descriptor-based property models also succeeded in predicting 
the oral absorption of macrocyclic drugs. In addition, in silico strategies that account for 
the 3D conformation of bRo5 molecules were designed. In particular, these methods 
generate a set of possible conformations in polar and nonpolar environments, 
mimicking the outside and inside of the cell.  Conformational sampling (CS) and 
molecular dynamics (MD) were optimized for this purpose. Subsequently, a series of 3D 
molecular descriptors were calculated for the obtained conformations and their results 
were interpreted. Overall, these strategies succeeded in reproducing specific 
experimental properties (polarity and chameleonicity) and shed light on the importance 
of dynamic intramolecular hydrogen bonds (dIMHBs) in chameleonicity. Moreover, 
work is in due course to integrate 3D descriptor-based descriptors and dIMHBs into 
property-based design strategies.  
 
Overall, in my opinion this thesis has decisively contributed to fill the molecular property 
void between the Ro5 and bRo5 space. 
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4. Thesis organization 

The content of this thesis is organized into thirteen chapters (1-13). Chapter 1, the 
abstract, summarizes the main objectives and findings. Chapter 2 includes the list of 
publications and academic merits derived from the thesis, while Chapter 3 presents the 
abbreviations used throughout the text. Chapter 4 provides instructions on how to read 
the thesis. Chapter 5 contains a general introduction, followed by the thesis objectives 
in Chapter 6. Chapters 7, 8, and 9 describe the original contribution of the candidate to 
specific fields, leading to a final conclusion in Chapter 10. Chapter 11 outlines the 
methods used, and Chapter 12 provides a list of bibliographic references. Finally, 
Chapter 13 contains the supplementary material. 
 
The scientific content begins in Chapter 5, in which a general introduction to the 
characteristics of compounds belonging to the bRo5 space is provided. This chapter 
mainly focuses on their pharmacokinetic properties and the resulting challenges of their 
design for the oral route. Additionally, this section includes a critical overview of the 
available experimental and computational strategies for assessing molecular properties. 
The objective of this part is to assess the applicability of these strategies to bRo5 
compounds, and to identify their strengths, weaknesses and opportunities for 
improvement. Chapter 6 will focus on the specific aims to be pursued in this thesis. 
 
The following chapters (7, 8, and 9) are dedicated to the use of (7) in silico 2D descriptor-
based strategies, (8) experimental strategies and (9) in silico 3D descriptor-based 
strategies to monitor molecular properties in the bRo5 space.  
 
The order of the chapters has been chosen to follow the logical workflow used in bRo5 
drug discovery projects. First, 2D descriptors are employed to refine the leads based on 
reference compounds or drugs (retrospective analysis). Next, the compounds are 
synthesized or obtained, and the experimental molecular property proofs are obtained. 
Lastly, 3D descriptor-based strategies are developed based on the aforementioned 
experimental evidence. In practice, once optimized, these strategies are intended to be 
employed immediately after the application of 2D descriptor-based strategies and just 
before the synthesis of a future lead. 
 
This thesis is oriented versus the identification of molecular property strategies. 
Consequently, although constituting part of the published articles, content related to 
pharmacodynamics will not be discussed in the text. 
 
Throughout the thesis, the scientific content is organized in an article-based style, each 
of which is identified in the text by Roman numbers (I-VII). Despite being divided into 
three chapters with different topics, the articles (I-VII) are intentionally interconnected 
and include contextualization that allows them to be read consecutively.  
 
At the beginning of each chapter, there is a brief introduction to connect the contents. 
Finally, after each chapter, a summary of the main findings is provided. The text will 
exclusively narrate the most important findings of each article. Some results with less 
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relevance for the reader will be located either in the "Supplementary Material" (Chapter 
13) or in the corresponding publication (Chapter 2). Throughout the text, the reader is 
referred to the Methods section exclusively when the employed techniques are 
innovative or crucial for the understanding of the article. The remaining details can be 
found in the methods section of each published article (Chapter 11). 
 
The goal of each chapter is not only to discuss the most significant events but also to 
interpret them from a broader perspective and to evaluate them from the present point 
of view. Thus, the writing in this thesis is original and may include critiques or judgments 
that may differ from or complement the original publications. Therefore, data previously 
published with a given explanation now offer new insights and conclusions. 
Consequently, references now include literature that was not available at the time of 
publication (Chapter 12). 
 
Specifically, in the experimental part (Chapter 8), all the mentioned techniques were 
applied, although only the key results were discussed. On the other hand, the in silico 
strategies discussed in Chapter 9 are supported by data that were unpublished at the 
time of publication, with particular emphasis on the information provided by the 
chromatographic descriptor "Chamelogk." This provided a stronger interpretation of the 
computational results.  
 
Lastly, Chapter 10 summarizes the main findings discussed throughout the thesis, 
discusses the challenges requiring further comprehension, and proposes the next steps 
to be taken. 
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5. General introduction to the bRo5 technology 

5.1 Drug discovery: a historical overview 

Since the 19th century, the pharmaceutical industry has developed at a rapid pace, 
providing effective drugs for many diseases that were previously considered 
untreatable. This growth has been driven by advances in many scientific fields.1 For 
example, the development of analytical chemistry triggered the discovery of drugs 
derived directly from nature (natural products, NPs) such as morphine or penicillin.2,3 In 
addition, advances in organic chemistry made it possible to reproduce or modify 
(partially or completely) the biosynthetic pathways found in nature to obtain NPs or NP 
derivatives (i.e., semi-synthetic antibacterials).4 Moreover, the progress in 
pharmacology led to the rational design of the first candidates for specific targets (i.e., 
agonists or antagonists) and the consequent development of the first synthetic de novo 
drugs.5  

 

As a result, the 20th century was characterized by the rise of organic compounds with 
low molecular weight (MW), vaguely defined as small molecules. However, at the end 
of the century their approval suffered a slowdown caused by the exhaustion of synthetic 
pathways and traditional approaches, and the need for new therapeutic strategies often 
referred to as new chemical modalities. Moreover, at the same time, the development 
of biotechnology began to provide the first biologics (i.e., antibodies, cell therapies), 
which now represent a promising but still expensive alternative (beyond the scope of 
this thesis).6,7 Thus, today we see how small molecules and biologics share the market.7,8 
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5.2 New chemical modalities  

At the turn of the century, advances in genomics and human biology provided a new 
plethora of possible drug targets (genes, proteins, etc.) that were previously unknown 
or considered “undruggable” by traditional approaches.9,10 This opportunity 
represented a boost for small molecule drug discovery which had remained stuck in 
traditional targets, but also allowed to develop new chemical modalities which occupied 
an interface between classical medicinal chemistry and biotechnology. Thus, this new 
modality included biotech-based products (i.e., RNA-based strategies, gene therapy), 
antibody-drug conjugates and specific categories of small molecules (covalent 
inhibitors, small peptides, protein degraders and macrocycles).11 In particular, these 
categories of small molecules have innovative mechanisms of actions that require 
specific and complex structural moieties. As a result, these molecules do not normally 
meet the structural requirements, grouped under the Lipinski's Rule of 5 (Ro5), that a 
compound should have to be orally available (see Chapter 5.4).12 Consequently, these 
molecules fall into a chemical space (ensemble of all possible synthesizable molecules) 
named beyond-Rule-of-5 (bRo5) space, with challenging pharmacokinetic properties 
(see Chapter 5.5).  
 
This thesis will focus on chemical modalities belonging to the bRo5 space, mainly 
degraders (often referred to as PROTACs) and macrocyclic and non-macrocyclic 
compounds. In this section, their unique structural and pharmacological features will be 
reviewed. 

A. PROTACs 

Degraders or PROteolysis TArgeting Chimeras (PROTACs) were first described by Crews 
and Deshaies13 in 2001 and quickly gained popularity due to their capacity to attack 
“undruggable proteins”, of great use majorly for cancer. Chemically speaking, they are 
heterobifunctional compounds composed of three building blocks (Figure 1): a warhead 
that binds to a protein of interest (POI), a ligand (E3 ligand) that recruits an E3 ligase 
enzyme, and a linker that connects both regions (structural details of the building blocks 
are provided as part of Papers II and III).  
 
Their mode of action involves three consecutive steps: (1) the formation of a ternary 
complex (TC)(POI-PROTAC-E3 ligase complex), (2) the polyubiquitination of the lysine 
residues of the POI by the activated E3 ligase complex and (3) the degradation of the 
POI by the UPS (ubiquitin-26S proteasome system).14 PROTACs function through an 
event-driven mode of action, in contrast to typical small molecules that exert their 
pharmacological effects by occupancy.15 Thus, unlike classical inhibitors that rely on 
potency, PROTACs require the recruitment of the POI. Indeed, this mechanism provides 
a new toolbox of “druggable” proteins. In addition, PROTACs act through a catalytic 
cycle, reducing the required dose and therefore the likelihood of side effects.16 In 
addition, PROTACs are expected to solve many treatment resistances (mainly in cancer), 
although cell resistance is not yet fully understood.16,17  
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However, despite their pharmacological advantages, degraders are bRo5 compounds 
that suffer from pharmacokinetic limitations (pharmacokinetic considerations will be 
discussed separately in Chapter 5.5). In fact, it was not until 2020 that the first degraders 
entered in clinical trials (ARV-110 and ARV-471; www.arvinas.com), both as oral 
treatments for cancer. Currently, up to 18 PROTACs are in clinical trials in 2023, mostly 
for cancer. In addition, PROTAC technology is expanding to autoimmune diseases, 
neurodegenerative diseases, infections etc.18,19 

 

Figure 1. ARV-825 as a PROTAC example (E3 ligand-linker-warhead). It targets BRD4 as the POI 
and CRBN as the E3 ligase, colored in blue and red, respectively. Figure adapted from Garcia 

Jimenez et al., 2021.20 

B. Macrocycles (peptidic or non-peptidic) 

The concept of a “macro-cycle” refers to an organic compound containing at least 12 
heavy atoms in a ring. Macrocycles, despite being considered as a new therapeutic 
modality, are far from being recent. In fact, nature was the first to provide antibacterial 
and immunosuppressive macrocycles, such as erythromycin and cyclosporin, 
respectively (Figure 2).21 Notably, these first macrocycles were poly-peptidic in origin 
and were baptized as “cyclic peptides”. However, non-peptidic de novo designs are also 
becoming popular in the past years.22  
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Figure 2. The structure of cyclosporin, a macrocyclic peptide. 

Structurally, macrocycles have a semi-flexible and pre-organized disposition determined 
by the three-dimensional conformation of the ring and its side chains. These unique 
traits often give them the ability to bind with greater affinity and selectivity to targets 
that are inaccessible to conventional ring-opened equivalents.23 Moreover, ring 
cyclization also provides pharmacokinetic advantages for oral dosing.24 Thus, the 
strategy of rationally inducing ring closure, called “macrocyclization”, is now a common 
optimization route for many acyclic compounds.23–27 As a result, macrocycles (natural 
and de novo) are gaining interest from a pharmacodynamic and pharmacokinetic point 
of view, despite their often complicated synthesis (macrocycles will be treated 
separately in Chapter 7.1). 

C. Non-macrocycles 

The last category of the bRo5 space corresponds to non-macrocyclic compounds. These 
are large compounds that have in common a linear structure type. Overall, they have a 
varied origin that covers from natural terpenoids like paclitaxel28 to synthetic antivirals 
as ritonavir.29 
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5.3 The oral route: bioavailability and molecular properties 

A. Factors governing oral bioavailability 

The pharmaceutical research of a drug mainly involves the study of pharmacodynamics 
(PD) and pharmacokinetics (PK). PD focuses on the activity of a drug in the body (i.e., 
ligand-receptor affinity, activity, etc.), whereas PK focuses on the way in which the body 
deals with the administered substance. Traditionally, PK has been decomposed in 4 
steps: the absorption, distribution, metabolism and elimination (ADME), which together 
with PD determine the final administration route of a drug.30 Generally, the oral route is 
the most desirable route for any treatment with a desired systemic effect for several 
reasons (a comprehensive evaluation of the administration routes is beyond the scope 
of this thesis). From an industrial perspective, a drug intended for oral absorption is 
easier to manufacture and stock and is more cost-effective. From the patient’s 
perspective, it implies better patient compliance and safety (non-invasiveness).31,32 For 
example, in oncology, the oral route is preferred by 54 to 89% of the patients.33  

 

The oral route, however, involves a series of steps (Figure 3) that limit the type of 
compounds that can be administered. First, the compound must be sufficiently soluble 
and stable in the variable pH environments of the gastrointestinal tract (GI); acidic pH in 
the stomach (variable depending on the fasting state), neutral in the small intestine and 
slightly basic in the large intestine.34,35 Then, the compounds need to permeate passively 
(following an energy-free concentration gradient) or actively (with energy expenditure) 
through the intestinal membranes. During the whole thesis, the term “permeability” will 
refer to passive diffusion unless specifically mentioned. Notably, 3 main mechanisms are 
relevant: the paracellular (the compound permeates through the intercellular space 
between the enterocytes), transcellular (diffuses through the enterocyte) and active 
transport (uses protein transporters).36 Generally, except for some exceptions that use 
active transport, drugs use passive transcellular transport. However, inside the 
enterocyte, drugs are prone to several efflux transporters ((i.e, P-glycoprotein (P-gp), 
multi-drug resistance-associated proteins (MRPs)) that can prevent the drug from 
passing through the enterocyte to the portal vein (Figure 3).37,38 Eventually, drugs reach 
the liver where they are metabolized before entering the circulatory system.34 Once in 
the systemic circulation the drug can be distributed and can carry out its action on 
extracellular and intracellular targets (after a new cell permeation).  
 
Thus, the alternance of polar and nonpolar environments in specific steps (i.e., solubility, 
membrane permeability) calls for the monitoring of the chemical, physical and structural 
characteristics of the molecule of interest, named as molecular properties.39 Moreover 
the drug formulation also determines the success in obtaining an oral drug but will not 
be reviewed in this thesis, since part of the development stage.  
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Figure 3. Schematic representation of the steps in the oral absorption process. Blue and yellow 
boxes refer to the presence of limiting polar and nonpolar environments, respectively. Figure 

adapted from Abuhelwa et al., and Huang et al., 2017 and 2009, respectively.34,40  

Overall, the efficiency of a molecule’s journey into the blood is measured by a parameter 
named oral bioavailability (F%), defined as the percentage of the molecule that reaches 
the systemic circulation after an oral administration. Therefore, to have a decent F%, 
the molecule of interest must have favorable molecular properties. Formally, these can 
be divided into in vitro ADME (metabolic stability, water solubility, cell permeability, 
etc.)41 and physicochemical properties (polarity, lipophilicity, ionization, size, 
conformational features, etc.).39 Normally, obtaining a favorable molecular property 
profile is feasible for small and Ro5 compliant molecules. However, it becomes notably 
more complicated in the bRo5 space (i.e., PROTACs and macrocycles, etc.).  
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B. Solubility and permeability: the BCS classification 

In the design of an oral drug, a key pharmacokinetic requirement is for the molecule to 
be soluble enough to guarantee a desired concentration in an aqueous media. Solubility 
becomes highly relevant at various stages of the discovery process.42 For instance, 
sufficient solubility must be guaranteed in the GI fluids (for absorption), in the blood 
plasma (for distribution) and in the body fluids (for elimination). Moreover, permeability 
represents another crucial molecular property for a drug to be absorbed in the GI tract, 
reach the systemic circulation, and penetrate into tissues and cells. Thus, a candidate 
must simultaneously have enough water solubility and cell permeability to be orally 
absorbed (other properties involved in the absorption, distribution, metabolism and 
elimination such as water and hepatic stability, protein binding and clearance will not 
be treated in this thesis, although they are also critical for the success of an oral 
candidate).  
 
Oral bioavailability can be monitored by the balance between solubility and 
permeability. This strategy was addressed some time ago by the Biopharmaceutics 
Classification System (BCS), which groups drugs into four classes based on their water 
solubility and membrane permeability. Class I includes high solubility and permeability, 
Class II high permeability and low solubility, Class III high solubility and low permeability 
and Class IV, low solubility and low permeability.43 Consequently, Class I represents the 
ideal category for the development of oral drugs. It is noteworthy that advances in 
pharmaceutical formulations have made it possible to partially solve some of these 
issues by introducing new dosage forms. For example, the use of salts represents a 
common strategy to improve the dissolution rate of Class II compounds.44 However, this 
strategy can only be applied in the latest stages of preclinical development and is only 
performed for specific candidates (formulation will not be discussed). Moreover, in 
many other cases, a chemical modification of the lead is required, especially for Class III 
and IV compounds.45 This is particularly evident when bRo5 molecules are considered. 
Consequently, from a drug design point of view, efforts must be made to refine the 
chemical structures in order to resolve this situation at later stages.  

C. Modeling of oral route-related events: QSPR and PBPK models 

An important aim of any drug discovery project is to obtain efficient models to predict 
the PK behavior of a drug candidate (bioavailability, tissue exposure, clearance, etc.). 
Two different but complementary approaches can be used (Figure 4). First, quantitative 
structure-property relationships (QSPR) relate the structural properties of a molecule, 
for instance polarity or lipophilicity, to a monitored parameter of interest, for instance, 
bioavailability.46 Specifically, QSPR models can be built based on simple statistical 
regression or more complex machine learning (ML) models (see Chapter 5.8). Second, 
physiologically based pharmacokinetic (PBPK) models are also built based on the 
molecular properties of the candidate, but also include information about the 
pharmaceutical formulation and the characteristics of the living organism (a detailed 
analysis of PBPK models is beyond the scope of this work).47 
 



 

19 
 

Thus, both approaches effectively consider molecular properties (in vitro ADME and 
physicochemical molecular properties) to model critical steps of the oral absorption 
process (i.e., bioavailability, tissue exposure, clearance). Moreover, in both cases the 
quality of the experimental data is essential, often at risk when dealing with complex 
molecules. 

 

Figure 4. Schematic representation of the factors governing QSPR and PBPK models.  
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5.4 The definition of the bRo5 space 

The growing speed of drug research programs at the end of the past century called for 
a rule of thumb to assess the capacity of a molecule to become an oral drug before it 
entered development. Thus, In 1997 Lipinski and coworkers came up with the “Rule of 
5”, a set of 5 criteria that a compound should meet to be orally available or to have 
“drug-like” properties.12 These in silico rules indicate that an oral candidate must have 
no more than 5 hydrogen bond donors (HBD) and 10 acceptors (HBA), a molecular 
weight (MW) lower than 500 Da and a calculated LogP (logarithm of the octanol/water 
partition coefficient) not greater than 5.  
 
These guidelines defined the limit between the Ro5 and the beyond the Ro5 chemical 
space and have been updated and improved over the years. For instance, a polarity 
quantifier named the topological polar surface area (TPSA or 2D PSA) was included by 
Veber. 140 Å2 was therefore set as a polarity limit for oral drugs. Moreover, he also 
included a flexibility constraint, by limiting the number of rotatable bonds (NRotB) to 
10.48 In addition, other relevant studies (i.e., Kihlberg,39 Whitty,49 and DeGoey50) have 
also contributed to mapping the limits of the oral bRo5 space, mainly including new 
chemical modalities such as degraders, macrocycles and non-macrocyclic bRo5 drugs. In 
fact, Maple and coworkers recently defined, for the first time, the molecular property 
space of PROTACs.51 These guidelines only include two-dimensional descriptors that are 
fast to calculate and easy to interpret. Their calculation requires a 2D representation of 
their structure, making the process easily automatable for large data sets. 
 
However, many drugs are orally bioavailable despite having many Ro5 violations.39 This 
has been evident over the past decades due to the increasing size (MW) of FDA-
approved oral drugs.52 Consequently, scientists are now questioning the rigidity with 
which Ro5 guidelines have been interpreted by medicinal chemists and are seeking new 
solutions adapted to bRo5 drug discovery programs.53 
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5.5 The bottleneck in the discovery of oral bRo5 drugs 

The pharmacokinetics of Ro5 molecules can be optimized with traditional molecular 
property guidelines (i.e., Ro5, Veber, etc.).54 However, bRo5 molecules cannot be 
optimized with the same rules of thumb due to structural and strategy limitations. These 
issues will be treated in the following sections.55 

A. Inherent molecular properties  

bRo5 molecules are known for their big size, high flexibility and extreme polarity or 
lipophilicity, which can confer several disadvantages. Their large size (MW) decreases 
solubility and permeability across the membrane.56,57 Likewise, the efflux-pump (i.e., P-
gp) which expels the drug outside of the cells, is also triggered by molecules with high 
MW. In addition, high polarity (HBDs, HBAs and TPSA) can provide higher solubility but 
limit notably their cell permeability. bRo5 molecules can also be known for their high 
lipophilicity (log P), which works in the opposite direction of polarity. High lipophilicity 
favors cell permeability but limits oral solubility. Furthermore, an excessively highly 
lipophilic drug can be retained in the membranes and compromise oral bioavailability. 
Moreover, high lipophilicity also promotes metabolic clearence,58 protein-binding,59 
general toxicity (i.e., hERG cardiac channel),60 etc.61 Consequently, it is challenging to 
obtain a correct balance between polarity and lipophilicity that guarantees enough 
solubility and permeability. Thus, the search for oral bRo5 drugs becomes even more 
complicated when the improvement of molecular properties goes against the interests 
of potency or activity (PD) (Figure 5). 

 

Figure 5. The quest for oral bRo5 drugs in the earliest stage of drug discovery: balance of 
permeability, solubility and potency. Figure adapted from Garcia Jimenez et al., 2021.20 
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B. The conformational challenge 

Notably, their high flexibility62 complemented with their structural complexity confers 
to some bRo5 compounds the ability to adopt different 3D conformations depending on 
the specific environment considered (intestine, membrane, blood, etc.). Furthermore, 
each distinct conformer not only has a unique molecular property profile but also 
experiences different conformation populations based on the environment. This makes 
the biorelevant conformation in each environment difficult to know. However, to date, 
water solubility is known to be less affected by conformational variability than 
permeability.63,64  

C. Inadequate tools to assess molecular properties  

bRo5 compounds have unique molecular properties that make traditional strategies 
optimized for Ro5 compounds inefficient. Moreover, the relationship between the 
conformation in each environment and molecular properties, specific for the bRo5 
space, also needs to be assessed with ad hoc experimental and computational strategies 
for the bRo5 space. However, most of these tools, if available, have theoretical and 
technical issues that will be separately discussed as part of Chapter 5.7 and 5.8 due to 
their importance for the thesis.   

D. Misunderstanding of property-based strategies  

Finally, the progress in the bRo5 space is slowed down by the almost exclusive use of 
traditional 2D descriptors by medicinal chemists.65,66  
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5.6 Opportunities for the discovery of oral bRo5 drugs: the role played by 

chameleonicity  

As introduced earlier, some bRo5 compounds can modify their conformations and 
molecular properties based on the environment. This behavior was first detected by 
Carrupt and coworkers in 1991 and was termed “chameleonicity”. More formally, it was 
defined as the capacity of a compound to display open and polar conformations in water 
and folded and less polar in nonpolar environments such as cellular membranes.67 They 
observed this behavior for small glucuronides that varied their activity due to their 
dynamic molecular properties. Interestingly, chameleonicity had previously been 
observed in larger molecules, such as cyclosporin (CsA), depicted as a macrocycle in 
Figure 2.68 In the case of CsA, this phenomenon had direct implications in solubility and 
permeability. Therefore, CsA represented the first rationalized example of a bRo5 drug 
having sufficient solubility and cell permeability to become an oral drug through 
molecular chameleonicity. 
 
In practice, chameleonicity arises from conformational changes that modify the 
molecular properties of a compound in an environment-dependent manner. However, 
these structural changes can be very different in nature. The first and most well-known 
chameleonicity mechanism is the formation of dynamic intramolecular hydrogen bonds. 
In 2011, Alex et al. observed looking at experimental conformations that CsA in water 
was forming hydrogen bonds with the solvent whereas in nonpolar solvents the HBs 
were being formed within the CsA amides, therefore known as dIMHBs. In addition, 
these dIMHBs produced a conformational change from an extended to a more folded 
conformation inside the membrane interior. Consequently, they hypothesized that the 
dynamic formation of IMHBs was the key for the surprisingly high permeability of CsA.69 

Since then, the use of IMHB-mediated chameleonicity to enhance permeability has been 
studied and applied for several compounds, including PROTACs (Figure 6) (see Chapter 
9).70,71  

 

Figure 6. PROTAC-1, the first NMR-proven chameleonic degrader. Adapted from Atilaw et al., 
2021.70 

Another common strategy involves polarity shielding by bulky and lipophilic 
substituents.55,72 For example, the change of a cyclic penta-leucine with a cyclic hexa-
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leucine peptide would theoretically provide higher polarity (2D PSA) and lower 
permeability (Figure 7).72 However, the hexa-leucine undergoes a conformational 
rearrangement that orients polar residues toward the core of the macrocyclic ring, 
decreasing the 3D PSA and increasing permeability and bioavailability (F%). Finally, other 
less known strategies include increasing flexibility and modifying stereochemistry. 

Furthermore, the rearrangement of lateral chains and the establishment of dynamic -

 and van der Waals interactions can also be rationally planned.  

 

Figure 7. Structures, calculated lipophilicity, cell permeability and oral bioavailability in rat for 
cyclic penta- and hexaleucines 6 and 7 and their structures, determined by X-ray 

crystallography and NMR spectroscopy, respectively.72 Figure adapted from Matsson et al., 
2016.55 

Overall, chameleonicity embodies an opportunity to design de novo oral compounds 
beyond the Ro5.49,64,73,74 However, the application of chameleonicity is for the moment 
a case-by-case strategy whose measurement and/or prediction is still under 
investigation (see Chapters 8 and 9). 
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5.7 Critical view of the experimental strategies to assess molecular properties 

in the bRo5 space 

In this section, the available experimental strategies to assess physicochemical 
(ionization, lipophilicity, IMHBs, polarity and chameleonicity) and in vitro ADME 
properties (solubility and cell permeability) are reviewed and discussed. Special 
emphasis is given to the feasibility of their application to the bRo5 space (see Chapter 
8). 

A. Physicochemical properties 

1) Ionization 

The acidity constant (pKa) is an important parameter to be evaluated for ionizable 
molecules. In the context of oral pharmacokinetics, the proportions of the major 
microspecies vary at the different pHs of the human body (gastric, intestinal, plasma), 
having a decisive impact on the in vitro ADME properties. For instance, an ionized 
molecule is more water soluble but has a lower cell permeability than the neutral 
form.75,76 Thus, the ionization becomes relevant also in the bRo5 space (i.e., PROTACs, 
macrocycles). For instance, erythromycin derivatives have ionizable lateral chains that 
are essential for their chameleonicity.77 Moreover, many orally available PROTACs use 
piperidine or piperazine linkers, which are charged at neutral pH.78,79 In addition, some 
bRo5 compounds have 2 or more ionization sometimes even existing as zwitterions (i.e., 
rifampicin), further complicating the situation.80 
 
Traditionally, the ionizable site has been determined by simple potentiometric 
methods.81 However, this technique is highly sensitive, manual and requires high 
solubilities, making it unsuitable for many bRo5 molecules. A second technique is the 
UV-Vis spectrophotometric titration, which quantifies the absorbance (concentration) 
variation as a function of the pH. Finally, Caron’s group observed that the ionization 
state of a molecule can be monitored by the capacity factor in the PLRP-S system.82 In 
practice, the variation of the molecule’s log k’80 (80% ACN in the eluent) at different 
pHs reveals its acidic, neutral or basic nature. However, this strategy does not reveal the 
exact pKa of the molecule but only the acidic/basic behavior of the analyte. 

2) Lipophilicity 

Lipophilicity is formally defined by the IUPAC as the affinity of a molecule for a lipophilic 
environment. Testa and coworkers deconvoluted lipophilicity into a positive 
contribution of hydrophobicity (water repulsion) and a negative contribution of polarity 
(separation of electronic charges).83 Thus, hydrophobic effects (hydrophobic and steric 
interactions, hydrophobic collapse, polar group shielding, etc.) increase the lipophilicity 
of a molecule, whereas the opposite is true for polar effects (HBD acidity, HBA basicity, 
polarizability of the solute, etc.).83 
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It is traditionally measured by the “shake-flask” method,84 in which an organic solvent 
(often n-octanol that has been saturated with water, hereafter named octanol) is added 
to an aqueous solution of a chemical in a flask (liquid-liquid partition). The flask is then 
shaken to reach equilibrium and their phases are separated. Lastly, the concentration in 
both environments is measured and the ratio is calculated. The partition coefficient (P 
or log P) is expressed as:  
 
 

(1) Partition coefficient (P) = [neutral]octanol/[neutral]water 
 

 
The lipophilicity of a compound is expressed as log P for neutral molecules. However, in 
the case of ionizable centers in the molecule, the lipophilicity is expressed as log D at a 
specific pH. In this case, log D at a given pH is recalculated by replacing the neutral 
concentrations in Equation 1 with the ionized and neutral concentrations at that pH in 
octanol and water.85 In both cases, the protocol is often slow and its outcome depends 
on many other factors such as the purity and solubility of the compound of interest.86 
Besides, due to its quantitative principle, it is very sensitive to the detection limits of the 
instrument used. 
 
