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Abstract. This work proposes FedSurvBoost, a federated learning pipeline
for survival analysis based on the AdaBoost.F algorithm, which itera-
tively aggregates the best local weak hypotheses. Our method extends
AdaBoost.F by removing the dependence on the number of classes co-
efficient from the computation of the weights of the best model. This
makes it suitable for regression tasks, such as survival analysis. We show
the effectiveness of our approach by comparing it with state-of-the-art
methods, specifically developed for survival analysis problems, on two
common survival datasets. Our code is available at https://github.
com/oussamaHarrak/FedSurvBoost.

Keywords: Federated Learning · Survival Analysis · Federated Survival
Analysis · AdaBoost.

Survival Analysis (SA) is a multidisciplinary field encompassing statisti-
cal, mathematical, and machine-learning methodologies to analyze time-to-event
data. Its primary focus is understanding the time until specific events occur, such
as diseases, mechanical system failures, customer churn, or any other event of
interest. SA has widespread application in many domains, including engineer-
ing, social sciences, and medicine. In healthcare, the event of major interest is
death, but SA can deal with any other event affecting the patients, such as dis-
ease occurrence or recovery. However, due to the probably extended duration of
observational studies, it is extremely common for patients to discontinue their
participation in the study before the event of interest takes place. In such situa-
tions, this leads to the censoring phenomenon, i.e., the information information
about the exact value of the event is incomplete.
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SA builds on Machine Learning (ML) techniques to predict a survival func-
tion S(t) representing the probability that an individual survives past a given
point of time t. However, survival data often contains sensitive information, such
as patients’ clinical records and incomplete observations, known as censored
data. Simultaneously, with increasing privacy constraints such as the European
GDPR, there is a growing need for techniques to address these concerns and
process inherently distributed data.

To address these privacy constraints, Federated Learning (FL) [1] has recently
emerged as a prominent technique for preserving privacy while leveraging collab-
orative efforts among different parties (also referred to as clients). FL operates
by exchanging locally trained models from clients rather than sharing the raw
data. This collaborative approach facilitates the creation of a global model that
typically outperforms the individual local models due to its enhanced generaliza-
tion capabilities. This framework is particularly advantageous in the healthcare
domain, where privacy concerns regarding inter-institutional sensitive data are
prevalent.

In this work, we introduce FedSurvBoost, an algorithm that integrates SA
into Federated Learning to address these challenges. Privacy preservation is
achieved by respecting data locality, while collaboration is achieved by aggre-
gating locally trained models into a shared ML model, retaining the whole fed-
eration’s knowledge. FedSurvBoost exploits AdaBoost.F [2], a model-agnostic,
federated ensemble learning algorithm allowing FL with classical, non-deep ML.
Specifically, FedSurvBoost extends AdaBoost.F by modifying it to compute the
best model’s parameters for solving regression problems, effectively adapting it
to SA tasks.

Our contributions can be summarized as follows:

– We propose FedSurvBoost, an extension of AdaBoost.F, for solving SA tasks.
– We show the effectiveness of FedSurvBoost through extensive experimenta-

tion on two survival benchmark datasets, proving that it outperforms state-
of-the-art survival methods in terms of C-indexes and IBS scores.

In future works, we aim at extending the SA setting to the other proposed
Boosting algorithms, such as PreWeak.F and DistBoost.F [2], to the SA setting.

1 Related Work

Federated Learning In its simplest configuration [1], each participant, referred
to as a client within a federation, performs local training of a model. Afterwards,
these participants share their trained models with a central server. This server
then aggregates the received models with a specific strategy (e.g. averaging [1])
to form a global model and broadcasts it to the clients. This iterative procedure
persists until the models converge. A typical FL scenario includes a server and
many clients. Before the training begins, the server creates a Deep Learning
(DL) model and broadcasts it to all the available clients. The clients then train
their local model copy on the locally available data. The locally trained model’s
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parameters are then returned to the server, which aggregates them, according
to some strategy (the most straightforward but still effective one is Federated
Averaging [1]), into a single, shared DL model. One of the most straightforward,
state-of-the-art aggregation strategies employed in current practice is Federated
Averaging (FedAvg) [1], which calculates the average of all the locally trained
model’s parameters. Finally, the aggregated model is sent back to the clients,
and the process continues iteratively until convergence. Due to its intrinsic DL-
based nature, FL emerges in contexts requiring massive amounts of data, such
as computer vision and natural language processing. However, some research
works focused on enabling FL also for non-deep models [2]. This paper follows
this trend: we propose FedSurvBoost, a modified version of AdaBoost.F suitable
for SA tasks.

