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Summary

The pervasivity of artificial intelligence is structurally changing how societies envision
their development. The perception of what is valuable is rapidly shifting, and data is
in the eye of the storm. This process affects every level of organisation in the modern
world: from single individuals to multinational companies, from public administration
to international organisations, everybody is developing the consciousness that data is
a new, powerful social and economic device. Data is precious, and the conflict between
who tries to harvest it and who instead tries to keep it private and protect its owners’
rights rages. This friction constitutes the natural environment for developing new ideas
and concepts to mitigate this contention. Federated learning arose in 2016 as one possi-
ble solution to the abovementioned struggle. The fundamental concept of this paradigm
is to eliminate the need to exchange data between entities in favour of exchanging the
knowledge extracted from it. This approach bypasses the privacy limit imposed by data
owners, effectively enabling large-scale cooperative machine learning model training
and eliminating the need for invasive data harvesting.

Starting from the real-world problem of creating amachine learning-based risk score
for cardiological pathologies, the unsustainability of creating data lakes for such sen-
sible tasks is described and discussed. Federated learning is identified as a solution to
such an issue, and its main positive and negative aspects are investigated and anal-
ysed. Three assumptions of current-days federated learning software constitute the
starting points for the main contributions of this dissertation: 1) the centralised struc-
ture currently implemented by many commercial frameworks, 2) their inner workings
being strictly tied to deep learning models, and 3) their assumption of being deployed
on private, specialised computing infrastructures. The proposed research expands the
federated learning paradigm to handle scenarios in which these three conditions do
not hold. Such research problems are addressed methodologically and practically dur-
ing the dissertation, and three open-source, proof-of-concept software is made freely
available as tangible research results: FastFL, OpenFL-x , and xFFL. All the software dis-
cussed is experimentally tested on many computational infrastructures (cluster, cloud,
and high-performance computing facilities) and different micro-architectures (x86-64,
ARM-v8, RISC-V), and the obtained learning and computational performance is col-
lected, presented, and discussed.
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• FastFL is a Python and C/C++ software based on the FastFlow parallel program-
ming framework. It aims to prove that a different take on federated learning
systems’ structure design is possible. Different topologies and efficient commu-
nication protocols are exploited to push federations beyond the standard master-
worker structure. These changes allowmoving tomore flexible and resilient struc-
tures, reducing the computation and communication overhead of commercial fed-
erated learning software.

• OpenFL-x targets the machine learning models compatible with current federated
learning frameworks. It shows how implementing the AdaBoost.F algorithm in-
side the Intel® OpenFL framework allows federated learning to exploit non-deep
machine learning models. This model-agnosticism property is crucial for scenar-
ios where deep learning is not applicable, and thus, neither are current federated
learning frameworks.

• xFFL aims at bringing federated learning to complex, shared, distributed comput-
ing infrastructures. A cross-facility federated learning workload is deployed on
many high-performance computing through the StreamFlow workflow manage-
ment system, allowing seamless interaction with job queue managers and con-
tainerisation technologies. The data moving and deployment logic is handled au-
tomatically, allowing this approach to be exploited efficiently despite its complex-
ity.

Additionally, this dissertation makes a more theoretical contribution by highlighting
the possibility of modelling FL processes from a higher-level perspective than the one
used in current studies. Based on a RISC-𝑝𝑏2𝑙 formal language extension, a domain-
specific language for federated learning is introduced, allowingmore abstract reasoning
about different federated learning topologies’ properties.
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Chapter 1

Introduction

This chapter introduces all the main ideas and notions necessary to grasp the complex
and lively research environment in which this dissertation is rooted. Artificial Intelli-
gence (AI), data, society, ethics, and many other deeply intersected concepts are used
to shape a precise world vision, giving meaning and context to the subsequent discus-
sion. A description of this dissertation structure is then presented, stating the con-
ceptual flow of the discussion. Each chapter is briefly introduced, allowing the reader
to quickly identify the sections of more interest for his/her knowledge. Then, all the
significant contributions achieved by the author are listed and described, assessing the
practical impact and appreciation of the research work of which this dissertation is just
the summa. Produced software, publications, and participation in national and inter-
national projects are listed, subdivided according to their topic, and briefly introduced
and contextualised.

1.1 Motivations
Humans are becoming increasingly addicted to AI. Each aspect of the developed world
is now flooded by ”smartness”: smartphones, which allow perpetual connection; smart
automotive, which increases road security; smart homes, which ease household man-
agement; smart healthcare, which improves patient recovery; smart cities, which opti-
mise citizen-city relations, and so on. Whether appreciated or not, the current reality
is soaked with the idea that ”smart is better”. Some people do not like this trend, espe-
cially those whose jobs and competencies have been built over a lifetime and may be
obliterated in a few years. Somebody else sees in this process the future itself, imag-
ining a future where mechanical, repetitive, and tiresome jobs will not bother humans
anymore. Whatever side the reader feels near to him/her has no relevance: the change
(or the evolution) is happening, and current-day society is in the eye of it. The best
bet is to try to manage this smartness addiction at best, making the most of it and con-
sciously accepting its inevitable drawbacks. However, managing requires knowledge;
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in the following paragraphs, a short background on how AI is mutating society will
give the reader enough elements to grasp the complexity of the scenario.

First, it is essential to distinguish the meaning of two concepts that are often con-
fused: AI and machine learning (ML). AI is a broader term than ML and generally refers
to any automated system capable of making decisions in a given environment accord-
ing to a specific policy. Such intelligent systems can be either human-programmed,
like a rule-based systemwith hand-written rules, or automatically deducted from a data
set thanks to specific learning algorithms, like a simple linear regression. ML identi-
fies this last class of objects: intelligent systems that can extract relations existing in a
given dataset through a specific training (”learning”) algorithm. While classical, non-
learning-based AI systems have existed for quite some time (the Dartmouth workshop
in which the term ”artificial intelligence” was first introduced dates back to 1956), ML
systems have struggledmore to become public knowledge. Nevertheless, now thatmost
of the world knows ML, there is no turning back. One subset of ML systems, which are
more correctly known as models, is currently shaking public opinion: Deep Learning
(DL). This field encompasses all ML models based on deep neural networks (DNNs),
which provide humans with unforeseen learning performance, knowledge extraction
capabilities, and data generation features. This new property of generative DNNs is
the latest cornerstone in the global AI addiction process. Humanity has discovered that
AI is not limited to knowledge extraction from data but can produce new data based
on its acquired knowledge. AI-generated images, sounds, videos, and text will change
(and possibly dominate) the future consumption of multi-medial material. However, as
the careful reader would easily sense, ML models are based on data, and so the more
high-quality data fed to the AI, the better the performance obtained.

Thus, data is central to the global efforts to build better, more effective AI systems.
However, this fact is not always known to people. As Shoshana Zuboff depicts in
”Surveillance Capitalism,” one of her best-known and appreciated works, large multina-
tional corporations pervasively collected user data formany years in the past, exploiting
the scarce people’s consciousness of their personal data’s value. As such, knowledge
extracted from that data has been exploited for large-scale profit-making through per-
sonalised advertisements targeting people with unforeseen efficiency. Zuboff claims
that the last step of this process is the current aim of large tech giants to no longer adapt
their advertisements to the people but to use their massive knowledge bases about each
individual to influence their personal choices opaquely, effectively directing individu-
als for the companies’ economic benefit. A large portion of the digitalised population
started to notice these malicious behaviours by observing how devices, social networks,
apps, and websites dynamically adapt their advertisements according to their needs, of-
ten in a too-direct and suspicious way. Thus, the general concern about personal data
harvesting and usage is growing. National and international institutions are producing
different legal devices in a concrete effort to contrast this dangerous, data-based ma-
nipulation mechanism. Europe, for example, introduced the General Data Protection
Regulation (GDPR) in 2016 to strengthen and homogenise European citizen’s personal

20



1.2 – Dissertation structure

data control and rights. While enhancing citizen’s privacy rights, this new regulation
also strongly limits data movements across companies and institutions, posing severe
issues in designing data-dependant software, such as AI-based systems. This limitation
is particularly evident when personal data is not used for profit and advertisement but
to offer public and research services. One representative example is the medical field, in
which AI-assisted diagnosis is becoming more widespread every day, helping physician
in their daily job, reducing human errors and increasing diagnosis reliability.

This thesis finds its ground in this disputation: as time passes, society needs and
desires more intelligent devices and powerful AIs and cannot help it. However, soci-
ety also recognises the rights of individual citizens to refuse to nurture such systems
with their data. The contrast between individual staticity and societal dynamicity leads
to the research of new methodologies combining both needs. The solution explored
in this dissertation was introduced by Google, one of the actors that first caused the
data issue. To continuously feed data to its AIs (specifically, the next-word predictor
models for Android smartphones), Google experimented with an ML paradigm never
devised before: the data held by each device was no longer subject to harvesting, mov-
ing, or accumulation in centralised data lakes but left where it belonged; the subject
of exchange and movement this time was the knowledge extracted from the data it-
self. Thus, the key idea behind federated learning (FL) is not to move the data but the
knowledge derived from it. Such knowledge is not subject to any law or restriction
since it is impossible (or, better, really difficult) to derive the data from which it was
extracted anymore. This paradigm opened many doors for both research and industry
to continue developing even better and smarter AI systems, which can cope with the
new regulations protecting individual privacy. FL can be seen as a powerful cooperative
tool, enabling individuals to take advantage of their cumulative data potential without
disclosing sensible information to others and maintaining control over data. This dis-
sertation deals with FL, exploring it under many different circumstances, and discusses
how this innovative paradigm can be further expanded and improved.

1.2 Dissertation structure
This section summarises this dissertation’s contents, briefly describing them section-
by-section; please refer to Table 1.1 for a more schematic representation.

Chapter 1 constitutes the introduction to this PhD dissertation, describing the broader
frame in which the proposed research work is located. Section 1.1 focuses mainly on
the high-level social and technological scenario in which this thesis is rooted, giving a
wider scientific context to the reader. Section 1.2 describes the thesis’s structure, briefly
introducing each topic explored during the PhD path and giving them a global logical
structure. Section 1.3 lists all contributions produced by the author during his PhD,
especially focusing on open-source software published on journals and conferences.

Chapter 2 introduces all the concepts needed to better understand and appreciate

21



Introduction

Table 1.1: Schematic structure of this dissertation. Each chapter is briefly introduced,
reporting its main contents and software contributions; each study leads to the topics
examined in the following one.

Chapter Title Contents Contributions

1 Introduction Introducing all the main ideas and notions underlying this work;
Describing this dissertation’s structure and contributions.

2 Background Introducing all the main concepts required to understand this
dissertation’s main scientific contributions.

3 Model-Agnostic
Federated Learning

The PRAISE study pros and cons justify the investigation of
model-agnostic FL approaches; MAFL is described and validated
reproducing the PRAISE score study.

PRAISE
OpenFL-x

4 High-Performance
Federated Learning

The analysis of commercial FL frameworks reveals common poor
design choices; an alternative high-performance is proposed
together with a FL-specific DSL.

FastFL

5 Cross-Facility
Federated Learning

The scaling/learning performance FL trade-off is investigated; FL is
thus interpreted as a cross-facility enabling tool and geographically
-distributed LLM training experiments are discussed.

xFFL

6 Conclusions Summarising and wrapping up the dissertation; limitations and
future work are discussed.

A
pp

en
di
ce
s

Federated Learning
Applications

FL learning benchmarks on two applicative domains at varying
hyperparameters are reported and discussed:
- drug-target interaction;
- solar wind prediction.

the scientific contributions of this dissertation. Section 2.1 briefly introduces the funda-
mentals of ML, focusing mainly on the difference between ”classical” (2.1.1) and ”deep”
(2.1.2) ML models. Section 2.2 introduces FL, the central concept explored in this doc-
toral thesis: FL is defined (2.2.1), its evolution and flavours are examined (2.2.2), and
the major open-source software implementing this technique are analysed (2.2.3). Fi-
nally, Section 2.3 introduces the main concepts behind distributed computing systems,
describing the most widespread ones available at the time of writing from the most
centralised and performing to the most distributed and low power: High-Performance
Computing (HPC) (2.3.1), Cloud (2.3.2), and Edge (2.3.3).

Chapter 3 presents the more ML-oriented contribution of this dissertation: Model-
Agnostic Federated Learning (MAFL). Section 3.1 introduces the chapter describing the
PRAISE study since it constitutes the starting point from which the decision to explore
FL originated: the statistical (3.1.1) and ML (3.1.2) predictive tools currently used in
the cardiological field are analysed, then the PRAISE model is proposed (3.1.3), and
an alternative distributed implementation based on the concept of federated pooling is
proposed (3.1.4). Section 3.2 describes OpenFL-extended, the first practical contribution
of this doctoral thesis: it analyses the architecture of the open-source FL Intel® OpenFL
framework (3.2.1), explain how to make FL model-agnostic (3.2.2), implementing such
approach into Intel® OpenFL (3.2.3), and providing an experimental evaluation of the
proposed software (3.2.4). Finally, Section 3.3 describes how the MAFL apprach can be
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applied practically on a critical financial (3.3.1) use case in collaboration with Intesa
SanPaolo: through the use of a public credit card transaction dataset (3.3.2) a proof-of-
concept MAFL federation is deployed and the obtained performance analysed (3.3.3).

Chapter 4 explores the second main contribution of this dissertation, discussing the
computational performance of current FL frameworks and proposing a more flexible
and scalable approach. Section 4.1 introduces the main issues underlying the current
FL framework design, focusing primarily on the communication topologies (4.1.1), com-
munication backends (4.1.2), and programming languages (4.1.3). Section 4.2 showcases
FastFL, an open-source C/C++ software based on the FastFlow parallel programming li-
brary (4.2.1) trying to overcome the abovementioned issues, presenting three practical
use cases (4.2.2) and providing experimental results. Section 4.3 provides a more the-
oretical contribution to FL presenting RISC-𝑝𝑏2𝑙, a formal language for modelling par-
allel computations (4.2.2), discussing possible way of modelling FL processes through
it (4.2.2), and creating Python wrapper for FastFL based on a FL domain specific lan-
guage (DSL) based on it. Finally, Section 4.4 describes two experimental deployments
analysing FastFL’s scaling performance compared to off-the-shelf FL frameworks (4.4.1)
and implementing a real-time distributed multiview detection system (4.4.2).

Chapter 5 delves into the third and last main contribution of this dissertation: cross-
Facility Federated Learning (xFFL). Section 5.1 explores the compute divide issue (5.1.1),
how to deploy a FL workload onto multiple, geographically distributed HPC facilities
to exploit the publicly available computing power (5.1.3), some xFFL preliminary exper-
iments (5.1.2), and the effort in building the first European HPC federation through FL
to train state-of-the-art large-scale ML models (5.1.3).

Concluding, Chapter 6 concludes the dissertation, summarising the provided contri-
butions and the scientific impact of this dissertation. Section 6.1 analyses the limitations
of the discussed approaches, pointing to interesting research directions to overcome
them. Finally, Section 6.2 states final remarks and concludes the dissertation.

Additionally, Appendix A describes two FL learning performance benchmarking ef-
forts carried out by the author during his PhD visiting period at the University of Cam-
bridge, UK. Section A.1 investigates the task of predicting drug-target interaction (DTI)
by first exploring this task (A.1.1) and then presenting experimental results in a vast
amount of scenarios, including different client counts and data non-IIDness (A.1.2).
Section A.2 carries out a very similar investigation in the domain of solar wind pre-
diction: in this case, the applicative domain is explored (A.2.1) and then experimental
results under various FL situations are presented (A.2.2). Finally, Section A.2.2 reports
the funds and projects that support the presented research work.
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Figure 1.1: Logical flow of this dissertation’s main contributions. The PRAISE score, the
first AI application developed in the author’s PhD path, lays the foundation for inves-
tigating FL techniques: Can data lakes be avoided? This led to the investigation of FL
under three main research scenarios. The green background identifies software, cyan
methodological, and grey applicative contributions. Dashed lines represent implemen-
tation efforts.

1.3 Contributions
The following lists and briefly exposes the major contributions made by the author
during his PhD career; each one is then analysed more in-depth throughout the disser-
tation. Figure 1.1 represents the logical connections and flow between them, follow-
ing closely the author’s PhD path. The developed contributions consist of innovative
methodologies that aim to investigate and establish new state-of-the-art practices in
the ML/FL fields. This methodological approach is fundamental for producing struc-
tured innovation deeply rooted in the current scientific literature and innovative ideas
capable of impacting the scientific community; however, without proof-of-concept im-
plementation and experimental validation, such contributions may lose solidity. Thus,
the proposed methodologies are investigated theoretically and practically, with soft-
ware implementations aiming to validate their functional and nonfunctional aspects.
The following paragraph summarises the software produced to validate such method-
ologies experimentally, constituting the concrete contribution of this PhD thesis. All
the presented software should be considered research tools and are not intended for
production environments. They implement experimental algorithms and concepts, and
their source code is open-source and freely available on GitHub. These choices allow
other researchers and practitioners to examine what goes on under the hood, possibly
improving them and inspiring new research. All the presented software is supported by
peer-reviewed publications and, thus, is validated by the scientific community. Table 1.2
summarises all of them more schematically.
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Table 1.2: Acronym, research objective, and brief technical description of the main
software contributions described in this dissertation; as can be seen, each contribu-
tion raises topics and questions leading to the subsequent contribution.