Moreover, other strategies for measuring lipophilicity, such as potentiometry or high-
performance liquid chromatographic-based methods (HPLC), have been reported. The 
former is based on the quantification of the pKa change after the addition of octanol as 
a cosolvent to an aqueous solution.87 However, as recalled earlier, this technique has 
several limitations and can only be used for molecules with ionizable centers.  
 
HPLC-based methods, on the other hand, have gained popularity due to their high 
degree of automation and their ability to deal with impurities and low 
concentrations.84,88 Moreover, they can adapt their mobile phase composition to the 
solubility of the analyte and avoid precipitation issues.  
 
In this context, the lipophilicity of a certain molecule is measured as the capacity or 
retention factor (k’ or log k’) on a certain reverse-phase column (RP-HPLC) at a certain 
mobile phase composition (liquid-solid partition). Formally, k’ is defined as the 
difference between the retention time of the analyte (tR) and the dead time of the 
column (t0), divided by the dead time itself (t0). Mathematically, it is described by 
Equation 2: 
 

(2)  k′ = (tR - t0)/t0 
 
In addition, the measurement of the log k’ values is insensitive to the concentration of 
the analyte (the retention on the column is maintained), which is ideal for low solubility 
compounds. This makes HPLC methods more suitable than shake-flask and 
potentiometric experiments for insoluble compounds with extreme lipophilicity values, 
such as bRo5 compounds.89  
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Under reverse RP-HPLC conditions, the compounds are retained proportionally to their 
partition coefficient on the generated system (generally reproducing the octanol/water, 
toluene/water partition, etc.). The system is created by the effect of the eluent (a 
mixture of aqueous and organic solvents) on the analytical column used. Columns are 
generally assembled by long hydrocarbon chains (i.e., C8 and C18, nonpolar) chemically 
attached onto a silica stationary phase (polar). Consequently, the high variety of 
columns and eluents available allow lipophilicity to be measured in different 
environments. 
 
The use of RP-HPLC for lipophilicity has been exploited in the last two decades by various 
academic groups and companies, mainly to provide octanol/water surrogates.85 Valko 
and coworkers developed the chromatographic hydrophobicity index (CHI) at 
GlaxoSmithKline (GSK)89 which was correlated with cLogP values. In addition, Pfizer 
developed its own lipophilicity descriptors (ElogP or ElogD)90,91 and validated 
(correlated) them with shake-flask experiments (octanol/water). Caron’s group 
developed BRlogD, a surrogate of the octanol/water coefficient, focused on bRo5 
compounds.92  
 
BRlogD was conceived to provide newer alternatives to the well-known descriptor 
ElogP.92 ElogP was designed as the capacity factor of the compound in the LC-ABZ 
column extrapolated to a 0% concentration of the organic solvent (k’W or k’WATER).93 This 
column contains a silica-based stationary phase attached to a an alkylamide siloxane 
chain with an internal amide group inserted near the silica surface. This amide hides the 
polarity of the silanol group from polar analytes, improving the efficiency of the assay 
over alkyl siloxane-bonded phases. However, this system is unstable at pH above 8, 
making it unsuitable for many experiments. Therefore, Caron and coworkers used the 
XBridge Shield RP18, a column with the same properties as LC-ABZ but stable over the 
entire pH range. Moreover, they verified that the k’ at 60% of ACN (Acetonitrile), named 
BRlogD, is a quicker parameter than k’W to measure the lipophilicity of the octanol/water 
system for neutral compounds.94 In addition, they also observed that for a set of bRo5 
drugs there was a very good, although not perfect correlation with ElogP.95  
 
Furthermore, RP-HPLC methods also have the capacity to generate environments that 
mimic other binary systems than the octanol/water. For example, immobilized artificial 
membranes (IAMs) are surfaces composed of a phospholipid attached to a silica surface, 
intended to mimic the environment of the cell membrane.96 This type of biomimetic 
system has been used to model permeability and the blood-brain barrier (BBB) passage, 
and is suitable for neutral, charged or partially charged molecules.97–99 The capacity 
factor for this system at 0% organic solvent (extrapolated value) has been defined as log 
kW

IAM. In addition, the retention of charged molecules depends, not only on the 
hydrophobicity and polarity contribution in the system but also on the electrostatic 
interactions with the phospholipid heads.100,101 Thus, while BRlogD is a pure surrogate 
of the octanol/water (average membrane lipophilicity), log kW

IAM measures lipophilicity 
in an environment that mimics the exterior of the membrane. 
 
Just as the shake-flask method for octanol and water (log Poct) became popular to model 
the average lipophilicity of the membrane, the log Palk (alkane/water) and log Ptol 
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(toluene/water) provided lipophilicity values for the interior of the membrane where 
polarity is low (dielectric constant ∼ 2).102,103 However, compounds especially bRo5, are 
barely soluble in alkane solvents. Toluene, for its part, absorbs in the UV-range and 
complicates HPLC-separation. Notably, HPLC-based columns that provide similar 
nonpolar environments are available and represent a better alternative. For instance, 
the PLRP-S (polystyrene/divinylbenzene) is a polymeric column that mimics the tails of 
the phospholipid.82 In fact, Caron’s group revealed that the capacity factor at 80% ACN 
(log k’80 PLRP-S) can be a surrogate of the log Ptol, by correlating the retention capacity 
to the calculated log Ptol for a set of simple Ro5 compounds.  

3) IMHB formation 

The ability to form IMHBs is of great interest for bRo5 molecules. In fact, the dynamic 
formation of IMHBs in an environment-dependent manner can confer chameleonic 
properties to some molecules (see Chapter 9). To experimentally assess the formation 
of IMHBs, the difference between the octanol/water and toluene/water systems can be 
used.104,105 Toluene provides a nonpolar environment (dielectric constant ∼2.4) and 
promotes the folding (if possible) of the molecule through its IMHBs backbone. This is 
possible because there are no HBDs or HBAs available in the solvent to interfere with 
the molecule. On the contrary, octanol is more polar (dielectric constant ∼9.8) and 
should favor more open conformations. In addition, the formation of IMHBs is 
unfavorable because the HBDs and HBAs of the octanol could interact with the HBA 

/HBD pairs of the compound, avoiding the formation of IMHB. Thus, the  log Poct-tol has 
been validated as an optimal strategy to reveal IMHB formation.104,105 However, its 
validation involved shake-flask/potentiometric methodologies that hinder its 
application to the bRo5 space. Therefore, the application of this concept to HPLC 
methods seems vital for bRo5 compounds.106 

4) Polarity 

Polarity refers to the separation of electric charges in a molecule, which is determined 
by its HBD acidity, HBA basicity and polarizability.83 As mentioned in the introduction, 
polarity is inversely correlated with cell membrane permeability. Experimentally, it can 
be measured by several chromatographic methods.95,107The experimental polar surface 
area (EPSA) is a superfluid (CO2 as part of the eluent) chromatographic method (SFC) 
that uses a normal phase column, the Chirex 3014. It displays a balance of lipophilic and 
polar attributes that efficiently separates compounds according to their polarity. In this 
system, the polarity of the eluent is modified as a gradient by varying the percentage of 
methanol in an ammonium formate solution. This generates a nonpolar system that 
favors folded conformations, allowing the monitoring of cell permeability and to some 
extent also IMHBs.108,109  
 

Polarity can also be quantified with a chromatographic descriptor named  log kW
IAM. In 

1997, Barbato and colleagues observed that the correlation between log kW
IAM and log 

P for a series of structurally unrelated neutral compounds was much better than for log 
D7.4. This revealed that when charged states appear, the log kW

IAM is determined not only 
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by lipophilicity but also by the interactions with the phospholipid heads.110 Moreover, 
to assess the lipophilicity of future compounds, an equation was built on a set of non-
ionizable isolipophilic compounds (i.e., benzene, toluene) (log kW

IAM = 0.816*log P - 
1.055). Consequently, the difference between the log kW

IAM value of an analyte and the 
extrapolated log kW

IAM value obtained by interpolating log P in the previous equation 

was defined as  log kW
IAM.111 Therefore, this value represents the excess of polar 

contribution (hydrogen bonding and electrostatic interactions) of the analyte. More 
recently, they also observed that the experimental log kW

IAM of compounds with PSA=0 
(calculated polarity) correlated with their log Poct lipophilicity.98,99 Furthermore, given 
the previously mentioned correlation between log Poct and BRlogD,92 Caron and 
coworkers used the BRlogD descriptor as a surrogate of log P in the calculation of the 
extrapolated log kW

IAM, from now on, named clog kW
IAM (clog kW

IAM = 0.92*BRlogD - 

1.03).97 Consequently, the final obtention of  log kW
IAM is feasible from pure 

chromatographic descriptors ( log kW
IAM = log kW

IAM − clog kW
IAM). Moreover, this 

descriptor has recently been inversely correlated with permeability.97,112 

5) Chameleonicity 

The experimental evaluation of chameleonicity represents one of the biggest 
opportunities in drug discovery, but it is complex. At present, few tools are available to 
determine chameleonicity, all of which with important limitations. The most classical 
approach is the use of X-ray crystallography to explore the crystallized conformations of 
a molecule and analyze their structural and molecular property differences.64,77,113–116 A 
low superposition of their poses and a different molecular property space are indicators 
of high chameleonicity. However, molecular structures are often crystallized in the same 
solvent due to solubility limitations, which is not ideal for studying dynamic behaviors. 
Moreover, the X-ray-based chameleonicity analysis strictly depends on the number of 
available crystals. X-ray also suffers from the “crystal packing effect”, which implies that 
crystallized conformations may not be seen in solution.  
 
Nuclear Magnetic Resonance (NMR) serves as a more sophisticated approach, relying 
on the generation of molecular constraints extracted from the analysis of Nuclear 
Overhauser Effects (NOE) and proton coupling constants (J coupling). NOE and J coupling 
data form the basis for the NMR Analysis of Molecular Flexibility In Solution (NAMFIS). 
Through NAMFIS, the NMR-derived constraints are fitted with a series of 
computationally generated conformations (referenced in Chapter 9), allowing the 
extraction of relative population distributions in solution.77,117–120 This strategy has the 
advantage of focusing on actual solution conformers, but it still mostly uses a 
semiquantitative case-by-case study method. Additionally, it is time-consuming, suffers 
from solubility issues and requires skilled training, making it inappropriate for early drug 
discovery. In addition, this strategy relies on computationally generated conformations 
to fit NMR constraints, which makes it partly dependent on predicted values.121  
 
Furthermore, HPLC methods can also be used for assessing chameleonicity. As described 
in the lipophilicity section, ElogD and BRlogD constitute two correlated lipophilicity 
descriptors obtained in different environments.95 Caron and coworkers theorized that 
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the difference between the two descriptors would reveal the chameleonic behavior, if 
any, of the compounds. This descriptor was therefore named ChameLogD.95 Thus, 
ChamelogD represented the first HPLC-based descriptor for chameleonicity suitable for 
HT. However, since it independently measures two different environments, it lacks 
information about the behavior of the molecule in intermediate environments. 
Furthermore, it does not provide information about the structure of the retained 
conformations.  

B. In vitro ADME properties 

1) Solubility 

Solubility, formally defined by the IUPAC as the “analytical composition of a saturated 
solution expressed in terms of the proportion of a solute in a given solvent,” can be 
measured using two approaches in the pharmaceutical industry: kinetic and 
thermodynamic. Normally, kinetic solubility is the common choice, which consists of 
precipitating the compound by adding an aqueous phase to a DMSO solution.12,122 It is 
a rapid method that requires only a small sample. However, it denotes solubility as 
"apparent," because it determines solubility before the establishment of the equilibrium 
between the stable phase or polymorph and the solvent.122 Moreover, kinetic solubility 
often tends to overestimate solubility.123 In contrast, thermodynamic solubility 
evaluates solubility after a "shake-flask" experiment conducted in aqueous media. This 
approach considers solubility at the equilibrium, presenting a more accurate 
measurement. Nonetheless, it requires a longer experimental procedure and larger 
amounts of sample and solid. 

2) Permeability 

The ease with which a compound passes through a membrane is defined as the apparent 
permeability (Papp) and is typically assessed in drug development by Parallel Artificial 
Membrane Permeability Assay (PAMPA) and cell-based models.124,125 PAMPA quantifies 
the diffusion of a compound through an artificial phospholipid bilayer, which is a rough 
measure of passive permeability across a cell membrane. This method is popular due to 
its simplicity, cost-effectiveness, and relatively quick execution through automated 
platforms. However, it has limitations: it is unsuitable for high molecular weight (MW) 
compounds, which often encounter solubility issues and can exhibit non-specific 
binding.66 Additionally, PAMPA lacks the presence of transporters, restricting its 
applicability primarily to compounds falling within Ro5 space.50,126 On the contrary, cell-
based models like Caco-2, MDCKII and or LLC-PK1 also evaluate active transport 
mediated by efflux transporters. These models are more complex and expensive but are 
better suited for bRo5 compounds. Hence, many bRo5 compounds that are absorbed by 
active transport and are susceptible to efflux transporters (i.e., saquinavir),127 can only 
be studied by cellular models. Nevertheless, a direct relationship permeability and oral 
bioavailability has only been seen in specific cases.55,126 
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5.8 Classical and innovative in silico strategies to assess molecular properties 

in the bRo5 space 

At the moment, there is a lack of default strategies for predicting the molecular 
properties of bRo5 compounds. In this section, the application of general and innovative 
in silico ad hoc strategies to bRo5 compounds is discussed. 

A. Molecular descriptors 

They are defined as the result of logical and mathematical processes that transform 
symbolic representations of chemical information in a molecule into meaningful 
numerical values.128 Moreover, molecular descriptors can generally be classified as 2D 
or 3D.  

1) 2D descriptors 

2D descriptors capture the structural information of the molecule in a maximum of two 
dimensions and provide insights into their atomic composition, molecular connectivity 
and fragmental arrangement of the atoms. They can be divided into size-related (i.e., 
MW), hydrophobicity-related (i.e., clogP129), polarity-related (i.e., TPSA130,131), 
descriptors related to electronic effects (i.e., polarizability132), hydrogen-bonding 
related (i.e., HBD,133 HBA,134 Abraham´s acidity and basicity135) and topological 
descriptors (i.e., Wiener index136).137,138 Generally, they are fast to calculate and provide 
straightforward information.   
 
However, the use of 2D descriptors has several limitations. First the charge prediction 
represents a major issue. Most pKa calculators are trained on Ro5 compounds with just 
one ionizable group. Thus, the predicted pKa of bRo5 compounds is the first source of 
error that can considerably impact the calculation of molecular descriptors. For instance, 
lipophilicity (cLogD) depends on the predicted ionization state of the molecule (pKa), 
often inaccurate. Moreover, the HBD count also depends on the considered ionization 
state. The second and most limiting issue is that 2D descriptors, normally atom- or 
fragment-based, do not consider the 3D conformation and are not environment-
dependent.66 This makes them only partially useful for the bRo5 space. Notably, the use 
of 2D descriptors will be explored in detail in Chapter 7. 

2) 3D descriptors 

In silico strategies in the bRo5 space require the generation of 3D conformations in both 
polar and nonpolar environments (mimicking biological environments outside and 
inside the cell membrane, respectively) and the subsequent calculation of 3D molecular 
descriptors for the generated conformations.64,66,131,139  
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Their main goal is to identify biorelevant conformations with specific molecular 
properties that can be used to model experimental physicochemical properties and 
pharmacokinetic-related descriptors. Important applications of in silico 3D descriptor-
based strategy include, for instance, the identification of a pool of low polarity 
conformers in nonpolar environments (i.e., chloroform or toluene) that are relevant for 
permeability modeling. Another application is the screening of high polarity conformers 
in water that can be used to model solubility.64 Moreover, additional applications 
integrate the conformational energetic penalties when moving between environments 
to model permeability.140,141  
 
In practice, these strategies suffer from limitations in the generation of conformers and 
in the nature of the 3D descriptors. On one hand, the generation of conformations 
depends on the algorithm used and the environment selected, which requires a deep 
and complex study. On the other hand, the 3D descriptors were not initially built or 
validated on training sets of bRo5 drugs, which complicates their interpretation and use. 
Furthermore, the choice of the best 3D descriptors depends on the specific aim. 
Additionally, the ionization state of the molecule is a crucial factor for conformation 
generation and molecular property prediction. However, introducing ionization 
consideration into the exploration of conformational space is not a trivial task. In fact, 
in these simulations different polarity environments are considered and several 
microspecies should coexist. Therefore, conformational search algorithms, designed to 
simulate one species at a time, tend to oversimplify the situation. In the following 
section, the current strategies and their limitations will be discussed. 

2.1 Conformational search algorithm and solvent treatment method  

The first step is to choose the conformer generation engine that provides the best 
ensemble of conformations in a given environment. Several methods are available to 
perform this task. Overall, they can be classified based on the algorithm and the solvent 
model used (Table 1). 
 
 

Conformation generation algorithm (C) Solvent treatment (S)* Approach name (C+S) 

Distance geometry (DG) 

Implicit 
Conformational 

sampling (CS) 

Dihedral angle-based sampling 

Inverse kinematics (IK) formation 

Monte Carlo (MC) 

Molecular dynamics-based (MD) Explicit MD 

 

Table 1. Available conformation generation algorithms (C) and solvent treatment methods (S). 
S* reflects the most popular combinations of algorithm and solvent treatment method, 

although other combinations are possible. (C+S)* refers to the simplified names for the used 
combinations in this thesis. 
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According to the theory supporting the generation algorithms, the methods can be 
classified in distance geometry (DG),142 dihedral angle-based sampling,143 inverse 
kinematics (IK), Monte Carlo (MC) torsional methods and molecular dynamics 
(MD).77,116,144 Moreover, mixed models are also available.145 Of all, MC and MD-based 
methods are the most popular. MC methods sample the states of the system by 
randomly adjusting structural features (i.e., dihedral angles of rotatable bonds). In 
particular, the random sampling is based on the Metropolis-Hastings algorithm.146 Then, 
the structures of the obtained conformers are checked, their energy windows are 
calculated and the redundant conformations are eliminated. In contrast, MD is based on 
the interactions between atoms according to Newton’s physics. First, the atom-atom 
interactions and the energy of the system are calculated based on the application of an 
energy equation or force field.147,148 This provides the position and velocity (trajectory) 
for each atom at a given time. Next, the application of this force as a function of time 
allows to simulate the evolution of a system over a desired time. 
 
The solvation model can generally be either implicit, which treats the solvent as a 
continuous medium surrounding the compound, and explicit, which simulates the 
interaction between the compound and the solvent molecule itself.149 The main 
difference between the two methods is the computation time and the information 
provided. Implicit methods simulate the effect of the solvent based on the solvation 
model used. The most common ones are the Poisson-Boltzmann (PB) and the 
Generalized Born (GB), which calculate the forces based on the temperature, the 
dielectric constant, the electrostatic potential of the solvent, etc.150 In addition, this last 
model can be complemented with the hydrophobic solvent accessible surface area (ASA) 
to obtain the GB/SA model. On the other hand, explicit models mainly use the particle 
mesh Ewald (PME) method, which considers the simulation as a periodic cell. These 
methods allow the evaluation of the individual interactions between each solvent 
molecule and the compound of interest.150 The selection of the strategy can vary upon 
the desired scope, but it normally considers the simulation of a compound in a nonpolar 
and polar environment. Overall, in this thesis we will exploit the use of conformational 
sampling (hereafter referred to as any conformational search algorithm except 
molecular dynamics) methods with implicit models and molecular dynamics with explicit 
models (Table 1). 

2.2 Selection of the 3D molecular descriptors 

Once the conformational search has been performed in a given environment, the next 
step is to calculate their 3D molecular properties (polarity, size, shape, lipophilicity, 
IMHBs, etc.).139 Moreover, the RMSD (root mean square deviation), which measures the 
average distance between the backbone atoms, is normally assessed to evaluate the 
superposition between the conformers. 
 
Polarity has been traditionally assessed in 2D by the TPSA, which uses a fragment-based 
approach that sums up the polar contribution (generally N, O, and the bound hydrogens) 
of each fragment in a rapid and effective way.130,131 However, the bRo5 space needs the 
application of a 3D PSA to explore polarity differences between conformers. In practice, 
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its calculation first requires the calculation of the van der Waals surface, defined by the 
sum of the unburied atomic surfaces in the molecule (Figure 8).151 Then, the outer 
boundary of the area defined by the motion of a probe sphere as it rolls over the 
molecular van der Waals surface, defined as the molecular surface area, is calculated. 
Accordingly, the molecular PSA (M 3D PSA), reported by Rossi Sebastiano and coworkers 
is calculated as the molecular surface area corresponding to only the polar and other 
partially charged atoms.64 Moreover, they also reported the solvent-accessible PSA (SA 
3D PSA) that measures the polarity accessible to a water-sized probe of 1.4 Å radius 
around the molecular surface (Figure 8).  

 

Figure 8. Graphical representation of the various surfaces of a molecule: van der Waals, 
molecular and solvent accessible. Abbreviation: rp: radius probe. Figure adapted from Wei et 

al., 2005.151 

Molecular shape is quantified by the radius of gyration (Rgyr) as the root mean square 
distance of a set of atoms from their center of gravity.152 For small molecules (MW ≤ 
550), the relationship between MW and Rgyr is fair. This suggests that Rgyr is informative 
about the size for small molecules. This fact was also highlighted by our group very 
recently.106 Moreover we observed that Rgyr is rather a shape descriptor measuring the 
sphericity of the conformer. Furthermore, another common shape descriptor is the 
normalized principal moment of inertia (nPMI) plot. It is based on the assessment of the 
similarity of the conformation to a rod, disk, and sphere shape (Figure 9).153 
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Figure 9. PMI plot (PMI coordinates NPR1 and NPR2) illustrating the shapes of the target-
bound conformations of a set of FDA-approved macrocyclic drugs compared to the shapes of a 

set of Ro5 compliant drugs. Figure adapted from Garcia Jimenez et al., 2023.22 

Lastly, intramolecular interactions are also specific features of 3D conformations. In 
particular IMHBs (Figure 10) and polar and nonpolar interactions are of great 
importance for molecular properties such as chameleonicity. Above all, the predicted 
number of IMHBs (nIMHBs) is the most informative parameter. 

 

Figure 10. Representation of a predicted IMHB for pomalidomide, a Ro5 compound. The IMHB 
is present as a blue dashed line. Relevant angles and distances for the prediction of the IMHB 

formation are specified as suggested by Mills and coworkers.154 

B. The chemical space 

The goal of any drug discovery project is to predict a desired property directly from the 
use of simple descriptors. However, when more variables become relevant, the use of a 
chemical space becomes reasonable.155,156 The chemical space is defined as the 
physicochemical or chemoinformatics limits that define an ensemble of compounds. 
Moreover, its creation relies on the selection of several descriptors used to monitor a 
desired property. More specifically, this concept becomes useful to explore structure-
property (SPR) and structure-activity relationships (SAR) in pharmacokinetic and 
pharmacodynamic studies, respectively.155,156 In fact, it can reveal regions with common 
characteristics, for instance the detection of zones with improved in vitro ADME 
properties. Generally, it is assumed that the chemical space needs to be visually 
explicable, typically using 2D or 3D plots.155,156 However, the chemical space is an 
abstract concept that can use n variables in n dimensions, depending on the complexity 
of the property being monitored. Consequently, it is now common to use unsupervised 
ML techniques to deal with a great number of variables.157 These strategies, such as 
principal component analysis (PCA) or self-organizing maps (SOM), allow dimensionality 
reduction while minimizing the information loss. Moreover, other subfields of ML like 
deep learning are beginning to be applied, not only to the visualization of chemical 
spaces, but also to the generation of efficient QSPR models (see below).157  
 
Furthermore, the advances in the development of molecular fingerprints158 have 
allowed the development of chemical spaces based exclusively on the “similarity” or 
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“dissimilarity” of the molecules under study. These fingerprints, which are essentially 
coding vectors containing the information of the substructure fragments of a molecule, 
have made it possible to create chemical spaces explained upon similarity networks.159 

This concept, often named as “similarity map”, is useful to identify not only general 
molecular property characteristics but also specific structural moieties with relevance 
for the monitored property. A common application is the study of “activity landscapes”, 
described as graphical representations that integrate similarity and activity 
relationships. These maps are useful for identifying pairs of compounds (matched 
molecular pairs, MMPs) that exhibit remarkable differences in activity despite their 
strong similarity, often referred to as “activity cliffs”.160,161   

1) Conventional use of the chemical space in drug discovery 

The most common strategy is to create the chemical space upon 2D descriptors (i.e., 
MW, TPSA) in which to search for compound regions with privileged in vitro ADME 
property (see Chapter 7). This represents the fastest strategy and normally succeeds 
when atomic or fragmental differences between the studied compounds account for the 
property variation. This concept can also be related to property cliffs when 2D 
fingerprints are used or combined with 2D property descriptors. In practice, this tool 
represents the most classical approach in the optimization of molecular properties. For 
instance, it is obvious that most oral CRBN-based degraders (Cereblon as E3 ligase) in 
clinical trials have taken the property profile of ARV-110 and ARV-471 (the first oral 
CRBN-based PROTACs to enter in clinical trials) as a reference.78 In fact, many of them 
use the same semi-rigid linkers (piperidine or piperazine derivatives) as ARV-110 and 
ARV-471, and are therefore located in the same chemical space regions. 

2) Non-conventional use of the chemical space in drug discovery 

The conventional approach often fails when the studied candidates are in the far bRo5 
space. In these regions, the conformation can sometimes have a higher impact on the 
final molecular properties than the atomic or fragmental composition. In addition, the 
conformation can play a crucial role in the obtention of sound molecular properties for 
oral absorption (i.e., by chameleonicity). Therefore, the 3D descriptor-based chemical 
space needs to be implemented to explore certain regions of the 2D descriptor-based. 
In practice, Poongavanam and coworkers recently proposed the use of Rgyr and 3D PSA 
as size/shape and polarity descriptors, respectively.77 Nevertheless, the challenge is still 
how to generate 3D conformations, in which environment, and which are the 
biorelevant conformations. In Chapter 9, we focused on the refinement of this tool.  

C. QSPR 

QSAR/QSPR can be defined as computational methods that mathematically correlate 
the molecular structure of a compound, using molecular descriptors, to its molecular 
properties (chemical, physical or biological). These terms are denoted as QSAR when 
related to the pharmacological activity of the compound and as QSPR when related to 
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in vitro ADME properties.162,163 Generally, these methods are founded on the principle 
of poly-linearity, which means that a linear relationship between the property and one 
or more structural features is required. However, non-linear (logarithmic and 
exponential relationships) are also possible.163 Therefore, the identification of these 
mathematical correlations provides the opportunity to screen numerous compounds, 
even those not yet synthesized, for a given molecular property directly from their 
structure.  

1) QSPR model building  

To create these models, one should first search for the simplest correlations based on 
easy to calculate 2D descriptors (i.e., TPSA, MW, NRotB). From there, the complexity of 
the included descriptors can increase, including also 2D quantum chemistry-derived 
descriptors of the electronic structure (i.e., dipole moment, net atomic charges) 
obtained by semi-empirical calculations. Moreover, the final level of complexity involves 
the use of 3D descriptors (i.e., PMI, molecular volume, surface accessible surface area) 
that depend on the calculated conformation.  
 
Afterwards, the QSPR generation requires the mathematical modelling of the found 
correlation.163 Simple ML algorithms like linear regression (LR), multiple linear 
regression (MLR), and partial least squares regression (PLSR) are examples of statistical 
techniques to model linear relationships. Moreover, non-linear relationships can also be 
modelled by the use of other ML algorithms such as support-vector machines (SVMs), 
decision trees (DTs), Random Forest (RF), etc.164 Lastly, deep learning (DL) algorithms 
like artificial neural networks (ANNs) or deep neural networks (DNNs) represent the 
latest advances for QSAR/QSPR modeling.165,166 

2) QSPR derivatives  

Since the definition of QSPR only includes direct mathematical relationships, the use of 
Rules of thumb (Ro5) cannot be formally defined as a QSPR strategy. Though, these rules 
were hypothesized from known correlations between molecular descriptors and in vitro 
ADME properties. For instance, Lipinski included log P in the Rule of 5 given the effect 
of hydrophobicity in solubility, introduced by Yalkowsky.167 Other examples of QSPR 
derivatives are descriptor-based models whose output is not a numerical value but a 
discrete variable (i.e., soluble or insoluble). In these cases, the application of logistic 
regression and non-linear classification models are common.168 
 
 
 



 

38 
 

6. Aims 

In line with the limitations and opportunities related to molecular properties, the main 
aim of this thesis is to expand the knowledge of the bRo5 space at the experimental and 
computational level and to develop new ad hoc strategies to be used in drug design 
projects. Thus, the thesis specifically aims to:  
 

- Exploit the use of in silico 2D descriptor-based strategies to set up the 2D 
chemical space of bRo5 compounds (mainly macrocycles and degraders) and 
propose applicative strategies for the design of oral bRo5 compounds (Papers I, 
II and III).  
 