FedSurf: In the context of SA, distributed learning methodologies have recently
gained attention, especially within the healthcare sector [3]. The existing ap-
proaches focus mainly on the adaptation of classical Cox models (either in their
linear or deep version) to FL settings [4,5,6,7] or on the generation and shar-
ing of synthetic survival data at the client level in a One-Shot learning fashion
[8]. However, most of the proposed methods do not go beyond Cox’s Propor-
tional Hazard assumption, which may be too simplistic in large-scale distributed
datasets. The state-of-the-art for federated SA is the Federated Survival Forests
(FedSurF) [9] algorithm, which is an adaptation of the Random Survival Forests
(RSF) to the federated scenario. RSF, one of the most successful ML models for
survival analysis, recursively builds a set of binary survival trees to estimate the
cumulative hazard function H(t), which represents the total accumulated risk of
an event occurring by time t. FedSurF is a federated ensemble learning approach
in which the server aggregates the best-performing trees from the client-side RSF
models. FedSurF executes three stages: local training, tree assignment, and tree
sampling. During the local training, each client trains an RSF model on its local
dataset. The trained model will encompass an ensemble of survival trees. Dur-
ing the tree assignment stage, the server chooses the number of trees that each
client must transmit in order to achieve the desired number of trees. The server
exploits a non-uniform probability proportional to the local dataset cardinality
to promote greater inclusion of trees coming from clients with larger datasets.
This mechanism resembles the FedAvg weighted contribution strategy. In the
last stage of tree sampling, clients select the local trees to send to the server.
The strategy for selecting the top-performing trees can be a uniform probability
method or a metric-based method. Specifically, FedSurf-IBS is the adaptation
of FedSurf using the inverse of the Integrated Brier Score (IBS) as a validation
metric for the tree sampling step. Finally, the ensemble model is constructed by
gathering the trees received from each client. Despite its effectiveness, FedSurf
leverages only trees as weak learners. We overcome this restriction by adapting
Adaboost.F to SA. Thanks to its model-agnostic nature, it enables the use of
different weak learners, outperforming FedSurF.
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2 Methodology

In this paper, we exploit the distributed implementation of the AdaBoost algo-
rithm, namely AdaBoost.F [2] through an open-source implementation [10] and
taking inspiration from adaptations of Adaboost to regression tasks. An open-
source, computationally optimized implementation of AdaBoost.F is provided
as an independent extension of the Intel OpenFL framework, namely OpenFL-
extended [10]. Below, an explanation of AdaBoost.F in the classification task is
provided to highlight the key points to be changed to adapt to the SA setting.

AdaBoost.F Let’s suppose to have C clients. Each client starts with a local
weak learner hc = A(Xc,yc,dc) that must be trained on the local training
set (Xc,yc) and a set of weights dc used to calculate the weighted error. For
example, in a classification task, the weighted error of client c is calculated by:

ϵ(hc) =

nc∑
i=1

dic1(y
i
c = hc(x

i
c)), (1)

where nc is the number of examples of client c, and 1 is the indicator func-
tion. The final goal of Adaboost.F is to modify dc using the information from
other clients in a privacy-preserving process. At the beginning, it is initialized
uniformly, d = (1, . . . , 1) ∈ Rnc .

The local dataset size is communicated to the server, and hc ← A(Xc,yc,dc)
is trained and sent to the server. The server collects all the weak learners in a
vector of weak learners h, which is sent to every client. Each client computes the
error with all the models in h, obtaining a vector of errors ϵϵϵ, and sends it to the
server. For example, in a classification task, the error vector ϵϵϵ would be:

ϵϵϵ = [ϵ(hc)]
C
c=1 (2)

The central server collects all the errors in a matrix Et ∈ RC×C . Using Et,
the server is able to detect which was the best-performing client at time t:

ct∗ = argminc

C∑
c′=1

Et
cc′ , (3)

and the overall error committed by the best model:

ϵt∗ =
1

C

C∑
c=1

Et
cct∗ . (4)

We leverage these quantities to calculate the following coefficients:

α∗
t = log(

1− ϵt∗

ϵt∗
) + log(K − 1), (5)

where t is the round, K is the number of classes, and ct∗ is the index of the best-
performing client at the time t. These coefficients are used for two purposes: to
update the vector dc and to weight the final vote to predict.



Federated AdaBoost for Survival Analysis 5

In particular, αt and ct∗ are sent to each client. In this way, the clients can
update the local weights for the weak learner:

dc ← [dic exp(−α∗
t (−1)1(hc∗ (xi ̸=yi)))]nc

i=1. (6)

These new weights will be used by the client’s weak learner hc to improve the
local model performances. As a consequence, the process can restart until con-
vergence.