Contribution Research objective Technical description

PRAISE

Predicting the risk of adverse events (death,
major bleeding, acute myocardial infarction)
over a one-year period in patients who
suffered from ACS.

Three AdaBoost models are trained
on the largest ACS patient’s data lake
available at the time of writing.

OpenFL-x
Allowing ML practitioners to exploit
traditional (non-deep) ML models in FL
scenarios in a model-agnostic way.

The Intel® OpenFL FL framework is
extended to support the AdaBoost.F
model-agnostic algorithm, and
computationally optimised.

FastFL

Overcoming the current limitations in FL
framework scaling, allowing the exploitation
of larger infrastructures (e.g., HPCs)
more easily and efficiently.

The high-performance C/C++ FastFlow
framework is used as the distributed
computing framework under the hood
of a high-level FL Python DSL (RISC-𝑝𝑏2𝑙).

xFFL

Bridging the compute divide between academia,
SMEs and Big Tech, allowing them to use FL as
a scaling tool, allowing new trade-offs
between scaling and learning performance.

FL is modelled as a cross-facility
computation expressed as a StreamFlow
workflow exploiting the computing
power of many Top500 European HPCs.

The PRAISE score1 is a freely available web service designed for cardiological use.
It aims to help physicians in designing the correct therapy for patients who suffer from
Acute Coronary Syndrome (ACS) and are now under medication. The system accepts
four types of medical information as input: clinical, therapeutical, angiographical, and
procedural variable, for a total of 25 medical indicators. These variables are then fed
to an AdaBoost model trained on the PRAISE dataset, a cohort of 19,826 adult patients
who suffered from an ACS in the past, gathered from the BleeMACS and RENAMI reg-
istries, which included patients across several continents. The outputs of the system
are three different risk score indicators, each one for a specific adverse event: acute
myocardial infarction, major bleeding, and death. The predictions are calibrated over
a one-year period, effectively assessing the risk of one of the abovementioned adverse
events occurring in patients who have already suffered from an ACS up to a year after
the follow-up. The PRAISE score is particularly useful for cardiologists since it helps
to obtain a clear vision of the major risks the patient is currently experiencing, thus
helping the physician formulate the right therapy for each individual. From an ML
point of view, the PRAISE dataset was split into a training cohort (80%) and an inter-
nal validation cohort (20%), and many AdaBoost models have been trained to explore
the hyperparameters space. The three final models, one for each adverse event inves-
tigated, have been externally validated on a cohort of 3,444 patients collected from the

1https://praise.hpc4ai.it
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European SECURITY randomised controlled trial, two prospective registries from the
University of Ferrara (the FRASER study, and the Prospective Registry of Acute Coro-
nary Syndromes), and from the Clinical Governance in Patients with ACS project of
the Fondazione IRCSS Policlinico S. Matteo of Pavia. The PRAISE score is an officially
recommended tool by the European Society of Cardiology in their 2023 ACS guide-
lines [33].

OpenFL-x2 is an open-source extension of Intel® OpenFL supporting FL involving
any ML model. This software aims to expand the FL paradigm from the DNN niche to
the broader scenario of non-deepMLmodels, encompassing Linear and Logistic Regres-
sions, Naïve Bayes Models, K-nearest neighbours, Decision Trees, et similia. This capa-
bility of supporting any ML model is referred to as model-agnosticism. The underlying
learning algorithm allowing this property to emerge in an FL context is AdaBoost.F, a
federated version of the well-known AdaBoost ensemble boosting algorithm. The key
aspect of AdaBoost.F is that the local models are not aggregated into a single global
model anymore; instead, the best-performing local model of each federation round is
added to the global ensemble boosting model, with the consequent continual re-tuning
of the AdaBoost parameters. In this way, each new local model added to the global
ensemble is focused on correcting the errors made by the previously accepted models.
Such an approach is beneficial in contexts where the black-box behaviour of DNNs is
not tolerable, or when, due to the data structure, DNNs are not the best choice, or even
when it is already known that a specific ML model works well on the local data. The
OpenFL-x development process also led to the discovery of many performance issues in
the Intel® OpenFL framework, which are addressed in the proposed software, leading
to a 5 times speedup over the base framework.

FastFL3 is an open-source FL framework aiming at introducing new design con-
cepts in the FL community. Inspired by the vast majority of current ML framework,
FastFL exposes a simple Python interface, allowing practitioners to write working FL
code quickly, but, under the hood, translates the specified logical operations into high-
performance C/C++ code for efficient execution. The backend allowing for such execu-
tion is the FastFlow high-performance parallel programming library, the serialisation
infrastructure is provided by Cereal, and libtorch provides support for DNN execution.
The basic workflow of FastFL is simple: the user gives a description of an FL experiment,
a DNN model, and a dataset, detailing all the required parameters; the framework then
translates and compiles the specified computation into a C/C++ FastFlow source file,
compiles the provided DNN model to a TorchScript format, and executes the computa-
tion. The advantage of using FastFlow as the backend is that the produced executable
files can be executed in local or shared memory, effectively allowing both simulation
and distributed deployments of FL tasks. Furthermore, FastFlow allows the specification

2https://github.com/alpha-unito/Model-Agnostic-FL
3https://github.com/alpha-unito/FastFederatedLearning
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of many different communication topologies, thus allowing experimentation with dif-
ferent FL topologies and allowing researchers and practitioners to escape the standard
master-worker structure. Lastly, since a one-to-one correspondence exists between the
RISC-𝑝𝑏2𝑙 constructs and the FastFlow building blocks, the latest versions of FastFL now
support a Python DSL designed explicitly for FL. In this way, an innovative, declarative
way of specifying FL computation can be used to deploy FL tasks, abstracting the user
from the low-level details.

xFFL4 is an innovative methodology aiming at fighting the compute divide by ex-
ploiting publicly-available computing power. Since developing large-scale AI systems
is restricted to large private companies capable of acquiring sizeable private comput-
ing clusters, new tools and technologies must be developed to make such processes
available to a broader public audience. xFFL demonstrate that this is possible through
the exploitation of publicly available computing power distributed on many geographi-
cally distributed computing infrastructures. The proposed software stack leverages the
StreamFlowWMS to deploy a specified computation on multiple computing infrastruc-
tures, retrieving and broadcasting the intermediate data and repeating the process until
the desired final result is obtained. Such large-scale deployment implies interacting
with complex systems such as SLURM and PBS, containerisation technologies such as
Docker and Singularity, and even different microarchitectures. FL represents a perfect
use case to showcase the potentiality of this approach; thus, an experimental LLaMA
training distributed on threeHPC centres is successfully designed and deployed through
xFFL to prove the effectiveness of the proposed approach. The xFFL code is open-source
and freely available, ready to be customised to be adapted to different use cases.

4https://github.com/alpha-unito/xffl
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Chapter 2

Background

This chapter introduces all the main concepts required to understand and fully appreci-
ate this dissertation’s main scientific contributions. First, the basics ofML are discussed,
focusing mainly on the difference between classical ML models, such as decision trees,
naïve Bayes, logistic regression, et similia, and DNNs. Then, FL is introduced and for-
mally defined, and its main typologies and frameworks are illustrated. The discussion
then moves to the other aspect of this work, distributed computational systems. An
overview of modern-day distributed systems paradigms is given, and HPC, cloud, and
edge infrastructure characteristics are discussed.

2.1 Machine learning
ML is the branch of AI focused on developing algorithms capable of adapting and im-
proving their predictive or generative performance by feeding on data. Adapting or
improving the system’s behaviour based on the provided data is called learning since
the process remembers the human learning process in many aspects. The same ML
algorithm, usually referred to as model, trained on different data will thus expose dif-
ferent capabilities and can therefore solve different tasks. In this context, when using
the word performance, the underlying learning, predictive, or generative performance
is considered, not the computational one, unless otherwise specified. This dissertation
identifies two different subsets of ML models and explores them separately: classical
ML models, i.e. non-neural networks, and DNNs.

2.1.1 Classical machine learning
Data is the starting point of the ML process. A set of data points, or data samples,
is commonly referred to as a dataset. Each data sample comprises a set of features,
which are information associated with the data sample, and optionally one or more
target variables, the values a possible ML model will try to predict based on the values
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of the features. The partition of the dataset used for the learning phase of the model
(called training) is called training set ; conversely, the partition eventually used for the
evaluation phase (called test) is called test set. If the dataset presents target variable
values, it is said to be labelled, unlabelled otherwise. From this starting point, many
different ML algorithms can be applied to produce different models targeting different
tasks.

As summarised by Flach [69], two types of ML models and three types of learning
algorithms are identifiable. An ML model can be predictive if it aims to predict the
target variables’ values according to the provided features or descriptive if it aims to
identify patterns and subgroups in the provided data. Recent research trends, how-
ever, firmly push towards another new type of ML model, called generative [77], whose
aim is not to derive some information or structure from the provided training data but,
instead, to generate new data congruently with the training set characteristics. Con-
versely, learning algorithms can be classified as supervised if the training data includes
some target variable and unsupervised if not. However, this binary distinction became
more complex with time. Current research strongly focuses on semi-supervised learn-
ing [38], a learning methodology capable of exploiting labelled and unlabelled data at
the same time, and also on reinforcement learning [94], where an MLmodel is trained in
a trial-and-error fashion, interacting with the surrounding environment and receiving
feedback from his actions. Despite being known for a long time, these last two learning
algorithms and the generative ML models have recently gained traction due to the vast
amount of data, computational power, and learning power of DNNs accumulated in the
last decade.

MLmodels can be trained to solvemany tasks, but this dissertationwill focus only on
predictive ML models trained with supervised learning approaches. This ML setting is
currently used in industry and research and is the most understood one. This particular
setting can efficiently target two different tasks [64]: classification and regression. An
ML model trained for classification tasks is called classifier, and it aims to assign the
correct class label to each provided test data sample; on the other hand, an ML model
trained for regression tasks is specialised in predicting continuous values assigned to
each test sample. Such models can also be exploited to solve other ML tasks, such as
scoring (ranking), in which the predicted value is a vector of scores among the different
classes, and probability estimation, that is like scoring but in which the scores are in
the range [0,1]. What these models learn under the hood is a probability estimation
of the target variable given the feature values or, according to another point of view,
an approximation function estimating the actual function associating a set of feature
values to a specific target variable value [69]. This dissertation will almost exclusively
deal with classification tasks, often targeting binary target variables.

There exist many metrics measuring the practical efficiency of a trained ML model.
Specifically targeting classification [148], this research will mainly present three differ-
ent types of learning performance metrics: accuracy, area under the receiving operating
characteristic curve (AUC), and 𝐹𝛽𝑠𝑐𝑜𝑟𝑒. The accuracy of an ML is very straightforward

30



2.1 – Machine learning

in its definition, being the ratio between the correctly classified samples and the total
data samples number: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = #𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠#𝐷𝑎𝑡𝑎𝑠𝑎𝑚𝑝𝑙𝑒𝑠
Accuracy is a straightforward and effective way of measuring the performance of anML
model. However, it can be misleading when dealing with heavily unbalanced datasets
in which most data samples are part of the same class. In this scenario, a classifier
can learn to assign the majority class label to each data sample and still obtain a high
accuracy score. The AUC can be used for binary classification tasks to alleviate this
issue. The AUC is the area individuated under the receiving operating characteristic
(ROC) curve, which is obtained by plotting the values of the sensitivity, also called true
positive rate (TPR), against 1-specificity, also called false positive rate (FPR), for different
values of the classification decision threshold. In formulas, being 𝑡 the classification
decision threshold, sensitivity is defined as the ratio between the correctly predicted
positive data samples and all the positive data samples:𝑆𝑒𝑛𝑠𝑖𝑡 𝑖𝑣 𝑖𝑡𝑦(𝑡) = #𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠(𝑡)#𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠(𝑡) + #𝐹𝑎𝑙𝑠𝑒𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑡)
while the FPR is the ratio between the number of false positive predictions and all neg-
ative data samples:𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝑡) = #𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠(𝑡)#𝑇 𝑟𝑢𝑒𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑡) + #𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠(𝑡)
TheAUC is a value bounded in the [.5, 1] range, where .5 indicates random classification
and 1 perfect classification. Lastly, when discussing systems in which the tradeoff be-
tween false positive predictions and false negative predictions is crucial, like the medical
domain, the 𝐹𝛽 score comes into play. Given that precision identifies the ratio between
the true positive predictions and all the positive data samples:𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠#𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠 + #𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠
and Recall the ratio between the true positive predictions and all the positive predicted
values: 𝑅𝑒𝑐𝑎𝑙𝑙 = #𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠#𝑇 𝑟𝑢𝑒𝑠𝑃𝑜𝑠𝑖𝑡 𝑖𝑣𝑒𝑠 + #𝐹𝑎𝑙𝑠𝑒𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
the 𝐹𝛽 score is defined as:𝐹𝛽 = (1 + 𝛽2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙(𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) × 𝑅𝑒𝑐𝑎𝑙𝑙
This formula implies that the values of 𝛽 establish the relevance of recall over precision,
with higher values of 𝛽 implying more recall weight over precision. These metrics can
be applied to any ML model, provided that the model is a classifier.
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Many classical ML models will be named through this dissertation, but mainly two
will be used consistently: decision trees and support vector machines (SVMs). Decision
trees [100] are tree-like systems in which a data sample is fed to the root of the tree
structure; a series of hierarchical conditions are then applied to the data sample features,
routing it through the internal nodes towards a leaf, identifying the final data sample
predicted value. Decision trees are, by their nature, hierarchical structures capable of
partitioning the feature space into arbitrarily small subsets. From a statistical point of
view, they are known as recursive partitioning methods [28] since they are based on the
recursive partitioning of a population into smaller subgroups. This splitting process is
usually guided by a metric measuring the effectiveness of the split; the most commonly
employed splitting metric is the Gini index [37]. SVMs [82], on the other hand, produce
linear classifiers on the provided data, maximising the gap obtained between the two
identified classes. The SVMs build one or more hyperplanes in a multidimensional
or infinite-dimensional space subdividing the space region containing samples from
different classes, maximising the distance between the samples nearer to the bound and
the bounds themselves. It is also possible to apply SVMs to non-linearly separable data
by utilising the kernel trick, which involves remapping the input data samples into a
different multidimensional space. Other types of MLmodels will be named through this
dissertation, like linear regression [66], k-nearest neighbours (KNN) [65], and Gaussian
naïve Bayes [68], but the discussion will not delve deeply into the inner workings of
such models.

Sometimes, however, a single ML model cannot offer enough learning power to of-
fer decent learning performance over a dataset. Remaining in classical ML, a possible
solution to this issue is offered by the ensemble learning mehods [67]. These methods
combine single ML models, called weak learners or weak hypostesis in this context, to
construct a more powerful collective model, called strong learners or strong hypostesis.
Two widespread methods exist to construct such ensemble models: bagging and boost-
ing. Bagging [27] is based on collecting many weak learners trained independently on
the same dataset. When predicting, all the weak learners calculate their prediction over
the given data sample; the strong learner prediction is then calculated over the set of
weak learners and can be obtained as a majority vote, the average, or any other chosen
policy. Boosting [146], on the other side, iteratively trains different weak learners on
the same dataset by re-weighting each time the misclassified data samples, thus forcing
each weak learner to focus more learning power on the most misclassified instances
to fill the prediction gaps of the previously trained weak learners. The final ensem-
ble prediction is then obtained as the weighted sum of the weak learners’ predictions,
each weighted according to its learning performance. Lastly, another ensemble tech-
nique is employed, called stacking [172], in which an ML model receives all the weak
learner predictions and produces the final prediction. However, it is not used in this
dissertation.

A software framework is needed to implement and experiment with all the exposed
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concepts. Nowadays, most of the publicly availableML code is developedwith the open-
source SciKit-Learn [102] library. SciKit-Learn is the de-facto standard library to build
ML systems: it offers a complete and user-friendly Python interface, is built upon the
very mature NumPy, SciPy, and matplotlib packages, and comprises all the necessary
logic to build complete ML pipelines, from data handling to model training ad valida-
tion. Many experiments related to classical ML models reported in this dissertation
have been implemented through this library.

2.1.2 Deep learning
DL started as any other branch of classical ML. The research work to open up this field
first is by Rosenblatt and dates back to 1958 [141], proposing the perceptron, a prob-
abilistic model inspired by the human neuron. In his work, Rosenblatt demonstrated
that a system made up of randomly connected perceptron is capable of learning pat-
terns intrinsic to randomly provided stimuli and that if such stimuli are differentiable
into different classes by similarity, the probability that the final system learns a better-
than-chance association between the stimuli and its class increases in the number of
examples feed to the system itself. While a single perceptron is capable of distinguish-
ing only linearly separable data [118], it is also true that multiple perceptrons stacked
up in layers are capable of approximating functions of any type [20]. From this cor-
relation between the perceptron structure and the underlying human neural network
inspiration, systems of multiple connected perceptrons became called Artificial Neural
Networks (ANNs).