- Design, implement and fine-tune experimental methods to measure in vitro 
ADME (permeability and solubility) and physicochemical (ionization, IMHB 
formation, lipophilicity and polarity) molecular properties of bRo5 compounds. 
Furthermore, an important goal is to develop new chromatographic strategies to 
measure molecular chameleonicity (Papers IV and V). 
 

- Design new in silico 3D descriptor-based strategies to predict molecular 
properties through the modeling of their conformational variability by CS and 
MD-based methods. Again, a special focus will be put on monitoring the 
chameleonic behavior. Moreover, the developed in silico strategies will be 
integrated with the obtained experimental evidence to generate predictive 
models (Papers VI and VII). 
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7. In silico 2D descriptor-based strategies to monitor molecular properties 

In this chapter, the chemical space of several groups of bRo5 compounds is created in 
order to identify regions of drug discovery interest (Figure 11). To this end, the first step 
requires the evaluation of the simplest approaches, the use of 2D descriptors. As 
previously explained, they have several limitations but can be of great utility in the 
refinement of ADME properties. In particular, the articles in this section discuss the 
creation of 2D descriptor-based (i.e., MW, TPSA, etc.) chemical spaces that provide 
information on relevant molecular properties for the oral absorption route (i.e., 
permeability).24  

 

Figure 11. Schematical representation of a simple 2D descriptor-based chemical space using 
polarity (TPSA), size (MW) and flexibility (PHI) to cluster Ro5 and bRo5 molecules.  
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7.1 Macrocycles in Drug Discovery─Learning from the Past for the Future 

(Paper I)22 

Macrocycles have been extensively popular in the clinic since the XXth century thanks to 
their diverse clinical indications (i.e., antibacterials, immunosuppressants). However, it 
is only since the de novo design of complex bRo5 structures became feasible that 
medicinal chemists have begun to study their privileged PD (mechanism of action) and 
PK (in vitro ADME properties) in order to mimic them.21,24 
 
Macrocycles therefore require an individual state-of-the-art analysis focusing on their 
pharmacodynamic and pharmacokinetic potential. With this aim, different analyses 
were performed mainly on two generated data sets: macrocycles approved by the 
FDA169 (n=67) and macrocyclic candidates in clinical trials in the US (n=34) by 2022.170 
Moreover, two additional data sets included: literature entries containing information 
of the past 15 years (509 articles)22  and a data set with all the macrocycles reported in 
ChEMBL (n = 28052).171 

 

This manuscript discusses important advances in the pharmacological uses (indications, 
targets, etc.) and modes of action (binding form, site, etc.) of macrocycles. However, 
since the main scope of this work is the study of molecular properties, this information 
will not be discussed. For additional information on this topic, the reader is referred to 
the original publication (Paper I). 

A. The molecular property space 

The first goal was to examine the potential of macrocycles to serve as oral drugs through 
a retroprospesctive study based on their molecular properties. Among the FDA-
approved macrocycles, 39% of the macrocyclic drugs are orally bioavailable and 41% are 
parenteral (administered elsewhere in the body other than the digestive system). In 
addition, the ratio of approved oral to parenteral macrocycles has remained stable over 
time (Figure S1). Moreover, only 32% of the clinical candidates are intended for oral 
absorption. Thus, these similar trends reveal that despite the efforts to achieve oral 
dosing, oral macrocycles are still challenging to obtain.  
 
To investigate the potential factors governing this fact, the molecular property space of 
the approved macrocycles was calculated. Although 2D molecular property descriptors 
may be less useful than 3D descriptors for characterizing the chemical space of bRo5,64,95 
they are simple to compute and can provide useful information, especially for 
comparisons with Ro5 candidates.24,39 For this purpose, their 2D structures were 
retrieved from Drugbank,172 adapted to pH 7 (average for physiological absorption) and 
submitted to the calculation of 10 molecular descriptors (see Methods). Subsequently, 
the approved oral and parenteral macrocycles were compared based on their molecular 
descriptors (Figure 12 and Figure S2). The most informative descriptors were MW and 
the number of carbon atoms (nC) for size, TPSA, HBA and HBD for polarity, NRotB for 
flexibility and calculated logP (cLogP) for lipophilicity. Moreover, the logarithm of 
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aqueous solubility (cLogS), included as a solubility predictor also showed notable 
differences between the two groups. Results suggest that oral macrocycles are smaller 
(MW), less flexible (NRotB), less polar (TPSA, HBD and HBA) and more lipophilic (cLogP) 
(Figure 12). These limits reveal that oral absorption is favored by low polarity and high 
lipophilicity. In fact, these values do not respect Lipinski’s and Veber’s guidelines12,48 for 
MW, TPSA, and HBA (see Introduction), which reveals that these guidelines need an 
update, at least for macrocycles. 

 

Figure 12. Radar plot comparing the median values for the descriptors employed in Lipinski’s 
Ro5 and Veber’s rule for the oral (blue, n = 24) and parenteral (gold, n = 38) subsets of FDA-

approved macrocyclic drugs. Only Lipinski’s and Veber’s descriptors are represented. The 
remaining descriptors (i.e., cLogS) can be found in Figure S2. Another 5 additional compounds 

were discarded due to molecular property calculation errors. Figure adapted from Garcia 
Jimenez et al., 2023.22 

Moreover, we performed a PCA as an alternative way to plot and compare the molecular 
property space of macrocycles (Figure 13). Principal components 1 and 2 (PC1 and PC2) 
contain 91% of the data set variability, being lipophilicity (cLogP) the most contributing 
variable. As denoted by simple 2D descriptors, oral macrocycles occupy a narrower 
space than the parenteral space. More specifically, the oral space is formed by 4 major 
subregions. The main subregion is represented by most oral macrocycles, as 
represented by the blue centroid in Figure 13. Lorlatinib, pacritinib and moxidectin form 
a second cluster with molecular properties close to the Ro5 space. Cyclosporin and 
voclosporin (cyclosporin derivative) represent a third area, outside of the Ro5 space. In 
theory, these two are too lipophilic and polar, which would compromise the solubility-
permeability balance. However, cyclosporin has been proved to be a molecular 
chameleon that can hide its polarity, therefore obtaining enough cell permeability and 
solubility to be an oral drug.114,173 Given its similarity to cyclosporin, voclosporin also 
behaves as a chameleon. This was recently proved by our new chameleonicity 
descriptor, the Chamelogk.121 Finally, octreotide174 and desmopressin,175 two cyclic 
peptides, constitute the final cluster. Both are orally absorbed but have low F% (4 and < 
0.16%, respectively). Oral octreotide is available as an alternative to subcutaneous 
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administration and desmopressin is potent enough to achieve a decent effect even with 
low bioavailability. 

 

Figure 13. PCA of the chemical space of the macrocyclic drugs data set (n = 53). The PCA was 
based on the descriptors of Lipinski’s and Veber’s rules, as well as cLogS, calculated at pH 7.0. 

Ellipses in blue and yellow shading show the 95% confidence intervals for orally and 
parenterally administered macrocycles, respectively. The centroid of each class is indicated 

with a large circle in the color of the respective class. The contributions of individual 
descriptors to the PCAs are indicated by the length of the arrows. The structures of three Ro5 
compliant macrocycles (1−3), two analogues of cyclic peptide hormones (4 and 5), as well as 

cyclosporin (6) and voclosporin (7) are provided. Another 5 additional compounds were 
discarded due to molecular property calculation errors. Nine parenterals with MW > 1500 Da 
were excluded in the PCA to provide a better dissection of the chemical space. Figure adapted 

from Garcia Jimenez et al., 2023.22 

Clinical candidates followed a similar same trend. Interestingly, their molecular property 
distribution remained closer to the Ro5 space than the approved oral macrocycles 
(Figure S3). Moreover, PCA suggested that odalasvir, in clinical trials for the oral 
treatment of HCV infection, behaved as an outlier with an extremely high lipophilicity. 
It should be noted that its structure is atypical for a macrocyclic drug. However, clinical 
trials are prone to changes in their formulation and administration route. Therefore, 
although the general picture remains similar, property distributions may undergo slight 
changes.  



 

43 
 

 
Lastly, to gain some insights into the future, all the macrocycles contained in ChEMBL (a 
database of bioactive molecules) were downloaded and their properties calculated.171 
ChEMBL macrocycles explore a wider chemical space than approved macrocycles and 
macrocycles in clinical trials, but their median values did not show major differences 
(Figure S4). However, the macrocycles in the ChEMBL set are slightly smaller, more 
lipophilic, less polar (TPSA and HBA), less flexible (NRotB) and have rings of lower size 
than the drugs and clinical candidates. Moreover, its biggest difference compared to the 
drugs and clinical candidates is the low number of stereocenters. This could reveal that 
ChEMBL is mostly based on de novo designs. In addition, when compared to all the 
macrocycles with oral and parenteral absorption, CHEMBL was revealed to be 
surprisingly similar to the oral space. 

B. Predictive models for oral macrocycles 

The comparison of molecular descriptors and the PCA analysis revealed remarkable 
differences between orals and parenterals for both the approved and clinical trial 
candidates (Figure 13 and Figure S3, respectively). Consequently, we attempted to find 
simple cut-offs that could be used in the screening of novel macrocyclic drugs intended 
for oral absorption. For all the descriptors, a density plot including orals and parenterals 
was performed and the major separation between the clouds was taken as a cut-off 
(Figure 14). This intersection allowed the evaluation of single descriptor models to 
separate both populations, using the FDA-approved set as the training set (to build the 
model) and an external set of macrocycles as the test set.24,39  

 

Figure 14. Single-property distributions for HBD A), TPSA B), and NRotB C) for the oral (blue) 
and parenteral (gold) subsets of the macrocyclic drugs training set (n = 62). The black dashed 
line indicates the intersection point of the density plot, and the derived cutoff value is given 
adjacent to the dashed line. The reliability of single-property models based on each of the 

three descriptors for the differentiation of oral and parenteral drugs in the training set is given 
by the Cohen’s kappa (κ) value: a value higher than 0.6 suggests that the level of agreement 
between the predictions is moderate.176 The evaluation of the 10 single-descriptor models is 

reported as Table S1. Figure adapted from Garcia Jimenez et al., 2023.22 
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Thereafter, a confusion matrix (see Methods) was created, and several statistical and 
performance parameters were calculated to evaluate the models. The ML evaluators 
suggested that HBD (≤ 7) and TPSA (< 292 Å2) were the best performing descriptors, 
while NRotB (≤ 11), for example, was one of the worst ones (Cohen’s kappa = 0.53, 0.55 
and 0.37, respectively) (Figure 14 and Table S1). The single HBD and TPSA models were 
found to be very efficient in the detection of orals (TP), given their high sensitivity (88% 
and 92%, respectively). Nevertheless, their low specificity values (71% and 66%, 
respectively) revealed that parenterals (TN) were not as efficiently predicted. In 
addition, similar results were observed for the test set of clinical candidates (Table S1). 
 
Single descriptor models were not accurate enough and therefore, bi-descriptor models 
were explored. Combinations of the best 4 descriptors involved in single-descriptor 
models (MW, HBD, TPSA and cLogP) were performed. Overall, HBD (≤ 7) plus any of the 
other three descriptors (MW, cLogP and TPSA) gave the best models in the training set 
(Table 2). In fact, the best improvements over single descriptor models were in 
specificity or capacity to identify parenterals. Thus, sensitivity remained equally high 
(83-92%), while parenterals were discriminated with 74-79% specificity, which is an 
important improvement over any single-descriptor model. Furthermore, desmopressin 
and octreotide (cyclic peptides) are the only oral drugs that are misclassified by all the 
three models (Figure S5). In the case of the test set (83-94% sensitivity, 67-71% 
specificity), the prediction of parenterals also improved notably.  
 
 

Table 2. Most accurate bi-descriptor models for prediction of oral bioavailability for 
macrocycles. Cutoffs were selected based on the major intersection between orals and 

parenterals in the density plots for each descriptor as calculated for the approved macrocycles 
(Figure 14). Positive values stand for “oral”. Abbreviations: Sens. (Sensitivity), Spec. 

(Specificity), Acc. (Accuracy), Kappa (Cohen's kappa) and Geometric Mean (GMean). Other 
combinations are found in Table S2. Table adapted from Garcia Jimenez et al., 2023.22 

 

Bi-property  
models 

1st cut-off 2nd cut-off 
Confusion matrix 

Sens. Spec. Acc. k 
TP TN FP FN 

Training set 
(n=62) 

HBD 
(≤ 7) 

MW (< 982 Da) 20 30 8 4 0.83 0.79 0.81 0.6 

cLogP (> 2.22) 21 30 8 3 0.88 0.79 0.82 0.64 

TPSA (< 292 Å2) 22 28 10 2 0.92 0.74 0.81 0.62 

Test set 
(n=60) 

HBD 
(≤ 7) 

MW (< 982 Da) 15 30 12 3 0.83 0.71 0.75 0.48 

cLogP (> 2.22) 17 28 14 1 0.94 0.67 0.75 0.51 

TPSA (< 292 Å2) 17 28 14 1 0.94 0.67 0.75 0.51 

 
 
Moreover, the 3 bi-descriptor models were also examined with the data set of 
macrocycles in clinical trials (Table S3). In this case, the model based on HBD ≤ 7 and 
cLogP > 2.22 improved the other 2 (91% sensitivity and 67% specificity). However, this 
data set only had 11 orals and results might not be fully reliable.  
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Finally, the novelty and utility of these models was compared to already existing ones. 
The AbbVie’s multiparameter scoring function (AB-MPS) [AB-MPS = Abs(cLogD-3) + NAR 
+ NRotB] predicts the oral F% for bRo5 candidates (NAR, number of aromatic rings).50 A 
value ≤ 15 differentiates between oral and parenteral bRo5 drugs. Consequently, our 
data sets were submitted to the AB-MPS score. The approved set and the test set were 
classified with moderate sensitivity (79 and 61%, respectively) and good specificity (71 
and 79%, respectively) (Table 3). However, for macrocycles the AB-MPS was 
outperformed by our three HBD bi-property models which predicted orals with 83-94% 
sensitivity and discriminated parenterals with 67-79% specificity (Table 2). 
 
 

Table 3. AB-MPS evaluation of the approved macrocycle data set (test set 1) and test set. Table 
adapted from Garcia Jimenez et al., 2023.22 

AB-MPS 

score 
Cut-off 

Confusion matrix 
Sensitivity Specificity Accuracy Kappa 

TP TN FP FN 

Test set 1 AB-MPS  

≤ 15  

19 27 11 5 0.79 0.71 0.74 0.48 

Test set 2 11 33 9 7 0.61 0.79 0.73 0.38 

 
 
 
Thus, our results conclude that HBD ≤ 7 in combination with one of the following: MW 
< 1000 Da, cLogP > 2.5, or TPSA < 300 Å2 are rules that are easy to remember and can 
be applied to screen the oral potential of new macrocyclic candidates. Beyond these 
limits, the likelihood of finding an oral candidate is low.  
 

C. Macrocycle origin (de novo or nature-based) 

As recalled in the introduction, most macrocycles have been obtained from nature, 
many of them as cyclic peptides. This trend is reflected in an analysis of the FDA-
approved macrocycles: 88% are nature-based (directly obtained from nature or partially 
modified), 67% of which are oral (Figure S1). Overall, the main reasons for optimizing 
natural compounds were pharmacokinetics (i.e., oral bioavailability, half-life, chemical 
stability, resistance to proteases and solubility) and pharmacodynamics (improved 
potency, broader spectrum of activity and reduced side effects).  
 
In addition, the number of de novo drugs has increased in recent years, although only 
12% are de novo. In fact, since 2008 (plerixafor) several de novo drugs have been 
approved (Figure S1). As expected from their complex synthesis, de novo compounds 
stay close to the Ro5 space while natural-based compounds can also be far outside. 
Consequently, all but one is orally absorbed. 
 
The fact that almost all de novo candidates are dosed orally prompted us to analyze the 
effect of HBDs on this trend.177 As expected, de novo have significantly fewer HBDs than 
nature-based macrocycles (Figure 15), and they are almost exclusively amidic. Nature-
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based macrocycles, on the other hand, have a striking quantity of alcoholic HBDs 
(phenols and aliphatic alcohols).178,179 Therefore, it seems that oral de novo macrocycles 
need to have a maximum of 2 HBDs of an amidic nature. Macrocycles in clinical trials 
showed similar trends; 82% are nature-based and de novo candidates (18%), mainly 
contain amide HBDs over alcoholic HBDs (data not shown). 

 

Figure 15. A) Comparison of the number of HBDs in orally bioavailable macrocyclic drugs 
discovered by de novo design (n = 7) or from natural products (n = 17) for the charge state 

calculated at pH 7.0. Frequencies of HBDs originating from B) amide moieties and C) phenols 
and aliphatic alcohols (OH) in the two classes of drugs. Box plots show the 50th percentiles as 

horizontal bars, the 25th and 75th percentiles as boxes, and the 25th percentile minus 1.5× the 
interquartile range and the 75th percentile plus 1.5× the interquartile range as whiskers. Black 

dots represent values higher than 1.5× the interquartile range and less than 3× the 
interquartile range at either end of the box. Violin shapes represent the data density at each 

count value. Figure adapted from Garcia Jimenez et al., 2023.22 

D. Paper I conclusions 

In this work, the past, present and future of macrocycles in drug discovery has been 
investigated.  For this purpose, several data sets were built, including a) FDA-approved 
macrocycles, b) macrocycles in clinical trials in the US, c) research articles on 
macrocycles since 2005 and d) macrocycles available in the ChEMBL database. The 
analyses of these datasets enabled us to acquire a deeper understanding of their 
indications, targets and binding modes (PD, data not shown), molecular property space, 
ADME models for oral absorption and macrocyclic origin. 
 
The study of their administration routes suggested that only 40 and 30% of the FDA-
approved macrocycles and clinical candidates are absorbed orally, respectively. In 
general, oral macrocycles occupy a restricted region in the chemical space, which is only 
expanded by verified molecular chameleons such as cyclosporin. Parenterals partially 
share the chemical space of orals but are mostly spread towards regions with higher 
size, flexibility, polarity and lower lipophilicity. With this knowledge, simple bi-descriptor 
models to distinguish orals from parenteral macrocycles at pH7 were built and tested 
with decent performance (approximately 90% sensitivity and 70% specificity). Thus, HBD 
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≤ 7 in combination with either MW < 1000 Da, cLogP > 2.5 or TPSA < 300 Å2 were set as 
simple guidelines to be used in the design of oral macrocycles. For macrocycles outside, 
the shielding of HBDs through molecular chameleonicity should be considered. 
 
Lastly, an in-depth study of the origin of approved and clinical candidates suggested that 
most of them are derived or obtained from nature (> 80%). However, since 2008 de novo 
macrocycles have started to appear in the clinic. However, their progress is slow due to 
their complex synthesis. As a result, nature-based macrocycles occupy a wider chemical 
space whereas de novo ones stay closer to the Ro5 space. This is reflected by the lower 
number of HBDs and their HBD types: de novo macrocycles have almost exclusively 
amide HBDs and lack alcoholic HBDs. Nature-based compounds, on the other hand, are 
mainly composed of alcoholic HBDs and only a few amide HBDs in cyclic peptides. Thus, 
de novo designs of macrocycles, at least from our experience, should not have more 
than 2 amide HBDs. Overall, this study has shed light on the potential of macrocycles as 
drugs. 
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7.2 PROTACs and Building Blocks: The 2D Chemical Space in Very Early Drug 

Discovery (Paper II)180 

Despite their growing popularity, PROTACs represent quite a novel technology. From the 
discovery of the first degrader until 2017, only ten articles were published annually. 
Since then, the interest in PROTACs has grown exponentially, reaching a yearly 
frequency of nearly 100 by 2020.181 At that time, little was known about their 
pharmacodynamics and pharmacokinetics. In fact, only a few studies had focused on the 
PK behavior of PROTACs and their bRo5 nature.182 In 2019, Edmonson and coworkers183 
calculated several molecular descriptors of about 40 PROTACS, including Lipinski’s12 and 
Veber’s48 descriptors and the AB-MPS score.50 Later that year Maple51 generated a 
manually curated data set of 422 public degraders and explored their molecular 
properties, comparing them to other bRo5 compounds. 
 
Due to the exponential rise of public PROTACs in the following years, we reasoned that 
these studies needed an update. Moreover, the creation of two databases for PROTACs, 
the PROTAC-DB184 (http://cadd.zju.edu.cn/protacdb/) and the PROTACpedia, 
(http://protacdb.weizmann.ac.il/ptcb/stats) provided more than 2500 PROTACs and 
represented an opportunity to expand the knowledge introduced by previous studies. 
Moreover, PROTACs are a novel type of bRo5 compounds (i.e., macrocycles, non-
macrocycles) that require ad hoc molecular descriptors for their design. For example, it 
was recently published that the NRotB and the calculated logP are inaccurate for bRo5 
compounds.62,112 
 
Thus, in this paper we aimed to a) reveal useful resources providing PROTAC-related 
structures, b) select and calculate a set of ad hoc 2D descriptors for PROTACs and discuss 
their potential advantages and disadvantages and c) create a PROTAC chemical space, 
focusing also on their building blocks (i.e., linker, warhead and E3 ligand) and their 
contribution to the overall PROTAC structure.  

A. Database availability 

When this work was performed (2020), the PROTAC-DB184 contained the chemical 
structures, biological activities, a few physicochemical characteristics, and the relevant 
references of 1662 PROTACs and their building blocks. PROTACpedia, on the contrary, 
contained only 779 and highly overlapped with the chemical space PROTAC-DB (Figure 
S6). Therefore, the PROTAC-DB was used as the source of PROTACs. In both cases, the 
experimental information on molecular properties is missing and the information on 
degradation activity is in many cases incomplete. 

B. 2D descriptors  

Calculated descriptors, such as those reported by Lipinski12 and Veber48 can be divided 
into structural descriptors (MW, HBA, HBD, NRotB, etc.) and experimental predictors 
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(clogP, cLogS, etc.). Overall, they have been used efficiently in many drug projects, 
mostly involving Ro5 candidates. However, the flexibility descriptor NRotB, has been 
proved to be inaccurate especially when comparing cyclic (macrocycles) and non-
macrocyclic (PROTACs) structures.62 The underlying reason is the neglect of flexibility in 
cyclic structures, which obviously have a certain flexibility. Other issues arise from the 
lack of correlation between experimental predictors (cLogP) and experimental values 
for new modalities such as PROTACs. Obviously, the success in the use of these 
descriptors for the analysis of large data sets is undoubtable, but their use in early stages 
of bRo5 projects where few compounds are available is not clear.112 These problems are 
exaggerated when the pKa, whose prediction for bRo5 compounds is already imprecise, 
is considered.112 Therefore, in order to provide a solid starting point, we decided not to 
use descriptors that may cause misunderstanding such as cLogP and NRotB. 
 
As an alternative to NRotB, the Kier’s flexibility index (PHI) was selected as flexibility 
descriptor because of its better capacity to handle the flexibility differences between 
cyclic and acylic structures. Moreover, MW and TPSA were selected as molecular size 
and polarity descriptors, respectively. Finally, a selection of count descriptors related to 
the polar (HBA and HBD) and nonpolar part (the number of carbon atoms, nC and NAR) 
were selected (Figure 16). In total, three correspond to polarity (TPSA, HBD and HBA), 
two to hydrophobicity (NAR and nC) and one to size (MW) and flexibility (PHI). nC, 
however, can also be considered as a size descriptor (normally larger molecules include 
higher carbon counts).  

 

Figure 16. Molecular descriptors used in this study (yellow: descriptors related to 
hydrophobicity, light blue: descriptors related to polarity, violet: flexibility descriptors). HBA 
and HBD were named as nHAcc and nHDon in the original publication, respectively. Figure 

adapted from Ermondi et al., 2021.180 
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The structural complexity of PROTAC resides not only on the complete structure but on 
the individual contribution of its 3 parts (warhead, E3 ligand and linker). Consequently, 
the structural codes for 1662 PROTACs and their building blocks (806 linkers, 65 E3 
ligands and 202 warheads) were downloaded from the PROTAC-DB and submitted to 
the calculation of several 2D descriptors (see Methods). Additionally, the same 7 
descriptors were calculated for 52 oral bRo5 drugs published in the literature for 
comparative purposes.39,185 
 
Overall, PROTACs are larger (MW), more polar (TPSA, HBA, HBD), more flexible (PHI) and 
more hydrophobic (NAR) than their building blocks (Table S4). Moreover, to unveil the 
molecular property trends originated from their structure, the relationship between the 
2D descriptors was examined for each group using a correlation matrix (Figure S7). For 
each class, polarity (TPSA) was not related to nC (maximum Pearson’s correlation 
coefficient, R observed < 0.6), which supports the choice of nC as a good descriptor of 
hydrophobicity. TPSA increases with the molecular size (MW) of the molecule (R range= 
0.5-0.8). The underlying reason for this is not clear; the inclusion of nitrogens (amides) 
or oxygens (esters) may be a shortcut for synthesis or may have a pharmacodynamic 
purpose (increase binding affinity). This fact remains inconclusive but is key to 
understanding the issues of PROTAC with permeability.  Furthermore, PHI was mainly 
correlated with MW (R = 0.9). Thus, flexibility inevitably increases with size, as expected. 
Linkers, specifically, showed a weak inverse correlation between PHI and NAR (R = -
0.24), suggesting that aromatic rings in the linker reduce the flexibility of the linker and 
thus of the PROTAC.   
 
These relationships were evaluated using PCA (Figure 17). In all cases, PC1 and PC2 
explained 70%-85% of the variance within the groups (PROTACs and building blocks). 
Furthermore, the loading plots (first panel) showed that the 2D descriptors for 
warheads, E3 ligands, and PROTACs behaved in a similar manner (Figure 17A, B, and D). 
The polarity descriptors were located in the same quadrant (TPSA, HBD, and HBA). 
However, size (MW and nC) and flexibility (PHI) were in opposite quadrants. In addition, 
NAR is placed in a different region of the second quadrant and is the least contributing 
variable to PC1 but the most to PC2. Interestingly, nC was placed between MW and NAR, 
revealing a mixed information profile between hydrophobicity and size. However, these 
last two descriptors were more variable within the subgroups. Finally, the loading plot 
for the linkers (Figure 17C) showed that they behaved differently from other 
compounds. PC1 explained most of the variance (59.9%) by polarity, size, and flexibility 
descriptors, while PC2 (17.4%) was only governed by flexibility (PHI) and aromaticity 
(NAR). These last descriptors were placed in opposite regions, justifying the negative 
correlation discussed earlier. Moreover, PC2 (score plot, second panel) divided the 
linkers into those at the top lacking aromatic rings and those in the middle and bottom 
with 1 and 2, respectively. Thus, the linker, which is the most variable part in the design 
of a PROTAC, must be studied separately. 
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Figure 17. PCA. A) E3 ligands (PC1 = 59.1%, PC2 = 25.0%), B) warhead (PC1 = 56.9%, PC2 = 
24.2%), C) linkers (PC1 = 59.9%, PC2 = 17.4%) and D) PROTACs (PC1 = 59.7%, PC2 = 17.4%). 

HBA and HBD were named as nHAcc and nHDon in the original publication, respectively. Figure 
adapted from Ermondi et al., 2021.180 

Another important feature to assess is the property change when considering individual 
building blocks compared to the full PROTAC (Figure S8). As expected, the sum of the 
MW medians of the building blocks is higher than the PROTAC median. Very often linkers 
and E3 ligands display terminal carboxylic and aminic groups in their structures which 
are converted into amides in the final PROTAC. This reflects that building blocks lose 
several groups when forming the corresponding PROTAC. The same occurs for nC, while 
NAR is the exact sum of the three parts. Interestingly, since warheads require aromatic 
moieties to bind the target, NAR is higher for warheads than for E3 ligands. Additivity is 
not respected for TPSA because of the elimination of polar groups in the reaction step 
that joins the two or three parts. In general, polarity (TPSA, HBD and HBA) is equally 
provided by the warhead and the E3 ligand. Finally, PHI is mostly provided by the linker, 
which determines the flexibility of the entire PROTAC. 

C. The 2D chemical space of PROTACs 

To obtain orally available drug candidates in the early stages of drug discovery, the 
comparison of simple 2D descriptors with reference compounds is the first step. 
However, outside the Ro5 space, in this case for PROTACs, the way to go is the 
comparison (evaluation of similarities and differences) with approved oral bRo5 drugs. 
However, this approach is generally limited for two reasons: the lack of available 
information on reference bRo5 drugs, and the neglect of the 3D effect at this early stage. 
Though, the availability of several oral bRo5 drugs allowed a reasonable comparison 
with the data set of PROTACs.  For this purpose, we used a dataset of 52 orally approved 
bRo5 compounds.39,185 
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By simply analyzing the set of 2D descriptors, it can be seen that PROTACs are larger 
(MW and nC), more flexible (PHI), more polar (TPSA and HBA) and have a higher NAR 
(Figure 18A). HBDs, on the other hand, do not vary as much and are equally within the 
Ro5 guidelines (≤ 5).  
 