At each iteration t, the server records the best model. In this way, the predic-
tion of an example x can be performed using the best model at each iteration,
with a majority vote policy. Specifically, the server predicts the class k with the
highest number of occurrences in the best model predictions:

hf (x) = argmax
k∈1,...,K

T∑
t=1

α∗
t1(hct∗(x) = k), (7)

where T is the number of rounds. For more details about Adaboost.F, we invite
the reader to refer to [2].

AdaBoost.F for SA Our effort has emerged in adjusting this algorithm to
the SA setting, for which we need to redefine the error and its usage. In the
specific, each weak learner hc of client c predicts a survival time t̂i for examples
i (i.e. hc(xi) = t̂i) in their local dataset, and the error is calculated as:

ϵ(hc) =

nc∑
i=1

dicLi, (8)

Li = δi|t̂i − ti|+(1− δi)1t̂i−ti<0|t̂i − ti|. (9)

where nc is the number of examples for client c, t̂i is the predicted survival time
for the i−th sample and ti is the true time predicted.

In SA, it is essential to distinguish between censored and uncensored data:
for uncensored samples (δi = 1), the error is the absolute difference between pre-
dicted and actual event times, reflecting direct observable discrepancies. Con-
versely, for censored samples (δi = 0), we only consider a prediction to be in
error if it underestimates the censored time. This is because predicting an event
to occur before the last known observation contradicts the evidence we have,
while predicting it to occur later does not [11].

At this point, the error vector that each client computed on each model
received is the following:

ϵϵϵ = [ϵ(hc)]
C
c=1 (10)

and sent to the server. As before, we want to recompute dc at the end of the
aggregation. As in Adaboost.F, the server calculates ct∗ and ϵt∗ as in (3) and (4)
respectively, and we make sure to normalize ϵt∗ to be in between 0 and 1. How-
ever, inspired by [12], we replace αt defined in (5) with the following:

αt =
ϵt∗

1− ϵt∗
. (11)
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The smaller the αt term, the more confidence we have in the best model ct∗
and the better its predictions are. We can see that when the error ϵt∗ approaches
the value of 0, αt also approaches 0, indicating high confidence in the model’s
predictions ct∗. Conversely, when ϵt∗ approaches the value of 1, αt approaches
+∞, indicating low confidence in the model predictions.

Then, αt is sent to each client, and each client updates the distribution of
the samples using the following formula, inspired by [12]:

dc = [dicα
1−L∗

i
t ]nc

i=1 (12)

Where L∗
i is the error committed by the best model ct∗ for sample i at round t.

For what concerns the prediction, it is clearly different from the classification
task expressed in (7), as we are facing a regression problem. As a consequence,
we substitute the prediction according to the original AdaBoost algorithm [12]:

hf (x) =

T∑
t=1

log(
1

αt
)hct∗(x). (13)

The terms log( 1
αt
) are used as weights for each best model ct∗. The weights

assign higher positive values to models with lower errors (that are the closest to
0), indicating their importance in the ensemble. Conversely, models with higher
errors (that are the closest to 1) receive large negative weights, indicating their
low importance in the prediction :

lim
ϵt∗→0+

log(
1

αt
) = lim

ϵt∗→0+
log(

1− ϵt∗

ϵt∗
) = +∞

and

lim
ϵt∗→1−

log(
1

αt
) = lim

ϵt∗→1−
log(

1− ϵt∗

ϵt∗
) = −∞

3 Experiments

Our experiments aim to study the predictive performance of FedSurvBoost and
compare it against FedSurF, serving as a baseline. We use the following experi-
mental setting:
Testbed setup: FedSurvBoost experiments have been executed in a real dis-
tributed environment encompassing one server and C clients, each deployed on a
dedicated server with an Intel®Xeon®processor (Skylake, IBRS, eight sockets
of one core). The number of clients C ranges from one (standard centralized set-
ting) to eight for scalability study purposes. We adopted OpenFL-extended [10]
as the FL framework and Scikit-Learn to train the models. We ran the FedSurF
competitor code with C =∈ {1, 4, 8} in a simulated federation deployed on a
dedicated machine with the same hardware specifications listed previously.

Due to space constraints, we only report the average over three training
runs for C ∈ {1, 4, 8}. Additional results, including a wider range of clients, the
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averaged standard deviations, as well as the code required to replicate our exper-
iments, are available at https://github.com/oussamaHarrak/FedSurvBoost.