From this historical basis, the field of DL slowly started to be studied until it exploded
in the last decade with the ubiquitous availability of the necessary computational power
to simulate and build such systems. As the number of layers in ANNs started to grow
deeper and deeper to approximate more complex functions, ANNs started to be called
DNNs, and, as a consequence, the ML branch dealing with such structure is named DL.
DNNs are usually trained through the back-propagation algorithm, in which a data sam-
ple is fed to the network, the output prediction is compared to the ground truth label
assigned to the data sample, an error metric is calculated on such error, and then all
the DNN parameters are adjusted to accommodate the error. The DNN parameters are
usually called weights since they are the weights of the weighted sum of the inputs of
each neuron, and the error function calculated on the output is named loss function.
Empirically, the training process can be described as exploring a complex multidimen-
sional surface: the loss function and the training data describe such a surface, while the
weights configuration indicates a position on it. During training, themodel explores the
loss surface, trying to find a good local minimum value of the loss function. Such a point
assures a low loss function value and good learning performance. A commonly used al-
gorithm for finding such a minimum point is the stochastic gradient descent (SGD) [26].

Due to their nature, DNNs are highly variable in their structure and can be mod-
elled to deal with many different tasks. Notably, DNNs revolutionalised the field of
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computer vision, thanks to the convolutional neural networks (CNNs), such as the resid-
ual DNNs [178] and the dense DNNs [87], and the field of natural language processing
(NLP), through the use of long-short term memory (LSTM) DNNs [186]. Especially in
this last research field, DNNs are currently shaking the public opinion on AI due to the
public diffusion of generative DNN-based NLP services such as ChatGPT, the chatbot
created by OpenAI® capable of quickly and easily generating complex and incredibly
natural text outputs in response to natural language text inputs. ChatGPT is but one ex-
ample of generative DNNs; other models capable of generating human-like text, usually
called large language models (LLMs) due to their massive sizes and almost prohibitive
training times and computational requirements, are Google® OpenFL Bard [154] and
Meta® LLaMA [165]. However, generative DNNs targeting images, such as OpenAI®
DALL-E [114], also exist.

Such large DNNs cannot be trained on a standard processor, at least not in a hu-
manly-compatible time. Due to their inner workings, DNNs can be efficiently trained
on graphical processing units (GPUs), which are indeed very common nowadays, but
also new specialised processors are now designed to fit this kind of workload precisely,
called accellerators, such as tensor processing units (TPUs) [93], field-programmable
gate arrays (FPGAs) [166], and application-specific integrated circuits (ASICs) [98]. Of-
ten, a single accelerator is still insufficient to complete a DNN’s training in a sufficiently
brief time. In this scenario, multiple accelerators can be exploited in parallel to achieve
shorter execution times through distributed training algorithms such as synchronous
SGD [55], in which a copy of the model is allocated on each accelerator and then the in-
termediate gradients are exchanged in an all-to-all fashion, averaged, and redistributed
back, or with a layer-wise partitioning of the model on multiple accelerators [4], thus
parallelising the forward and backward pass of the learning algorithm, exploiting a
pipeline-like principle.

2.2 Federated learning
FL is a relatively recent distributed ML methodology [116] aiming to bridge the gap
between the need to train ever bigger ML models on ever larger datasets and the indi-
vidual and companies’ will to protect and not share their private data. From another
point of view, FL is also a way to distribute the training of an ML model even more than
before. However, it should be considered that the learning performance of FL is usually
lower than that of traditional centralised learning [119].

2.2.1 Definition
A first attempt to define what FL is can be found in a comprehensive paper discussing
the challenges and open issues of FL, authored by the same authors of the seminal pa-
per giving birth to this research trend, Kairouz and McMahan [95]: ”Federated learning
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is a machine learning setting where multiple entities (clients) collaborate in solving a ma-
chine learning problem, under the coordination of a central server or service provider. Each
client’s raw data is stored locally and not exchanged or transferred; instead, focused up-
dates intended for immediate aggregation are used to achieve the learning objective.” The
practical implementation of an FL system is usually less general than this definition
states. Most often, the models trained on the clients are DNNs, and the updates ex-
changed can be the DNNs’ weights or gradients: since these values are tensors, they
are easy to serialise, send over the network, and combine through mathematical oper-
ators. Usually, it is expected that all clients train the same DNN architecture and that
each client’s data schema is the same as all the others; these are strong assumptions to
make, especially in the real world, but many works are trying to overcome them [106,
56, 139]. FL is thus an iterative process: the clients calculate the local updates and send
them to the central server, which combines them and sends them back to the client, and
the cycle restarts from the beginning. A single iteration of this cycle is called federated
round, or simply round.

The basic strategy to combine the updates from different clients, usually called aggre-
gation strategy, is federated averaging (fedAvg) [116], in which the clients’ contributions
are averaged between themselves. This approach, albeit simple, can provide decent
learning results if the data distribution among the clients is particularly favourable, i.e.,
IID [108]. A straightforward improvement of fedAvg can be obtained by weighting the
updates according to the amount of data they are calculated on; in this way, updates
based on more data will weigh more than the others. In cases where the data non-
IIDness does not come just from the quantity but also from the internal distribution of
the data, other approaches are needed, such as SCAFFOLD [97], which takes advantage
of variance reduction techniques to reduce the clients’ performance drift due to the bi-
ased data distribution, or Favor [168], which routinely chooses which clients’ updates
to aggregate each round to balance the introduced biases. FedAvg is inherently syn-
chronous, which can pose a limit to this approach’s computational performance; thus,
asynchronous approaches have been proposed, like ASO-Fed [43], which combines con-
tinual learning on the client side and asynchronous aggregation on the server side, or
FedBuff [125], which exploits buffers to aggregate batches of updates asynchronously.
Also, the communication cost has a crucial impact on FL computational performance.
Approaches such as quantisation [152], compression [145], and distillation [174] have
been proposed to reduce the update size, allowing for faster communications, thus re-
ducing the FL overhead.

However, FL introduces another issue other than simple computational overhead
and learning performance instability: handling statefull objects. The standard opti-
misers used in traditional DL maintain an internal state linked to the model’s current
weight configuration, and performance loss can happenwhen the local model’s weights
are substituted with the global model’s ones. Federated optimisation techniques can be
put into place to mitigate such performance issues [175], such as FedSplit [133], Fed-
Prox [107], and federated versions of adaptive algorithms such as ADAM [140]. At the
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same time, another component of modern-day DNNs maintains an internal state: batch
normalisation layers. When aggregating different models, it can be assessed that not
considering these layers can lead to performance degradation [36]. Two straightfor-
ward solutions to this issue are averaging the batch normalisation parameters and the
model’s weights or substituting them with stateless normalisation layers, such as layer
normalisation layers [59]. Another way is to implement a modified version of batch
normalisation, capable of handling the weights shift, such as FixBN [191].

Apart from the technical issues of deploying an FL system, privacy aspects should
be considered since FL is mainly adopted in scenarios where data privacy is of interest.
Many different approaches can be implemented to enforce privacy guarantees in FL;
the most widely used one is briefly exposed below. Homomorphic encryption (HE) [184]
is an encryption technique allowing data to be converted in an encrypted format which
supports a set of operations congruently with the original data format, i.e., working
in the encrypted space will yield a result that, when decrypted, will correspond to the
exact result that would have been obtained if the same operationswere done on the non-
encrypted data. This technique can be applied in the FL setting [187], usually encrypt-
ing the updates sent to the central server, which operates on the encrypted space, and
then decrypting back the aggregated model. Secure multi-party computation (SMC) [52]
is a cryptographic technique allowing many entities to collaboratively calculate a func-
tion dependent on their local data without disclosing them to the others; this approach
takes into account the correctness of the result and the robustness to adversarial at-
tacks. This approach can be combined with FL [109], obtaining a secure exchange of
updates with the assurance that no client will be able to inspect other clients’ updates,
together with robustness to malicious clients. Differential privacy (DP) [60] is a privacy
measure consisting of adding a controlled amount of noise to a system in the effort of
not significantly altering its performance while assuring the impossibility of inferring
the presence of a particular data sample in the underlying dataset. This approach is
advantageous in FL [170], where the controlled noise can be added in many different
steps of theworkload (local batch update, update sent to the server, global model param-
eters, et similia), obtaining different performance and privacy effects, primarily hinder-
ing membership inference attacks. Finally, other techniques can be combined with the
ones mentioned above to improve further the robustness and privacy-preserving prop-
erties of an FL system: trusted execution environments (TEEs) [143] can be exploited
to run the local DL training or aggregation on non-trusted infrastructures [123], while
blockchain [128] can be used to securely log in clients and keeping track of the update
history, while also handling aggregation through smart contracts [136].

2.2.2 Categories
FL systems can be roughly classified according to two orthogonal dimensions: deploy-
ment scale e data partitioning. Starting from this first parameter, deployment scale,
two possible scenarios are identifiable: small-scale deployment on powerful hardware,
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called cross-silo, and large-scale deployments on low-power hardware, called cross de-
vice. Cross-silo FL [86] typically takes place on small federations (<100 clients) of server-
grade machines or even entire data centres. This scenario encompasses federations of
hospitals, assurance companies, universities, banks, and similar institutions. The un-
derlying assumption is that the hardware is powerful enough to handle heavy DLwork-
loads efficiently, that the clients are reliable machines always online, that the federa-
tion’s network connection is fast and stable, and that this process is handled by expert
personnel. This scenario is particularly suited for training large DL models on critical
data. Thus, there is a significant focus on security issues, developing a common DL
model suiting every client’s data distribution without disclosing any information. On
the other hand, cross-device FL [96] usually targets smartphones or, in general, edge
devices. Thus, this scenario comprehends all the FL deployments on a large number
of clients (>100 clients), which are usually unreliable, equipped with low-end hardware
and, under power constraints, connected to the internet via a mobile connection. In
this context, small DL models are usually trained locally on the device, and the aggre-
gation process randomly samples only a subset of all the available local models due to
the inherent bottleneck issue that the master-server approach presents when dealing
with so many clients. This dissertation will deal with cross-silo FL only.

Three FL categories can be identified when moving to the data partitioning dimen-
sion according to how the feature and sample spaces are split among the clients: hor-
izontal, vertical, and hybrid FL [183]. Horizontal FL is by far the most common FL
scenario: in this context, the local datasets held by each client share the same feature
space, i.e., they present the same feature schema, while their sample space, i.e., the set
of data samples, does not overlap. Vertical FL [177], on the other hand, presents the
inverse situation: the clients do not share the same feature space but overlapping sub-
sets of it, while they share the same sample space. These two FL typologies take their
names from how a tabular dataset would have been subdivided in each case: in horizon-
tal FL, the data table would have been split between the clients through horizontal lines,
while in vertical FL, it would have been split by vertical lines. Finally, hybrid FL [189]
is a situation in which both the feature and sample spaces do not perfectly match be-
tween the clients but present some overlap. Each of these scenarios uses different DL
models, learning algorithms, and aggregation strategies to accommodate the different
feature/sample space characteristics; this PhD thesis will focus on the most common FL
scenario: horizontal FL.

2.2.3 Open-source frameworks
Many frameworks have been designed to implement and deploy FL systems; the fol-
lowing will briefly list and describe the open-source ones.
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Intel® OpenFL1 [71], developed in collaboration with the University of Pennsylva-
nia, is a cross-silo FL framework implemented in Python. It relies on the gRPC library
for handling client/server communication, offers long and short-lived components to
handle the FLworkflow, and fully supports PyTorch but only partially other frameworks
(i.e., not all the framework features such as all aggregation algorithms are already im-
plemented in all frameworks). It is hosted by The Linux Foundation and offers support
for the Intel® SGX TEE.

Flower2 [23], initially developed at the University of Oxford, is a cross-silo/cross-
device FL framework implemented in Python with gRPC communications. It is frame-
work-agnostic, supporting software like PyTorch and TensorFlow, as well as Pandas
and NumPy. It is developed with AI research in mind and designed to be extensible and
customisable.

NVIDIA FLARE3 [142] is a cross-silo FL framework implemented in Python with
gRPC communications. It is framework-agnostic and explicitly supports horizontal and
vertical FL, focusing on privacy-preserving techniques. The same FL code can be run
in simulation, proof-of-concept, or distributed deployment.

FedML4 [81] is an enterprise-level service aiming to provide full-stack tools for de-
centralised and federated learning settings, from the software framework to the com-
putational infrastructure. Mainly developed in Python with gRPC-based communica-
tion, it aims to be a comprehensive environment for distributed and cross-silo federated
learning workloads at scale. It supports all the main DL frameworks and communica-
tion libraries like gRPC, MPI, and MQTT.

TensorFlow Federated5 (TFF) is the federated branch of TensorFlow. Mainly devel-
oped in Python with gRPC communications, it supports only Keras/TensorFlow and
targets the cross-silo scenario. It also offers facilities for implementing DP and attacks
by malicious clients [158].

PySyft6 [194] is a Python-based framework offering a wrapping for other commonly
used DL frameworks like PyTorch exploiting websockets communications. It aims to
enable privacy-preserving techniques, such as DP and SMC, in the distributed DL sce-
nario. It is based on a client-server approach to interact with remote datasets.

FATE7 [44] is a Python-based, industrial-grade cross-silo FL framework based on
gRPC communications. It offers HE and SMC computation protocols and supports
many FL algorithms. It is hosted by The Linux Foundation.

1https://github.com/securefederatedai/openfl
2https://github.com/adap/flower
3https://github.com/NVIDIA/NVFlare
4https://github.com/FedML-AI/FedML
5https://github.com/tensorflow/federated
6https://github.com/OpenMined/PySyft
7https://github.com/FederatedAI/FATE/
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FederatedScope8 [179] is a Python-based event-driven FL platform based on gRPC
communications, designed for both industry and research. It offers modules for imple-
menting DP, privacy attacks, graph FL, recommendation systems, and other function-
alities.

LEAF9 [34] is a simulation-only FL framework developed in Python. It aims to es-
tablish benchmarks for various FL tasks and datasets.

2.3 Distributed systems
Distributed systems are computational systems made up of autonomous computational
units called computation nodes interconnected together, appearing to the user as a sin-
gle coherent system [156]. Each computation node is a complete computational unit
composed of processors, memories, and, eventually, accelerators that could theoreti-
cally operate independently without being a part of a larger computational infrastruc-
ture. Cooperation between nodes is handled through different communication protocols,
usually based on remote procedure call (RPC) or Message Passing Interface (MPI) imple-
mentations. These systems allow large-scale applications to run efficiently, exploiting
the cumulative computational power expressed by the computation nodes. However,
designing software capable of efficiently exploiting all the computational power pro-
vided by the underlying distributed infrastructure is not simple [45] since it has to cor-
rectly take advantage of the intra-node parallelism exposed by muti-core systems, and
the iter-node parallelism offered by distributed systems. This software property, called
scalability [110], is the primary metric for discussing parallel and distributed software
performance.

2.3.1 High-performance computing
HPC systems, sometimes referred to as computing clusters and supercomputers, are dis-
tributed systems explicitly focusing on high computational performance [58]. These
systems are massively parallel, collecting from hundreds to thousands of high-end com-
putation nodes interconnected by low-latency, high-bandwidth networks, offering dif-
ferent file systems subdivided by capacity and performance. The computation nodes
composing these systems are usually homogeneous, meaning that all of them are ex-
act replicas of the others, thus making virtually indistinguishable the code execution
on different subsets of computation nodes since each one of them offers precisely the
same performance as any other and can reach tens of tera floating point operations per
second (FLOPS). Large HPC infrastructures can be subdivided into partitions, each us-
ing a different computation node type, allowing better resource usage according to the

8https://github.com/alibaba/FederatedScope
9https://github.com/TalwalkarLab/leaf
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computation characteristics. The most common communication topologies for inter-
connecting the computation nodes are three: torus, fat-tree, and dragonfly [91]. Practi-
cal implementation of such low-latency, high-bandwidth networks can reach hundreds
of Gb/s. The most well-known examples of fast interconnection networks for HPC
systems are NVIDIA® InfiniBand [134] (initially developed by Mellanox®) and Intel®
Omni-Path [24]. Finally, a fast data storage system can reach up to a few TB/s [29],
completing the overview of the performance of an HPC infrastructure.

However, these numbers refer to the single performance peak of the components of
an HPC cluster and do not reflect the system’s true computing capabilities. Seamless in-
teroperability between all these components is not guaranteed; faults are to be expected
when dealing with such a large amount of hardware. Also, the software stack handling
all the infrastructure has to be tailored and optimised to provide the best possible per-
formance. To this end, many benchmark software has been proposed by the scientific
community to test the actual capabilities of HPC systems, with the most widely em-
ployed one being HPL, a portable implementation of the LINPACK benchmark written
in FORTRAN [57]. A list of the most powerful supercomputers in the world based on
this benchmark is the TOP50010 [117], which is updated two times a year. The current
top-10 supercomputers in the world have the computing power of a few hundred up
to a thousand PFLOPS, consuming thousands of KW of power. These computational
powers are near the exascale frontier [151], the next objective in HPC infrastructure,
aiming at building supercomputers capable of computing at the EFLOPS ratio.