Moreover, to perform comparisons within the data sets, the three descriptors that 
represented the biggest differences were selected to build a 3D plot or chemical space: 
nC (size), PHI (flexibility) and TPSA (polarity) (Figure 18B). Importantly, PROTACs share a 
small region with oral bRo5 drugs, which indicates that a small proportion of the entire 
PROTAC ensemble might have the possibility to be orally absorbed (figure 18B). We also 
observed that linkers (yellow), warheads (blue) and E3 ligands (red) belong to the Ro5 
space but do not share the same region. Warheads and E3 ligands were mostly 
superimposable and partially overlapped with the zone of oral bRo5 candidates 
(orange).  This means that E3 ligands and warheads already have decent molecular 
property profiles that become complicated when included as part of PROTACs (grey).  
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Figure 18. PROTACs vs oral bRo5. A) Mean value of the calculated descriptors; B) 3D plot: nC, 
TPSA, and PHI. Color codes are: PROTACs = grey, bRo5 = orange, linkers = green, E3 ligands = 
red, and warheads = blue. A representative structure for each class is shown for comparison. 

MW is expressed as dalton (Da) and TPSA as square angstrom (Å²). HBA and HBD were named 
as nHAcc and nHDon in the original publication, respectively. Figure adapted from Ermondi et 

al., 2021.180  

Thus, this method requires experimental data (permeability and/or bioavailability) to be 
useful.126 Currently, only a few commercial PROTACs with reliable and comparable 
permeability112 or bioavailability186 are available.187 
 
To provide the first case study, a preliminary example was performed using three 
PROTACs (Figure 19A, chemical structures in Figure S9) with consistent in vitro (Caco-2) 
permeability values:112 BI-3663 (log Papp = 4.8, high), ACBI1 (log Papp = 5.7, medium) and 
MZ1 (log Papp = 7.5, low). A simple view of their molecular properties reveals how MZ1 
is larger (MW), more polar (TPSA), and more flexible (PHI), which explains its lower 
permeability.48 Moreover, when plotted as part of the chemical space (Figure 19B and 
C), MZ1 is located further away from the oral bRo5 region and from ACBI1 and BI-3663.  

 

Figure 19. A) Mean descriptor values for three PROTAC with low (MZ1), average (ACBI1) and 
high (BI-3663) Caco-2 log Papp.112 B) loading plot and C) score plot; color code: PROTACs=grey; 
bRo5=orange; MZ1=red; ACBI1=white and BI-3663 in green. MW is expressed as dalton (Da) 

and TPSA as square angstrom (Å²). HBA and HBD were named as nHAcc and nHDon in the 
original publication, respectively. Figure adapted from Ermondi et al., 2021.180  
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As recalled in the introduction, the oral bioavailability of bRo5 compounds depends on 
their structural conformations in specific environments (i.e., 3D PSA). However, the 
application of 3D strategies is slow and can only be applied to a few compounds. 
Therefore, another use of the PROTAC chemical space is to individualize regions with 
similar 2D properties. At this point, the application of 3D strategies can be used to 
explain property differences between more similar compounds, named as “property 
cliff”. 

D. Paper II conclusions 

Maple and Edmonson were the first to describe the molecular properties of PROTACs. 
However, the high number of new publications and availability of databases required an 
update and extension of their work. The PROTACpedia and more importantly, the 
PROTAC-DB contain more than 1500 PROTACs and building blocks with structural 
information, providing an optimal opportunity to study the molecular properties of 
PROTACs and build the first PROTAC chemical space.  
 
7 descriptors were selected to breakdown PROTAC complexity: three nonpolar (MW, 
nC, and NAR), three polar (TPSA, HBA, and HBD), and one flexibility (PHI) descriptor. 
Notably, cLogP and NRotB should be avoided in this type of study. Moreover, several 
analyses using PCA and statistical tests have revealed remarkable differences between 
building blocks. The linker is the most flexible building block, and their variability is 
dominated by the NAR in the structure. This reflects the importance of linker design for 
optimizing the DMPK properties of PROTACs. On the other hand, the warhead is the 
PROTAC substructure that includes more aromatic rings, presumably to improve 
binding. 
 
Furthermore, a PROTAC chemical space was built by plotting size (nC), polarity (TPSA) 
and flexibility (PHI) descriptors. This allowed us to visually identify a region of oral bRo5 
drugs and compare it to the space occupied by PROTACs. PROTACs are generally bigger, 
more polar and more flexible, which can compromise permeability and oral 
bioavailability. However, they share a subregion of the chemical space, suggesting that 
suitable property design strategies can make PROTACs oral. Moreover, a preliminary 
example was used to demonstrate how the use of the PROTAC chemical space can help 
in the earliest stage of drug discovery. However, we acknowledge that this application 
of the chemical space is retrospective and needs reference compounds to work. 
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7.3 Are we Ready to Design Oral PROTACs? (Paper III)20 

In the previous article, we discussed the structural differences between the PROTACs 
and their building blocks included in the PROTAC-DB.180 7 2D descriptors were selected 
to reveal their property differences and a PROTAC chemical space was built upon size 
(nC), polarity (TPSA) and flexibility (PHI) descriptors, which allowed PROTACs and their 
building blocks to be compare with oral bRo5 drugs. Finally, a preliminary example 
showed that the identification of oral bioavailability zones may be feasible once more 
experimental data are available.  
 
However, other aspects of the PROTAC database were missing, such as comprehensive 
analyses of the E3 ligases and POIs used. In addition, the database was updated to 
include 2258 degraders. Among these new additions, several have been experimentally 
tested for permeability, including ARV-110 and ARV-471, the first oral PROTACs to enter 
clinical trials. For these reasons, we conducted a complementary study to complete, 
update, and refine the PROTAC 2D chemical space.20 
 
In our recent PROTAC-DB analysis,180 we focused only on the chemical properties of 
PROTACs and building blocks but did not provide information on the pharmacodynamics 
of PROTACs (out of the scope of this thesis).20 In this article, an analysis of the E3 ligases 
suggested that despite the progress made in the past years, the selection of E3 ligases 
is still limited, which makes the design of E3 ligands quite restrictive (data not 
shown).188–190 In fact, most PROTAC entries use the von Hippel-Lindau (VHL) or CRBN 
ligase. Moreover, the POIs targeted by the PROTACs in the database are very diverse, 
though mostly involved in cancer processes (data not shown). 

A. The 2D PROTAC chemical space 2.0. 

In our previous publication the chemical space of 1662 PROTACs was created and 
compared to their building blocks and a set of oral bRo5 drugs. The update of the 
PROTAC-DB to 2258 degraders allowed us to expand the covered area and include new 
PROTACs with available experimental properties. By applying the same descriptors 
(MW, nC, NAR, TPSA, HBA, HBD and PHI) a newer molecular property space was 
generated. Overall, these PROTACs had an average property distribution of: MW= 972.9 
Da, nC= 49.5, NAR= 4.5, HBD= 4.5, HBA= 17.7, TPSA= 240 Å2 and PHI= 17.3) (Figure 20A). 
Compared to the initial version (Figure 18, Paper II), the new additions seem to have 
similar properties. Moreover, a direct comparison with the set of 50 oral bRo5 drugs, 
suggested that PROTACs are, as expected, bigger, more polar, more flexible and more 
lipophilic (Figure 20). Consequently, from a simple 2D descriptor consideration, most 
PROTACs will hardly become oral candidates.  
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Figure 20. A) Means of molecular descriptor radar plot and B) 3D chemical space of the 2258 
PROTACs in the PROTAC-DB (pink) and the 50 oral bRo5 drugs (blue). Figure adapted from 

Garcia Jimenez et al., 2021.20 

As described earlier, they mostly target VHL and CRBN ligases. Furthermore, the 
targeting of an E3 ligase is performed by similar E3 ligands with common properties. This 
has an impact on the molecular properties of the entire PROTAC. Thus Poongavanam et 
al., recently showed how CRBN-based PROTACs are closer to the Ro5 space (smaller, less 
polar and less flexible) than VHL and other E3 ligase-based PROTACs, therefore having 
more possibilities to be absorbed orally.191 
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B. Permeability and bioavailability subregions in the PROTAC chemical space 

As recalled earlier, the identification of regions with privileged DMPK properties is 
crucial to set simple descriptor guidelines. Therefore, several examples with 
bioavailability and/or permeability were studied. By 2021, ARV-110 and ARV-471 were 
the only oral PROTACs with disclosed structures in clinical trials (Figure S10, Table S5). 
They both use a CRBN-based E3 ligand, which places them in the low edge of the PROTAC 
chemical space (Figure 21). In fact, they are both smaller (nC= 41 and 45, respectively), 
less flexible (PHI= 12 and 10, respectively) and less polar (182.86 Å2 and 96.43 Å2, 
respectively) than most PROTACs. In addition, they are superimposable on the oral bRo5 
space. Furthermore, the rigid nature of their linker enormously reduces their flexibility. 
This, at least in theory, prevents them from displaying a high chameleonicity. In their 
case, however, chameleonic properties are not needed since they already sit in a 
privileged area of the chemical space. 

 

Figure 21. Chemical space of a subset of permeable and bioavailable degraders. Figure 
adapted from Garcia Jimenez et al., 2021.20 

Moreover, several PROTACs with available permeability data (PAMPA and Caco-2) were 
retrieved and placed in the chemical space (Table S5). PAMPA and Caco-2 are the two 
most common methods to assess passive permeability, despite their methodological 
issues (see Chapter 5.7). Consequently, only PROTACs with consistent permeability 
values were considered. Despite the variability of the methods, the overall classification 
should be comparable. Thus, PROTACs were classified as permeable (Papp > 1 x 10-6 cm/s; 
green dots) or low permeable (Papp < 1 x 10-6 cm/s; yellow dots) (Figure 21) (structures 
are found in Figure S10).  
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Permeable degraders (PROTAC-1, PROTAC-14, ACBI1 and BI-3663) occupy a centered 
area in the chemical space. In particular, PROTAC-14192 is placed very close to ARV-110 
as it has the lowest nC, TPSA and PHI. In addition, BI-3663112 is the next closest PROTAC. 
ACBI1112 and PROTAC-170, on the other hand, are placed in a more distant region. 
Interestingly, the last two PROTACs are VHL-based whereas the first two are CRBN-
based. This confirms the fact that CRBN-based PROTACs are generally easier to be 
absorbed orally. In addition, VHL-based PROTACs do not sit too far out, which makes 
CRBN and VHL partially superimposable from a property perspective. Finally, PROTAC-1 
occupies the farthest permeability region, displaying high polarity (TPSA) which normally 
challenges permeability.55 Nevertheless, this compound has been proved as a molecular 
chameleon able to partially hide its polarity in nonpolar environments. Thus, PROTAC-1 
is the proof of concept of how chameleonicity could help to solve permeability issues 
for PROTACs.70  

C. Paper III conclusions 

In this study, we updated, refined and completed the chemical space of PROTACs with 
two examples of bioavailable PROTACs (ARV-110 and ARV-471) and PROTACs with 
known permeability values. Overall, the bioavailable PROTACs of our set lie in a region 
that is partially overlaid with an external data set of 50 oral bRo5 drugs, demonstrating 
that PROTACs can be orally absorbed when size, polarity and flexibility are controlled. In 
addition, the permeable PROTACs were located in a central region of the PROTAC 
chemical space. Among them, the 2 CRBN PROTACs were closer to the orally available 
PROTACs than the other 2 (VHL-based), proving that CRBN are generally more “drug-
like”. Interestingly, PROTAC-1, the first NMR-proven chameleon, was the most distant 
compound to the oral region. 
 
Thus, to obtain oral PROTACs, their molecular structure should be designed to have a 
size, polarity and flexibility as similar as possible to those areas in which the most similar 
orally available compounds are located. Indeed, this represents a classical property-
based strategy that works for the Ro5 space and some neighboring regions belonging to 
the bRo5 space. However, more complex bRo5 compounds (i.e., PROTAC-1) can show 
chameleonic properties that improve permeability and/or solubility. In fact, this 
property is a key feature yet to be exploited in the bRo5 space. Finally, while we 
acknowledge that the relationship of molecular property descriptors with bioavailability 
is not trivial to assess, we believe that the first step of any drug discovery needs to 
exploit the use of 2D descriptors to obtain clues on this matter.  
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7.4 Chapter 7 conclusions 

In this chapter, we have created the 2D descriptor-based chemical space of PROTACs and 
macrocycles in comparison to FDA-approved drugs and identified regions of interest 
from an ADME perspective. Moreover, we have created 2D descriptor-based models 
distinguishing oral macrocycles in early drug discovery. As discussed earlier, these 
approaches are feasible when reference compounds are available (retrospective tools). 
Nonetheless, they deserve to be included as molecular property optimization 
strategies.66  
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8. Experimental strategies to monitor molecular properties 

The assessment of experimental molecular properties (lipophilicity, polarity, etc.) is a key 
step to understand the potential of bRo5 compounds to become oral drugs. To date, most 
predictive ADME models are based on experimental data obtained for Ro5 compounds193 
and thus, the application of these models to bRo5 compounds is partially inaccurate. An 
additional problem is the difficulty for medicinal chemists to obtain experimental 
molecular property data in the bRo5 space. Consequently, the experimental monitoring 
of the molecular properties of bRo5 compounds is the first compulsory step to obtain 
good quality information upon which ADME models can potentially be built.  
 
In this chapter, the main contributions of this thesis to the discovery of ad hoc 
experimental strategies to monitor the molecular properties of bRo5 compounds are 
discussed. Special emphasis is placed on solubility and chameleonicity and their 
relationship with other molecular properties (the most used strategies during this thesis 
are shown in Figure 22). 

 

Figure 22.  Oral bioavailability (F%) monitoring from the solubility/permeability balance. 
Scheme of the used and/or available chromatographic strategies to assess the physicochemical 
properties (colored in grey) determining crucial in vitro ADME properties (colored in green) of 

bRo5 compounds.  
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8.1 Designing Soluble PROTACs: Strategies and Preliminary Guidelines (Paper 

IV)63 

A. Solubility as a DMPK property 

There is no clear agreement on the minimal experimental solubility that guarantees oral 
absorption. Some researchers set > 60 μg/mL as the desired goal for solubility, whereas 
others at GSK proposed < 30 μM, 30-200 μM and > 200 μM as cut-offs for low, 
intermediate and high solubility, respectively. Moreover, solubility measurements often 
suffer from interlaboratory variability which also depends on the method used.194 
 
From a mechanistic perspective, the solubility process is complex and can be studied in 
several steps. Once the active compound is released from the pharmaceutical form (i.e, 
capsule, tablet), it then dissociates from the crystal structure. This step depends on the 
crystal packing of each compound (thermodynamically stable or amorphous),195 which 
is conditioned by the intermolecular interactions in the solid state or the “brick-dust” 
effect.196 In this step, the main determinant is the melting point (Tm). For example, in 
compounds with Tm higher than 200, the crystal effect will have a high final impact on 
solubility. Moreover, this represents the key step improved by formulation efforts, in 
which the apparent solubility and dissolution rate of the compound is increased.197 Next, 
a cavity must be formed in the solvent to receive the compound. In this step, the MW, 
which is a rough indicator of the volume, is the key determinant. Finally, the third step 
involves the insertion of the molecule in the cavity. In this case the hydrophobicity of 
the molecule determines the degree of interaction with the solvent, monitored by the 
log P. Thus, from a property-based (QSPR) perspective, the modeling of the intrinsic 
solubility is expressed as a function of Tm and log P in the General Solubility Equation 
(GSE), established by Jain and Yalkowsky in 2001.198 Moreover, other predictive 
strategies rely on physics-based methods, which model the thermodynamic cycle. 
However, none of these strategies have been trained on bRo5 compounds and their 
application to the bRo5 space remains challenging.196,199 
 
bRo5 compounds, and PROTACs in particular, lack a property-based strategy for 
solubility. In fact, the solubility of bRo5 molecules, has only been reported and studied 
in few cases.64,200,201 Moreover, no evidence has ever been published for PROTACs. 
Consequently, we aimed at designing an experimental strategy to determine the 
thermodynamic solubility of PROTACs and its underlying factors. Then, experimental 
and computed molecular properties for bRo5 compounds, such as lipophilicity and 
polarity, were also evaluated with the aim of providing solubility classification models 
to be used in early drug discovery. In addition, the experimental solubility values were 
compared to solubility predicted values to examine the potential of available solubility 
predictors and the relationship between the solubility of the PROTAC structure and that 
of its building blocks. 
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B. Experimental thermodynamic solubility (log S) 

In the last three articles (Papers I, II and III) the concept of the bRo5 chemical space was 
developed and several regions of interest were discussed. With this in mind, a subset of 
commercially available degraders that efficiently represented the entire chemical space 
of PROTACs was selected. Thus, for the 21 selected degraders, their calculated 
descriptors showed that they cover a big area of the chemical space: TPSA (166−335 Å2), 
nC (34−58), and PHI (9−27) (Figure 23). Moreover, the data set was selected to include 
VHL and CRBN ligands and diverse types of linker families (PEGylated, alkylic, rigid, etc.) 
and warheads (Table S6). In addition, given the importance of the ionization state for 
solubility, we included both PROTACs calculated to be charged and neutrals at pH 7 
(Table S7). Experimental measurements by potentiometry were not feasible (Sirius T3) 
due to solubility issues in aqueous environments (water, water-methanol). 

 

Figure 23. Graphical representation of the PROTAC solubility data set based on 2D descriptors 
(nC, PHI and TPSA). Figure adapted from Garcia Jimenez et al., 2022.63 

The experiment attempted to measure solubility under reproducible conditions for early 
stages of drug discovery (see Methods).63,202 Thus, the well-known shake-flask approach 
was employed at a pH representative of an average aqueous media in the body 
(stomach, intestine, blood). Since the chromatographic descriptors were validated at pH 
7, the experimental solubility was performed under the same conditions to obtain 
comparable data (although pH 7.4 is the average in the body). Moreover, the same 
rationale was followed to select the temperature, 25ºC. In addition, solubility predictors 
are optimized at this temperature. Finally, PBS-based solvents were selected over 
biorelevant dissolution media (i.e., FeSSIF) to study the correlation with other 
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descriptors (computational and experimental) or predictors and drive conclusions to 
strictly structural reasons. Solubility values were then classified according to the GSK 
classification into low (< 30 μM), intermediate (30-200 μM) and high solubility (˃ 200 
μM) (Table 4). Notably, the three categories are well populated, although some 
degraders are poorly soluble. ACBI1, cisACBI1, ARV-825, Mcl1 degrader-1 and MD-224 
have solubilities below the quantification limit and thus they were excluded from any 
quantitative analysis. Moreover, the solubility trends were not explained by their 
position in the chemical space (nC, PHI, and TPSA) (Figure 23). 
 

Table 4. PROTAC Solubility classification based on GSK Guidelines. SD, standard deviations of 
the solubility measurements; RSD, relative standard deviations with respect to the mean; ND, 
not detectable. Values expressed as Log S (mol/l) are present in Table S8. Table adapted from  

Garcia Jimenez et al., 2022.63 

PROTACs 
Solubility average 

(μM) 
SD (μM) RSD (%) Classification 

BRD9 degrader-1 660.69 4.64 0.70 
High  

(> 200 µM) 
CM 11 630.96 17.71 2.86 

CMP 98 331.13 1.90 0.57 

THAL-SNS-032 52.48 1.10 2.09 

 
Intermediate  
(30-200 µM) 

 

VZ185 50.12 1.43 2.84 

CisMZ1 50.12 0.34 0.66 

MZ1 38.02 5.20 13.50 

dBET57 30.20 0.03 0.11 

BSJ-03-123 17.78 1.06 6.00 

Low  
(< 30 µM)  

BI-3663 6.92 0.09 1.26 

ZXH-3-26 2.95 0.21 7.28 

BI-0319 2.63 0.01 0.32 

CRBN-6-5-5-VHL 1.23 0.05 3.78 

Gefitinib-based PROTAC 3 1.23 0.01 0.46 

CisACBI1 < 0.87 ND ND 

Mcl1 degrader-1 < 0.87 ND ND 

ACBI1 < 0.72 ND ND 

BI-4206 0.58 0.02 4.07 

MZP-54 0.51 0.01 1.87 

ARV-825 < 0.32 ND ND 

MD-224 < 0.23 ND ND 
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C. Physicochemical determinants of PROTAC solubility 

1) Experimental descriptors 

The prediction of solubility by QSPR strategies (GSE) requires the assessment of 
lipophilicity (log P). As introduced earlier, solubility is expected to have an inverse 
relationship with lipophilicity. Consequently, a set of chromatographic ad hoc 
lipophilicity chromatographic descriptors were measured for the set of PROTACs (see 
Methods). BRlogD, provides an average lipophilicity equivalent to the average of the 
membrane (octanol/water). Notably, it showed a promising inverse correlation with 
thermodynamic solubility (R2 = 0.67) (Figure 24A). Moreover, log kW

IAM, which provides 
a lipophilicity value at the interface with the phospholipid tails, also showed a strong 
correlation with solubility (R2 = 0.61) (Figure 24B). Moreover, ad hoc experimental 
descriptors of polarity were also assessed, given the relationship between polarity and 
solubility in other bRo5 studies.64 EPSA showed a poor positive linear correlation (R2 = 

0.23) (Figure 24C) while  log kW
IAM performed worse (R2 = 0.09) (Figure 24D). However, 

the 3 most soluble PROTACs (CM 11, CMP 98, and BRD9) had high  log kW
IAM values. No 

correlation was observed between the two polarity descriptors (data not shown). Thus, 
the solubility of the PROTAC structure does not seem to correlate with its experimental 
polarity. 
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Figure 24. Experimental solubility versus A) BRlogD, B) log kW
IAM, C) EPSA and D)  log kW

IAM for 
the PROTAC data set. The yellow color is used for lipophilicity and blue for polarity. The linear 

trend is present as a colored line. Figure adapted from Garcia Jimenez et al., 2022.63 

2) In silico descriptors 

Experimental lipophilicity descriptors were highly correlated with experimental 
solubility. Moreover, it is of high interest to determine the relationship between 
experimental solubility and computed descriptors, such as the calculated log P. Despite 
the big limitations in the use of calculated log P descriptors for bRo5 molecules, they are 
widely used by the medicinal chemistry community and thus they were also studied. 
Several calculated log Ps were assessed, representing every algorithm available; atom-
based, fragment-based, chemical descriptor-based, and 3D-based (Tables S9 and S10, 
see Methods). Lipinski's MLOGP was revealed as a less appropriate calculator than 
atom- and fragment-based models. Additionally, adding a third-dimensional component 
(VolSurf+) had no better effects on the models. Notably, the consideration of the charge 
(log D) did not outperform (when available) intrinsic lipophilicity (log P). The log P 
calculator with the best correlation to experimental solubility was Marvin’s log P (atom-
based) (R2=0.69) (Figure 25A), very similar to BRlogD. BRlogD and Marvin’s log P did not 
fully correlate with each other, indicating that the lipophilicity of bRo5 compounds may 
depend on more than just the 2D structure (R2 = 0.53) (Figure 25B). 
 
The most popular 2D polarity descriptor, TPSA, was plotted against solubility (Figure 
25C) (R2=0.34). TPSA seems weakly related to solubility, but the three most soluble 
PROTACs have the highest solubility. Compared to the experimental polarity descriptors, 
TPSA seems to be slightly more correlated. Moreover, TPSA showed an extremely poor 

correlation with  log kW
IAM (R2 = 0.08) (data not shown), which reveals that the 

theoretical maximal polarity that a molecule can have (TPSA) is not normally achieved 
in aqueous solution. Overall, experimental and 2D calculated descriptors suggest that 
lipophilicity is more important for solubility, although polarity can still have an impact. 
Moreover, other 2D descriptors like MW were assessed but no correlations were found 
with solubility (data not shown). 
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Figure 25. Experimental solubility versus A) Marvin log P. B) Correlation between BRlogD and 
Marvin log P. C) Experimental solubility versus TPSA. The yellow color is used for lipophilicity 
and blue for polarity. The linear trend is present as a colored line. Figure adapted from Garcia 

Jimenez et al., 2022.63 

In 2018, Rossi Sebastiano and coworkers observed that 3D descriptors (3D PSA) 
correlated better with solubility than 2D descriptors (TPSA) for a set of bRo5 
compounds.64 Thus, we examined the effect of the conformation on polarity for our 
PROTACs. The relationship between 3D PSA and solubility was studied for 
computationally generated conformations in water of every PROTAC (see Methods). 
Conformers were generated using conformational sampling and steered molecular 
dynamics (SMD) (Figure 26), only for the neutral PROTACs (to simplify the use of CS and 
SMD) (a detailed explanation of these methods is found in Chapter 9). Notably, the 
removal of the charged PROTACs improved the correlation of TPSA (R2=0.42) compared 
to the full set (Figure 26). 
 
SMD (blue violins) generated conformers have closer 3D polarities to TPSA value (green 
dots) in comparison to CS (red violins) generated ones. Statistical analyses showed how 
the correlation of the lowest, median and highest 3D PSA models with solubility was 
performing similarly (R2= 0.35-0.40) to TPSA (R2=0.42), both for SMD and CS. This 
suggests that conformation does not have an impact on solubility. Notably, Atilaw and 
colleagues observed that in water PROTACs can have different size and polarity 
conformations.70 Thus, solubility might be guided by the equilibrium of all the 
conformers rather than by a single conformer population.  
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Figure 26. Violin plot representation of SMD (blue) versus CS (red) ordered by experimental log 
S. PHI values (flexibility) are expressed as Φ. Medians are presented as black horizontal lines. 

R2 are present for every statistical group (although neutral, ARV-825 and Mcl-1 are not 
considered in the statistical analysis, since accurate solubility values are not available); the 

lower adjacent value (Lower A.L.) is the smallest value that is equal to or higher than the lower 
inner fence (first quartile - 1.5 × interquartile range). The upper adjacent value (Upper A.L.) is 
the highest value that is equal to or smaller than the upper inner fence value (third quartile + 

1.5 × interquartile range). Figure adapted from Garcia Jimenez et al., 2022.63 

D. Solubility predictors 

In addition, the performance of online solubility predictors (cLogS) was evaluated (see 
Methods). As recalled earlier, solubility can be predicted by QSPR strategies (GSE) and 
by physics-based methods that model the thermodynamic cycle. In this study, we 
calculated the solubility using several algorithms: atom-based, 3D-based, etc. (Table 
S11). Notably, moderate correlations were found with intrinsic MarvinSketch (R2 =  
0.56), MarvinSketch at pH 7 (R2 = 0.57), and VolSurf (R2 = 0.57) (Figure S11). However, 
the predictivity is not good enough to be used in bRo5 projects.  

E. A solubility decision-making tool 

The previous sections have highlighted the importance of polarity and lipophilicity in 
thermodynamic solubility. Thus, we hypothesized that the simultaneous use of both 
molecular properties could be used to monitor solubility. Therefore, a 3D plot using two 
experimental lipophilicity descriptors (BRlogD, and log kW

IAM) and one computed polarity 
descriptor (TPSA) was built. Notably, the distribution of the 16 measurable PROTACs in 
the 3D plot agreed with the experimental solubility (Figure 27). Moreover, when 
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classified upon their GSK classification group, results were equally informative except 
for BSJ-03-123, which was apparently misclassified (Figure S12). Notably, Avdeef and 
coworkers recently discussed that supersaturation issues can have an impact in 
solubility differences.203   

 

Figure 27. PROTAC solubility distribution based on log kW
IAM, BRlogD, and TPSA (3D plot) for the 

16 PROTACs with quantifiable solubility. Figure adapted from Garcia Jimenez et al., 2022.63. 

Based on the excellent performance of the 3D plot to model solubility, the next step was 
to define cut-offs that could distinguish between low and high solubility PROTACs. ML 
algorithms, such as Random Tree and Random Forest, are supervised methods 
appropriate for this purpose. Random Tree makes a single prediction guided by the 
desired outcome, suffering from overfitting. Random Forest, conversely, makes multiple 
random predictions and then provides the best result based on the majority of the 
answers. Obviously, we know that the generation of reliable models requires large data 
sets, but the opportunity to provide a first-ever solubility classification model for 
PROTACs prompted us to adopt this strategy. Therefore, the 3 descriptors (log kW

IAM, 
BRlogD, and TPSA) and the expected results (GSK classification limits; low, intermediate 
and high) for the set of PROTACs were used to construct the models (see Methods). 
Figure S12 suggested that BSJ-03-123 was misclassified in the low solubility group, so we 
removed it from the models.  
 
The results revealed that 86.7% of the PROTACs were correctly classified for both models 
(Figure S13). Notably, the low classification group was always correctly predicted 
(100%), whereas the intermediate and high solubility groups exchanged one PROTAC 
(80 and 66.7%, respectively). Consequently, the Matthew’s Correlation Coefficient 
(MCC), a quality parameter of ML models, suggested that low solubility classifications 
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were more performant than intermediate and high solubility predictions (MCC= 1, 0.7 
and 0.58, respectively).  
 