Datasets and models: We focused on two benchmark survival datasets, i.e. the
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
[13] comprising 1904 patients and 8 features, and the Study to Understand Prog-
noses Preferences Outcomes and Risks of Treatment (SUPPORT) 4, comprising
9105 samples and 35 features. Data is split into training and testing data and dis-
tributed to each client, thus assuming independent and identically distributed
(IID) data. We trained FedSurvBoost for 50 rounds with the following weak
learners: CoxPH, Random Survival Trees (RST), and DeepSurv. CoxPH is a
widely used semi-parametric model in SA.

Table 1. C-indexes of the models. Results (mean) are obtained with three averaged
runs. Standard deviations are available in the repository.

Methods Metabric Support
Clients Clients

Centralized 4 8 Centralized 4 8
FedSurF 0.622 0.637 0.629 0.824 0.834 0.829
FedSurF-IBS 0.622 0.639 0.627 0.824 0.826 0.826
FedAvg (PyCox) 0.630 0.643 0.628 0.844 0.841 0.844
RSF 0.630 0.645 0.642 0.791 0.810 0.780
FedSurvBoost weak learners
CoxPH 0.646 0.653 0.656 0.831 0.835 0.838
RST 0.631 0.639 0.636 0.820 0.831 0.830
PyCox 0.650 0.659 0.657 0.871 0.875 0.874

Deepsurv is a non-linear version of the CoxPH model, for which we used
the PyCox implementation (https://github.com/havakv/pycox/). RST is an
adapted version of the traditional decision tree algorithm specifically designed
for SA. The final model has been tested on a separate test dataset.

As evaluation metrics, we focus on the Concordance-index (c-index), which
evaluates the capacity of the model to rank the individuals following their pre-
dicted risk of event, and the Integrated Brier Score (IBS), an extension of the
mean squared error for censored data, that can measure discrimination and cali-
bration. We tested our proposed approach with FedSurF and FedSurF-IBS, both
aggregating RSFs, as well as with two naive approaches: one an approach based
on RSF, and another one based on FedAvg and the PyCox model.

4 Data obtained from http://hbiostat.org/data courtesy of the Vanderbilt University
Department of Biostatistics.

https://github.com/oussamaHarrak/FedSurvBoost
https://github.com/havakv/pycox/
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Table 2. IBS scores of the models. Results (mean) are obtained with three averaged
runs. Standard deviations are available in the repository.

Methods Metabric Support
Clients Clients

Centralized 4 8 Centralized 4 8
FedSurF 0.175 0.171 0.171 0.179 0.180 0.179
FedSurF-IBS 0.175 0.170 0.170 0.179 0.156 0.157
FedAvg (PyCox) 0.168 0.168 0.169 0.127 0.128 0.129
RSF 0.164 0.167 0.171 0.138 0.140 0.139
FedSurvBoost weak learners
CoxPH 0.152 0.156 0.155 0.140 0.142 0.140
RST 0.169 0.174 0.171 0.130 0.132 0.136
PyCox 0.165 0.170 0.169 0.124 0.119 0.124

Discussion: Tables 1 and 2 show the results of our experiments in terms of
c-indexes and IBS scores. FedSurvBoost outperforms FedSurF (and its variant
FedSurF-IBS) and the naive approach based on averaging the parameters of Py-
Cox in both the metrics of c-index and IBS score (a lower value is better). Surpris-
ingly, although AdaBoost.F was devised for aggregating non-gradient descent-
based models, the best weak learner for FedSurvBoost is PyCox, in which a
neural network parametrizes the predictor. This confirms the model-agnosticism
of AdaBoost.F to produce a strong learner. Finally, FedSurvBoost shows a good
scalability performance by outperforming the competitors on the METABRIC
dataset when increasing the number of federation clients. Surprisingly, the al-
gorithm does not suffer from sharding the dataset in more parties (sometimes
c-indexes are even slightly better), probably due to the intrinsic uniform distri-
bution of data of the datasets. The competitor’s performance also confirms this
insight.

4 Conclusion and Future Work

This paper proposes FedSurvBoost, a federated SA approach based on the adap-
tation of AdaBoost.F for regression tasks. Thanks to its model-agnosticism, we
show the efficacy of FedSurvBoost by training different weak learners on two
survival datasets. FedSurvBoost outperforms FedSurF, the state-of-the-art ap-
proach for SA, and the naive method based on FedAvg and a non-linear model
such as PyCox. For future work, we aim to test FedSurvBoost on more survival
datasets and to study its performance when dealing with non-IID censored data.
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