HPC systems are not directly under the user’s control due to system architecture
design choices (see, as an example, the University of Turin OCCAM HPC cluster ar-
chitecture [9]). Such systems usually allow users access through SSH connection to
frontend servers, computing nodes designed to divide the HPC infrastructure from the
external world. On these nodes, users can develop and, if it requires a small amount of
time, compile and test their code since the frontend nodes have the same structure as the
cluster’s computing ones. The user cannot directly install new software; the one avail-
able has been specifically compiled to adapt to the computing platform, and technicians
must install new software. Software tools such as Spack [75] can help in managing the
software installation in this context. Once the code is ready for execution, the user can-
not directly launch it on the computing nodes: HPC centres use a batch execution model,
implying that no interaction with running code is allowed. The user should prepare in
advance all the necessary scripts to ensure that his computation will run autonomously
from the beginning to the end; such an auto-contained software execution is called job.
A job can then be submitted to a queue system, such as SLURM [185] or HTCondor [63],
which take care of starting the job on the requested resource as soon as they are free
from other computation. In this way, code execution can be automatised while max-
imising computing nodes utilisation and the global infrastructure throughput.

10https://www.top500.org
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2.3.2 Cloud computing
Cloud computing infrastructures offer a virtually unlimited amount of heterogeneous
computational resources with an on-demand policy, trying to accommodate as many
types of workload as possible (see, as an example, the University of Turin HPC4AI cloud
system [8]). The idea behind this concept is simple: since different computations re-
quire different kinds of computational resources, let the user specify (and pay for) the
exact amount and type of resource needed. This intuition implies two fundamental
design principles: resources should be heterogeneous and on-demand. Heterogeneity
refers to the vast offer of computational architectures in cloud environments. Compu-
tational nodes can be equipped with CPUs, GPUs, TPUs, or any other kind of processor
and come in many different flavours, such as those with high memory, high compu-
tational power, and high-bandwidth capabilities. Resource heterogeneity thus allows
cloud providers to satisfy all the possible spectrum of computational needs and bud-
get constraints, even if introducing resource allocation issues that should be carefully
handled to maintain the system’s efficiency wang2015. Cloud resources are available
on-demand : users can ask the cluster management software to be allocated a particular
set of resources, which usage will be reserved and private. These two properties create
the illusion of a personal, unlimited resource pool that can be bent to any computational
need [155].

However, this illusion has a drawback: all the resources available to the user are
virtualised, meaning there is no one-to-one correspondence between a virtual resource
and a physical one [153]. Virtualisation makes distant and shared resources appear to
the user as a single, coherent, and private resource cluster, fostering the illusion of a
private and possibly unlimited computational cluster. Such an agglomerate of virtual
resources appears to the user as a virtual machine (VM), a full-stack virtual environ-
ment comprising virtualised hardware and software. Under the hood, many physical
resources are shared among different VMs, implying heavy influences on the actual
computational performance and scheduling issues. Different VMs can physically share
sockets, memories, hard drives, and network interfaces, thus making execution times
of a software variable depending on how busy the shared resources are by other users.
Furthermore, many cloud providers tend to overcommit the available resources, i.e., al-
locate more virtual resources than the available physical ones [46]. This fact means that
cloud clusters seem unlimited in terms of the resources available to the user, but not all
the already created VMs can be instantiated simultaneously.

Due to the abovementioned design choices, cloud infrastructures are not desirable
for high-performance computation or to take precise performance measurements [90].
They are much more fit for implementing service-oriented software, requiring high
availability and replication [62]. Furthermore, since there is no queue waiting time,
cloud infrastructure can be exploited to offload computation from the edge, alleviating
low-power edge devices from heavy computations [162]. Another critical characteristic
of cloud infrastructures is that they are usually geographically distributed: providers
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such as Google Cloud [25], Amazon AWS [115], and Microsoft Azure [47] offer different
physical deployment for their cloud services, allowing companies and developers to
deploy their services across the world, reducing network communication times and
providing a better user experience.

2.3.3 Edge computing
Another computing infrastructure declination is edge computing. This paradigm ex-
ploits the computing power at the edge of the network, directly contrasting the cen-
tralised approach used by HPC systems and taking the concept of heterogeneity and
spatial distribution of cloud computing to the extreme, bringing into play new oppor-
tunities and challenges that need to be carefully handled [167]. Edge computing ex-
ploits the computational power of the uncountable number of computational devices
scattered worldwide, independently from their capabilities: smartphones, wearable de-
vices, domotic equipment, and similar devices can all be part of an edge computing
system. An edge system composed of sensors and actuators capable of little computing
power, interconnected with a network, is referred to as internet of things (IoT) [101].
When the edge computation is directly executed on the network infrastructure, such as
routers and switches, this approach is also referred to as fog computing [42].

These kinds of infrastructure do not find their usefulness in the amount of com-
puting power available or its availability: pervasivity and responsiveness are its most
vital properties. An infrastructure composed of many edge devices communicating be-
tween themselves can quickly harvest large amounts of data directly at the source and
eventually process them at the edge without needing to communicate it to a central in-
frastructure, coping with both privacy issues and network communication unreliability.
Due to its characteristics, an edge system is not highly reliable: edge devices’ network
can be unstable, their available battery may not be sufficient to conclude a computation,
they can be switched off, and so on.

Edge devices can bewidely different, ranging frommodern smartphones with a large
amount of computational power and memory, maybe even with accelerators on board,
always connected to fast mobile networks, to tiny, low-power sensors or wearable de-
vices with limited capabilities. To efficiently exploit this extremely heterogeneous com-
puting power, a hierarchical organisation is often adopted between edge devices, thus
exploiting the tiniest devices to harvest and often preprocess data locally, offloading
then more complex computations, such as AI training or inference, on more specialised
and powerful hardware available in the edge system, or even to cloud or HPC infrastruc-
tures, as stated earlier. Such an approach has become increasingly popular in the last
years, leading to the definition of the computing continuum [18], a vision in which com-
putation flows seamlessly between different computing infrastructures, such as HPC,
cloud, and edge, exploiting each one’s properties at its best.
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Chapter 3

Model-Agnostic Federated
Learning

This chapter discussed this PhD thesis’s first main scientific contribution: MAFL. The
PRAISE score case study is introduced, first with an analysis of the primary statistical
tools used in cardiological risk prediction and then with an analysis of the advantages
of using ML models. The idea of bypassing the creation of a large data lake through a
federated pooling approach is then proposed through the analysis of the PRAISE score
experience. A simulative study demonstrates that using classical ML models on feder-
ated datasets can lead to results comparable to having the same algorithms applied to
the whole dataset in a centralised fashion. FL is thus identified as a possible tool for
designing the future’s privacy-preserving medical tools (and not only). Since non-deep
MLmodels are preferred in such a scenario due to their intrinsic characteristics, the idea
of developing an FL model-agnostic methodology is introduced. The Intel® OpenFL
framework is considered as a representative FL framework supporting just DNNs: its
software design is analysed and extended to accommodate the AdaBoost.F algorithm,
the core of the MAFL concept. OpenFL-x is thus proposed as the first MAFL frame-
work, and experimental evidence of its correctness and performance are provided. A
real-world study on financial crime detection conducted in collaboration with Intesa
Sanpaolo is presented as a further experimental use case proving the validity of the
MAFL approach. A synthetic, open-source credit card transaction dataset is used to
test FL and MAFL’s potential in this domain.

3.1 The PRAISE score
Management strategies for patients suffering fromACS lack an individualised approach.
Such patients are at risk of many different adverse prognosis events, such as myocar-
dial infarction and major bleeding [76]. Many tools have been developed to predict
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these risks, some of which also aim at establishing the optimal duration of the dual an-
tiplatelet therapy. Such tools are usually built on top of statistical methods like the Cox
PH model, and modest results are obtained. ML can be an innovative tool that captures
and models the complex, non-linear correlation between patients’ data and adverse car-
diological events risks. A state-of-the-art, ML-based risk-stratification model capable of
predicting the risk of all-cause death, recurrent acute myocardial infarction, and major
bleeding after ACS with unforeseen accuracy is built to prove this latter sentence: the
PRAISE score. An in-depth literature analysis reveals that classical ML techniques are
preferred over deep ML models for several different reasons. adaBoost is thus chosen
as the ML algorithm for implementing this cardiological risk score. The PRAISE score
model is then re-trained in a federated context, i.e. maintaining the training data sep-
arated according to the original hospitals, alleviating the issue of creating a data lake
by collecting data from multiple parties. It resulted in a new experimental trade-off be-
tween patients’ privacy, themedical effort to collect data andmake agreements between
different institutions, and the final ML model performance.

3.1.1 Statistical prediction in cardiology
From a statistical point of view, the tools allowing to predict the occurrence of an event
over time are collected under the survival analysis branch. More specifically, a state-
of-the-art review on cardiological risk scores [13] highlighted that basically all of those
built on top of survival analysis techniques rely on the Cox PH model [51]. This model
is based on the concept of histantaneous hazard rate (𝜆(𝑡)), that is the rate at which
events occur given the total population:𝜆(𝑡) = 𝑙𝑖𝑚Δ𝑥→0𝐸𝑣(𝑡, 𝑡 + Δ𝑡)/𝑁 (𝑡)Δ𝑡
where 𝐸𝑣(𝑡, 𝑡 +Δ𝑡) is the number of events occurring between 𝑡 and 𝑡 +Δ𝑡 and 𝑁(𝑡) is the
number of individual at risk at time 𝑡. To compare the risks in two different populations
(for example, the control population and the population undergoing a treatment), the
hazard ratio (HR) between the two populations’ instantaneous hazard rate:𝐻𝑅 = 𝜆1(𝑡)𝜆2(𝑡)
If 𝐻𝑅 > 1, then population 1 is at higher risk than population 2 and vice versa, with the
magnitude of 𝐻𝑅measuring this difference in risk. Given these definitions, the Cox PH
model is defined as: 𝜆(𝑡|𝑋𝑖) = 𝜆0(𝑡) exp(𝑋𝑖𝛽)
where 𝑋𝑖 is the 𝑖th individual’s risk factors values vector (usually referred to as covari-
ates in this context), 𝛽 is the regression coefficients vector, and 𝜆0 is the baseline hazard
supposing all risk factors are 0. The values of the 𝛽 coefficients establish the impact of
the risk factors on the population survival probability.
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Many risk scores declined this simple yet effective model to grasp increasingly more
complex patterns and relations in cardiological data, such as the Heart Failure Survival
Score [1], the Seattle Heart FailureModel [105], ORBIT [129], PARIS [17], and PRECISE-
DAPT [50]. However, all these risk scores are limited by the inherent assumptions of
the Cox PH model, which are:

• the survival capability of an individual is independent of the other individuals in
the population;

• the risk factors and the hazard are multiplicatively related (i.e., incrementing one
of the risks multiplies the hazard);

• the HR over time is constant.

Different approaches try to cope with these assumptions differently, but overcoming
them requires a radical model change. The Cox PH model, despite being widely used
and effective, may as thus have reached its limit.

3.1.2 Machine learning prediction in cardiology
ML techniques can harvest the complex non-linear relationship in vast amounts of data
with fewer underlying assumptions than the Cox PH model. Furthermore, ML is a vast
world offering many models, each with its particular pros and cons; thus, ML results
in a flexible and powerful tool capable of adapting to many different scenarios. This
flexibility comes with different issues, though: choosing the best model and the cor-
responding hyperparameters for any given situation is not trivial since no model is
inherently better than any other (no-free-launch theorem) [173], and different mod-
els bring with themselves different assumption and properties that may or may not be
acceptable in different scenarios.

In the state-of-the-art review presented by the author [13], these concepts emerge
clearly: out of the 44 papers selected by the study, only 12 described a cardiological
risk score based on the Cox PH model. The remaining 32 papers focused on ML-based
techniques, exploiting 16 different algorithms. These models range from simple linear
and logistic regressions to complex DNN, from single models to model ensembles. Most
notably, 9 algorithms over the 16 found in the selected literature are ensemble models,
i.e. collections of individual ML models: random forest, adaBoost, gradient boosting,
eXtreme gradient boosting, light gradient boosting, logitBoost, gradient boosting of
decision trees, explainable boosting machines, and catBoost. The remaining 7 single
models identified are logistic regression, SVMs, naïve Bayes, KNN, decision trees, Lasso
logistic regression, and DNNs.

As can be seen from Figure 3.1, logistic regression is the most popular approach
adopted in the literature, immediately followed by random forest. Despite being very
different models, this trend can be interpreted as a research effort to model the available
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Figure 3.1: Number of ML models appearances in the cardiological risk score literature
(up to 2022). ML models’ names are abbreviated for convenience: logistic regression
(LR), random forest (RF), gradient boosting (GB), naïve Bayes (NB), support vector ma-
chine (SVM), adaptive boosting (adaBoost), deep neural network (DNN), decision tree
(DT), KNN (KNN), Boosting Machine (BM), Gradient BM (GBM).

data with the least complex model possible. This strategy allows obtaining a high inter-
pretability-complexity ratio, ensuring that the model learns and generalises the princi-
pal relations present in the data without losing learning power on spurious correlations
and noise. Interpretability is fundamental in medical applications since ML-based tools
aim to support medical diagnosis, not to substitute physicians: their output should as
thus be as interpretable as possible, and their decisional process should be inspectable
and, eventually, explainable.

Interpretability and explainability, despite being often used interchangeably, retain
two different and specific meanings in the ML landscape. Interpretability [35] refers to
the possibility of understanding how an ML model makes a prediction. This property
involves understanding the model’s inner workings and inspecting the learned rela-
tionship between features and outputs, allowing experts and users to understand the
decisional process clearly. Explainability [31], on the other hand, refers to the capabil-
ity of an ML model to explain to the user why a specific prediction has been made. This
property is especially desirable when working with high-complexity ML models, such
as DNNs, since their predictions are very accurate but their decisional process is not
always clear or transparent, resulting in the so-called black-box behaviour. Thus, inter-
pretability and explainability are two different and complementary properties that an
ML model trained on medical data should possess to be trustable and usable in practice.

Another insight that can be inferred from Figure 3.1 is the interest in ensemble ML
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Figure 3.2: Number of times each ML model ranked first in a comparison against other
ML models in the cardiological risk score literature (up to 2022). ML models’ names are
abbreviated for convenience: random forest (RF), deep neural network (DNN), gradient
boosting (GB), decision tree (DT), k-nearest-neighbours (KNN), logistic regression (LR).

techniques: the attempts to exploit suchmethodology aremore numerous than the ones
trying to exploit DNNs. This phenomenon can be due to ensemble learning allowing
the exploitation of multiple simple and interpretable ML models, such as decision trees,
to build a higher-performance model, achieving interpretability and predictive power
simultaneously. More specifically, it can be seen that boosting is investigated under
many different declinations, indicating a shared trust in the capabilities and properties
of this ML technique.

Figure 3.2 further highlights the capabilities of ensemble learning techniques in this
field. Out of all the comparisons found in the literature, more than half the times, the
best-performing model results in an ensemble model (4 times random forest and 2 times
boosting ensembles, against 5 achieved by single models). Among the single models,
DNNs achieved the highest number of winning comparisons, further proving the learn-
ing capabilities of these models. This analysis shows a strong trend towards ensemble
ML models and DNNs for the cardiovascular risk scores of the future.

3.1.3 The PRAISE score approach and results
The PRAISE dataset collects 19,826 adult patients (≥18 years) who suffered an ACS and
had a 1-year follow-up. 15,401 of those patients are collected from the BleeMACS reg-
istry. Their data were collected between 2003 and 2014 by 15 hospitals in North and
South America, Europe, and Asia. The remaining 4,425 patients’ data have been col-
lected between 2012 and 2016 by 12 European hospitals. To further assess the predictive
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capabilities of the trained models, an external validation dataset of 3,444 adult patients
has been collected from four different sources. 442 patients came from the European SE-
CURITY randomised controlled trial between 2009 and 2014. 402 patients are collected
from the FRASER study and 1063 from the Prospective Registry of Acute Coronary
Syndromes in Ferrara, both held in Ferrara, Italy, between 2014 and 2016. Lastly, 1537
patients are harvested from the Clinical Governance in Patients with ACS project of the
Fondazione IRCSS, Policlinico S. Matteo, Pavia, Italy, held between 2015 and 2019. As
can be seen, the available data is highly heterogeneous, including patients from all over
the world and data collected over a long period.

The PRAISE dataset obtained after many data-preprocessing iterations is composed
by 25 features: 16 clinical variables (age, sex, diabetes, hypertension, hyperlipidaemia,
peripheral artery disease, estimated glomerular filtration rate (EGFR), previous myocar-
dial infarction, previous percutaneous coronary intervention, previous coronary artery
bypass graft, previous stroke, previous bleeding, malignancy, ST-segment elevationmy-
ocardial infarction (STEMI) presentation, haemoglobin, and left ventricular ejection
fraction (LVEF)), five therapeutic variables (treatment with 𝛽 blockers, angiotensin-
converting enzyme inhibitors or angiotensin-receptor blockers, statins, oral anticoag-
ulation, and proton-pump inhibitors), two angiographic variables (multivessel disease
and complete revascularisation), and two procedural variables (vascular access and per-
cutaneous coronary intervention with drug-eluting stent). The PRAISE dataset is split
into training (80%) and evaluation (20%) subsets. The nomenclature ’evaluation set’ is
used since it is more prevalent in the medical environment, but it is equivalent to the
’test set’ expression commonly used in ML. Conversely, the external validation dataset
is converted to the same feature schema as the one presented above but is not split into
any subset.