In practice, the results of the Random Tree model suggest that PROTACs are directly 
classified as highly soluble if their TPSA value is equal to or greater than 289.31 Å2. Less 
polar PROTACs with BRlogD values lower than 2.58 are classified as intermediate, and 
those with values equal to or higher than 2.58 are classified as poorly soluble (Figure 
28). Log kW

IAM was not considered by the models probably due to a partial redundancy 
with BRlogD, at least for neutral compounds. These results suggest that 
chromatographic and computed descriptors can be used to indirectly classify the 
solubility of PROTACs, of particular interest for large pharma companies. In addition, 
they can also be used to discard low solubility PROTACs, given their perfect classification 
performance. 

 

Figure 28. PROTAC Random Tree model (BRlogD and TPSA) colored by the experimental 
classification: low (red), intermediate (yellow), and high (blue) Figure adapted from Garcia 

Jimenez et al., 2022.63 

F. Impact of building blocks on PROTAC solubility 

PROTACs are synthesized by combining three (warhead, linker, and E3 ligand) or two (E3 
ligand bound to the linker and warhead) building blocks. From a medicinal chemistry 
perspective, it is of high interest to understand how the behavior of a PROTAC depends 
on its building blocks. Notably, the complexity of the PROTAC structure (bRo5 molecule) 
provides new properties (i.e., chameleonicity) that single building blocks (normally Ro5 
molecules) do not have. Thus, it is expected that building blocks do not entirely explain 
the behavior of the PROTAC. To examine this hypothesis, 3 PROTAC pairs mainly 
differing in their warhead, linker and E3 ligand were selected from the data set. 
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Moreover, their individual building blocks were purchased and their molecular 
properties measured (Table S12).  
 
We first investigated the role of the warhead. To do so, MZ1204 and MZP-54205 were 
selected (Figure 29). Both are neutral VHL-based degraders with a PEGylated linker and 
differ only in the warhead (JQ1 and I-BET726, respectively). MZ1 (log S = -4.42) is 
significantly more soluble than MZP-54 (log S = -6.29). Notably, JQ1 (terminal carboxylic 
acid) is much more soluble than I-BET726 (terminal carboxylic acid), justifying the 
difference in the PROTAC solubility. In addition, JQ1 has lower BRlogD and log kW

IAM 
values and higher TPSA values compared to I-BET726, as expected from the relationship 
of solubility with lipophilicity and polarity. 

 

Figure 29. Comparison between MZ1 and MZP-54. Experimental (Exp. Log S, S in mol/L) and/or 
calculated (cLogS, Marvin pH 7) values are presented for PROTACs and their warheads. Figure 

adapted from Garcia Jimenez et al., 2022.63 

The linker impact was explored by the pair dBET57 and ZXH-3-26.206 In this case the main 
difference is in the length of the linker (green dashed circle in Figure 30). dBET57 and 
ZXH-3-26 contain an alkyl linker, ethylamine and pentyl-1-amine, respectively. 
Moreover, they have a similar, though not identical, warhead (JQ1 in dBET57 and 
PROTAC BET-binding moiety 2 in MZP-54). Overall, we observe that dBET57 (log S = -
4.52), with the shorter linker, has a higher solubility than ZXH-3-26 (log S = -5.53) by 
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about 1 log unit. As for the warheads, both have high solubilities although they differ in 
the attaching point and the presence of the ester, making the comparison challenging. 
Nevertheless, despite not having identical warheads, the solubility is expected to be due 
to the difference in the linker. However, other pairs should be evaluated to conclude 
this fact. 

 

Figure 30. Comparison between dBET57 and ZXH-3-26. Experimental and/or calculated log S (S 
in mol/L) values (Marvin pH 7) are presented for PROTACs and their building blocks. Figure 

adapted from Garcia Jimenez et al., 2022.63 

Finally, the role of the E3 ligand was evaluated (Figure 31). The PROTAC pair BI-3663-BI-
0319/BI-4206 was selected.207 These are PROTACs based on the BI-4464 warhead, with 
a pegylated linker, differing mainly in the E3 ligand and its attaching point. BI-3663 is 
CRBN-based (pomalidomide), whereas BI-3663 and its negative control, BI-4206 are 
VHL-based (S,R,S-AHPC HCl and S,S,S-AHPC 2HCl). BI-3663 (log S = -5.16) is more soluble 
than BI-0319/BI-4206 (log S = -5.58 and -6.24, respectively). Surprisingly, pomalidomide 
itself is less soluble (log S = -4.44) than S,R,S-AHPC HCl and S,S,S-AHPC 2HCl (log S = -2.68 
and -2.69, respectively). This contradictory information can be explained by the charged 
group of the VHL-based ligands. This charge, present in the individual building block at 
pH 7, is lost when being part of the full PROTAC (verified by potentiometry, see 
Methods) (data not shown). Pomalidomide, on the other hand, is maintained unionized. 
Thus, the prediction from the building blocks is not feasible for this case. Overall, in this 
section we have analyzed the problems in predicting solubility from building blocks. 
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Figure 31. Comparison between BI-3663 and BI-0319/BI-4206. Experimental and/or calculated 
log S (S in mol/L) values (Marvin pH 7) are presented for PROTACs and their building blocks. 

Figure adapted from Garcia Jimenez et al., 2022.63 

G. Paper IV conclusions 

Solubility is a molecular property that needs to be measured at an early stage in drug 
discovery projects. However, PROTACs lack structure-property relationships, which 
makes their design challenging. Therefore, we aimed to fill this gap in order to obtain 
rational design strategies. 
 
In this manuscript we measured the thermodynamic solubility of 21 commercial 
PROTACs and assessed their key molecular determinants (lipophilicity and polarity), 
both experimentally and computationally. Moreover, their relationship with solubility 
was established. As expected, solubility is strongly inversely correlated with 
experimental (BRlogD and log kW

IAM) and calculated (log P) lipophilicity. Experimental 
polarity descriptors showed no correlation. However, TPSA showed a small but 
noticeable effect on polarity. Furthermore, we demonstrated that conventional 
solubility predictors, which are often used in Ro5 drug development pipelines, are not 
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accurate enough for the use in PROTAC design. In addition, we verified how the 3D 
conformation of the structure is not relevant for solubility, probably driven by an 
equilibrium between conformations. We also explored the limitations of predicting 
PROTAC solubility directly from its building blocks. 
 
Thus, the use of the 3 most relevant descriptors (log kW

IAM, BRlogD, and TPSA) allowed 
us to create a 3D plot that explained solubility reasonably well. Furthermore, ML 
strategies (Random Forest and Random Tree) were applied to obtain a classification 
model based on these parameters. Notably, both models performed very well, 
especially in distinguishing low solubility PROTACs from intermediate and high solubility 
PROTACs. Consequently, BRlogD and TPSA values of 2.58 and 289 Å2 were set as the 
lipophilicity and polarity thresholds, respectively. Thus, in this article we have revealed 
how the use of calculated and ad hoc experimental descriptors for the bRo5 space can 
help to classify and eventually even predict PROTAC solubility. 
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8.2 Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally 

Bioavailable Beyond-Rule-of-5 Drugs (Paper V)121 

In the previous article, we presented new insights and QSPR strategies for the design of 
soluble PROTACs. Solubility, however, is only one of the multiple factors affecting the 
oral absorption process. In addition, the balance between solubility and permeability is 
another factor that needs to be addressed.39 For traditional Ro5 molecules this balance 
is feasible, unlike the bRo5 space, which requires ad hoc strategies.66 This issue, 
however, can be partially compensated by chameleonicity (see Introduction). The 
concept of chameleonicity, however, includes any environment-driven conformational 
and/or property change. Thus, many types of intramolecular interactions can generate 
chameleonic behavior, complicating its study and application (IMHBs, hydrophobic 
collapse, amide shielding, etc.).64,71,208  
 
Since the first examples of chameleonic bRo5 drugs were discovered (i.e., CsA), 
chameleonicity has been of greater interest in the search of an equilibrium between cell 
permeability and water solubility. It had its greatest applicability in macrocycles and 
non-macrocycles (i.e., saquinavir), but it is now being extensively applied to PROTACs. 
In fact, PROTACs are more flexible and should be, at least in theory, more benefited from 
chameleonicity.70,71,106,120,209 
 
Overall, the available experimental strategies to assess chameleonicity are X-ray, NMR 
and ChameLogD (see Chapter 5.7). However, these strategies are mostly limited to case-
by-case studies, cannot be applied to larger data sets, and cannot explore different 
environments with a single system. Thus, there is a need not only to improve our 
understanding of the mechanisms of chameleonicity, but also to develop novel 
experimental tools to efficiently measure chameleonicity. Consequently, we put our 
efforts in designing a fast and HT chameleonicity descriptor that can explore different 
environments using the same chromatographic system. 

A. The chamelogk: method and design 

ChameLogD also uses chromatography strategies but using two different systems. 
Therefore, we aimed at creating a chromatographic descriptor that measures 
chameleonicity in a unique and dynamic system. Ideally, the system should mimic the 
passage of the molecule from the outside to the inside of the membrane.  
 
With this goal in mind, we selected the PLRP-S column which provides the most 
hydrophobic environment after analyzing a pool of commercially available 
chromatographic columns. In fact, the PLRP-S column, used in combination with a 
mobile phase composed of 80% MeCN (dielectric constant ε ∼37.5) and 20% aqueous 
phase (dielectric constant ε ∼80), is able to provide an environment similar to the 
interior of the membrane, often measured as the log P (toluene/water). Therefore, we 
hypothesized that by varying the proportion of the organic phase in the eluent, the 
polarity of the environment could change, similar to what would happen in the passage 
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through the membrane. In previous studies we verified how the behavior of a molecule 
can change in the different environments provided by this chromatographic system. For 
instance, saquinavir showed a complete and sudden deviation from the linear trend in 
the most lipophilic environments (maximized at 100% MeCN). This behavior change, 
also observed for two PROTACs (MZ1106,112 and PROTAC-1210), suggested the possibility 
of quantifying it as a chameleonicity descriptor. 
 
To obtain the chameleonicity descriptor, the first step involved the experimental 
determination of the capacity factor (log k' PLRP-S) at 50, 60, and 70% of MeCN. Then 
the linear correlation between the log k' PLRP-S and the percentage of MeCN was 
determined (Figure 32) (Figure S14). The equation derived from the linear correlation (if 
validated; R2 equal or higher than 0.9) was then applied to extrapolate the value at 100% 
(named Ext. Log k’ 100 PLRP-S). Moreover, the experimental value at 100% MeCN was 
recorded (named Exp. Log k’ 100 PLRP-S) and the difference with the extrapolated value 
was calculated. Thus, Chamelogk was defined as the capacity factor difference (Δ log k’) 
between the experimental log k’ measured at 100% MeCN (Exp. Log k’ 100) and the 
extrapolated value (Ext. Log k’ 100), as shown by equation 3 and Figure 32A. 
 
 

(3) Chamelogk = Exp. Log k′ 100 − Ext. Log k′100 

 

Figure 32. A) Graphical scheme of Chamelogk. B) Chamelogk plot of cyclosporin (CsA, neutral 
bRo5, blue triangles) and acetophenone (neutral Ro5 compound, gray circles). Exp. log k’ 100 

PLRP-S and Ext. log k’ 100 PLRP-S values are presented as colored symbols and colored crosses, 
respectively. Figure adapted from Garcia Jimenez et al., 2023.121 

In theory, for a non-chameleonic molecule we would not expect a deviation from the 
linear trend (Figure 32B). This was verified for acetophenone, a rigid Ro5 compound with 
a Chamelogk value of -0.04. On the contrary, chameleonic compounds should maximize 
their behavior differences at 100 % MeCN, and thus have a higher retention to the 
stationary phase compared to the extrapolated value. For example, CsA the most well-
known chameleon (see Introduction), has a Chamelogk value of 1.25. Thus, Chamelogk 
can be used as a strategy to quantify and compare molecular chameleonicity. 
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B. The dataset 

The design of Chamelogk opened up the possibility to measure chameleonicity for large 
data sets of compounds and gain knowledge on its underlying factors. Thus, 55 
commercially available neutral molecules were selected; 25 Ro5 molecules, divided into 
classic Ro5 molecules and PROTAC building blocks (E3 ligands, warheads and linkers) and 
35 bRo5 molecules, including PROTACs, macrocycles, non-macrocycles and some 
complex PROTAC building blocks. Overall, the data set included a wide representation 
of the chemical space of small molecules. Cyclic peptides, though, were not included in 
this study due to their particular behavior in chromatographic systems. Their Chamelogk 
and R2 values are reported as part of Table 5. 
 

Table 5. Chamelogk and R2 values for the neutral data set (n = 55). Entries were ordered 
sequentially by class, subclass, and Chamelogk. The classification into Ro5 and bRo5 was based 
on Lipinski’s guidelines.12 The Ro5 class was defined to have just one violation of the following: 
MW < 500 Da and no more than 5 and 10 HBD and HBA, respectively. Nelfinavir was manually 
classified as a bRo5 drug despite being formally Ro5 compliant. This was due to the violation of 
Veber’s guidelines and similarity to the bRo5 antiviral series. MW, TPSA and PHI are reported 
as descriptors of size, polarity, and flexibility, respectively. Table adapted from Garcia Jimenez 

et al., 2023.121 

 

Compound Class Subclass Chamelogk R2 MW TPSA PHI 

3-Bromoquinoline Ro5 Classic Ro5 0.13 1.00 208 13 2 

Acetone Ro5 Classic Ro5 -0.13 0.96 58 17 1 

Acetophenone Ro5 Classic Ro5 -0.04 1.00 120 17 2 

Bifonazole Ro5 Classic Ro5 0.45 1.00 310 18 4 

Clotrimazole Ro5 Classic Ro5 0.71 0.99 345 18 4 

Diazepam Ro5 Classic Ro5 0.30 1.00 285 33 3 

Diethylstilbestrol Ro5 Classic Ro5 0.44 1.00 268 40 5 

Hydrochlorothiazide Ro5 Classic Ro5 -0.22 1.00 298 135 3 

Hydrocortisone Ro5 Classic Ro5 0.10 0.91 363 95 4 

Naphthalene Ro5 Classic Ro5 0.02 1.00 128 0 1 

Phenol Ro5 Classic Ro5 0.16 1.00 94 20 1 

Toluene Ro5 Classic Ro5 0.06 0.99 92 0 1 

4-F-thalidomide Ro5 E3 Ligand 0.23 1.00 276 85 3 

4-Hydroxy thalidomide Ro5 E3 Ligand -0.16 0.84 274 105 3 

Cis-OH-VH298 (S,S,S) Ro5 E3 Ligand 0.45 1.00 540 184 8 

Cis-phenol-VH032 (S,S,S) Ro5 E3 Ligand 0.65 0.99 489 160 8 

OH-VH298 (S,R,S) Ro5 E3 Ligand 0.48 1.00 540 184 8 

Phenol-VH032 (S,R,S) Ro5 E3 Ligand 0.37 1.00 489 160 8 

Pomalidomide Ro5 E3 Ligand 0.00 1.00 273 111 3 

BI-0115 Ro5 Warhead 0.19 0.99 288 51 4 

BI-1580 Ro5 Warhead 0.10 0.99 253 51 3 

CPI203 Ro5 Warhead 0.54 0.98 400 114 5 

HJB97 Ro5 Warhead 0.15 0.99 501 136 6 
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MS-417 Ro5 Warhead 0.29 0.97 415 98 5 

OTX-015 Ro5 Warhead 0.64 0.97 492 121 6 

Cyclosporin bRo5 Macrocycle 1.25 1.00 1203 279 34 

Everolimus bRo5 Macrocycle 0.45 1.00 958 205 23 

Pimecrolimus bRo5 Macrocycle 0.43 0.99 811 158 17 

Sirolimus bRo5 Macrocycle 0.25 1.00 914 195 21 

Temsirolimus bRo5 Macrocycle 0.23 1.00 1030 242 24 

Atazanavir bRo5 Non-macrocycle 0.33 1.00 705 171 15 

Nelfinavir bRo5 Non-macrocycle 0.74 1.00 568 127 11 

Paclitaxel bRo5 Non-macrocycle 0.15 1.00 854 221 12 

Ritonavir bRo5 Non-macrocycle 0.67 1.00 721 202 16 

Saquinavir bRo5 Non-macrocycle 1.23 1.00 671 167 12 

Telaprevir bRo5 Non-macrocycle 0.31 1.00 680 180 12 

PEG4-PH-NH2-Pomalidomide bRo5 E3 Ligand 0.12 1.00 541 160 11 

ARV-825 bRo5 PROTAC 0.72 0.98 924 235 15 

BI-0319 bRo5 PROTAC 0.99 1.00 1061 270 20 

BI-3663 bRo5 PROTAC 0.50 1.00 918 244 16 

BI-4206 bRo5 PROTAC 0.70 0.99 1061 270 20 

BRD4 degrader AT1 bRo5 PROTAC 1.26 0.99 973 266 17 

CisMZ1 bRo5 PROTAC 1.27 0.98 1003 268 18 

CRBN-6-5-5-VHL bRo5 PROTAC 1.05 1.00 972 256 20 

dBET1 bRo5 PROTAC 0.80 0.99 785 224 11 

dBET57 bRo5 PROTAC 0.68 1.00 699 198 9 

dBET6 bRo5 PROTAC 0.86 0.99 841 224 14 

Gefitinib-based PROTAC 3 bRo5 PROTAC 1.36 0.98 935 215 18 

MZ1 bRo5 PROTAC 1.15 0.99 1003 268 18 

MZP-54 bRo5 PROTAC 1.18 1.00 1037 229 20 

PROTAC BET Degrader-10 bRo5 PROTAC 0.83 0.99 783 215 11 

PROTAC FAK degrader 1 bRo5 PROTAC 0.79 0.99 996 254 18 

PROTAC Mcl degrader-1 bRo5 PROTAC 0.93 0.99 910 220 15 

PROTAC-1 bRo5 PROTAC 1.07 0.99 1034 265 19 

ZXH-3-26 bRo5 PROTAC 0.65 0.99 785 224 11 

 
 
To learn about the chameleonicity distribution in our data set, several statistical tests 
were performed. A simple comparison between Ro5 and bRo5 investigated compounds 
suggested that bRo5 derivatives are much more chameleonic than Ro5 compliant 
molecules (median values 0.19 and 0.77, respectively) (Figure 33A). Furthermore, the 
subdivision of the bRo5 set into its structural subgroups suggested that PROTACs are the 
most chameleonic group (median value 0.9), followed by non-macrocyclic (median value 
0.5) and macrocyclic bRo5 compounds (median value 0.43), when compared to classic 
Ro5 compounds (median value 0.12) (Figure 33B).  
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Figure 33. A) Chamelogk distribution of Ro5 (n=25) and bRo5 compounds (n=30). B) Chamelogk 
distribution of bRo5 subclasses (n=29); macrocycle (n=5), non-macrocycle (n=6) and PROTAC 

(n=18). For comparative purposes, just classical Ro5 were displayed (n=12) (E3 ligands and 
warheads were removed). Statistical significance is presented as p-value from Wilcoxon’s test: 
0-0.0001 (****), 0.0001-0.001 (***), 0.001-0.01 (**), 0.01-0.05 (*), 0.05-1 (ns). Figure adapted 

from Garcia Jimenez et al., 2023.121 

In addition, we performed a detailed analysis of the most populated class, PROTACs (n= 
18). As expected, the higher chameleonicity of PROTACs agrees with their complexity 
(polarity, flexibility, etc.). Structurally, they are divided into 2 or 3 building blocks, which 
suggests, as performed in the solubility analysis,63 to analyze the role of each building 
block. Thus, the individual building blocks were plotted as a function of their 
chameleonicity, revealing that warheads and E3 ligands are, as expected, significantly 
less chameleonic (median values 0.24 and 0.30, respectively) than PROTACs (median 
value 0.90) due to their simpler structure (Figure 34A). In particular, the structure of the 
warhead can be very variable, depending mainly on the project. E3 ligands, on the 
contrary, mostly belong to two classes: Von Hippel-Lindau (VHL) ligands and CRBN 
ligands.20 Thus, the E3 ligands and PROTACs were classified upon their E3 ligand and 
their chameleonicity differences were compared (Figure 34B). Apparently, the bigger 
structure of VHL ligands not only makes them more chameleonic than CRBN ligands 
(median values 0.47 and 0.06, respectively, first panel), but confers higher 
chameleonicity to their corresponding PROTAC structures (median values 1.16 and 0.8, 
respectively, second panel).  
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Figure 34. A) Chamelogk distribution of E3 ligands (n = 8), warheads (n = 6), and PROTACs (n = 
18). (B) Panel 1: Chamelogk distribution of E3 ligands (n = 8) (CRBN, n = 4; VHL, n = 4). Panel 2: 
PROTACs (n = 18) (CRBN-based, n = 9; VHL-based, n = 9). PROTAC-1 is presented as a light-blue 

dot. Statistical significance is presented as p values: 0-0.0001 (****), 0.0001-0.001 (***), 
0.001-0.01 (**), 0.01-0.05 (*), 0.05-1 (ns) (Wilcoxon’s test). Figure adapted from Garcia 

Jimenez et al., 2023.121 

C. Chamelogk interpretation and validation with literature data 

The Chamelogk descriptor efficiently classifies chameleonicity for Ro5 and bRo5 
molecules. However, to further confirm these trends, Chamelogk needs to be studied 
from a molecular property perspective that allows to deconvolute the factors that favor 
chameleonicity. Thus, the relationship between the molecular properties and 
chameleonicity was studied using the set of 7 computed descriptors reported earlier 
(see Paper II)180 by means of PCA (Figure 35). PC1 is mainly driven by MW, TPSA, nC, HBA 
and PHI while PC2 is guided by NAR, both explaining 90% of the total PCA variance. This 
fact confirms that molecular complexity (size, polarity, flexibility and hydrophobicity) 
favors chameleonicity, making it a unique characteristic of the bRo5 chemical space. 
However, as expected, no trends are revealed within the bRo5 space. Thus, in silico 
studies are mandatory to determine the individual factors between bRo5 subclasses (see 
Chapter 9).  

 

Figure 35. Chameleonicity distribution (red-green color scale) according to a 2D descriptor-
based PCA. The contributions of individual descriptors to the PCAs are indicated by the length 
of the arrows. Vertical and horizontal jitter (0.13 PC1 and PC2 units) was introduced to avoid 

point overlap. Figure adapted from Garcia Jimenez et al., 2023.121 
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Moreover, we aimed to validate our Chamelogk descriptor with well-known chameleons 
reported in the literature. Overall, chameleonicity had been experimentally assessed by 
X-ray, NMR and ChameLogD. These techniques have their advantages and limitations 
(see Chapter 5.7) but fail to provide comparable data other than the presence or 
absence of chameleonicity. Thus, Chamelogk was compared for its capacity to detect 
weak and strong chameleons in a list of suspected and/or confirmed chameleons by 
these strategies (Table 6). 
 

Table 6. Chameleonicity assessment of neutral bRo5 compounds classified by bRo5 subtypes 
and ordered in increasing value of Chamelogk. Table adapted from Garcia Jimenez et al., 

2023.121 

Compound Subclass 
ChameLogD

95 
Chamelogk 

121 

X-ray 

NMR70,211 Δ 3D-
PSA64 

Crystal 
analysis114–

116,211 

Temsirolimus Macrocycle 2 0.23 ND   

Sirolimus Macrocycle 1.4 0.25 ND   

Everolimus Macrocycle 1.7 0.45 ND   

Cyclosporin Macrocycle 2.3 1.25 79 Chameleon Chameleon 

Paclitaxel Non-macrocycle 0.3 0.15 23   

Telaprevir Non-macrocycle 0.9 0.31 32   

Atazanavir Non-macrocycle 1.6 0.33 34   

Ritonavir Non-macrocycle 1.6 0.67 53   

Nelfinavir Non-macrocycle 1.4 0.74 ND   

Saquinavir Non-macrocycle 2.3 1.23 21   

PROTAC-1 PROTAC ND 1.07 ND  Chameleon 

 

1) ChameLogD 

First, Chamelogk was compared with ChameLogD95 (Table 6). Both methods show a 
decent positive correlation (Figure 36) (R2 = 0.48) when all bRo5 compounds are grouped 
together. Moreover, when macrocycles and non-macrocycles are clustered separately, 
they show a positive trend (R2= 0.56 and 0.74, respectively). Thus, there are several 
differences between the methods, although they both agree on the chameleonicity of 
cyclosporin114–116,211 and saquinavir.106 Methodologically, despite being both 
chromatographic techniques, they are different in nature. Chamelogk, in our opinion, is 
more suitable as a chameleonicity descriptor because it explores different environments 
with just one stationary phase. ChameLogD, on the contrary, compares different 
chromatographic systems (BRlogD and ElogD). 
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Figure 36. ChameLogD vs Chamelogk (n=10). Dashed lines represent the linear regression for 
the neutral bRo5 compounds (black), macrocycles (blue) and non-macrocyclic bRo5 

compounds (light blue). Figure adapted from Garcia Jimenez et al., 2023.121 

2) X-ray and NMR 

Chameleonicity studies through X-ray analysis typically involve comparing crystallized 
conformations. Generally, a low structural superposition (RMSD, root mean square 
distance) and a large molecular property window (Δ 3D-PSA) are indicators of 
chameleonicity.64,77 Thus, from the work of Rossi Sebastiano,64 we collected the 
available Δ 3D-PSA data and compared them with Chamelogk for our compounds. 
However, a poor correlation was found (R2 = 0.23, Figure S15). Both strategies agreed 
for cyclosporin but disagreed for saquinavir. Overall, X-ray revealed chameleonicity, 
such as cyclosporin is always an imperious proof, but the absence of chameleonicity is 
not equally informative. Since the X-ray analysis is based on the available crystals, it is 
not possible to confirm that other conformers revealing chameleonicity cannot 
potentially be seen. Thus, in practice, X-ray is not able to discard non-chameleons. 
Moreover, NMR combined to NAMFIS provides the most likely conformations that a 
molecule can adopt in polar or nonpolar solution. In our data set, cyclosporin211 agrees 
with NMR, as does PROTAC-1, the first permeable and NMR-proven PROTAC chameleon. 
However, the limited availability of NMR data makes data set comparison difficult.70 

D. Chamelogk threshold for chameleonicity  

An essential question is what specific value of Chamelogk can effectively differentiate 
molecular chameleons. With this purpose, a density plot of the available data was 
performed and the intersection of the Ro5 and bRo5 areas (Chamelogk = 0.6) was found 
(Figure 37A). Moreover, the application of this threshold to the bRo5 subclass division 
discarded most macrocycles and non-macrocycles (Figure 37B). It is obvious that this 
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threshold selection was based solely on a population distribution and needs to be re-
defined based on its utility for DMPK purposes. However, it can be used for the first 
screening tests. 

 

Figure 37. A) Chamelogk density distribution for neutral Ro5 (n=25) and bRo5 compounds 
(n=30). B) Chamelogk density distribution for bRo5 subclasses (n=29); macrocycle (n=5), non-

macrocycle (n=6) and PROTAC (n=18). For comparative purposes, just classical Ro5 were 
displayed (n=12) (E3 ligands and warheads were removed). Color coding is maintained with 

respect to Figure 33. Figure adapted from Garcia Jimenez et al., 2023.121 

E. Chameleonicity in practice 

The potential of a candidate to become an oral drug depends on several factors 
(permeability, solubility, metabolic stability, etc.). In fact, as recalled earlier, candidates 
can be divided into 4 classes (BCS classification)43,212 according to their permeability and 
solubility balance. The assessment of these properties, however, often comes along with 
experimental issues that slow down the drug discovery process.55,63 For example, kinetic 
solubility assessment is not representative enough and PAMPA is not suitable for bRo5 
compounds. Consequently, the use of chromatographic descriptors is a fast and 

intelligent alternative to the measurement of these properties. In fact,  log kW
IAM and 

BRlogD are related to, permeability and solubility, respectively.63,112 Notably, 
chameleonicity is not related to any of these descriptors. In our experience, a compound 

with BRlogD > 5 is too lipophilic, while one with  log kW
IAM > 1.5 is too polar. 

Consequently, we theorized that chameleonicity may be the key to balancing these two 
molecular properties. Therefore, the use of 0.6 as a the Chamelogk threshold could help 
distinguish compounds that can benefit from chameleonicity. To verify this fact, the 
experimental molecular properties of several FDA-approved chameleons were 
measured (see Methods) and related to chameleonicity (Figure 38).  
 
The focus was set first on macrocycles. Among the data set, CsA showed low polarity 
and high lipophilicity, resulting in low solubility. Nevertheless, CsA is orally absorbed and 
has a Chamelogk of 1.25. On the other hand, pimecrolimus,213 which is administered as 
a cream, has similar polarity and lipophilicity properties but is barely chameleonic 
(Chamelogk = 0.43). Thus, the chameleonic properties of CsA are crucial to compensate 
for its low solubility (Class II).214 However, chameleonicity is not always necessary. In 
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fact, two oral macrocycles, sirolimus and everolimus39,215 (a pharmacokinetically 
improved version of sirolimus with better bioavailability), already have balanced polarity 
and lipophilicity. 
 
 

Pair Compound 
Abs. 

Route 
Oral% F 
Humans 

Chamelogk BRlogD  log kW
IAM log kW

IAM 

A 
Cyclosporin Oral 30 1.25 5.9 0.31 4.71 

Pimecrolimus Cream ND 0.43 6.52 -1.62 3.35 

B 
Everolimus Oral 20 0.45 4.86 0.71 4.15 

Sirolimus Oral 14 0.25 4.97 0.42 3.96 

 

 

Figure 38. Macrocyclic drugs and their molecular properties. Abbreviations: absorption route 
(Abs. Route). Figure adapted from Garcia Jimenez et al., 2023.121 

Moreover, several FDA-approved non-macrocycles were confronted (Figure 39). All of 
them are orally absorbed and show balanced polarity and lipophilicity properties, which 
makes them orally available despite their low-intermediate chameleonicity. However, 

saquinavir behaves in a different way; it is very polar ( log kW
IAM = 1.85)106 and not very 

lipophilic), suffering from cell permeability issues. However, its high chameleonicity 
(Chamelogk = 1.25) may compensate and guarantee cell permeability (even if partially 
absorbed by active transport).106 
 
 

Compound Absorption route Chamelogk BRlogD  log kW
IAM log kW

IAM 

Telaprevir Oral 0.31 3.60 0.75 3.02 

Atazanavir Oral 0.33 3.15 0.87 2.74 

Ritonavir Oral 0.67 3.29 1.02 3.02 

Nelfinavir Oral 0.74 4.73 -0.63 2.69 

Saquinavir Oral 1.23 2.85 1.85 3.44 
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Figure 39. Non-macrocyclic oral drugs and their molecular properties. The common atomic 
scaffold for saquinavir and nelfinavir is colored in black (different chiral centers). Figure 

adapted from Garcia Jimenez et al., 2023.121 

PROTACs occupy a different space compared to oral bRo5 drugs.180 Thus, it is expected 
that PROTACs behave in a rather different way, given their high flexibility and polarity. 
For the moment, not much is known about the potential to obtain oral PROTACs by 
chameleonicity strategies. Only a few studies by Kihlberg’s group have reported passive 
permeability by chameleonicity.70,71 Our data set showed that PROTACs are extremely 

polar (median  log kW
IAM = 2) and not so lipophilic (median BRlogD = 2.6). Moreover, all 

of them are chameleons (median Chamelogk = 0.9). Consequently, most PROTACs will 
have their major limitation in permeability, although solubility is also an obstacle.126 
Consequently, not many oral PROTAC candidates are in clinical trials.  
 
In our data set, ARV-825 is the only PROTAC proven to be orally available.216 It is a CRBN-

based PROTAC with intermediate lipophilicity (BRlogD = 3.49), low polarity ( log kW
IAM 

= 1.31) and intermediate chameleonicity (Chamelogk = 0.72) (Figure 40). Their molecular 
properties are already balanced and therefore ARV-825 will not benefit from 
chameleonic effects. However, the non-oral PROTACs in our data set, MZ1204 and its 
negative control cisMZ1, behave differently (Figure 40).217 These two PROTACs are VHL-

based degraders with low lipophilicity (BRlogD= 1.77-1.87) and very high polarity ( log 
kW

IAM = 2.24-2.20), respectively. Moreover, both PROTACs are strong chameleons (1.15 
and 1.27, respectively). Thus, these two compounds have a worse permeability profile 
than ARV-825 but a better solubility.63 In this case, despite their high chameleonicity, 
they cannot compensate for their excessively high polarity, leading to a non-oral 
PROTAC. 
 
 

Compound Building blocks 
Abs. 

Route 
Chamelogk BRlogD  log kW

IAM log kW
IAM Log S 

ARV-825 
OTX-015 + PEG + 

Pomalidomide 
Orally 
active 

0.72 3.49 1.31 3.49 
Low 

range 

MZ1 
JQ1 + PEG + VH-

032 (S,R,S) 
Non-oral 1.15 1.77 2.24 2.83 

Int. 
range 

CisMZ1 
JQ1 + PEG + VH-

032 (S,S,S) 
Non-oral 1.27 1.87 2.20 2.90 

Int. 
range 

 



 

86 
 

 

Figure 40. PROTACs and their molecular properties. Abbreviations: absorption route (Abs. 
Route), intermediate (Int.). Figure adapted from Garcia Jimenez et al., 2023.121 

These results show that chameleonicity can be helpful when lipophilicity and/or polarity 
are in an affordable range to be corrected. Thus, from a medicinal chemistry point of 

view, Chamelogk needs to be monitored along BRlogD and  log kW
IAM, and studied by 

means of an experimental property plot (Figure 41). In the interest of prospectively 
applying this predictive tool, we measured voclosporin (an oral cyclosporin derivative 
recently approved by the FDA). Notably, voclosporin behaves very similarly to CsA 

(BRlogD = 5.96,  log kW
IAM = -0.96, Chamelogk = 1.15). Consequently, voclosporin 

represents a new example of how chameleonicity can correct extreme lipophilicity 
values and sheds light on the use of chromatographic descriptors in drug design (Figure 
41). 

 

Figure 41. Polarity, lipophilicity, and chameleonicity representation for a set of bRo5 
compounds. The absorption route is represented by different shapes (if approved). The dashed 
line represents the ideal linear slope for both variables. Figure adapted from Garcia Jimenez et 

al., 2023.121 
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F. Paper V conclusions 

Chameleonicity is a crucial molecular property in the bRo5 chemical space to achieve 
simultaneous water solubility and cell permeability. However, the available tools to 
experimentally measure it have several drawbacks that limit its implementation in drug 
design. Therefore, in this article we present Chamelogk, a fast chromatographic method 
capable of quantifying chameleonicity for large sets of compounds with a single 
stationary phase, the PLRP-S. In essence, it is based on the creation of different polarity 
environments by modifying the eluent composition. Thus, Chamelogk is able to capture 
a property change compared to to its original behavior at more polar environments 
(defined by the linear trend in the PLRP-S system). Finally, we measured 55 Ro5 and 
bRo5 neutral compounds, revealed several chameleonicity trends, and set a preliminary 
Chamelogk threshold at 0.6. 
 

The integration of chameleonicity (Chamelogk) with polarity ( log kW
IAM) and 

lipophilicity (BRlogD) allowed to justify the absorption profile (solubility/permeability 
balance) of several FDA-approved drug candidates. A few selected examples of 
macrocycles, non-macrocyclic compounds and PROTACs highlighted the importance of 
balancing polarity and lipophilicity with chameleonicity. Our evidence suggests that 

cases with extremely high lipophilicity (BRlogD = 6) and polarity ( log kW
IAM = 2) can be 

balanced. However, our examples also suggest that chameleonicity cannot compensate 
for higher polarities. We ignore, though, if greater chameleonicity values might be able 
to solve this situation. Additionally, the measurement and integration of chameleonicity 
with other molecular properties represents a key tool to prioritize compounds with 
future as oral candidates. Besides, Chamelogk can also be used to refine and validate 
computational strategies to predict chameleonicity (Papers VI and VII). 
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8.3 Chapter 8 conclusions 

Overall, in this chapter the major contributions of this thesis to the development of 
experimental molecular property determination strategies have been exposed. 
 
First, a set of chromatographic tools was used to successfully determine the 
physicochemical properties (mainly polarity and lipophilicity in different systems) of 
many bRo5 compounds (PROTACs, macrocycles and non-macrocycles). Notably, the 
experimental measurement of the capacity to form IMHBs was limited by the solubility 
of the compounds in biphasic systems (octanol/water and toluene/water) and was only 
applied to a few compounds used to explore in silico strategies (Paper VII). Moreover, a 
new method to measure chameleonicity was developed and its integration with 
lipophilicity and polarity allowed to hypothesize a property-based strategy intended to 
screen compounds with higher potential of being orally available.  
 
Finally, in terms of in vitro ADME properties, the thermodynamic solubility of PROTACs 
was assessed and rationalized upon experimental lipophilicity and calculated polarity 
descriptors. This allowed us to build a new classification model to be used in the 
screening of soluble PROTACs, for large datasets of compounds in the academic or 
industrial world. Permeability on the other hand was measured for a series of PROTACs 
using the PAMPA method, but no consistent results were obtained (data not shown). In 
fact, many discrepancies are found in the literature for this method, especially in the 
bRo5 space. 
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9. In silico 3D descriptor-based strategies to monitor molecular properties  

As discussed in Chapter 7, the modeling of in vitro ADME properties (i.e., solubility, 
permeability) with simple 2D descriptors (i.e., TPSA, MW, NRotB) provides some pieces 
of information but has several limitations for bRo5 compounds. Thus, the application of 
3D descriptor-based in silico strategies that consider and efficiently model the 
conformational variability of bRo5 compounds in both polar and nonpolar environments 
is necessary. Moreover, chameleonicity, which is a property entirely based on a 
conformational change, can only be computationally studied with 3D descriptor-based 
strategies. 
 
In this chapter, the goal is to explore CS and MD-based tools to generate conformations 
in polar and nonpolar environments. Moreover, a set of 3D descriptors (IMHB count, Rgyr 
and 3D-PSA) that are expected to be relevant in the modeling of molecular properties 
are calculated and interpreted for the resulting conformations (general information on 
the theorical concepts is available in Chapter 5.8). A general scheme of the procedure is 
shown in Figure 42. Notably, the availability of experimental data obtained from this 
thesis and/or the literature (Chapter 8) allowed us to obtain a few proofs of concept.  
 

 

 

Figure 42. Schematic workflow of the 3D in silico strategies used in this thesis. 
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9.1 Conformational Sampling Deciphers the Chameleonic Properties of a VHL-

Based Degrader (Paper VI)210 

Not much is known yet about the chameleonicity of PROTACs. Since the discovery of the 
first NMR-proven chameleon (PROTAC-1)70 by Kihlberg and coworkers, only a few 
studies on the chameleonicity of PROTACs have been published.71,121 However, PROTACs 
are the subclass of bRo5 compounds with the highest flexibility and polarity, key factors 
that can trigger chameleonicity.180 Nonetheless, while new experimental methods to 
measure chameleonicity are emerging, its computational prediction remains limited. 
 
Notably, there is no record of computational tools to predict PROTAC chameleonicity. 
Thus, the arrival of the first NMR-proven chameleonic PROTAC provided an opportunity 
to evaluate the use of CS to predict its chameleonicity. To this end, in the following paper 
a series of CS protocols were evaluated, and the 3D properties of the generated 
conformers were calculated and compared to the NMR conformations. 

A. PROTAC-1, the first experimentally-verified chameleonic PROTAC 

PROTAC-1 is a permeable (-log Papp = 5.85 cm/s in PAMPA) and anticancer VHL-based 
degrader, predicted to be neutral at pH 7.4 (Figure 43). Its conformations in solution 
were determined by NMR in a mixture of polar solvents (water and DMSO, hereafter 
referred to as water), mimicking the extracellular regions and in a nonpolar solvent 
(chloroform), mimicking the interior of the membrane.70 Eight conformations were 
obtained in chloroform and ten in water. 90% of the conformations in chloroform were 
highly folded and 10% semi-folded. On the other hand, the water ensemble consisted of 
a greater variety, mainly containing semi-folded (56%) but also folded (29%) and linear 
(15%) conformations.70 Thus, NMR evidenced, for the first time, a chameleonic PROTAC. 
Notably, the obtention of solution conformers from NMR requires the application of 
NAMFIS. This algorithm uses previously generated conformations to match the 
conformational constraints provided by NMR, providing a set of final conformations in 
each solvent. For PROTAC-1, the conformational search was based on Monte Carlo 
algorithms followed by an energy minimization with the generalized-born/surface-area 
(GB/SA) implicit solvent model.70 Consequently, NMR-based methods have a 
computational bias which makes them partially dependent on the method. 
 
Moreover, its chameleonic behavior was also recently verified by Chamelogk (1.07) 
(Table 5, Figure S16). As shown in paper V, VHL-based PROTACs have a higher tendency 
than CRBN-based PROTACs to be chameleonic due to the higher complexity of the VHL 
ligand structure. In this case, PROTAC-1 is more chameleonic than any CRBN PROTAC 
and most macrocyclic and non-macrocyclic bRo5 compounds (figure 33).121 
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Figure 43. Chemical structure and 2D descriptors of PROTAC-1. Figure adapted from Ermondi 
et al., 2023.210 

B. 3D properties of NMR-based conformations 

As discussed in Chapter 5.6, a molecular chameleon tends to display folded and less 
polar conformations in non-polar solvents and more open and polar conformations in 
polar solvents. Consequently, to evaluate the presence of this behavior in the NMR-
based conformations, their 3D molecular properties (3D PSA, Rgyr and IMHBs) were 
calculated and compared (Figure 44A) (see Methods).106  
 
The sphericity (Rgyr) vs polarity (3D PSA) plot suggests that PROTAC-1 behaves as a 
chameleon, exhibiting more spherical (lower Rgyr) and less polar (lower 3D PSA) 
conformations in chloroform compared to water (Figure 44A). Moreover, IMHBs are 
equally present in both solvents, highlighting that the presence of IMHBs does not 
necessarily imply chameleonicity (Figure 44B). In particular, the conformations with 
more spherical shape and lower polarity have 2 IMHBs instead of 1. In fact, even the 
linear and more open conformations have 1 IMHB. Moreover, none of the 
conformations reach the TPSA (265 Å2, the maximum polarity the molecule could reach 
attending to its atoms), suggesting that the molecule is never completely exposed versus 
the polar solvent.  
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Figure 44. Rgyr plotted vs 3D PSA for the NMR-derived solution conformations of PROTAC-1 
coloured by A) shape by solvent, B) nIMHBs. The marker shape indicates the solvent and the 

size of the relative population in%. Figure adapted from Ermondi et al., 2023.210 

C. 3D properties of CS-derived conformations 

Since NAMFIS is based on a conformational sampling protocol, CS was preferred over 
molecular dynamics in this work. CS methods mainly depend on two main factors (see 
Chapter 5.8); the environment (polar or nonpolar) and the algorithm used.  Other 
relevant factors are the number of maximum steps and the allowed energy range, which 
limits the final number of generated conformations. Notably, energy-based 
interpretations, such as the use of the minimum energy conformer (MEC) to model 
permeability, are known to be risky.77 Therefore, several CS protocols (Sc01-Sc06) were 
designed (details are provided in Table S13) (see Methods). Mostly, these CS methods 
differ in the algorithm, using either Monte Carlo methods (MCMM) (Sc04-06) or 
combinations of MCMM with low-frequency vibrational modes (LMOD) (Sc01-03).145 
Other modified parameters were the number of generated steps.  
 
The ability of the CS methods to predict the chameleonic behavior of PROTAC-1 and to 
reproduce the molecular property space of NMR-derived conformations was evaluated. 
The polarity and sphericity of the obtained conformations were evaluated for the 
different protocols (Figure 45) using different selection criteria; all conformations (1st 
column), only those conformers falling within an energy window of less than 3 kcal/mol 
from the minimum energy conformer (MEC) (2nd column) and this last representation 
weighted according to their energy (3rd column). Sc03 and Sc06 are not reported since 
they provided identical ensembles to Sc02 and Sc05, respectively. 
 
Overall, all methods suggest that PROTAC-1 behaves as a chameleon, displaying lower 
polarity conformations (3D PSA) in the nonpolar solvent (chloroform). Indeed, in all 
cases there is a shared polarity region between the conformations generated in 
chloroform and water. Moreover, it seems that MCMM (Sc04-05, Figure 45C and D) finds 
a smaller polarity difference compared to the mixed models (Sc01-02, Figure 45A and 
B). In fact, the best polarity overlap with NMR conformations is found with the mixed 
models. 
 
Notably, in terms of sphericity (Rgyr), the mixed protocols (Figure 45A and B) display 
similar results regardless of the number of steps, with water conformers displaying more 
spherical shapes (lower Rgyr). Surprisingly, Sc04 (Figure 45C), which uses the MCMM 
method, shows a similar pattern. Sc05, on the other hand, seems to find water 
conformations with more extended shapes (higher Rgyr). 
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Figure 45. Rgyr vs. 3D PSA plots for the ensembles obtained with the different protocols. A) 
Sc01, B) Sc02, C) Sc04, and D) Sc05. Black circles highlight high-probability conformer groups. 

Figure adapted from Ermondi et al., 2023.210 

Thus, Sc05 (especially the energy-weighted plot) shows the best although not perfect 
superposition with NMR conformers (Figure 46), especially in terms of Rgyr. Interestingly, 
the NMR-derived conformations in the polar solvent are more extended than those 
predicted ones by CS. In fact, none of the Sc05 conformations adopt linear shapes. A 
logical explanation is that NMR uses a combination of water and DMSO, providing a 
more polar environment and thus favoring even more extended conformations. In fact, 
Kihlberg and coworkers experimentally observed how the addition of water (10%) to a 
pure DMSO solution resulted in more folded PROTAC-1 conformations.70 However, it is 
also noticeable that the mixed methods, in particular the default method (Sc01), 
reproduces the polarity of the NMR conformers in the best way. Overall, all the CS 
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strategies suggest that PROTAC-1 behaves as a chameleon, with Sc01 and Sc05 
simulations being the most similar to NMR. 

 

Figure 46. Rgyr vs. 3D PSA comparison of NMR and Sc05 conformers (weighted scheme) in polar 
and nonpolar solvents. Figure adapted from Ermondi et al., 2023.210 

D. Paper VI conclusions 

The growing interest in chameleonicity has created the need to develop prediction 
strategies. In fact, CS in implicit polar and nonpolar solvents has already been used for 
macrocycles.77 However, there are no in silico tools available for PROTACs, even more 
flexible and chameleonic than macrocycles.121 Therefore, we aimed to use the first 
experimentally-verified chameleonic PROTAC (PROTAC-1) to explore and benchmark CS 
strategies for predicting PROTAC chameleonicity.  Several CS protocols were designed 
by modifying the algorithm (LMOD and/or MCMM), and the number of maximum steps. 
They were evaluated for their capacity to a) predict the chameleonicity of PROTAC-1 
based on the polarity (3D PSA) and sphericity (Rgyr) of their conformations and b) obtain 
a property superposition with respect to the experimental NMR conformers. In 
particular, both standard protocols (mixed LMOD and MCMM) (Sc01-03) and MCMM 
algorithms (Sc04-06) (MCMM) succeeded in predicting chameleonic behavior. 
Moreover, Sc01 (mixed LMOD and MCMM, maximum steps 103) and Sc05 (MCMM, 
maximum steps 104) provided the best polarity and sphericity superpositions, 
respectively. This suggests that despite methodological differences, CS is suitable for 
PROTAC chameleonicity assessment. Overall, this article provides new CS protocols and 
strategies for the analysis of chameleonicity that can be used in future studies. However, 
the sensitivity of these strategies to discriminate between different candidates and the 
role of the IMHB in chameleonicity remain to be investigated.  

E. Additional information: application of SMD to PROTAC-1 

In paper VII, the application of SMD as an alternative strategy to study PROTAC 
chameleonicity was discussed. Consequently, we attempted to apply the same strategy 
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to PROTAC-1 as post-publication work. For technical details on the strategy or method, 
the reader is directed to paper VII.  
 
The application of the density plot to SMD-derived conformers suggested that PROTAC-
1 shows a reduction of polarity in nonpolar environments (toluene) compared to water 
(Figure 47A). Moreover, there is not a significant reduction in sphericity in water, which 
happens also in CS and NMR-derived conformations. Moreover, the presence of low-
polarity conformations in toluene comes along with the formation of 1 and 2 IMHBs, 
absent in water (Figure 47B). As stated by Kihlberg and coworkers, the formation of 
IMHBs in PROTAC-1 can be a crucial factor for its permeability.70 Overall, this short study 
suggests that SMD-based analysis can be used to depict the chameleonic behavior of 
bRo5 compounds. However, there is still room available for improvement, especially in 
the understanding of the specific types of IMHBs formed (future perspectives).   

 

Figure 47.  SMD Tunneling. Density plots of PROTAC-1 in A) water and toluene and then B) 
divided by their IMHBs. 
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9.2 Refinement of Computational Access to Molecular Physicochemical 

Properties: From Ro5 to bRo5 (Paper VII)106 

Currently, CS remains the most widely used strategy to explore the conformational 
complexity of bRo5 compounds. In particular, its ability to reproduce experimental 
conformations (NMR and X-ray) and to rationalize permeability for macrocyclic and 
other bRo5 compounds has recently been investigated.77,218 MD represents another 
useful strategy to generate environment-dependent conformations. It has mostly been 
used to simulate the evolution of protein-ligand complexes (PD), but its great potential 
to generate conformations also makes it useful for molecular property studies.114,116,219 

Up to now, a few studies have used CS and MD simultaneously to assess the 
conformations of bRo5 compounds in a rational way.77 Regarding PROTACs, several 
studies have used MD to model the binary or ternary complexes,220,221 while no 
applications have yet been reported to assess their molecular properties. 
 
As a result, there is uncertainty about the best way to compute a conformational 
ensemble, find the biorelevant conformers, and determine which structural features 
need to be modified. In fact, up to now the chameleonicity of only one PROTAC-1 has 
been reproduced, using CS (Paper VI). However, the recent development of Chamelogk 
by our group and the availability of ad hoc chromatographic strategies for bRo5 
compounds, provided a new opportunity to benchmark computational strategies for 
more than one compound and, more importantly, against proven experimental 
evidence, in this case, regarding all the measurable physicochemical properties (i.e., 
polarity, lipophilicity, chameleonicity, IMHBs). In addition, the existence of alternative 
strategies to the classical unbiased MD simulations made us adapt the “umbrella 
sampling” or SMD to the study of molecular properties. Ideally, with this strategy the 
molecule of interest is constrained to move in a certain direction and at a certain speed 
and force through the solvent, maximizing the interactions.222 This tool is expected to 
be a faster tool to obtain conformations of interest compared to unbiased MD. 
 
Therefore, three important goals of this work are a) to optimize CS and MD-based tools 
to model the molecular properties of structurally diverse compounds, b) to explore the 
pros and cons of SMD and CS and c) to provide a reasonable in silico strategy to assess 
molecular properties, confirmed with experimental data (lipophilicity, polarity, 
lipophilicity, chameleonicity and IMHB formation).  

A. Compounds selection 

A total of three compounds belonging to different spaces were selected: (a) a Ro5 oral 
drug (pomalidomide, Figure 48A), (b) a bRo5 oral drug (saquinavir, Figure 48B); and (c) 
a non-permeable PROTAC (CMP 98, Figure 48C).  
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Figure 48. Structure of the three molecules selected: A) pomalidomide, B) saquinavir, and C) 
CMP 98. Figure adapted from Sebastiano et al., 2022.106 

Pomalidomide and CMP 98 are expected to be neutral at pH 7. Saquinavir has an 
experimental pKa of 7.1,64 which makes it partly neutral as well. Pharmacologically, 
pomalidomide is an oral immunomodulatory drug for multiple myeloma.223 Moreover, 
it acts as a molecular glue of two proteins (E3 ligase and POI), triggering the ubiquitin-
mediated degradation of the POI. Thus, it is widely used in PROTAC technology.224 
Saquinavir is a non-macrocyclic bRo5 antiretroviral, susceptible to P-gp-mediated 
efflux.127 It was chosen because of its chameleonic profile (ChameLogD and Chamelogk 
verified, see Chapter 8), which may contribute to a small but significant proportion of 
passive permeation.64 Lastly, CMP 98 is an inactive, non-PAMPA permeable225 and water 
soluble PROTAC.63 It is an extremely flexible PROTAC, making it an ideal candidate to 
test the impact of flexibility on molecular properties. Overall, as suggested by the 7 2D 
descriptors extensively used throughout this thesis, CMP 98 is the largest (MW and nC), 
most flexible (PHI) and most polar compound (HBA and TPSA), followed by saquinavir 
and lastly by pomalidomide. In addition, the same order is maintained for 
hydrophobicity (NAR and nC) (Table 7). 
 

Table 7. 2D molecular descriptors. Color codes account for: green (size), purple (flexibility), 
yellow (hydrophobicity), and blue (polarity). Table adapted from Sebastiano et al., 2022.106 

 

MW nC PHI NAR HBD HBA TPSA

Pomalidomide 273 13 3 1 3 7 111

Saquinavir 671 38 12 3 6 11 167

CMP 98 1180 58 27 4 6 22 335
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B. Experimental physicochemical characterization 

The physicochemical profiles of the three compounds were thoroughly examined by a 
series of experimental descriptors (Table 8) (see Methods).95 Lipophilicity was 
determined in three different chromatographic systems (BRlogD, log kw

IAM, and log k′ 80 
PLRP-S).82,92,97 Moreover, log Ptol was also determined by the shake-flask method. 
Overall, high values suggest high lipophilicity in different environments. Two polarity 
indexes (EPSA and Δ log kw

IAM) were obtained, with higher values indicating higher 
polarity. Additionally, an indicator of the capacity of the compounds to form IMHB (Δ 
log Poct-tol) was obtained.104,105,108 Δ log Poct-tol was calculated by subtracting the log Poct 

(defined by BRlogD) from the shake-flask log Ptol value. A low value indicates that the 
compound has a high propensity to form IMHBs, since the formation of IMHBs is favored 
in toluene but not in octanol.105 Finally, Chamelogk was also assessed as a 
chameleonicity indicator.121 
 

Table 8. Experimental descriptors. Color codes account for yellow (lipophilicity), blue (polarity), 
cyan (IMHB-formation capacity) and black (chameleonicity). SF: shake-flask method. Table 

adapted from Sebastiano et al., 2022.106 

 
 
 
These data suggest that saquinavir is the most lipophilic and CMP 98 is the most polar. 
Moreover, saquinavir has a high tendency to form IMHBs while CMP 98 and 
pomalidomide do not. Notably, saquinavir is a strong chameleon, while CMP 98 behaves 
as a weak chameleon (Figure S17). In addition, pomalidomide does not exhibit 
chameleon-like behavior due to its Ro5 nature.121 According to the experimental 
evidence, saquinavir has a better profile than CMP 98 to be oral. In fact, the low 
permeability (PAMPA) and high solubility (thermodynamic solubility) of CMP 98 is 
perfectly logical given its extremely high polarity.63,225 Moreover, in our recent article on 
chameleonicity (see Paper V), we hypothesized that a very high chameleonicity would 
be required to make a compound with high polarity oral (Δ log kw

IAM value ˃ 2), although 
a positive proof has not yet been obtained. In fact, if compared to non-oral PROTACs 
such as MZ1, CMP 98 is equally polar (Δ log kw

IAM) but even less chameleonic 
(Chamelogk). 

C. In silico strategies (CS and SMD) 

CS and MD-based methods were used to generate environment-dependent conformers 
(see Methods). First, the well-performing default CS sampling method available in 
Maestro (Sc01 in Paper VI, mixed MCMM/LMOD algorithm, see Methods), was selected. 

IMHBs Chameleonicity

BRlogD
log 

kW
IAM

log k´80 

PLRP-S

log Ptol                 

(SF)

∆ log 

kW
IAM EPSA Δ log P     Chamelogk

Pomalidomide 1.41 0.91 -0.65 -0.22 0.64 82 1.63 0

Saquinavir 2.85 3.44 -0.1 2.06 1.85 94 0.79 1.23

CMP 98 1.38 2.34 -0.84 -0.24 2.1 103.8 1.62 ˃ 0.6

PolarityLipophilicity
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Water and chloroform were defined as the two solvents. Moreover, unbiased MD 
(hereafter referred to as MD) and steered MD (SMD)226 were run with the CHARMM36m 
force field for 100 and 10 ns, respectively.227 Notably, we observed that SMD can provide 
the same molecular property space in 10 ns as unbiased MD in 100 ns, and therefore 
MD will not be discussed in the thesis. These simulations were run in explicit solvent, 
using water as the polar solvent and toluene as the nonpolar solvent (see Methods). In 
theory, chloroform could also be used as the nonpolar phase for comparison with CS. 
Nevertheless, all the available experimental descriptors for lipophilicity and IMHB use 
toluene as the nonpolar reference (log Ptol), making toluene more suitable for 
comparison. Notably, future CS strategies could attempt to simulate the CS in 
toluene/water instead of chloroform/water. However, this option is not yet 
parameterized in the available software. Furthermore, CS and MD/SMD are based on 
different algorithms, force fields (OPLS_2005 and CHARMM36m, respectively), solvent 
treatment (implicit and explicit, respectively), and energy minimization (MD and SMD 
are not minimized). Thus, they must only be compared in terms of the final information 
provided. 
 