Three different outcomes are selected as prediction targets: all-cause death, recurrent
acute myocardial infarction (ReAMI), and bleeding academic research consortium major
bleeding (BARC-MB). All outcomes refer to one year after the follow-up and are binary:
the adverse event either happened (1) or not (0) during the first year after the follow-
up. The PRAISE dataset’s rich information and the variety of the identified prediction
targets require adequate learning power to be investigated and exploited efficiently.
To this end, four ML models have been selected according to the insights discussed
in Section 3.1.2: adaBoost, naïve Bayes, KNN (KNN), and random forest. adaBoost and
random forest use decision trees as weak learners to improve the final model’s inter-
pretability. DNNs have been considered possible ML models worth investigating but
have been excluded from the PRAISE study due to their relatively low interpretability
level (black-box behaviour). Each ML model is trained, evaluated, and validated ac-
cording to each outcome, leading to a set of three trained models for each model type.
Each training is run tens of times, exploring each model’s hyperparameter space, and
only the best-performing model for each target outcome is presented. The ML models
have been evaluated and compared through F2 score, AUC, and calibration plot values.
The F2 score is preferred over the standard F1 due to the highly unbalanced dataset
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Figure 3.3: ROC curves obtained by the four tested ML models (adaBoost, naïve Bayes,
KNN, random forest) on the PRAISE dataset splits (training, evaluation, validation) on
the three selected outcomes (all-cause death, BARC-MB, ReAMI). AUC values are re-
ported in the legend.

(3.3%, 3.1%, and 2.8% of all-cause death, ReAMI, and BARC-MB incidence, respectively)
and because a false negative prediction is considered more harmful from the medical
perspective than a false positive one.
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Figure 3.3 reports the ROC curves obtained by the ML models tested on the PRAISE
and validation datasets. Different prediction targets exhibit different patterns. All-
cause death appears to be the most straightforward outcome to be predicted, produc-
ing smooth and relatively high AUC values for the medical field on all three subsets
(.80 < 𝐴𝑈𝐶 < .92). Conversely, BARC-MB and ReAMI show lower AUC values and
higher differences in performance between the models (.70 < 𝐴𝑈𝐶 < .87 BARC-MB,.57 < 𝐴𝑈𝐶 < .88 ReAMI). These differences are exacerbated in the external validation
dataset, which makes it possible to state that adaBoost seems to achieve the best and
most stable performance of all the models. These properties can be observed mainly
in the ReAMI validation ROC plot, where adaBoost stands out as the best-performing
model while random forest exhibits particular difficulties. Thus, ReAMI results the
most challenging outcome to predict among the selected ones. Looking at Figure 3.3
by columns, it can be seen that adaBoost has a clear tendency to overfit the training
data more than the other models (.88 < 𝐴𝑈𝐶 < .91 adaBoost, .63 < 𝐴𝑈𝐶 < .85 others).
Conversely, all models produce similar results on the evaluation set, with only slightly
lower AUC values for the random forest ReAMI prediction (𝐴𝑈𝐶 < .70). The external
validation performance results offer more room for discussion. While the peak perfor-
mance for the all-cause death and BARC-MB outcomes are generally higher than the
evaluation set ones, the ReAMI target exhibits a very differentiated pattern between
the different models, highlighting adaBoost as the only model capable of obtaining sta-
ble and acceptable learning performance (𝐴𝑈𝐶 > .80). These behaviours highlight
that the external validation dataset exhibits a different distribution than the PRAISE
dataset, thus strongly testing the ML model’s generalisation capabilities. Overall, the
only model which successfully handled this distribution shift appears to be adaBoost
since it maintains high predictive performance overall data subsets and outcomes, ob-
taining the highest AUC value in every presented ROC plot (apart from the all-cause
death evaluation, in which random forest obtains a negligible .01 more AUC).

Table 3.1 reports many learning metrics collected during the PRAISE experiments.
The F2 score is highlighted since it is taken particularly into consideration for this study,
giving more weight to the recall than the precision, preferring false positives over false
negatives. This behaviour is desired in the medical field since the cost of a false neg-
ative is much higher than that of a false positive; in other words, it is preferred to be
extra cautious and examine more mid/low-risk patients than neglect a high-risk one.
According to the F2 score, no ML model is inherently superior at predicting all-cause
death: naïve Bayes obtained the highest scores on the evaluation set (.45), while KNN
on the external validation set (.71), with adaBoost obtaining slightly lower values, and
random forest much lower ones. The scenario completely changes when looking at the
BARC-MB and ReAMI predictions. In these two cases, adaBoost obtains the highest
values in both evaluation (.31 BARC-MB, .32 ReAMI) and validation (.40 BARC-MB, .39
ReAMI).

Finally, the calibration plots produced by the various ML models are examined. Fig-
ure 3.4 provides such plots as comparisons between the predicted and observed adverse
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Table 3.1: Learning performance obtained by the four tested ML models (adaBoost,
naïve Bayes, KNN, random forest) on the PRAISE dataset splits (training, evaluation,
validation) with respect to the three selected outcomes (all-cause death, BARC-MB,
ReAMI).

adaBoost naïve Bayes K-nearest neighbours random forest
Train Evaluation Validation Train Evaluation Validation Train Evaluation Validation Train Evaluation Validation

D
ea
th

Threshold .08 .08 .08 .15 .15 .15 .04 .04 .04 .08 .08 .08
F2 score .58 .43 .60 .43 .45 .68 .43 .42 .71 .39 .43 .57
NPV .98 .97 .99 .98 .98 .99 .98 .97 .98 .98 .98 .98
PPV .30 .23 .26 .20 .23 .33 .19 .20 .42 .17 .19 .23
Accuracy .92 .89 .78 .88 .88 .77 .86 .86 .84 .86 .86 .74
Sensitivity .76 .55 .88 .60 .60 .92 .64 .57 .86 .60 .63 .90
Specificity .92 .91 .77 .89 .89 .74 .87 .88 .84 .87 .87 .72

BA
R
C
-M

B

Threshold .05 .05 .05 .06 .06 .06 .03 .03 .03 .08 .08 .08
F2 score .45 .31 .40 .26 .25 .25 .26 .24 .24 .23 .28 .34
NPV .99 .98 .99 .98 .98 .98 .98 .98 .98 .97 .97 .99
PPV .19 .12 .14 .09 .09 .09 .08 .07 .07 .10 .12 .09
Accuracy .90 .87 .74 .80 .80 .80 .74 .72 .72 .88 .89 .58
Sensitivity .69 .49 .78 .51 .48 .48 .62 .57 .57 .34 .41 .90
Specificity .90 .88 .74 .81 .81 .81 .74 .73 .73 .80 .90 .56

R
eA

M
I

Threshold .04 .04 .04 .06 .06 .06 .04 .04 .04 .07 .07 .07
F2 score .43 .32 .39 .26 .32 .36 .27 .30 .38 .18 .26 .27
NPV .99 .98 .98 .97 .97 .95 .97 .97 .95 .97 .97 .96
PPV .15 .11 .13 .09 .12 .12 .10 .12 .14 .05 .07 .07
Accuracy .80 .78 .66 .77 .78 .57 .79 .80 .65 .59 .64 .38
Sensitivity .84 .58 .76 .50 .57 .69 .50 .50 .65 .54 .67 .79
Specificity .80 .79 .65 .78 .79 .56 .81 .81 .65 .60 .63 .35

event probability by deciles of predicted risk. Ideally, in such plots, the predicted risk
should match the observed one as closely as possible, and the deciles of observed risk
should increase monotonically from the first decile to the last. However, due to medical
concerns, calibration plots highlighting a sharp subdivision between middle/low-risk
patients (deciles 1-9) and high-risk ones (decile 10) are preferred; also, a slight over-
estimation of the predicted risk of high-risk patients is appreciable. From Figure 3.4,
it can be deduced that random forest and KNN do not fit the abovementioned proper-
ties. adaBoost and naïve Bayes offer interesting performances, but adaBoost behaviour
appears more similar to the one wanted. adaBoost calibration plots are well balanced
between the predicted and observed risk, with a sharp subdivision of the 10-th decile,
but lack the overestimation of high-risk patients; this property is provided by naïve
Bayes, which instead tends to overestimate risk in general, which is not desirable.

Based on all the provided experimental pieces of evidence, adaBoost is thus chosen
as the best-performing model on the PRAISE dataset, and the three best-performing
adaBoost models trained respectively on all-cause death, BARC-MB, and ReAMI are re-
ferred to as the PRAISE models. To further help medical staff interpret, explain, and use
the PRAISE score, Figure 3.5 analyses the most important predictors of the underlying
adaBoost models for the different outcomes. These scores are normalised and consider
the importance of each variable in each weak learner (i.e., their importance in the deci-
sion trees) and the respective weak learner’s weight. LVEF, age, haemoglobin level, and
statin therapy at discharge were the most important features to predict all-cause death.
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Figure 3.4: Calibration plots obtained by the four tested ML models (adaBoost, naïve
Bayes, KNN, random forest) on the PRAISE dataset splits (training, evaluation, valida-
tion) on the three selected outcomes (all-cause death, BARC-MB, ReAMI).

In contrast, although they have different relative importance, haemoglobin level, age,
LVEF, and EGFR emerged as essential features for predicting ReAMI and BARC-MB. To
further assess the PRAISE score’s predictive power, additional tests are run, training
and predicting all the outcomes of the evaluation and validation datasets using only
the respective eight most important predictors. The obtained AUC values result only
slightly lower than those obtained with all the available features (.93, .78, .87 all-cause
death, .90, .62, .74 BARC-MB, .90, .68, .68 ReAMI for training, evaluation, and validation
respectively). These numbers suggest that while an abundance of information can be
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Figure 3.5: Radar plots reporting the PRAISE model (adaBoost) eight most important
predictors for all-cause death (top left), BARC-MB (top right), and ReAMI (bottom).

helpful, having a well-selected subset of features strongly correlated with the desired
outcome is a totally viable strategy for training an ML model efficiently. This strategy
reduces the waste of learning power and allows for the use of simpler and lighter ML
models.

The PRAISE models are available online through a web service called the PRAISE
web calculator, allowing physicians to directly input into the web page their patients’
clinical data and obtain predicted all-cause death, BARC-MB, and ReAMI risk scores
in real-time. The PRAISE score web calculator is freely available online1 and is hosted
by HPC4AI, the High-Performance Computing for Artificial Intelligence cluster of the
University of Turin, Italy. The PRAISE score is an officially recommended tool by the
European Society of Cardiology in their 2023 ACS guidelines [33].

1https://praise.hpc4ai.it
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3.1.4 Federated data pooling
The success and high predictive performance of the PRAISE score can be mainly at-
tributed to the high quality of the underlying PRAISE dataset. Notably, such a dataset
is one of the largest and most comprehensive ever created in the field of cardiologi-
cal research. Its creation required collaboration between tens of national and interna-
tional institutions, transnational agreements, and the effort to shape all different local
datasets to fit into a shared and commonly designed feature schema. Such process is
often referred to as data pooling. These efforts culminated in properly preprocessed and
anonymised data, leaving the original research institutes to reach a common data lake,
a centralised infrastructure in charge of analysing them. The data lake approach is cur-
rently the standard approach for running ML analyses, but its use may become increas-
ingly hindered in the future. Sensible data, like medical data, is becoming increasingly
more regulated and protected, and moving it from its original collecting infrastructure
is also becoming harder. Newly introduced laws, such as the GDPR, impose strict condi-
tions on sensible data sharing and processing, enforcing the data owner’s rights. While
protecting people’s privacy and rights, these choices pose new and robust limits to the
traditional centralised techniques adopted in ML research by strongly hindering data
pooling processes.

Conversely, traditional centralised ML approaches are not keeping pace with the
increasing ubiquity of data-harvesting devices. Data is not only collected by large,
centralised institutions but pervasively. From tiny, almost invisible wearable devices
to smartwatches, smartphones, tablets, and laptops to smart cars, smart homes, smart
cities, and even satellites, people are immersed in an environment flooded with data-
hungry devices. Such ubiquitous devices usually harvest personal and private data and,
ideally, people would like such data to remain local to the device and be used just for
purposes related to the device itself. It is not desirable to have such local data shared
with or collected by third parties, not knowing which analyses or processes they will
undergo. Thus, edge computing techniques can be deployed, easing data processing by
exploiting the ubiquitous computing power available at the network’s edge. This sce-
nario opens up vast possibilities for distributed ML approaches, especially for those not
requiring any data movement from their local infrastructure, like FL. Such an FL-based
approach to distributed datasets is defined in the following federated pooling, in direct
contraposition to traditional centralised data pooling.

While FL with DNNs is already well-known and studied, non-DNN-based FL is still
in its infancy. A federated version of adaBoost is needed to reproduce the behaviour of
the PRAISE model in a distributed environment. DistBoost [104] and PreWeak [32] are
two distributed adaptations of adaBoost available in the literature that could be adapted
to the FL environment. Polato et al. already made the effort to formalise their federated
versions, respectively named DistBoost.F and PreWeak.F, and contestually proposed a
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Algorithm 1: AdaBoost.F (server)
Input: 𝐶: number of clients𝑇: dimension of the ensamble𝐾: number of classes
Output: ens(x) ≜ vote([ℎ𝑡⋆]𝑇𝑡=1, [𝛼 𝑡]𝑇𝑡=1,x)

1 for 𝑡 ∈ {1… 𝑇 } do
2 𝑍 ← ‖ [receive𝑍(𝑐)]𝐶𝑐=1 ‖1
3 h𝑡 ← [receiveℎ(𝑐)]𝐶𝑐=1
4 broadcasth(h𝑡)
5 E𝑡 ← 1𝑍 [receive𝜖(𝑐)]𝐶𝑐=1 ▷ 𝐶 × 𝐶 errors matrix

6 𝑐𝑡⋆ ← argmin𝑐∑𝐶𝑐′=1 E𝑡𝑐𝑐′
7 𝜖 𝑡⋆ ← ∑𝐶𝑐=1 E𝑡𝑐𝑐 𝑡⋆
8 𝛼 𝑡 ← log (1−𝜖 𝑡⋆𝜖 𝑡⋆ ) + log(𝐾 − 1)
9 broadcast𝛼(𝛼 𝑡)

10 broadcast𝑐(𝑐𝑡⋆)
11 broadcaststop(stop)
new, innovative federated adaBoost version offering state-of-the-art learning perfor-
mance: AdaBoost.F [135]. The training phase of AdaBoost.F is similar to the one of ad-
aBoost, but it happens in a distributed manner; Algorithm 1 reports the server pseudo-
code, while Algorithm 2 the client’s one. At each iteration 𝑡, a new weak hypothesis is
learned from each client 𝑐 and sent to the aggregator. The aggregator collects the weak
hypotheses and broadcasts them all to all clients. The clients evaluate the received hy-
potheses on the local dataset and send the weighted errors vector 𝜖 to the aggregator,
which can then aggregate these values into an errors matrix Ε𝑡. Values in Ε𝑡 are then
used to find the best hypothesis for the current round 𝑐𝑡∗ and to compute the current
adaBoost coefficient 𝛼 𝑡. By propagating these pieces of information to the clients, they
can then update their local copy of the ensemble and the local examples’ weights d.
Overall, the algorithm has strong resemblances with the original adaBoost algorithm;
one interesting difference is that d is kept un-normalised in the client; this is important
to make it possible to compute a global normalisation factor in the aggregator.

In the following, the PRAISE study is repeated through a federated pooling ap-
proach, investigating if the same learning performances of the PRAISE score could also
be achieved through FL without requiring the patient’s data to be moved from their
local hospitals. To test the proposed federated pooling approach’s real-world perfor-
mance, traditional DNN-based FL and AdaBoost.F algorithms are run on the PRAISE
dataset and compared with the PRAISE models’ performances. The chosen DNN is
a two-layer perceptron with 35 inputs, 35 hidden units, a single output and a binary
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Algorithm 2: AdaBoost.F (client)
Input: 𝒜: weak learner

X ∈ ℝ𝑛×𝑚: training data
y ∈ {1,… ,𝐾}𝑛: training labels

1 d ← 1
2 while not stop do
3 send𝑍(aggregator, ‖d‖1)
4 ℎ ← 𝒜(X, y, d

‖d‖1
)

5 sendℎ(aggregator, ℎ)
6 h ← receiveh(aggregator)
7 𝜖 ← [d⊤!y ≠ ℎ𝑐(X)"]|h|𝑐=1
8 send𝜖(aggregator, 𝜖)
9 𝛼⋆ ← receive𝛼(aggregator)

10 𝑐⋆ ← receive𝑐(aggregator)
11 d ← [𝑑𝑖 exp(−𝛼⋆!ℎ𝑐⋆(𝑥𝑖) ≠ 𝑦𝑖")]𝑛𝑖=1
cross-entropy loss. We trained it for 100 rounds of one epoch each, using the Adam
optimizer [99] (𝑙𝑟 = 10−3, 𝛽1 = .9, 𝛽2 = .999, 𝜖 = 10−7), and fedAvg as aggregation strat-
egy. Conversely, the federated adaBoost ensemble is built by running 100 rounds of the
AdaBoost.F algorithm using a decision tree with at most 10 leaves as weak learners. All
FL runs have been orchestrated using Intel® OpenFL with a single aggregator and up
to 16 collaborators, and both strong and weak scaling properties are tested. The strong
scaling performance is tested by subdividing the entire PRAISE dataset into 𝑛 i.i.d. sub-
sets without replacement and assigning a subset to each of the 𝑛 collaborators involved
in the federation. This configuration keeps the same number of rows for each experi-
mental configuration. Conversely, 16 subsets of the complete datasets are sampled and
assigned to each collaborator to test the weak scaling performance. In this setting, the
size of the problem increases linearly with the number of collaborators involved in the
federation. Learning performances are measured on a virtualised environment on top
of the OpenStack-based HPC4AI cloud infrastructure, with the aggregator running on
a virtual machine with 4 cores and 8GB RAM and up to 16 collaborators hosted in vir-
tual machines with 8 cores and 8GB RAM each. Conversely, computational times are
measured on the C3S HPC facility, allocating an entire bare metal node with 2 Intel®
Xeon E5-2697 sockets (18 cores, 2.30GHz) and 128GB RAM to each component of the
Intel® OpenFL deployment.