Following the success of previous studies,77,210 we aimed to monitor polarity (3D PSA), 
and the size/shape (Rgyr). Besides, IMHBs were quantified and examined in relation to 
the other two descriptors. However, the calculation of IMHBs also depends on several 
internal parameters that need to be fixed in order to obtain reproducible results. Thus, 
the software Chimera was used, establishing 0.4 Å and 20° as the flexible ranges for 
bond length and angle between HBD and HBA, respectively.154 In addition, the donor-
acceptor capacity, often referred to as the Abraham descriptors, has not been 
considered.134 

D. In silico results (bi-property analysis) 

 Saquinavir and CMP 98 were plotted as a function of 3D PSA and Rgyr (bi-descriptor 
analysis) for CS, and important differences were spotted (Figure 49). CMP 98 does not 
reach the TPSA value, which means that it is never fully exposed. Saquinavir, on the 
contrary, surpasses the TPSA. This suggests that saquinavir is more chameleonic. 
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Figure 49. Conformational sampling: 3D PSA vs Rgyr in water and chloroform: A) saquinavir and 
B) CMP 98. Individual descriptor data can be found in Tables S14 and S15. Figure adapted from 

Sebastiano et al., 2022.106 

Moreover, the presence of superimposable property spaces has been suggested as a 
factor contributing to permeability.64 CMP 98 does not seem to have a direct 
superimposable space between water and chloroform (colored square in Figure 49) but 
saquinavir does. This may partly explain its better permeability profile (despite being 
mostly permeable by active transport).  
 
SMD-derived conformers need to be analyzed using density plots, which provide 
information on the most populated regions. Results suggests that saquinavir displays 
more open and polar conformations in water (Figure 50A), and more spherical and less 
polar conformers in toluene (Figure 50B). CMP 98, on the other hand, behaves quite 
differently. In water (Figure 50C), a very dense cluster with high 3D PSA and low Rgyr 
conformations is found but in toluene the conformations tend to adopt also open 
conformations (Figure 50D). If related to chameleonicity, both have a certain degree of 
chameleonicity as the conformational spaces change based on the environment. 
Though, saquinavir finds a completely new property space in toluene, whereas CMP 98 
is superimposable to water. This data agrees with their experimental Chamelogk data 
(1.23 and ˃ 0.6, respectively). Furthermore, saquinavir adopts more closed 
conformations in toluene which is widely known to favor permeability. CMP 98, on the 
contrary, would open up inside the membrane. 
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Figure 50. SMD Tunneling: density plots of saquinavir in water A) and toluene B) and CMP 98 in 
water C) and toluene D) highlighting the dispersion patterns of the generated conformers in 

the 2D plot of 3D PSA vs Rgyr. The color scale is expressed as conformer frequency per tile. Blue 
perimeter stands for water, orange for toluene, and orange/blue crosses highlight the solvent-
based shift of the inner cluster. Individual descriptor data can be found in Tables S14 and S15. 

Figure adapted from Sebastiano et al., 2022.106 

Overall, CS and SMD bi-property plots suggest that saquinavir is less polar and more 
chameleonic (verified by ∆ log kw

IAM and Chamelogk, respectively). Consequently, we 
attempted to examine if CS and SMD could predict the higher capacity of saquinavir to 

form IMHBs (experimentally verified by  log Poct-tol).  
 
No informative trends about the different IMHB profiles were obtained for CS (data not 
shown). However, the density plot provided valuable information for SMD (Figure 51). 
The conformers with the closest molecular properties to the center of each density 
cluster in Figure 50 were individuated and their IMHBs analyzed. The two clusters of 
saquinavir in toluene formed 1 and 2 IMHBs, whereas in water no IMHBs were seen 
(Figure 51A). This suggests that these 2 IMHBs are highly dynamic. Moreover, both 
clusters in toluene provide unique property regions that make the 2 IMHBs extremely 
relevant for chameleonicity. The clusters of CMP 98 in water and toluene revealed that 
2 and 3 IMHBs were favored, respectively. However, the same two IMHBs found in water 
were also present in toluene. This reveals their static nature (formation independent of 
the solvent). Consequently, CMP 98 has only 1 dynamic IMHB, formed in toluene. In 
addition, this single IMHB does not provide a unique property space compared to water 
conformations.  
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Figure 51. SMD Tunneling: conformer selection upon closeness to the center of the density 
plot (Figure 50). Blue perimeter stands for water and orange for toluene. IMHB are depicted by 

dashed ovals. The nIMHBs can be found in Figure S18. A) Saquinavir (purple). B) CMP 98 
(green).  Figure adapted from Sebastiano et al., 2022.106 

E. Agreement and missing points 

Overall, the bi-descriptor property analysis of the three computational strategies (CS, 
MD and SMD) is in agreement with the experimental polarity and chameleonicity (Table 
9). However, the quantification of the nIMHBs of CS and SMD-derived conformations 

(Figure S18) failed to reproduce the experimental evidence ( log Poct-tol).  
 
Moreover, while the analysis of selected CS conformations did not provide a significant 
explanation of the IMHB disagreement, SMD did provide useful insights. Indeed, the 
presence of regions of high conformer density suggested that several molecular 
property spaces were favored in each environment (Figure 50). Notably, in these regions 
saquinavir formed 1-2 dynamic IMHBs while CMP 98 formed only one. Furthermore, the 
dIMHBs in saquinavir provided a new property space in toluene that CMP 98 did not 
(Figure 50 and 51).  
 
 

Table 9. Agreements and missing points of single and bi-descriptor strategies with 
experimental values. 

Generative model (polar 
and nonpolar) 

Molecular property Agreement 

CS  

Polarity YES 

Chameleonicity YES 

dIMHB formation NO 

MD/SMD 

Polarity YES 

Chameleonicity YES 

dIMHB formation YES 

 
 
 
Therefore, we propose that the total number of IMHBs (nIMHBs) should be replaced by 
the number of dynamic IMHBs between unique molecular property spaces. However, 
this only applies to MD-based methods, which provide comparable population densities 
in polar and non-polar environments. Nevertheless, we believe that rough IMHB 
quantifications (CS and SMD) can still be highly informative in structurally related data 
sets that share similar HBD and HBA moieties. Future studies will be performed to 
highlight this fact and to incorporate dIMHB modeling into rational design strategies. 

https://pubs.acs.org/doi/full/10.1021/acs.jmedchem.2c00774#fig6
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F. Paper VII conclusions 

The prediction of molecular properties is a major issue in bRo5 projects. Thus, we aimed 
to understand how in silico methods can be used in property-based designs. More 
specifically, in this work we have provided several milestones regarding the use of 3D 
molecular descriptors and the use of in silico strategies (CS and MD-based methods).  
 
We have set up a steered MD method (SMD) that is more efficient than unbiased MD 
methods for the screening of molecular properties. Moreover, we have proposed how 
CS and SMD methods should be used to capture molecular property differences. In fact, 
the bi-descriptor analysis of these two methodologies agrees with the experimental 
polarity (Δ log kw

IAM) and chameleonicity (Chamelogk), which are crucial for the 
monitoring of cell permeability and water solubility. However, the application of CS and 
SMD to the capacity to form of IMHBs still has some questions to be answered. First, we 
observed for both strategies that the simple quantification of IMHBs seems to be 
uninformative for structurally diverse compounds. However, SMD suggested that the 
quantification and evaluation of only dynamic IMHBs in polar and nonpolar solvents may 
be crucial to assess molecular property differences. Thus, future studies on structurally 
related compounds are compulsory to unravel the complexity of this topic. 
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9.3 Chapter 9 conclusions 

In this chapter, we focused on the development of new in silico strategies to study the 
conformational variability of bRo5 compounds in different environments (polar and non-
polar) and relate them to their experimental molecular properties. For this purpose, CS 
was used as a straightforward method providing a general overview of the 
conformational space. Moreover, an SMD strategy was created to examine groups of 
conformations with common 3D descriptors (i.e., IMHBs). In both cases, the evaluation 
of the resulting conformations by polarity (3D PSA) and size/shape (Rgyr) was revealed as 
a valuable tool to evaluate chameleonicity.  
 
The designed strategies (CS and SMD) were first applied to reproduce the chameleonicity 
of PROTAC-1, obtaining a good reproducibility of experimental evidence (NMR and 
Chamelogk). In addition, the application of both strategies to three structurally different 
compounds (pomalidomide, saquinavir and CMP 98) made it possible to correctly predict 
their polarity and chameleonicity differences (validated with experimental data).  
 
However, the study of intramolecular hydrogen bonding through the count of the 
nIMHBs for CS and SMD-derived conformers did not agree with the experimental 
evidence. On the other hand, the qualitative analysis of selected populations of SMD-
derived conformers allowed to shed light on the role of dynamic IMHBs on 
chameleonicity. However, this application needs to be confirmed on series of structurally 
related compounds. Overall, this chapter shows that the study of 3D conformations with 
in silico tools is feasible but general rules are still missing. 
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10. General conclusions and future perspectives 

New chemical modalities belonging to the bRo5 space, such as PROTACs, macrocycles 
and non-macrocyclic compounds are becoming popular due to their innovative 
mechanisms of action. However, due to their structural characteristics, they suffer from 
DMPK limitations that challenge their future as oral drugs. Specifically, these compounds 
commonly exhibit low permeability and poor solubility, ultimately resulting in low 
bioavailability. Presently, not only is there a lack of innovative strategies to overcome 
these limitations, but there is also a lack of ad hoc experimental and computational 
strategies to assess and predict their general in vitro ADME and physicochemical 
molecular properties in early drug discovery. 
 
Therefore, the core of the thesis represented the efforts to obtain experimental and 
computational molecular property strategies tailored to the bRo5 space. From a drug 
design perspective, the obtention of good quality experimental data is an important step 
not only in the “hit to lead” phase, but also in the construction of in silico strategies to 
model ADME properties. Thus, the physicochemical molecular properties (i.e., polarity, 
lipophilicity, IMHBs) of a collection of more than 100 bRo5 and Ro5 compounds were 
assessed using chromatographic descriptors. This facilitated the understanding of the 
unique traits, strengths, and weaknesses of each bRo5 subclass (PROTACs, macrocycles, 
non-macrocycles). For example, macrocycles and PROTACs can exhibit excessive high 
lipophilicity (BRlogD) and polarity (Δ log kw

IAM), respectively. 
 
Furthermore, in vitro ADME properties such as thermodynamic solubility were 
measured. A notable correlation between solubility and lipophilicity and polarity was 
found, which led to the construction of ML classification models directly from molecular 
descriptors (Paper IV). A novel method to experimentally assess chameleonicity was 
developed (the Chamelogk, Paper V). Indeed, this method represents a HT strategy that 
deserves to be integrated in the pipeline of pharmaceutical companies. 
 
Finally, the gained knowledge on the in vitro ADME and physicochemical molecular 
properties of bRo5 compounds during this thesis (special attention to solubility and 
chameleonicity), provided a golden opportunity to rationalize, for the first time, the oral 
F% of some bRo5 drugs based on chameleonicity, lipophilicity and polarity. As a result, 
the advances made in this thesis have set the basis for a correct property profiling 
strategy.   
 
Relevant experimental data, such as solubility, permeability, chameleonicity, etc., 
became available, enabling their computational modeling. The initial approach was to 
select and apply a set of informative 2D descriptors in the characterization of the 
property space of bRo5 compounds. This knowledge was used to create the first-ever 
PROTAC chemical space, in which several subregions of high permeability or 
bioavailability were localized (Paper II and III). Moreover, the construction of a chemical 
space tailored to macrocycles enabled the development of predictive models for oral 
absorption (Paper I). Overall, these findings suggested that the use of 2D descriptor-
based strategies can be useful to obtain oral bRo5 drugs. However, they need to be 
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complemented with information about their 3D behavior in diverse environments. 
Therefore, this thesis also focused on the development of in silico 3D strategies. 
 
In this context, CS and MD-based strategies were optimized and adapted to the 
evaluation of molecular properties in polar and nonpolar environments. The scope was 
to mimic the behavior of the compound outside (polar) and inside (nonpolar) the cell 
membrane, in order to rationalize and ultimately predict experimentally verified 
molecular properties. The first study involved the validation of CS and SMD to reproduce 
the chameleonic behavior of the first NMR-proven chameleonic PROTAC (Paper VI). 
Moreover, both strategies were also successful in reproducing the experimentally 
verified differences (mainly polarity and chameleonicity) between significantly different 
compounds (Paper VII). Furthermore, the SMD approach showed that dynamic 
intramolecular hydrogen bonds can stabilize certain property spaces in an environment-
dependent manner. This particular behavior, known as IMHB-mediated chameleonicity, 
represents a crucial feature that can be exploited in the design of bRo5 compounds. 
 
Based on these results, our current research focuses on the study of IMHB-mediated 
chameleonicity. In practice, this involves assessing the Chamelogk of a series of 
structurally related compounds and monitoring their capacity to form dIMHBs by CS and 
SMD. Notably, we observed for a particular PROTAC series that chameleonicity is 
inversely correlated with the absence of dIMHBs (Figure S19). These initial findings 
suggest that chameleonicity could be intentionally induced by deliberately designing 
specific dIMHBs. Finally, to understand the role that chameleonicity and dIMHBs play on 
cell permeability, a new SMD protocol that simulates the journey of a compound 
through the cell membrane is being developed. In summary, the future scope is to 
effectively integrate chameleonicity and dIMHBs into property-based strategies. 
 
Overall, this thesis has set the basis (method, interpretation and application) of 
property-based drug discovery strategies tailored to the bRo5 space. 
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11. Methods  

In this section, only specific technical methodological aspects of each article will be 
discussed (marked throughout the text as “see Methods”). Additional information (i.e., 
regarding the obtention of the datasets) can be found in the original publications (see 
Chapter 2). 

A. Paper I  

Analysis of molecular property descriptors 
 
The protonation states of the compounds at pH 7.0 were adjusted using Marvin Sketch 
(ChemAxon, www.chemaxon.com, ver. 22.13.0, 2022),228 and their 2D molecular 
descriptors were calculated using Dragon (version 7.0.10).229 Notably, the HBDs were 
calculated by the software by adding up the hydrogen atoms bonded to each nitrogen 
and oxygen without negative charge in the molecule. In addition, the HBAs were 
calculated as the sum of all nitrogen, oxygen, and fluorine atoms. Moreover, the number 
of rotatable bonds (NRotB) and the number of aromatic rings (NAR) were calculated 
using DataWarrior (version 5.5.0),230 and the logarithms of aqueous solubility (cLogS) 
and the octanol/water partition coefficient (cLogP) were calculated using MOE (version 
2020.09).231 Moreover, the chemical space was plotted as a PCA, an unsupervised ML 
algorithm that reduces the dimensionality of the data set. 
 
Classification of oral and parenteral macrocycles 
 
The samples were divided into true positives (TP) or orals, true negatives (TN) or 
parenterals, false positives (FP), and false negatives (FN). The performance of the 
models was measured with the following parameters: sensitivity, specificity, GMean, 
accuracy, and Cohen’s kappa: 
  

Sensitivity =
 TP 

TP +FN
     

Specificity =
 TN

TN +FP
     

GMean = √Sensitivity · Specificity     

Accuracy =
 TP+TN

TP+FP+TN+FN
    

κ =
 2 · (TP · TN−FP · FN) 

(TP+FP)·(FP+TN)+(TP+FN)·(FN +TN)
   

B. Paper II and III  

The PROTAC-DB was downloaded, and the SMILES codes (untouched ionization states) 
were submitted to DataWarrior and Dragon following the same descriptor calculation 
protocol as described for Paper I. 
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C. Paper IV  

Solubility determination 
 
Thermodynamic solubility was measured in 10 mM PBS (0.15 M KCl) at pH 7, 25 °C. First, 
a 1−2 mg sample of each molecule was added to the same volume (1-2 mL) of the 
mentioned buffer to obtain 1 mg/mL solutions in the vial. The samples were then heated 
up to 25 °C and stirred at 500 rpm for 1 h (minimal time to ensure thermodynamic 
equilibrium of the less soluble compounds). After this period, the solutions or 
suspensions were filtered through the 0.45 μm membrane pore and diluted with buffer, 
10 mM PBS (0.15 M KCl). The amount of dissolved compound in each sample was then 
quantified, in duplicate, by HPLC using ultraviolet (UV) spectrometric detection. Finally, 
the solubility value was obtained by interpolating the absorbance value on several 
concentration equations obtained from calibration curves. These were previously 
performed using 5% DMSO 10 mM PBS solutions of the compounds. For each 
compound, the best column and conditions were selected. More details on the 
quantification process can be found in the original article. 
 
Chromatographic descriptors determination 
 
For all the chromatographic descriptors, the mobile phase consisted of a solution of 
acetonitrile (ACN) and 20 mM ammonium acetate buffer (AAB), pH 7. Moreover, 10 μL 
was set as the volume of injection of compound concentrations ranging from 50 to 100 
μg/mL in ACN/buffer mixtures. 1 mL/min was chosen as the isocratic flow rate and 30 °C 
as the oven temperature. However, each chromatographic system (RP) had its own 
conditions: 
 

- BRlogD 
 
The measurement of BRlogD as an analog of log Poct required the use of the XBridge 
Shield RP18 (130 Å, 5 μm, 5 cm × 4.6 mm) column from Waters (www.waters.com). The 
eluent consisted of a 60% ACN and 40% 20 mM ammonium acetate buffer (v/v).92 Log 
k′60 was calculated (capacity factor k′60 = [tR(60% ACN) - t0]/t0) and then converted to the 
corresponding BRlogD value using the equation BRlogD = 3.31x + 2.79. Moreover, 
acetone, caffeine, ibuprofen, lidocaine, phenol, and a mixture of uracile, acetophenone, 
and toluene were used as gold standards.92 
 

- Log kw
IAM

 

 
This descriptor required the use of an IAM.PC.DD2 (300 Å, 10 μm, 10 cm × 4.6 mm) 
column from REGIS. The organic solvent of the eluent, ACN, was modified at various 
percentages (from 10 to 50%, v/v) and the retention times were measured. Next, the 
capacity factor (log k´) values were calculated as described elsewhere and the equation 
represented by the five was obtained. Lastly the extrapolated value at 0% ACN (100% 
aqueous buffer) or log kw

IAM was obtained. In addition, caffeine, carbamazepine, 
ketoprofen, theobromine, and toluene were checked daily as gold standards.97–99 
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-  log kw
IAM

 

 

This polarity descriptor was calculated using the equation  log kw
IAM= log kw

IAM - clog 
kw

IAM. Clog kw
IAM, defined as the log kw

IAM for neutral compounds with PSA = 0, has been 
correlated to BRlogD by our group with the equation clog kw

IAM = 0.92*BRlogD - 1.03.97
  

 
pKa determination 
 
The ionization profile of pomalidomide, S,R,S-AHPC HCl, and S,S,S-AHPC 2HCl was 
measured by potentiometry. Titrations were performed on 0.15 M KCl sample solutions 
under a nitrogen atmosphere at 25 ± 1 °C. Moreover, standardized 0.5 M KOH and 0.5 
M HCl were used as titration reagents. PROTACs were also assessed but their low 
solubility in solution with or without cosolvents limited the results to building blocks 
only. 
 
Calculated descriptors 
 
The calculated descriptors are collected in Tables S9 and S11. In particular, the predicted 
solubility was calculated with AdmetSAR2 (www.lmmd.ecust.edu.cn/admetsar2/), 
ADMETLab (www.scbdd.com), pkCSM (biosig.unimelb.edu.au/pkcsm), VolSurf+ (VS+, 
www.moldiscovery.com, ver. 1.1.2, 2016) and Marvin Sketch. Calculated log P values 
were obtained with: Swissadme (www.swissadme.ch/index.php), ACD Laboratories 
(www.acdlabs.com), Molinspiration (www.molinspiration.com), ADMETLab 
(www.admet.scbdd.com), AdmetSAR2 (www.lmmd.ecust.edu.cn/admetsar2/), pkCSM 
(biosig.unimelb.edu.au/pkcsm), VolSurf+, MoKa (www.moldiscovery.com, ver. 3.2.2, 
2019) and Marvin Sketch. 
 
Generation of conformers 
 
For the set of 14 PROTACs, the conformations in water were obtained using the same 
procedure of CS and SMD as in Paper VII. 
 
Classification models 
 
The solubility classification models, based on log kw

IAM, BRlogD, and TPSA were 
performed using the Weka software (version 3.8.5).232 The supervised Random Tree and 
Random Forest algorithms were run using a 10-fold cross-validation (90% training set, 
10% test set, repeated 10 times) with default parameters to construct accurate 
prediction models. The input values were low, intermediate and high solubility and the 
three property parameters (log kw

IAM, BRlogD, and TPSA). 

D. Paper V 

Chromatographic descriptors determination 
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BRlogD,  log kw
IAM and  log kw

IAM were measured as described in the previous article. 
Log k’ 80 PLRP-S and Chamelogk, on the other hand, were measured using the PLRP-S 
polymeric reversed-phase column (100 Å, 5 μm, 50 × 4.6 mm) from Agilent 
(www.agilent.com). The assessment of log k’ 80 PLRP-S involved the measurement and 
calculation of the capacity factor of each sample at an eluent composition of 80% ACN 
and 20% 20 mM ammonium acetate at pH 7.0.82 In addition, acetone, caffeine, phenol 
and a mixture of uracile, acetophenone and toluene were used as gold standards. 
Moreover, the measurement of Chamelogk required the measurement of the retention 
time of each compound in the dataset under six different mobile phase conditions (50 
to 100% ACN) using the PLRP-S column.121 

E. Paper VI 

Conformational sampling and calculation of 3D descriptors 
 
The initial 3D geometry of PROTAC-1 was created using Maestro (Schrödinger Release 
2022-3: Maestro, Schrödinger, LLC, New York, NY, USA, 2021) and the structure was 
checked for its chiral centers and bond order. The structure was then subjected to 
conformational sampling using the MacroModel plugin (MacroModel, Schrödinger, LLC, 
New York, NY, 2023), which provided the mixed torsional/low-mode (LMOD) and Monte 
Carlo torsional (MMCM) sampling algorithms. Water and chloroform were selected as 
the two implicit environments. Additional configuration details are reported in Table 
S13. Molecular descriptors were then calculated with VEGA 
(http://www.vegazz.net/):233 Polarity was calculated as the 3D PSA (probe radius 0 Å) 
and the shape and/or size as Rgyr. Lastly, IMHBs were calculated with USCF Chimera 
(https://www.rbvi.ucsf.edu/chimera/). The parameters 0.4 Å bond distance and 20° 
(HBD-HBA angle) were used. In this context, hydrogen atoms bound to nitrogen, oxygen, 
and sulfur were designated as donors, while nitrogen, oxygen, and sulfur atoms 
possessing lone pairs were identified as acceptors.234 

F. Paper VII 

The chromatographic descriptors were measured as described in Papers IV and V. 
 
Log Ptol determination 
 
Log Ptol was determined using a shake flask method as described by Shalaeva and 
coworkers.105 Samples were dissolved in specific volumes of 2% DMSO 20 mM 0.15M 
KCl ammonium acetate buffer, pH 7 to obtain final compound concentrations of ˂ 1 
mg/ml. After the addition of the same volume of toluene, the samples were then 
vortexed for 10 min. After this step, the aqueous and organic phases were separated 
and quantified by HPLC for each sample.  
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Conformational sampling 
 
The initial 3D geometries were generated using the CORINA demo 
(www.mnam.com/online-demos/corina_demo), directly from the SMILES codes. For 
pomalidomide, the S enantiomer was considered. 
 
The refined 3D structures were then submitted to Maestro and MacroModel, as 
described in the previous article. In this case, the CS protocol (mixed LMOD/MCMM) 
with the OPLS_2005 force field was used (the remaining parameters were maintained 
as in Sc01). The calculated descriptors (3D PSA, Rgyr and IMHBs) were obtained in the 
same way as in Paper VI. 
 
Molecular dynamics  
 
The refined 3D structures obtained from Corina (same structure files as CS) were used 
to generate the simulation files with CHARMM-GUI (www.charmm-gui.org/).235  Toluene 
and water were selected as the nonpolar and polar environments, and two different 
protocols were required. 
 
First, the CHARMM36 (force field) parameters for water were generated using the 
“ligand reader and modeler” functionality of CHARMM-GUI. Moreover, the periodic 
water boundaries, (50-70 Å), solvation box, and MD input files for an NPT ensemble at 
300 K were generated using the “solution builder” function. 
 
On the other hand, the 3D structure of toluene was generated with VMD 
(http://www.ks.uiuc.edu/Research/vmd/)236 and parametrized with CHARMM-GUI for 
the force field and required parameters. The structure files were combined with the 
molecule files to build a solvent box (50-70 Å), with toluene as the solvent, using the 
“multicomponent assembler” function. Toluene was defined at a density of 870 g/L at 
RT. Moreover, the conditions were set as in water, 300 K and NPT. 
 
Afterwards, the systems were equilibrated for 250 ps with NAMD2 
(www.ks.uiuc.edu/Research/namd/, 2.13 CUDA-accelerated version)237 and 
subsequently subjected to a 10 or 100 ns run on a Linux workstation (OS, CentOS7, 32GB 
DDR2; CPU, Xeon Octa-core 3.50 GHz, Titan XP GPU). The resulting trajectories for water 
and toluene simulations were analyzed with VMD. 
 
Steered molecular dynamics 
 
The implementation of a “steered” simulation required the addition of several 
parameters to the instructions of the MD production step: “SMD = on, SMDk = 7.0 
kcal/mol/Å, SMDvel = 2e–05 Å/ts, SMDdir = 0.0, 1.0, 0.0”. This sets the force constant, 
direction and velocity instructions, respectively. Also, the occupancy factor of the input 
PDB was modified to fix the position of the solvent and to allow the free movement of 
the atoms in the molecule of interest. Moreover, the SMD was run for 10 ns. 

http://www.charmm-gui.org/
http://www.ks.uiuc.edu/Research/vmd/
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G. General statistical and graphical analysis 

Analyses were performed using Microsoft Excel (www.microsoft.com, version 2010), 
Matlab (https://www.mathworks.com/products/matlab.html, 2019a), alvaDesc 
(https://www.alvascience.com/alvadesc/, version 2.0.0), GraphPad Prism 
(www.graphpad.com, version 8.0.0, 2019), and R Studio (https://www.r-project.org/, 
version 2022.02.3). 
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13. Supplementary material 

 

Figure S1. Number of macrocyclic drugs plotted by their year of approval by the FDA (n = 67, 
data retrieved on September 1, 2022). A) Orally absorbed drugs are indicated in blue (n = 26; 

39%), while those administered parenterally are in gold (n = 41; 61%). B) Natural products and 
derivatives thereof are presented in light green (n = 59, 88%); de novo designed macrocyclic 
drugs are in dark gray (n = 8, 12%). Contrast agents, macrocycle-conjugated antibodies, PEG-

linked macrocycles, and cyclodextrins have been excluded. Figure adapted from Garcia 
Jimenez et al., 2023.22 
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Figure S2. Molecular property descriptors calculated at pH 7 for the macrocyclic drugs data set 
(n=62), split into two subsets by the route of administration. Those administered orally (n=24) 

are in blue, while parenterally administered are in gold. Statistical analysis was performed 
using Wilcoxon’s non-parametric test: p-values: 0-0.0001 (****), 0.0001-0.001 (***), 0.001-

0.01 (**), 0.01-0.05 (*), 0.05-1 (ns). Molecular property abbreviations are provided in the main 

text: Kier’s flexibility index is abbreviated as PHI or () Box plots show the 50th percentiles as 
horizontal bars, the 25th and 75th percentiles as boxes, the 25th percentile minus 1.5 x the 

interquartile range and the 75th percentile plus 1.5 x the interquartile range as whiskers. Black 
dots represent values higher than 1.5 x the interquartile range and less than 3 x the 

interquartile range at either end of the box. Figure adapted from Garcia Jimenez et al., 2023.22 
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Figure S3. A) PCA of the chemical space of the clinical trials data set (n = 27). The PCA was 
based on the descriptors of Lipinski’s and Veber’s rules as well as cLogS calculated at pH 7.0. 