Table 3.2 and Table 3.3 report the learning metrics achieved by standard FL and
AdaBoost.F, respectively. AdaBoost.F dominates the accuracy metrics, achieving high
values in all experiments (.94 < 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < .95). The DNN accuracies are much more
erratic (.39 < 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < .90), showing a higher variance as the number of collaborators
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Table 3.2: Learning performance obtained by DNN-based FL on the PRAISE dataset up
to 16 clients. The reported values are the average of 5 runs ± the standard deviation.
The strong scaling setting with a single client is equivalent to the non-federated case.

Clients Accuracy F1 Score F2 Score Precision Recall

St
ro
ng

sc
al
. 1 .39 ± .47 .14 ± .08 .22 ± .04 .17 ± .09 .72 ± .39

2 .56 ± .47 .19 ± .09 .26 ± .06 .15 ± .09 .61 ± .36

4 .88 ± .01 .23 ± .01 .30 ± .01 .17 ± .01 .39 ± .02

8 .72 ± .38 .20 ± .06 .27 ± .04 .16 ± .06 .48 ± .29

16 .90 ± .01 .24 ± .01 .29 ± .01 .12 ± .01 .35 ± .02

W
ea
k
sc
al
. 1 .56 ± .47 .16 ± .07 .22 ± .03 .12 ± .07 .56 ± .40

2 .69 ± .37 .17 ± .05 .25 ± .04 .12 ± .06 .49 ± .30

4 .72 ± .38 .20 ± .07 .27 ± .05 .15 ± .06 .49 ± .29

8 .90 ± .04 .18 ± .10 .24 ± .13 .13 ± .08 .30 ± .17

16 .55 ± .46 .17 ± .08 .26 ± .06 .11 ± .06 .63 ± .34

Table 3.3: Learning performance obtained by decision tree-based AdaBoost.F on the
PRAISE dataset up to 16 clients. The reported values are the average of 5 runs ± the
standard deviation. The strong scaling setting with a single client is equivalent to the
non-federated case.

Clients Accuracy F1 Score F2 Score Precision Recall

St
ro
ng

sc
al
. 1 .95 ± .00 .19 ± .07 .15 ± .06 .35 ± .10 .13 ± .05

2 .95 ± .00 .23 ± .03 .19 ± .03 .36 ± .04 .17 ± .03

4 .94 ± .00 .19 ± .02 .16 ± .02 .26 ± .04 .15 ± .02

8 .94 ± .00 .20 ± .04 .17 ± .03 .28 ± .06 .16 ± .03

16 .94 ± .00 .19 ± .03 .17 ± .03 .25 ± .04 .16 ± .03

W
ea
k
sc
al
. 1 .95 ± .00 .09 ± .02 .06 ± .01 .33 ± .05 .05 ± .01

2 .95 ± .00 .10 ± .02 .07 ± .01 .45 ± .05 .05 ± .01

4 .95 ± .00 .15 ± .04 .12 ± .04 .32 ± .06 .10 ± .10

8 .95 ± .00 .17 ± .02 .14 ± .01 .28 ± .04 .13 ± .01

16 .94 ± .00 .20 ± .03 .18 ± .02 .27 ± .04 .16 ± .02

grows and a higher variance in the 5 experiment repetitions. However, accuracy should
be used carefully when dealing with highly unbalanced datasets such as this, and these
high values suggest that the ensemble model categorises most of the examples as the
majority class (negatives). The remaining metrics confirm this intuition: AdaBoost.F
recall values (.50 < 𝑟𝑒𝑐𝑎𝑙𝑙 < .17) are much lower than the DNN ones (.30 < 𝑟𝑒𝑐𝑎𝑙𝑙 < .72).
However, DNN F1 and F2 scores (.14 < 𝐹1 < .24, .22 < 𝐹2 < .30) result much better
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Figure 3.6: Strong (top) andweak (bottom) scalingwallclock time performance obtained
by AdaBoost.F (decision trees) and FL (DNNs) training for 100 rounds on the PRAISE
dataset. Experiments executed on the C3S HPC infrastructure.

than the AdaBoost.F ones (.09 < 𝐹1 < .23, .07 < 𝐹2 < .19). Indeed, results reported in
Table 3.2 are even better than those shown in the original PRAISE score paper. However,
it is not possible to state that these models are better than the PRAISE model since they
have not been thoroughly evaluated, examined, and validated. Another interesting facet
of the reported DNN results is that the F metrics do not follow a monotonically growing
pattern in the number of collaborators: they show an inverted v shape. At least in the
weak scaling setting, the performances were expected to continue growing due to the
increase in data provided by the additional collaborators. A possible explanation might
be that FL hardly leverages all the available data when the number of involved parties
grows, almost to the point of making adding new parties to the federation no longer
worthwhile if their local data is not a significant amount.

Figure 3.6 shows the execution times of 100 training rounds for federated DNN and
AdaBoost.F in the strong and weak scaling settings, respectively. The strong scaling
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setting with a single envoy, identical to a non-federated process, is considered a base-
line. Training a DNN with fedAvg is between 5 and 30 times longer than training an
ensemble of decision trees with AdaBoost.F in both settings. However, this gap is much
more evident when considering only the actual computation time, as the overhead in-
troduced by serialisation and communication is much more evident with AdaBoost.F.
Plus, the communication time appears to be the actual bottleneck in the overall execu-
tion, as the total training time increases with the number of federation members. When
analyzing the two algorithms’ strong andweak scaling behaviour, it is worth noting that
the DNN follows a common trend in both settings. Indeed, the total time to solution
decreases with more collaborators in the strong scaling setting, while it remains almost
constant in the weak scaling one. Conversely, the time to solution decreases only up
to 8 collaborators in the strong scaling setting with AdaBoost.F, and it linearly grows
up in the weak scaling setting. This behaviour is justified because the second phase of
the algorithm requires each collaborator to evaluate 𝑛 decision trees on the local data to
determine the best one, where 𝑛 is the number of collaborators in the federation. This
finding suggests that the benefit of using AdaBoost.F will be much more evident with a
more efficient, high-performance FL framework; also, standard FL would witness bet-
ter scaling and computational performance if current FL frameworks could better target
the main computational issues of this approach.

3.2 OpenFL-extended
Having proven that FL is a suitable path for the future development of distributed, ef-
ficient, and privacy-preserving ML techniques, it is now time to analyse the technical
computer science challenges underlying it. More specifically, an off-the-shelf, open-
source, industry-grade FL framework, Intel® OpenFL, is considered. Intel® OpenFL is
deconstructed and analysed from a parallel and distributed computing point of view,
and some internal issues are improved and corrected. This software engineering effort
formed the basis for re-structure part of Intel® OpenFL to accommodate the AdaBoost.F
algorithm, making Intel® OpenFL officially the first model-agnostic FL framework on
the market. The produced software, OpenFL-extended (OpenFL-x), is then experimen-
tally tested to prove both the AdaBoost.F algorithm implementation correctness and the
framework computational performance. All this work is done in collaboration with the
Intel® OpenFL official developer team, confirming the industrial interest in this project
and its impact on the FL community. OpenFL-x is open-source and freely available on
GitHub2.

59



Model-Agnostic Federated Learning

Figure 3.7: Intel® OpenFL core software architecture. Higher-level software compo-
nents that allow more structured and durable federations are omitted. The internal
framework’s components (depicted in blue) are the target to be modified for the Ad-
aBoost.F implementation.

3.2.1 Intel® OpenFL software architecture
Intel® OpenFL is an open-source FL framework developed by Intel® Labs and Intel®
Internet of Things Group. It is a project hosted by the Linux Foundation that aims
to be community-driven software constantly improved by users’ contributions. In-
tel® OpenFL is entirely developed in Python 3 and relies on gRPC and protobuf for
its communications. It is DL-framework-agnostic, supporting any DL library avail-
able through a plugin mechanism. Intel® OpenFL aims to support long-lasting feder-
ations by creating an overlay network between the participant to the federation; such
a distributed service is then in charge of scheduling and handling the execution of the
different FL experiments pushed to the system’s queue. Underlying these long-lived
components, the core classes of Intel® OpenFL run the actual FL experiment.

As depicted in Figure 3.7, the Collaborator and Aggregator classes are the main
actors instantiated by OpenFL, which then exploit all the other software components.
These two classes create a client-server structure, where a single Aggregator orches-
trates the FL workload on the Collaborators connected to it. Each Collaborator
at start-up time tries to connect to its designated Aggregator; if it is not found, the
Collaborator shuts down. These connections are TCP-based and are supposed to re-
main active for the whole duration of the FL process. In this sense, Intel® OpenFL is

2https://github.com/alpha-unito/Model-Agnostic-FL
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a connection-oriented software, exposing minimal functionalities for handling discon-
nected and straggler Collaborators. Once the Aggregator and all the Collaborators
are correctly set up and connected, the FL experiment execution can start.

The FL experiment is described entirely by the user and is the only part of the frame-
work that the user is supposed to write/modify him/herself. Figure 3.7 represents such
software components in orange and specifies their location on the local file system,
suggesting user ownership. The DL/ML Model and Dataset specification are usually
given in one Python file, named in the following experiment file, together with the def-
inition of the train and test functions, data preprocessing, metrics collection, et similia.
As such, the experiment file defines all the traditional ML algorithms and hyperparam-
eters of the FL process. All these specifications will then be injected into the FL process
in the right places through the FL Plan, a YAML file describing the actual FL process.
This configuration file specifies a wide range of information guiding the FL process con-
cretely, such as which classes to instantiate as Aggregator and Collaborator, which
path to use to save the trained models, which hyperparameters to use, networking pa-
rameters, which tasks to accomplish, and many others. The standard Intel® OpenFL
plans support only three different tasks:

• aggregated_model_validation: test set validation of aggregated model;

• train: local training of the model;

• locally_tuned_model_validation: test set validation of local model.

Each task is a complex field, allowing the user to specify which function to use to realise
it; this is how Intel® OpenFL allows the user to inject custom Python code into the
framework to customise the FL computation. The specified tasks are then executed
cyclically for the number of specified federated rounds.

The inner working classes of OpenFL, represented in blue in Figure 3.7, are then in
charge of computing the FL workload. Such software components are numerous and
complex; here, only a high-level perspective of the resulting workflow is given. The
first step in the Intel® OpenFL computation is the FL Plan parsing, allowing the user’s
specifications and custom code to percolate into the framework. Then, the Aggregator
instantiate the DL/ML Model initial weights; such values can be randomly generated at
runtime or loaded from the local file system by adequately configuring the FL Plan.
Such weights are then serialised and sent to each Collaborator that can instantiate
a local DL/ML Model. Each Collaborator execute the tasks specified in the FL Plan
iteratively for the number of specified federated rounds. At the end of each task, its
final result is communicated back to the server. Such communication can contain per-
formance metrics if the task runs evaluation workloads or a new set of DL/ML Model
weights if it runs a training workload. Notice that each time weights are exchanges, the
DL/ML Model are locally re-instantiated. The Aggregator takes care of synchronising
all Collaborators at the end of each task, collecting the global performance met-
rics, and concretely running the aggregation of the DL/ML Models. Both Aggregator
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and Collaborators keep track of the collected metrics and the trained models locally
through a Pandas database. The stored information is represented in green in Figure 3.7.

All the communications in the framework are handled through the RPC model,
specifically with the gRPC library, represented in black in Figure 3.7. This commu-
nication model is implemented by having a passive Aggregator, which methods are
remotely invocated by the Collaborators. The sequence in which the Aggregator
methods are invocated is then established by the Collaborators, which themselves
are directed by the tasks sequence specified in the FL Plan. Such gRPC calls require
the exchange of the functions’ parameters and the methods’ results; these objects are
serialised before being sent through the protobuf library. Since this exchanged data can
be subject to interception or sniffing, communications can be TLS-encrypted.

The high-level software components are now briefly introduced. To build long-
lasting federations, Aggregator and Collaborator are abstracted into distributed
services, named Director and Envoy. Such software components are supposed to be
started on the respective institutions and run as services. The user is then able to sub-
mit to the Director one or more FL experiments through a Python API; the Director
takes then care of instantiating the necessary Aggregator and Collaborators, dis-
patching the experiments, and collecting the results.

3.2.2 Model-agnostic federated learning
Intel® OpenFL does not support non-DNN models by default, as almost all of the FL
framework discussed in Section 2.2.3. The few that do, support only a few special cases,
such as gradient-boosting decision trees or other gradient-based techniques. No FL
framework available on the market can be defined as model-agnostic, i.e., capable of
supporting an FL workload independently from the ML trained locally. The reason
for this is twofold. On the one hand, modern FL frameworks still try to achieve suffi-
cient technical maturity rather than add new experimental functionalities. On the other
hand, model-agnostic federated algorithms are still new and little investigated, and their
efficacy has yet to be comprehensively proven. This effort of bringing AdaBoost.F to a
stable, industry-grade, open-source FL framework such as Intel® OpenFL thus results
also in the creation of the first freely available Model-Agnostic FL framework available
for research purposes, since AdaBoost.F works independently from the underlying ML
model chosen as a weak learner.

Analysing more in-depth the three federated adaBoost algorithms proposed in [135]
and briefly discussed in Section 3.1.4 (namely DistBoost.F, PreWeak.F, AdaBoost.F), a
common underlying communication protocol can be extracted. The result of this anal-
ysis can be observed in Figure 3.8, and can be summarized as:

1. The aggregator receives the dataset size 𝑁 from each collaborator and sends them
an initial version of the weak hypothesis.
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(a) DistBoost.F (b) PreWeak.F (c) AdaBoost.F

Figure 3.8: Graphical representation of the DistBoost.F, PreWeak.F, and AdaBoost.F pro-
tocols. 𝑁 is the dataset size, 𝑇 is the number of training rounds, ℎ the weak hypothesis,𝜖 the classification error, 𝛼 the adaBoost coefficient. The subscript 𝑖 ∈ [1, 𝑛] indices the
collaborators and the superscript 𝑡 the training rounds (with 0 standing for an untrained
weak hypothesis). 𝑐 ∈ [1, 𝑛] is the index of the best weak hypothesis in the hypothesis
space. The red dotted line in PreWeak.F highlights the absence of communication.

2. The aggregator receives the weak hypothesis ℎ𝑖 from each collaborator and broad-
casts the entire hypothesis space to every collaborator.

3. The errors 𝜖 committed by the global weak hypothesis on the local data are calcu-
lated by each client and sent to the aggregator.

4. The aggregator exploits the error information to select the best weak hypothe-
sis 𝑐, adds it to the global strong hypothesis and sends the calculated adaBoost
coefficient 𝛼 to the collaborators.

Note that 𝑁 is needed to adequately weigh the errors committed by the global weak
hypothesis on the local data, allowing to compute 𝛼 correctly.

These generic model-agnostic federated protocols are more complex than the stan-
dard FL one. One more communication for each round and the exchange of complex
objects across the network (the weak hypotheses) are required, strongly impacting the
computational performance. Note that each arrow going from collaborator 𝑖 to the ag-
gregator in Figure 3.8 implies a synchronisation barrier among all the collaborators in
the federation. Increasing the number of global synchronisation points reduces con-
currency and increases the sensitivity to stragglers. Once an FL framework handles
the common protocol structure, implementing any of the three algorithms requires the
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same effort. Thus, implementing AdaBoost.F into Intel® OpenFL not only creates the
first MAFL framework on the market but also opens the door to experimenting with
other MAFL algorithms.

Different MAFL algorithms provide different solutions to the same FL problem. De-
spite being similar once abstracted from their low-level details, the three MAFL algo-
rithms reported in Figure 3.8 all explore a different hypothesis space. While step 1 is in-
herently a setup step, DistBoost.F and AdaBoost.F repeat steps 2-4 cyclically; PreWeak.F
instead fuses steps 1 and 2 at setup time, receiving from each collaborator 𝑇 instances of
already trained weak hypotheses (one for each training round) and broadcasting 𝑛 × 𝑇
models to the federation. Then, each federated round 𝑡 loops only on steps 3 and 4
due to the different hypothesis space the algorithms explore. While DistBoost.F and Ad-
aBoost.F create a weak hypothesis during each federated round, PreWeak.F creates the
whole hypothesis space during step 2 and then searches it for the best solution. All
three algorithms produce the same strong hypothesis and adaBoost model, but they
differ in the selection of the best weak hypothesis at each round:

• DistBoost.F uses a committee of weak hypotheses;

• PreWeak.F uses the weak hypotheses from a fully trained adaBoost model;

• AdaBoost.F uses the best weak hypothesis trained in the current round.