Five parenterals with MW > 1500 Da were excluded from the PCA to provide a better 
dissection of the chemical space of the orally bioavailable macrocycles. The ellipses in blue and 

yellow shading show the 95% confidence intervals for orally and parenterally administered 
macrocycles, respectively. The centroid of each class is indicated with a large circle in the color 
of the respective class. The contributions of individual descriptors to the PCA are indicated by 

the length of the arrows. The structure of the oral outlier odalasvir (9) is provided. The 
structure of milvexian (8), which is close to the centroid of the oral class, is given for 

comparison. Avasopasem manganese and motexafin gadolinium were removed due to 
calculation errors with metals. B) Radar plot comparing the median values for the descriptors 
employed in Lipinski’s Ro5 and Veber’s rule for the oral FDA-approved (light blue, n = 24) and 

clinical trial macrocyclic subsets (dark blue, n = 11). Note that HBD, HBA, and TPSA were 
calculated differently than in the original rules (cf. Methods). Figure adapted from Garcia 

Jimenez et al., 2023.22 
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Figure S4. PCA comparing the chemical space of the macrocycles retrieved from ChEMBL (n = 
28052, in gray) to A) the macrocyclic drugs approved by the FDA (n = 62, in red) and the 

macrocycles undergoing clinical trials (n = 32, in green) and to B) the combined oral (n = 35, in 
blue) and parenteral (n = 59, in yellow) parts of the drugs and clinical candidates data sets. The 

centroid of each class is indicated with a large circle in the color of the respective class. The 
PCA was based on the descriptors of Lipinski’s and Veber’s rules as well as cLogS, calculated at 
pH 7.0. The contributions of individual descriptors to the PCAs are indicated by the length of 
the arrows. Macrocycles with MW < 1500 Da are removed from the PCA for clarity. (C and E) 

Distribution of molecular weight (MW) and calculated lipophilicity (cLogP) for the macrocycles 
in the ChEMBL (n = 28052, in gray), drug (n = 62, in red), and clinical candidates (n = 32, in 

green) data sets. (D and F) Distribution of molecular weight (MW) and calculated lipophilicity 
(cLogP) for the macrocycles in the ChEMBL data set (n = 28052, in gray) and in the combined 

oral (n = 35, in blue) and parenteral (n = 59, in yellow) parts of the drugs and clinical candidate 
data sets. The median value for the descriptor is given in each panel and indicated by a dashed 

line. Figure adapted from Garcia Jimenez et al., 2023.22 

 

Table S1. Quality of single property models for the differentiation of oral and parenteral 
macrocyclic drugs in the training set and the external test set. Abbreviations: True Positive 
(TP), True negative (TN), False Positive (FP), False negative (FN), Sens. (Sensitivity), Spec. 

(Specificity), Acc. (Accuracy), Kappa (Cohen's kappa) and Geometric Mean (GMean). Positive 
(P) stands for “Oral” class and negative (N) stands for parenteral class.  The test set was 

obtained from two publications in 2014. Table adapted from Garcia Jimenez et al., 2023.22 

Data sets 
Molecular 

property 
Cut-off 

Confusion matrix 

Sens. Spec. Acc. Kappa GMean 
TP TN FP FN 

Training set 

(n=62) 

MW < 982 20 24 14 4 0.83 0.63 0.71 0.43 0.73 

cLogP > 2.22 21 23 15 3 0.88 0.61 0.71 0.44 0.73 

TPSA < 292 22 25 13 2 0.92 0.66 0.76 0.53 0.78 

HBA ≤ 23 23 16 22 1 0.96 0.42 0.63 0.33 0.64 

HBD ≤7 21 27 11 3 0.88 0.71 0.77 0.55 0.79 

NRotB ≤ 11 19 23 15 5 0.79 0.61 0.68 0.37 0.69 

nC ≤ 51 21 20 18 3 0.88 0.53 0.66 0.36 0.68 

PHI < 19.15 18 26 12 6 0.75 0.68 0.71 0.42 0.72 

cLogS > -8.95 22 17 21 2 0.92 0.45 0.63 0.32 0.64 

Test set 

(n=60) 

MW < 982 15 22 20 3 0.83 0.52 0.62 0.28 0.66 

cLogP > 2.22 17 24 18 1 0.94 0.57 0.68 0.41 0.73 

TPSA < 292 17 25 17 1 0.94 0.6 0.7 0.43 0.75 

HBA ≤ 23 17 16 26 1 0.94 0.38 0.55 0.23 0.6 

HBD ≤7 18 27 15 0 1 0.64 0.75 0.52 0.8 

NRotB ≤ 11 12 30 12 6 0.67 0.71 0.7 0.35 0.69 

nC ≤ 51 15 21 21 3 0.83 0.5 0.6 0.26 0.65 

PHI < 19.15 13 29 13 5 0.72 0.69 0.7 0.37 0.71 

cLogS > -8.95 14 18 24 4 0.78 0.43 0.53 0.16 0.58 
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Figure S5. Discrimination of orally bioavailable and parenterally administered A) macrocyclic 
drugs and B) an external test set of macrocycles not yet approved as drugs in bi-descriptor 

chemical space. Oral drugs are indicated by blue circles, while parenterals are in yellow. The 
filled circles have been jittered slightly to avoid overlap. The blue shading marks chemical 
space defined by HBD ≤ 7 and one of MW < 982 Da, cLogP > 2.22, or TPSA < 292 Å2. Some 

parenteral macrocycles are not included in the Figures which have been truncated at HBD < 20, 
MW < 1500 Da, −5 < cLogP < 10, and TPSA < 600 Å2. Figure adapted from Garcia Jimenez et al., 

2023.22 
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Table S2. Quality of bi-property models for prediction of oral and parenteral administration of 
the macrocyclic drugs in the training set (n=62) and the test set (n=60). Cut-off values were 

selected based on the addition of two descriptors conditions (1st and 2nd cut-off). Table 
adapted from Garcia Jimenez et al., 2023.22 

 

Data sets 
1st 

cut-off 

2nd 

cut-off 

Confusion matrix 

Sens. Spec. Acc. Kappa GMean 

TP TN FP FN 

Training set 

(n=62) 

MW 

(< 982) 

TPSA 20 28 10 4 0.83 0.74 0.77 0.55 0.78 

cLogP 19 30 8 5 0.79 0.79 0.79 0.57 0.79 

HBD 20 30 8 4 0.83 0.79 0.81 0.6 0.81 

cLogP 

(> 2.22) 

MW 19 30 8 5 0.79 0.79 0.79 0.57 0.79 

TPSA 21 29 9 3 0.88 0.76 0.81 0.61 0.82 

HBD 21 30 8 3 0.88 0.79 0.82 0.64 0.83 

HBD 

(≤ 7) 

MW 20 30 8 4 0.83 0.79 0.81 0.6 0.81 

cLogP 21 30 8 3 0.88 0.79 0.82 0.64 0.83 

TPSA 22 28 10 2 0.92 0.74 0.81 0.62 0.82 

TPSA 

(< 292) 

MW 20 28 10 4 0.83 0.74 0.77 0.55 0.78 

cLogP 21 29 9 3 0.88 0.76 0.81 0.61 0.82 

HBD 22 28 10 2 0.92 0.74 0.81 0.62 0.82 

Test set 

(n=60) 

MW 

(< 982) 

TPSA 15 27 15 3 0.83 0.64 0.7 0.4 0.73 

cLogP 14 29 13 4 0.78 0.69 0.72 0.41 0.73 

HBD 15 30 12 3 0.83 0.71 0.75 0.48 0.77 

cLogP 

(> 2.22) 

MW 14 29 13 4 0.78 0.69 0.72 0.41 0.73 

TPSA 16 27 15 2 0.89 0.64 0.72 0.44 0.76 

HBD 17 28 14 1 0.94 0.67 0.75 0.51 0.79 

HBD 

(≤ 7) 

MW 15 30 12 3 0.83 0.71 0.75 0.48 0.77 

cLogP 17 28 14 1 0.94 0.67 0.75 0.51 0.79 

TPSA 17 28 14 1 0.94 0.67 0.75 0.51 0.79 

TPSA 

(< 292) 

MW 15 27 15 3 0.83 0.64 0.7 0.4 0.73 

cLogP 16 27 15 2 0.89 0.64 0.72 0.44 0.76 

HBD 17 28 14 1 0.94 0.67 0.75 0.51 0.79 

 

 

Abbreviations: True Positive (TP), True negative (TN), False Positive (FP), False negative (FN), 
Sens. (Sensitivity), Spec. (Specificity), Acc. (Accuracy), Kappa (Cohen's kappa) and Geometric 

Mean (GMean). Positive (P) stands for “Oral” class and negative (N) stands for parenteral class. 
The test set was obtained from two publications in 2014. 
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Table S3. Bi-descriptor models for prediction of oral bioavailability applied to the macrocycles 
in the clinical trial set (n=32). Predictions were made using HBD < 7 as the first cut-off for all 
three models, in combination with one of TPSA < 292 Å2, cLogP > 2.22 or MW < 982 Da. The 

best model is highlighted in bold. Figure adapted from Garcia Jimenez et al., 2023.22 

Model descriptor  HBD and TPSA  HBD and cLogPb   HBD and MW 

Accuracy 0.6 0.75 0.63 

Sensitivity 1 0.91 0.82 

Specificity 0.43 0.67 0.52 

Kappa 0.34 0.51 0.29 

 
 
 
 

 
 

 
 

Figure S6. Databases overlap (PROTAC-DB in grey, PROTACpedia in yellow). Figure adapted 
from Ermondi et al., 2021.180 

 
 
 
 
 
 

 
 



 

137 
 

Table S4. 2D descriptors for the PROTACs and their building blocks. Table adapted from 
Ermondi et al., 2021.180 

 
 

Name E3 Ligand Warhead Linker PROTACs 

MW 462 479 215 984 

nC 24 24 11 50 

NAR 2 3 0 5 

PHI 8 7 9 18 

HBD 3 3 1 4 

HBA 8 8 4 18 

TPSA 113 109 55 242 

 
 
 
 
 
 

 
 

Figure S7. 2D Correlation matrices. A) E3 ligands, B) warhead, C) linkers and D) PROTACs. 
Figure adapted from Ermondi et al., 2021.180 HBA and HBD were named as nHAcc and nHDon in 

the original publication, respectively. Figure adapted from Ermondi et al., 2021.180 
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Figure S8. Box plot of the 7 descriptors for PROTACs and their building blocks. A) MW, B) nC, C) 
NAR D) TPSA E) HBA F) HBD and G) PHI. HBA and HBD were named as nHAcc and nHDon in the 

original publication, respectively. Figure adapted from Ermondi et al., 2021.180 
 
 



 

139 
 

 
 
 

Figure S9. Investigated PROTAC chemical structures. Figure adapted from Ermondi et al., 2020 
and 2021.112,180 

 
 
 
 
 
 
 
 
 
 

E3: VHL-derivative
VH032-

cyclopropane-F

POI: SMARCA2/4
SMARCA-BD ligand 1

ACBI1

POI: BRD4
(+)-JQ1 E3: VHL

(S,R,S)-AHPC

MZ1

POI: PTK2

E3: CRBN
Pomalidomide

BI-3663
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Table S5. PROTACs reported in the permeability subregions of the PROTAC chemical space. 
Permeability values and their assessment methods. Caco-2: (AB: apical-basal, BA: basal-apical). 

Table adapted from Garcia Jimenez et al., 2021.20 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Name 
Permeability (10-6 

cm/s) 
Permeability 
experiment 

Permeability 
classification 

Source 

ACBI1 2 Caco-2 High opnMe112 

BI-0319 0.2 Caco-2 Low opnMe112 

BI-3663 15.85 Caco-2 High opnMe112 

BI-4206 0.4 Caco-2 Low opnMe112 

PROTAC-1 1.41 PAMPA High Kihlberg70 

PROTAC-14 1.7 (AB), 14.1 (BA) Caco-2 High Skidmore192 

MZ4 0.60 PAMPA Low Lokey225 

MZ1 0.03 PAMPA Low Lokey225 

MZ3 0.01 PAMPA Low Lokey225 

MZP-61 0.30 PAMPA Low Lokey225 

MZP-55 0.16 PAMPA Low Lokey225 

CM09 0.01 PAMPA Low Lokey225 

CM 11 0.01 PAMPA Low Lokey225 

CMP 98 0.00 PAMPA Low Lokey225 

AT3 0.01 PAMPA Low Lokey225 

AT6 0.00 PAMPA Low Lokey225 

AT2 0.00 PAMPA Low Lokey225 
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Figure S10. Structures of A) bioavailable and B) permeable PROTACs. Figure adapted from 
Garcia Jimenez et al., 2021.20 
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Table S6. List of the studied PROTACs and their predicted constitutive building blocks 
(information obtained directly from the PROTAC-DB: http://cadd.zju.edu.cn/protacdb/). 

Building blocks are presented as the fundamental ideal constituents of the PROTAC, regardless 
of the real building blocks structures used for the synthetic approach. Table adapted from 

Garcia Jimenez et al., 2022.63 

 

 
 
 
 
 

PROTACs DB-ID Warhead Linker E3 ligand 

ACBI1 798 Undefined 1-ethoxy-4-methylbenzene 
VH101: (S,R,S) 

VH032-cyclopropane-
F 

ARV-825 329 
Birabresib 
(OTX-015) 

1-ethoxy-2-(2-ethoxyethoxy)ethane pomalidomide 

BI-0319 1656 BI-4464 1-(2-ethoxyethoxy)-2-methoxyethane VH032: (S,R,S)-AHPC 

BI-3663 1655 BI-4464 
3-[2-(2-

ethoxyethoxy)ethoxy]propanal 
Pomalidomide 

BI-4206  BI-4464 1-(2-ethoxyethoxy)-2-methoxyethane 
VH032, negative 

control: (S,S,S)-AHPC 

BRD9 degrader-1 1187 GSK-39 
N-(4-acetamidobutyl)-2-

hydroxyacetamide 
Thalidomide 

BSJ-03-123 240 Palbociclib 

 
N-[2-[2-(2-ethoxyethoxy)ethoxy]ethy

l]-2-hydroxyacetamide 
 

Thalidomide 

CisACBI1  Undefined 1-ethoxy-4-methylbenzene 

VH101, negative 
control :(S,S,S) 

VH032-cyclopropane-
F 

CisMZ1  JQ1 
2-[2-(2-

methoxyethoxy)ethoxy]ethanamine 
VH032, negative 

control: (S,S,S)-AHPC 

CM 11 998 
VH032: (S,R,S)-

AHPC 

 
1-methoxy-2-[2-[2-[2-(2-methoxyetho

xy)ethoxy]ethoxy]ethoxy]ethane 
 

VH032: (S,R,S)-AHPC 

CMP 98  

VH032, 
negative 

control: (S,S,S)-
AHPC 

1-methoxy-2-[2-[2-[2-(2-methoxyetho
xy)ethoxy]ethoxy]ethoxy]ethane 

 

VH032, negative 
control: (S,S,S)-AHPC 

CRBN-6-5-5-VHL 176 Pomalidomide 1-(5-butoxypentoxy)hexane VH032: (S,R,S)-AHPC 

dBET57 342 JQ1 Ethanamine Pomalidomide 

Gefitinib-based 
PROTAC 3 

276 Gefitinib 1-(2-ethoxyethoxy)pentane VH032: (S,R,S)-AHPC 

Mcl1 degrader-1 500 Undefined hexan-1-amine Pomalidomide 

MD-224 50 MI-1242 pent-1-yne Lenalidomide 

MZ1 335 JQ1 
2-[2-(2-

methoxyethoxy)ethoxy]ethanamine 
VH032: (S,R,S)-AHPC 

MZP-54 1652 I-BET726 
2-[2-(2-

methoxyethoxy)ethoxy]ethanamine 
VH032: (S,R,S)-AHPC 

THAL-SNS-032 799 SNS-032 
N‐{2‐[2‐(2‐

ethoxyethoxy)ethoxy]ethyl}acetamide 
Pomalidomide 

VZ185 22 BI-7273 Pentane VH101 

ZXH-3-26 350 JQ1 Pentan‐1‐amine Pomalidomide 
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Table S7. Ionization states for the PROTAC data set calculated at pH 7. Table adapted from 
Garcia Jimenez et al., 2022.63 

 

PROTACs Predicted Marvin pKa (1-14) 
Predicted ionization 

state at pH 7 

ACBI1 2.61 (b), 5.39 (b), 7.27 (b), 8.48 (a), 11.05 (a) 32% (N), 62% (+) 

ARV-825 4.16 (b), 11.59 (a) N 

BI-0319 2.68 (b), 11.46(a) N 

BI-3663 11.23 (a), 11.84 (a) N 

BI-4206 2.68 (b), 11.46(a) N 

BRD9 degrader-1 7.86 (b), 11.81 (a) 12% (N), 88% (+) 

BSJ-03-123 3.19 (b), 7.38 (b), 11.15 (a), 11.79 (a) 29% (N), 70% (+) 

CisACBI1 2.61 (b), 5.39 (b), 7.27 (b), 8.48 (a), 11.05 (a) 32% (N), 62% (+) 

CisMZ1 2.6 (b), 4.32 (b) N 

CM 11 2.35 (b),2.95 (b) N 

CMP 98 2.35 (b),2.95 (b) N 

CRBN-6-5-5-VHL 2.06 (b), 2.79 (b), 11.61 (a) N 

dBET57 4.21(b), 11.61 (a) N 

Gefitinib-based 
PROTAC 3 

2.65 (b), 4.66 (b) N 

Mcl1 degrader-1 2.17(b), 11.61(a) N 

MD-224 9.02 (b), 11.56 (a) 99% (+) 

MZ1 2.6 (b), 4.32 (b) N 

MZP-54 3.44 (b), 3.57 (b) N 

THAL-SNS-032 7.11 (b), 8.02 (a), 11.61 (a) 36% (N), 54% (+) 

VZ185 2.60 (b), 3.71 (b), 7.99 (b), 11.05 (a) 9% (N), 88% (+) 

ZXH-3-26 2.27(b), 3.96(b), 11.61 (a) N 
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Table S8. Experimental solubility values for the PROTAC data set. Table adapted from Garcia 
Jimenez et al., 2022.63 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Molecule 
Solubility 
(mg/mL) 

Solubility 
log S (mol/l) 

ACBI1 
< 6.80 
x10-4 

<- 6.14 

ARV-825 
< 2.90 
x10-4 

< - 6.5 

BI-0319 2.78 x10-3 -5.58 

BI-3663 0.01 -5.16 

BI-4206 6.06 x10-4 -6.24 

BRD9 degrader-1 0.60 -3.18 

BSJ-03-123 0.02 -4.75 

CisACBI1 
< 8.17 
x10-4 

< -6.06 

CisMZ1 0.05 -4.30 

CM 11 0.73 -3.20 

CMP 98 0.39 -3.48 

CRBN-6-5-5-VHL 1.19 x10-3 -5.91 

dBET57 0.02 -4.52 

Gefitinib-based 
PROTAC 3 

1.14 x10-3 -5.91 

Mcl1 degrader-1 
< 7.93 
x10-4 

< -6.06 

MD-224 
< 2.89 
x10-4 

< -6.64 

MZ1 0.04 -4.42 

MZP-54 5.28 x10-4 -6.29 

THAL-SNS-032 0.05 -4.28 

VZ185 0.05 -4.30 

ZXH-3-26 0.00 -5.53 
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Table S9. 2D in silico log P descriptors. Table adapted from Garcia Jimenez et al., 2022.63 

 
 
 

Table S10. Linear correlation of computed log P with experimental solubility. Table adapted 
from Garcia Jimenez et al., 2022.63 

 

 

 

 
 
 
 
 

Tool name log P method Tool name log P method 
Structure 

imput 

Marvin 
Chemaxon method: 
Atom-based (AlogP) 

SwissADME 

iLOGP: Physics-based method. 
XLOGP: Atom-based. 
WLOGP: Atom-based. 

MLOGP: Chemical descriptor based. 
SILICOS-IT: Hybrid method (Atom 

based- chemical descriptor based). 

 
2D 

pkCSM 
Distance-based graph 
structural signatures 

MoKa Unknown 

Scbdd 
Chemical descriptor-

based 
ACD Labs 

Fragment group-based: 
- Classic: Principal of isolating 

carbons. 
- GALAS: Similarity-based. 

- Consensus: Mixed approach. 

AdmetSAR2 AlogP Molinspiration Fragment group-based 

Volsurf pH 
7.5 

3D molecular field-based 3D 

In silico 
predictors 

 
log P (scbdd) 

 

logD pH 7.4 
(scbdd) 

LogP (ACD) 
Log D (pH=7.4) 

(ACD) 
ALOGP 

(ADMETSAR2) 
LOG P n-Oct 

VolSurf+ 

R square 0.01 0.01 0.69 0.63 0.51 0.59 

Equation 
Y = -0.09X - 

4.56 
Y = -0.09X - 

4.56 
Y = -0.49X - 

3.57 
Y = -0.43X - 

3.47 
Y = -0.43X - 

2.74 
Y = -0.38X - 

3.33 

In silico 
predictors 

log P 
(Marvin) 

miLogP (molinspiration) LogD7.4 MoKa 
logP 

MoKa 
LogD7.5 
VolSurf+ 

LOG P n-Oct 
VolSurf+ 

R square 0.69 0.63 0.61 0.61 0.53 0.59 

Equation 
Y = -0.55X - 

3.83 
Y = -0.48X - 3.25 Y = -0.33X - 3.69 

Y = -0.40X 
- 3.31 

Y = -0.29X - 
3.82 

Y = -0.38X - 
3.33 

SWISSADME 
in silico predictors 

Log Po/w 
(iLOGP) 

(Swissadme) 

Log Po/w 
(XLOGP3) 

(Swissadme) 

Log Po/w 
(WLOGP) 

(Swissadme) 

Log Po/w 
(MLOGP) 

(Swissadme) 

Log Po/w 
(SILICOS-IT) 
(Swissadme) 

R square 0.01 0.43 0.45 0.28 0.04 

Equation Y = -0.07X - 4.39 Y = -0.40X - 3.11 Y = -0.34X - 3.47 Y = -0.34X - 4.89 Y = -0.10X - 4.04 
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Table S11. 2D in silico log S descriptors. Table adapted from Garcia Jimenez et al., 2022.63 

Method Principle Source 
Structure 

imput 

● Marvin pH 
dependent 

Atom-based contribution with 2 correction factors: 
hydrophobic carbon count and square of molecular 

weight238. 

https://chemaxon.com/pr
oducts/marvin 

 
2D 

● Marvin 
intrinsic 

● pkCSM Distance-graph based structural signatures239 
http://biosig.unimelb.edu

.au/pkcsm/prediction 

● Scbdd Model based on a similarity engine240 http://www.scbdd.com/ 

● AdmetSAR2 Solvent accessible surface-based241 
http://lmmd.ecust.edu.cn

/admetsar2/ 

● VolSurf pH 
7.5 3D molecular field-based242 

https://www.moldiscover
y.com/software/vsplus/ 

3D 

 
 
 
 
 

 
 
 

Figure S11. Calculated versus experimental solubility for 16 PROTACs. (b) Linear regression of 
solubility predictors with solubility. Figure adapted from Garcia Jimenez et al., 2022.63 
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Figure S12. PROTAC solubility distribution colored by the GSK classification: low (< 30 µM), 
intermediate (30-200 µM) or highly soluble molecules (> 200 µM). PROTACs without ND 

solubility (Red values from Table 3) were included in the low solubility class. Figure adapted 
from Garcia Jimenez et al., 2022.63 

 

 
 

 

Figure S13. ML solubility classification models. A) Random Tree B) Random Forest. Figure 
adapted from Garcia Jimenez et al., 2022.63 
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Table S12. Experimental descriptors and calculated TPSA for the explored building blocks. ND: 
not determined. Table adapted from Garcia Jimenez et al., 2022.63 

 

 
 

 
 

 

Figure S14. Log k’ variation of Ro5 (pomalidomide) and bRo5 (CsA) compounds in the PLRP-S 
system. The solid trend lines represent the equations obtained from experimental values at 50, 
60 and 70% of MeCN. The dashed lines represent the extrapolation of the equation for higher 

MeCN percentages. White-colored symbols reflect the deviation from the equation. Figure 
adapted from Garcia Jimenez et al., 2023.121 

 
 

Molecule BRlogD Log kw
IAM TPSA 

∆ log 
kw

IAM 
Experimental 

pKa (2-12) 
Ionization state 

at pH 7 

I-BET726 0.30 1.88 69.64 2.64 ND ND 

JQ1 (carboxylic acid) 0.08 0.80 108.61 1.76 ND ND 

PROTAC BET-binding 
moiety 2 

-0.03 0.53 134.91 1.59 ND ND 

BI-4464 1.79 1.84 105.68 1.23 ND ND 

Pomalidomide 1.41 0.91 111.26 0.64 Not ionizable Neutral 

S,R,S-AHPC HCl 0.56 1.83 136.79 2.34 3.02 (b), 7.59 (b) + 

S,S,S-AHPC 2HCl 0.91 1.86 136.79 2.05 2.79 (b), 7.48 (b) + 
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Figure S15. Chameleonicity equivalence between Chamelogk and Δ 3D-PSA. The dashed line 
represents the linear regression. Figure adapted from Garcia Jimenez et al., 2023.121 

 

 
 

Figure S16. Chamelogk plot of PROTAC-1 and toluene (reference Ro5 compound). Figure 
adapted from Ermondi et al., 2023.210 
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Table S13. Detailed description of the protocols used for CS and post CS minimization. In order 
to maximize comparability of the results with NAMFIS, the same software was used 

(Schrodinger). In addition, since NAMFIS was based on Monte Carlo simulations, a MC-based 
algorithm derivative was tested: the mixed torsional/low-mode sampling (MCMM/LMOD) 
(Sc01-Sc03). This methodology combines Monte Carlo methods (MCMM), which generate 
conformations by randomly adjusting rotatable bonds, and combinations of low-frequency 
vibrational modes (LMOD).145 Moreover, the pure Monte Carlo torsional sampling (MCMM) 
was also tested (Sc04-Sc06). Furthermore, the force field OPLS3e243 was selected to simplify 
the CS search. Finally, the number of steps was tested from 103 to 105. Table adapted from 

Ermondi et al., 2023.210 

 

CS protocols 

Software 
Protocol 

label 
Algorithm 

Max. Number 
steps 

Force field; Solvation 

Schrodinger 

Sc01 
Mixed 

MCMM/LMOD 

 103 

OPLS3e; GB/SA  

Sc02  104 

Sc03  105 

Sc04 

MCMM 

103 

Sc05  104 

Sc06  105 

 
 
 

 
 
 

Figure S17. Pomalidomide (yellow), CMP 98 (green), and saquinavir (violet) behavior in the 
PLRP-S system. The gray dashed line at 95% CH3CN highlights the slope change Figure adapted 

from Sebastiano et al., 2022.106 
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Table S14. Statistical 3D PSA values for the generated conformers with the three methods. p: 
polar, *np: nonpolar. Table adapted from Sebastiano et al., 2022.106 

 

 
 
 
 
 
 

Table S15. Statistical Rgyr values for the generated conformers with the three methods. p: 
polar, *np: nonpolar. Table adapted from Sebastiano et al., 2022.106 

 

 
 
 
 
 
 
 

Difference

Method Compound Max Min Average Median Max Min Average Median
Δ Max p - 

Min np*

Pomalidomide 114.2 112.8 113.7 113.8 113.5 112.7 113.2 113.4 1.5

Saquinavir 169.8 150.6 161.1 160.9 158.2 145.1 153.3 154.2 24.7

CMP 98 327.7 303.8 316.3 317.4 302.5 287.3 294.8 294.8 40.4

Pomalidomide 118.0 107.3 113.1 113.1 118.5 106.7 112.4 112.4 11.3

Saquinavir 172.9 145.3 163.1 163.7 170.5 142.6 157.0 157.0 30.3

CMP 98 337.5 299.6 321.5 321.7 325.8 284.0 305.3 305.2 53.4

Pomalidomide 117.6 107.4 113.1 113.2 118.1 106.8 112.4 112.4 10.8

Saquinavir 173.3 142.6 160.5 161.0 165.2 137.3 151.9 151.9 36.0

CMP 98 338.3 293.5 317.2 317.2 329.8 280.7 304.7 304.9 57.7

Polar solvent Non-polar solvent

CS

MD

SMD

Difference

Method Compound Max Min Average Median Max Min Average Median
Δ Max p - 

Min np*

Pomalidomide 3.3 3.2 3.2 3.3 3.2 3.2 3.2 3.2 0.2

Saquinavir 5.8 4.3 4.9 5.0 5.8 4.6 5.1 5.1 1.2

CMP 98 6.5 5.5 5.8 5.8 7.0 5.7 5.9 5.8 0.8

Pomalidomide 3.4 3.1 3.3 3.3 3.4 3.2 3.3 3.3 0.3

Saquinavir 6.3 4.8 5.6 5.5 6.0 4.8 5.3 5.3 1.5

CMP 98 13.3 6.0 8.8 8.3 13.2 5.7 8.0 7.9 7.7

Pomalidomide 3.4 3.2 3.3 3.3 3.4 3.2 3.3 3.3 0.3

Saquinavir 6.3 4.8 5.6 5.6 6.2 4.3 5.1 5.1 1.9

CMP 98 13.3 5.7 7.3 6.7 13.3 5.8 8.0 7.6 7.6

Polar solvent Non-polar solvent

CS

MD

SMD



 

152 
 

 
 
 
 

Figure S18. IMHB quantification of the generated conformers by CS in water/chloroform (CSw/ 
CSc), molecular dynamics in water/toluene (MDw/ MDt) and SMD tunneling in water/toluene 

(SMDw/ SMDt). Δ Mean is the difference of the average of IMHBs in nonpolar solvent and 
water. Median values are presented as black dashed lines. Figure adapted from Sebastiano et 

al., 2022.106 
 

 

Figure S19. Relationship between chameleonicity and the predicted absence of IMHBs in 
chloroform (nonpolar solvent) using CS, for structurally related compounds. Unpublished 

content. 
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