This is just one example of how opening the FL software environment to adopt more
flexible communication protocols and more powerful serialisation techniques would
allow ML practitioners to find innovative solutions to already-known ML problems.

3.2.3 OpenFL-extended implementation
Redesigning Intel® OpenFL comprises two main goals: allowing more flexible protocol
management and making the whole infrastructure model-agnostic. These operations
require modification of the core classes of OpenFL. All the changes to the original soft-
ware explored in the following are made in the least invasive way possible, trying to
respect the original Intel® OpenFL design principles. This choice implies that the soft-
ware components most subject to modifications are those depicted in blue in Figure 3.7,
i.e., the core Intel® OpenFL classes. Minor fixes are also applied to the orange ele-
ments, i.e., the user interface, to allow the user to personalise the framework workflow
completely. Such changes make it possible to use Intel® OpenFL with its standard be-
haviour, i.e., standard FL, or to use the newly introduced AdaBoost.F algorithm with
any ML model as a weak learner. The obtained software, OpenFL-x , is thus both FL and
MAFL compliant.

The FL Plan directs the Intel® OpenFL run time. The original Intel® OpenFL Plan
is rather primitive in its functions. It is not entirely customisable by the user, and many
of its fields are overwritten at run time with default values. Due to its unused power,
the parsing of the plan file has been extended and empowered, making it capable of
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handling new types of tasks and a higher range of arguments (and also making it eval-
uate every parameter in the file). The newmodel-agnostic workflow can be triggered by
specifying the nn: False argument under the Aggregator and Collaborator fields.
The specific steps of the protocol can then be listed in the tasks section. In OpenFL-x ,
the tasks vocabulary comprises three additional tasks:

• weak_learners_validate: test set validation of the weak hypothesis;

• adaboost_update: update of the global parameters of AdaBoost.F on the Col-
laborators and the ensemble model on the Aggregator;

• adaboost_validate: local test set validation of the aggregatedAdaBoost.Fmodel.

The weak_learners_validate task is similar to aggregated_model_validation;
however, it returns additional information for AdaBoost.F, such as which samples are
correctly predicted/mispredicted and the norm of the samples’ weights. This extended
set of tasks allows the users to use new MAFL algorithms, such as AdaBoost.F. Ad-
ditionally, if the adaboost_update task is omitted, it is possible to obtain a simple
Federated Bagging behaviour. Switching behaviour requires small actions other than
changing the Plan; however, both functionalities are documented with tutorials in the
code repository.

The communications between the Aggregator and the Collaborators are revised
to allow these new tasks to be executed correctly. New messages are implemented into
the original communication protocol, allowing data exchange other than ML/DL mod-
els and performance metrics since AdaBoost.F relies on exchanging locally calculated
parameters. Furthermore, Intel® OpenFL only implements two synchronisation points
in its original workflow: one at the end of the federation round and one when the
Collaborator asks the Aggregator for the aggregated model. These synchronisation
points are hard-coded into the software and cannot be generalised for other uses. For
the AdaBoost.F workflow, a more general synchronisation point is needed: each task
specified in the FL Plan requires a synchronisation point at its end since each task
depends on the previous one. AdaBoost.F thus requires more synchronisation points
than standard FL. A new synch message is thus added to the original gRPC proto-
col. The working mechanism of this synchronisation point is straightforward: each
Collaborator asks for a synch at the end of each task, and if all Collaborators
have not finished the current task, then it waits a fixed amount of time before trying
the synchronisation again; otherwise, it is allowed to continue to the next task. This so-
lution, even if not highly efficient, respects the Intel® OpenFL internal synchronisation
mechanisms and does not require any disruptive redesigning of the original software.

Switching to the central core classes of Intel® OpenFL, both Aggregator and Col-
laborator are revised to allow their behaviour to adapt to both DL and ML models
and to handle correctly the new tasks specifiable in the FL Plan. The Collaborator
class now offers different behaviours according to the ML model used in the computa-
tion. Suppose that the FL Plan specifies that the training will not involve DNNs: the
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Collaborator will actively keep track of the parameters necessary to the AdaBoost.F
algorithm, like the mispredicted examples, the weight associated with each data sam-
ple, and the weighted error committed by the models. In this case, the internal database
changes policies, changing tags and names associated with the entries to make possi-
ble finer requests. Counterwise, if the FL Plan specifies a standard FL behaviour, the
Collaborator falls back to its original behaviour, maintaining backward compatibility.
On the other hand, the Aggregator is extended to handle any DL/ML Model (instead
of only DNNs weights), aggregation functions instantiated dynamically from the FL
Plan file, and the synchronisation needed at the end of each task. New methods allow
the Aggregator to query the internal database more finely, thus allowing it to read
and write the DL/ML Modelwith the same tags and name as the Collaborator, main-
taining coherency between the two entities and allowing correct communication when
exchanging stored values.

TensorDB, the internal class used for storage, is modified to accommodate the new
behaviours described above. This class implements a simple Pandas data frame respon-
sible for model storage and retrieving done by the Aggregator and Collaborator.
Furthermore, its clean_up method has been revised, making it possible to maintain
a fixed amount of data in memory. This fix has an essential effect on the computa-
tional performance since the TensorDB query performance is directly proportional to
the amount of data it contains, and, in the standard Intel® OpenFL, the dataset size
grows linearly in the number of federated rounds.

Finally, the more high-level and interactive classes, namely Director and Envoy,
and the serialisation library are updated to work correctly with the new underlying
code base. This effort results in a model-agnostic FL framework that supports the stan-
dard DNNs-based FL workflow and the new adaBoost.F algorithm. Using the software
in one mode or another does not require any additional programming effort from the
user; a few simple configuration instructions are enough. Additionally, the installation
procedure has been updated to incorporate all new module dependencies of the soft-
ware. The provided OpenFL-x repository provides a complete set of tutorials, making
it easy for any developer to get started with this experimental software and reproduce
the proposed experimental results.

Using traditional ML models instead of DNNs drastically reduces the computational
load that Intel® OpenFL has to sustain. Moreover, AdaBoost.F requires one additional
communication phase per round compared to standard FL. This fact exacerbates the
impact of time spent in communication and synchronisation on the overall system per-
formance. Many optimisations are implemented during the extension of Intel® OpenFL
to reduce such communication impact, and their impact on the system overhead is now
analysed. As depicted in Figure 3.9, optimised OpenFL-x achieves a 5.5x speedup on a
simple FL use-case compared with its not optimised version. A 10-leave decision tree is
trained on the adult dataset over 100 federated rounds using 9 nodes (1 aggregator plus
8 collaborators) as a baseline workload. Physical machines are used to obtain stable and

66



3.2 – OpenFL-extended

	0

	100

	200

	300

	400

	500

No	optimisations Buffer	size CloudPickle TensorDB Sleeps All	optimisations

Ex
ec
ut
io
n	
tim

e	
(w
al
lc
lo
ck
)	
(s
)

Kind	of	optimisation	exploited

Figure 3.9: Ablation study of theOpenFL-x optimisations implemented. The test federa-
tion comprehends 8 collaborators trained on the IID split adult dataset for 100 rounds.
The 95% CI has been obtained over 5 executions.

reliable computing times, as execution times on bare-metal nodes are more determinis-
tic than on cloud infrastructures. Each HPC node is equipped with two 18-core Intel®
Xeon E5-2697 v4 @2.30 GHz and 126 GB of RAM, and a 100Gb/s Intel® Omni-Path net-
work interface (in IPoFabric mode) is used as an interconnection network. Reported
times are an average of five runs ± the 95% CI. Such optimisations are now examined
individually and, despite being devised for OpenFL-x , they are also applicable to the
standard Intel® OpenFL, since none of them is strictly related to the ML model being
trained.

The baseline wall-clock execution time is 484.13±15.80 seconds; this is the start-
ing point of this ablation study. The first optimisation introduced into OpenFL-x is to
adapt the buffer sizes used by gRPC to accommodate larger models and avoid resizing
operations. Increasing the gRPC buffer from 2MB to 32MB reduced the use-case exe-
cution time to 477.0±17.5 seconds, an improvement of ∼ 1.5%. Notice that the impact
of this tuning increases in the size of the exchanged ML model. The second optimisa-
tion concerns the serialisation library, which is necessary to prepare complex objects
for exchange through the network. By using Cloudpickle, the use-case execution time
is reduced to 471.4±6.1 seconds, an improvement of ∼2.6%. Next, TensorDB perfor-
mance is examined, which access operations slow down linearly in the number of fed-
erated rounds due to the increase in the database size. Through a proper configuration,
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Table 3.4: Comparison between the F1 scores obtained by AdaBoost.F and OpenFL-x
over all the datasets tested in the original AdaBoost.F paper. The reported OpenFL-x
values are the average of 5 runs ± the standard deviation. The number of classes of
each dataset is included for reference.

Dataset Classes AdaBoost.F OpenFL-x
Adult 2 85.58 ± 0.06 85.60 ± 0.05

ForestCover 2 83.67 ± 0.21 83.94 ± 0.14

Kr-vs-kp 2 99.38 ± 0.29 99.50 ± 0.21

Splice 3 95.61 ± 0.62 96.97 ± 0.65

Vehicle 4 72.94 ± 3.40 80.04 ± 3.30

Segmentation 7 86.07 ± 2.86 85.58 ± 0.06

Sat 8 83.52 ± 0.58 84.89 ± 0.57

Pendigits 10 93.21 ± 0.80 92.06 ± 0.44

Vowel 11 79.80 ± 1.47 79.34 ± 3.31

Letter 26 68.32 ± 1.63 71.13 ± 2.02

TensorDB is set to store only the essential information of the last two federation rounds,
sufficient to guarantee the correct execution of the AdaBoost.F algorithm. This con-
figuration thus results in a stable memory occupation and access time, independently
from the number of federated rounds: the use-case execution time drops to 414.8±0.9
seconds, an improvement of ∼14.4% over the baseline. Lastly, the two sleep in the
OpenFL-x code are examined. One is needed for the end-round synchronisation, and
the other for the general synchronisation point (synch) needed at the end of each task;
their original values are 10 seconds and 1 second, respectively. Their values were both
empirically lowered to 0.01 seconds to reduce waiting times: this is the lowest waiting
time still improving the global execution time. This choice is possible due to the com-
putational infrastructures exploited in this work; it may not be suitable for wide-scale
implementations in which servers and clients are geographically distant, compute and
energy-constrained, or connected to an unreliable network. With this sleep calibration,
the global use-case execution time results in 250.8±9.6 seconds, a ∼48.2% less than the
baseline. Overall, with all the optimisations applied together, OpenFL-x achieves a final
mean execution time of 88.6± seconds, i.e. a 5.46x speedup over the baseline.

3.2.4 Experimental validation
The original AdaBoost.F paper’s experiments [135] are here replicated to investigate
the correctness of the OpenFL-x implementation. The results are compared to the orig-
inal ones, proving the soundness of OpenFL-x . These experiments involve ten different
datasets: adult, forestcover, kr-vs-kp, splice, vehicle, segmentation, sat,
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pendigits, vowel, and letter. These are standard ML datasets targeting classifica-
tion tasks, both binary (adult, forestcover, kr-vs-kp) and multi-class (all the oth-
ers), with a varying number of features (from the 14 of adult up to the 61 of splice),
and a different number of samples (from the 846 of vehicle up to the 495.141 of
forestcover). Each training set is split in an IID way across all the Collaborators,
while the testing has been done on the entire test sets. The adaBoost model class is
implemented manually, while a simple decision tree from SciKit-Learn with 10 leaves
is used as a weak learner. The computation is run on VMs allocated on a cloud in-
frastructure to simulate a real-world cross-silo FL scenario. Respecting the original
AdaBoost.F experimental setting, ten computational nodes are allocated, one for each
Collaborator, plus one more node for the Aggregator. Each VM allocates an 8-core
Intel® Xeon Processor (Skylake, IBRS) working at 2.1GHz and 8GB of RAM; the inter-
connection network is a 10Gb Ethernet.

Table 3.4 reports each dataset’s original and reproduced F1 score (mean value ± the
standard deviation over 5 runs). The experimental values are fully compatible with the
results reported in the original study, thus assessing the correctness of the implemen-
tation. It can be observed that the standard deviation intervals are particularly high for
the vehicle, segmentation, and vowel. This fact can be due to the small size of the
training set of these datasets, respectively 677, 209, and 792 samples, which, when split
up across ten Collaborators, results in an even smaller quantity of data per client,
determining the creation of low-performance weak learners. Also letter reports a
high standard deviation: this could be due to the difference between the classification
capabilities of the employed weak learner (a 10-leaves decision tree) compared to the
high number of labels present in this dataset (26 classes), making it hard to obtain high-
performance weak learners. Nonetheless, all the reported F1 scores are comprehended
inside the original paper’s margin of error, making OpenFL-x a reliable tool for further
experimentation.

The mean F1 score curve for each dataset can be observed in Figure 3.10. After an
initial dip in performance, almost each learning curve continues to growmonotonically
to higher values. This fact is expected since AdaBoost.F is supposed to improve its
classification performance the more weak learners are included in the model, i.e., in the
number of federated rounds. A newweak learner is added to the aggregated model after
round: AdaBoost.F thus grows linearly in size with the number of federated rounds.
This characteristic of the algorithmhasmany consequences, like the increasingly longer
time needed for inference and formoving the aggregatedmodel over the network. From
Figure 3.10, it is noticeable that a few tens of federated rounds are more than enough
to obtain a decent level of F1 scores in the vast majority of cases. This property is
attractive since obtaining a small and efficient AdaBoost.F model with little training
effort is possible. Instead, it is possible to obtain better-performing models with more
extended training for more complex datasets like letter and vowel. This property
implies that AdaBoost.F can produce bigger and heavier models at need, according to
the desired performance and inference complexity.
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Figure 3.10: F1 score curves (± the standard deviation) obtained by OpenFL-x with a 10-
leaves decision tree as weak learner on each dataset tested in the AdaBoost.F original
paper. Each experiment is run for 300 federated rounds and is replicated 5 times.

Figure 3.11 shows the F1 curves obtained using OpenFL-x ’s AdaBoost.F implementa-
tion with different weak learners on the vowel dataset. One representative ML model
has been chosen from each multi-label classifier family available on SciKit-Learn: ex-
tremely randomised trees (trees), ridge linear regression (linear models), multi-layer
perceptrons (MLP) (ANNs), KNN (neighbours), Gaussian naïve Bayes (naïve Bayes),
and simple 10-leaves decision trees as baselines. Each model has been used out-of-the-
box, without hyper-parameter tuning, using the default parameters set by SciKit-Learn
(v1.1.2). All ML models work straightforwardly in OpenFL-x without needing to code
anything manually: changing the weak learner class name in the experiment file results
is sufficient. Such easiness of use proves that data scientists can leverage OpenFL-x to
experiment with the MAFL approach without requiring any heavy effort.

The computational performance of OpenFL-x is now analysed. The scalability study
uses the HPC infrastructure reported earlier in this Section and Monte Cimone [19],
the first available HPC-class cluster based on RISC-V processors. Monte Cimone com-
prises 8 computing nodes equipped with a U740 SoC from SiFive integrating 4 U74
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Figure 3.11: F1 score curves (± the standard deviation) obtained by OpenFL-x using a
different ML model as weak learners each time on the vowel dataset. Each experiment
is run for 100 federated rounds and is replicated 5 times.

RV64GCB cores @ 1.2 GHz, 16GB RAM, and a 1 Gb/s interconnection network. The
forestcover dataset is selected for running these experiments, being the largest used
in this study, and split into 485K training and 10K testing sample sets. The chosen weak
learner is a 10-leaves SciKit-Learn decision tree, the same used earlier in this Section.
These experiments use just 100 federated rounds, which are enough to provide accept-
able and stable results (10 federated rounds on the RISC-V system due to the longer
computational times required). Different federations have been tested, varying num-
bers of Collaborators from 2 to 64 by powers of 2. No larger federations are tested
since Intel® OpenFL is designed to suit a cross-silo FL scenario, meaning a few dozen
clients. Two different scenarios are investigated: strong scaling, where a fixed problem
size is split uniformly across the increasing number of Collaborators, and weak scal-
ing, where a fixed size problem split is assigned to each Collaborator regardless of
the number of Collaborators involved. In both cases, the baseline reference is the
time taken by a federation comprising an aggregator and a single collaborator.

Figure 3.12 shows the strong and weak scaling properties of OpenFL-x ; each data
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Figure 3.12: Strong and weak scaling performance obtained by OpenFL-x with a 10-
leaves decision tree weak learner on the forestcover dataset on two HPC infrastruc-
tures (C3S, Monte Cimone) with different microarchitectures (x86-64, RISC-V). Note
that Monte Cimone offers up to 8 computing nodes (1 aggregator + 7 collaborators),
limiting the scale of the experiments.

point is the mean over 5 runs. The RISC-V plot stops at 7 Collaborators since Monte
Cimone offers just 8 computational nodes, and sharing a node between the Aggrega-
tor and Collaborator would affect the computational time measurements. OpenFL-x
does offer notable strong scaling performance, being unable to scale efficiently beyond
8 nodes as the execution becomes increasingly communication-bound. The same ef-
fect can also be noted for the weak scaling performance; nevertheless, the degrada-
tion appears sublinear. This fact is essential since the main benefit of an FL system is
the additional training data each contributor node provides. Thus, a real-world fed-
eration resembles a weak scaling scenario from the computational performance per-
spective. Noticeably, the RISC-V cluster exhibits a better strong scaling than the other
HPC infrastructure. This performance is justified by the slower computational speed
of the RISC-V cores, which leads to higher training times and makes the execution
more compute-bound, especially with fewer nodes. Also, the weak scalability on the
RISC-V cluster suffers from the lower network speed available. Given the discussed
experimental results and that real-world cross-silo federations rarely count more than
a dozen participants, it is possible to assess that OpenFL-x is suitable for real-world
MAFL experimentation and prototyping, offering both proved AdaBoost.F support and
sufficient scaling performance.

The implementation experience of OpenFL-x and the subsequent experimentation
made it evident that current FL frameworks are not designed to be as flexible as the
current research environment needs them to be. The standard OpenFL workflow is
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not customisable without modifying the code, and the serialisation structure is DNN-
specific, suggesting that a new, workflow-based FL framework is needed. Such a frame-
work should not implement a fixed workflow but allow the user to express any num-
ber of workflow steps, entities, the relations between them, and the objects that must
be exchanged. This property implies the generalisation of the serialisation infrastruc-
ture, which cannot be limited to tensors only. Such an approach would lead to a much
more straightforward implementation of newer and experimental approaches to FL,
both from the architectural and ML perspectives.

Furthermore, the use of asynchronous communication can help better manage the
concurrent architecture of the federation. These systems are usually slowed down by
stragglers that, since the whole system is supposed to wait for them, will slow down the
entire computation. In OpenFL-x , the waiting time between the different collaborators
participating in the training determines a significant part of the scalability issues. While
such an approach would improve the scalability performance of any FL framework, it
also underlies the need to investigate how to handle newer and older updates simul-
taneously. This capability would improve the computational performance of gradient
and non-gradient-based systems: the relative aggregation algorithms must be revised
to accommodate this new logic. This matter is not trivial and deserves research interest.
Furthermore, an exciting feature that can be added to OpenFL-x is using different weak
learners for different collaborators or federated rounds. This property would allow a
diversification that can benefit particular applications, such as IoT or data on which the
efficacy of specific ML models has already been proven. Lastly, due to the possibility
of exploiting less computationally requiring models, OpenFL-x can easily be used to
implement FL on low-power devices, such as RISC-V-based systems.

3.3 Federated anti-financial crimes
A real-world MAFL case study is now presented and discussed, proving the potential-
ities of such an approach. In collaboration with Intesa SanPaolo’s Anti-Financial Crime
Digital Hub (AFC Digital Hub), an MAFL-based proof-of-concept anti-financial crime
system is deployed. Intesa SanPaolo is the largest Italian bank at the time of writing, and
its primary legal and administrative headquarters are in Turin, Italy. The AFC Digital
Hub is a consortium constituted by the Intesa SanPaolo Innovation Center, the University
of Turin, and the Polytechnic University of Turin, among others, promoting the use of
new technologies and AI-based systems to detect and prevent financial digital crimes.
A public, freely available dataset resembling Intesa SanPaolo’s financial data is used as
a proxy to study this kind of data and its particularities. After carefully preprocessing
the available data, two FL-based approaches are tested, investigating the possibility of
collaboration between different financial institutions on such an issue. According to
the recent literature, two ML models are selected for this study: TabNet and one-class
SVM. TabNet is a DNN specialised for tabular data, and thus, its use constitutes a stan-
dard FL scenario. On the other hand, one-class SVM is a traditional ML model, and
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creating a federation out of it requires significant effort to develop an FL algorithm ca-
pable of handling it; this is an MAFL use case. The obtained results are then reported
and discussed, highlighting the difficulties of working with such complex and heavily
unbalanced data and strict regulations and company policies restricting their use.

3.3.1 Digital financial crimes detection
The continuous trend toward society’s digitalisation is impacting every aspect of peo-
ple’s lives, including money management. With an increasing portion of everyday
money exchange moving to online platforms, financial crimes are also moving towards
the digital world. Frauds, money theft and laundering, and other illegal financial ac-
tivities are moving from the physical to the digital world, and financial institutions
are rapidly adapting to this change. Fighting such a phenomenon requires advance-
ments and investments in digital competencies and technologies to keep up with ever-
evolving criminal techniques. Current systems adopted by financial institutions are
usually semi-automatic, with complex rule-based systems selecting suspect transac-
tions to be manually analysed by expert personnel. Such systems are hard-coded, with
hundreds of hand-written and experience-based rules, while manual transaction revi-
sions require many financial experts to devote their time to the job. The current systems
thus require a large economic effort, especially considering that criminal transactions
represent a minimal amount of the total, according to Intesa SanPaolo’s information,
reaching even one malicious transaction in a million. Furthermore, each financial insti-
tution handles such a process independently, leading to different detection policies for
each institution commensurate with the bank’s size, capabilities, and management.

FL is a viable option for financial institutions to collectively develop a common ML-
based system capable of integrating every single bank’s knowledge without disclosing
their precious private data. An AI-empowered system capable of continually learning
would significantly improve banks’ ability to spot and prevent criminal transactions.
Moreover, if more companies develop such a system together, the deriving ML model
would also be capable of learning the characteristics of the different criminal transac-
tions handled by different banks, significantly improving the security systems of both
large and small banks. Large companies would benefit from the knowledge the ML
model acquires from other large institutions. In contrast, smaller ones could then ex-
ploit ML model performance they could not obtain by themselves. Such an ML-based
systemwould thus be used in conjunctionwith the existing rule-based systems, improv-
ing their performance. Humans would still be needed in such a framework, making the
final decision on suspicious transactions. The explainability of such ML models is also
extremely important. It allows the human component of the loop to understand why a
particular transaction has been highlighted and eases the final decision process. Thus,
FL seems an interesting ML technique for pushing different financial institutions to
collaborate on developing new-generation anti-financial crime systems.

However, literature addressing financial crimes and FL is still very poor. On the one
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hand, FL is still not so widespread in practice. It is a relatively novel ML approach, and
its adoption requires mature software frameworks allowing it and expert ML practi-
tioners to deploy it. On the other hand, it takes a long time for a regulated industry like
the financial world to open up to new technologies. Such companies must comply with
many laws and security precautions, adopting a technology only when it is sufficiently
mature. Also, FL is a collaborative approach, and collaboration with such large institu-
tions is complex and slow, especially considering the value of each bank’s private data
and its sensibility.

Interpreting transactions as complex graphs, [159] propose a graph-FL-based solu-
tion in which local and global feature sets are calculated across each bank’s transaction
graph. This interesting approach merges FL and graph-learning approaches, but unfor-
tunately, it does not describe the actual procedures involved in great detail. Further-
more, the dataset used for experimentation is not freely available, making the provided
results non-reproducible. [32] explores the potentiality of FL in financial applications,
especially considering privacy constraints. This paper proposes an approach based on
SMC and DP to design an FL deployment that is fully compliant with regulation stan-
dards and avoids possible data leakages. [112] also exploits DP, but in conjunction
with HE, to carry out a vertical FL application across multiple financial institutions. In
this case, FL represents but one step of the proposed pipeline, which aims to connect
the behaviour of each individual on all available financial databases. However, the ex-
perimental assumptions made in this study are unrealistic. They suppose that half of
the financial institution’s clients are fraudulent, undermining the proposed approach’s
real-world applicability. Another application of DP and FL in financial applications
is found in [147], where they are used to train an autoencoder exploiting data from
multiple entities. This study models the financial crime detection problem as an un-
supervised anomaly detection problem, where fraudulent transactions are identified
by examining the autoencoder reconstruction error. Finally, [190] proposes a federated
self-supervised learning system exploiting contrastive learning to handle heavily unbal-
anced data effectively. This approach proves to be experimentally effective, providing
state-of-the-art results.

3.3.2 The synthetic financial datasets for fraud detection
Considering the literature mentioned above in digital financial crime detection, it is
clear how restricted and regulated access to real bank transaction data is. This is due
to various reasons, such as the banks’ customers’ right to privacy, the current data
processing laws, and the data’s value. However, accessing real data is the first step in
researching and developing innovative techniques impacting the real world. Unfortu-
nately, access to actual financial data is not granted for this research work; a synthetic
alternative is thus considered. Such synthetic data is generated from a real, publicly
available transaction dataset: PaySim [111]. This dataset is based on a real-world case
study in which a real company developed an electronic wallet application that allows
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users to exchange money between themselves through their smartphones. The exist-
ing transaction base has been subsequentially expandedwith the system’s transnational
financial logs, obtaining a database similar to a real financial company dataset.

From this starting point, the synthetic financial datasets for fraud etection is generated
through a repeated simulation process iterated over the PaySim dataset. This synthetic
dataset is scaled down to a quarter of the original size of PaySim and is freely available
on Kaggle3. The dataset consists of 6,362,620 transactions, of which only 8,213 are la-
belled as fraudulent, respecting the roughly 1 in a million proportion of actual financial
data. 11 features describe each data sample, here summarised:

• step: numerical time step of the transaction. The PaySim simulation is run for 30
days, for 744 1-hour time steps.

• type: categorical value describing the transaction type (CASH-IN, CASH-OUT,
DEBIT, PAYMENT and TRANSFER).

• amount: numerical value describing the amount of money moved by the transac-
tion expressed in the local currency.

• nameOrig: the customer’s name starting the transaction.

• oldbalanceOrg: numerical value reporting the customer’s balance before the
transaction.

• newbalanceOrig: numerical value reporting the customer’s balance after the
transaction.

• nameDest: name of the customer recipient of the transaction.

• oldbalanceDest: numerical value reporting the recipient’s balance before the
transaction (omitted if merchant).

• newbalanceDest: numerical value reporting the recipient’s balance after the trans-
action (omitted if merchant).

• isFraud: flag signalling that the transaction is requested by one of the fraudulent
customers of the simulation.

• isFlaggedFraud: flag signalling that the transaction violates the business model
rules (i.e., transferring an amount ≥ 200,000 in a single transaction).

In this synthetic dataset framework, fraudulent agents aim to profit by emptying regular
customers’ accounts and then cashing out of the system.

3https://www.kaggle.com/datasets/ealaxi/paysim1
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A preliminary analysis of this dataset reveals that no duplicated samples and no
missing values are present. A correlation analysis between the features exposes some
trivial correlations, such as between the new and old balances and the balances and the
transaction type. Interestingly, no strong correlation arises between the fraud flag and
the other features; just some minor correlations are found, especially with the amount
of money transferred, the transaction type, and the violation of the business model flag.
A principal component analysis (PCA) analysis reveals that the fraudulent transactions
are scattered among two of the three principal components, meaning they share one.
This fact impacts the similarity between the fraudulent samples; in fact, a similarity
analysis reveals that the positive (fraudulent) samples have a mean cosine similarity of
.36, while it is generally .03.

3.3.3 Proof-of-concept FL and MAFL experimental results
Defining a congruous experimental setting is the first step in designing a realistic proof-
of-concept federation of financial institutions. Realistically, such a federation would
not span many institutions due to the amount of work required to establish agreements
between them and to reach a common technical ground (software, algorithms, goals,
data schema, et similia). Another characteristic of such a federation is that the partici-
pants can access large computing infrastructures and stable interconnection networks
and hire expert personnel to handle the computation. Furthermore, it is assumed that
each participant has access to a vast amount of data, and no particular restrictions on
availability are considered. Based on these characteristics, the proposed FL system is
a perfect example of a cross-silo FL setting, respecting all the standard assumptions
of this scenario. This fact implies that the main aim of this proof-of-concept study is
the learning metrics obtained by the federated model over the local dataset, software
design choices, and the consequential computation and communication performances
obtained by the system are taken into consideration since the parties involved in the
federation can allocate as many computational resources as needed.

Considering the cross-silo scenario and the considerations expressed by Intesa San-
Paolo Innovation Center, a proof-of-concept federation with 4 clients is proposed. Half
of these clients are supposed to be large institutions, possessing most of the data avail-
able. In contrast, the other half are supposed to be small institutions, holding much less
data than the others. This choice is made to investigate the impact of highly imbalanced
data distribution across the client on the final federated ML model. Ideally, the feder-
ated model could exploit the large amount of data provided by the larger institutions
to learn as many fraudulent patterns as possible while exploiting the smaller ones to
learn more particular fraudulent patterns not found in the larger ones. This problem
is particularly interesting in FL research since it is highly problematic to exploit each
data source at its best without letting the knowledge contained in larger datasets over-
whelm the smaller ones and vice versa. The exact data split used in the experiment is
reported in Table 3.5. As can be seen, split 1 and 2 possess the same amount of data
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Table 3.5: Number of data samples, positive samples, and their relative percentage for
each of the four dataset splits adopted in the anti-financial crimes experiments. The
table’s bottom section reports the dataset’s global information.

Dataset # samples # positive samples % positive samples
Training set (split 1) 2,217,065 3,016 .14
Training set (split 2) 2,217,066 2,974 .13
Training set (split 3) 204,556 208 .10
Training set (split 4) 228,717 106 .05

Training set 4,867,404 6,304 .13
Validation set 540,823 688 .13
Test set 954,393 1,221 .13

( 2,217,000 samples), which in turn is an order of magnitude larger than split 3 and 4
( 200,000 samples); however, all of them share a similar percentage of positive sample
( .13), apart from split 4, which has a notably lower one (.05).

According to the reviewed literature, two different models are selected for inves-
tigation: TabNet and one-class SVM. TabNet [15] is an open-source4 PyTorch imple-
mentation of a deep tabular data learning architecture. It exploits sequential attention
to choose which feature to focus on at each decision step, concentrating the learning
power of the model on the most impacting features. TabNet outperforms the other
deep tabular data learning models available at the time of writing and guarantees in-
terpretability at both feature and global levels. On the other hand, one-class SVM is an
anomaly-detection-orientedmodel based on SVM. Anomaly detection is a branch of ML
that identifies data samples that do not conform to the data’s expected behaviour. In
this setting, anomaly detection can be helpful since fraudulent data can be considered
anomalous among all the fair ones. The PCA has previously confirmed this consider-
ation: fraudulent transactions present different characteristics from the others. These
two models offer the possibility of investigating standard FL and MAFL approaches to
this research problem.

Obtaining a federation out of TabNet is straightforward; once the TabNet PyTorch
model is extracted from the SciKit-Learn wrapper, it can be treated as any other DNN.
Any standard FL framework can handle such a PyTorch DNN; it should only be no-
ticed that the SciKit-Learn wrapper provided some hyper-parameter tuning and pre-
processing functionalities that must be re-implemented in the FL framework. On the
other hand, federating one-class SVM requires an algorithmic effort. Anaissi et al. [12]
propose a federated one-class SVM training algorithm based on fedAvg, in which the
one-class SVM local models are trained through an SGD-based procedure sharing the

4https://github.com/dreamquark-ai/tabnet
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Table 3.6: Learning performance obtained by one-class SVM and TabNet on the PaySim
dataset. The centralised model performance are reported as a baseline, together with
the performance that each client obtains on the local data split and the performance of
the federated model.

run 1 run 2 run 3 run 4 run 5 𝜇 ± 𝜎
on

e-
cl
as
sS

VM

Local split 1 .789 .928 .663 .785 .912 .815± .108

Local split 2 .72 .843 .906 .783 .843 .819± .070

Local split 3 .802 .782 .529 .739 .862 .743± .127

Local split 4 .763 .805 .731 .528 .675 .700± .107

Centralised .923 .94 .907 .971 .955 .939± .025

Federated .677 .727 .601 .604 .608 .643± .056

Ta
bN

et

Local 1 .971 .960 .962 .982 .992 .973± .014

Local split 2 .971 .964 .963 .981 .965 .969± .007

Local split 3 .838 .818 .676 .875 .792 .800± .076

Local split 4 .351 .698 .549 .600 .695 .579± .142

Centralised .963 .988 .920 .984 .981 .967± .028

Federated .905 .919 .914 .910 .870 .904± .019

coefficients of the features in the kernel space. This algorithm allows the server to
aggregate the local models by simply averaging their parameters. Only the above-
median loss models are considered for aggregation, strengthening it against possible
low-performing parameters. The proposed procedure is thus very similar to a stan-
dard FL scenario and does not require heavy software refactoring of an off-the-shelf FL
framework.

Given the proposed proof-of-concept federation’s enterprise level, an enterprise-
level framework is needed to provide the necessary FL software infrastructure. NVIDIA
FLARE is selected among all the reviewed FL frameworks due to its technical maturity,
security features, and enterprise-level support. NVIDIA FLARE is an open-source, DL
framework-agnostic FL framework. It offers out-of-the-box support for advanced pri-
vacy features such as HE and DP, which can be extremely important for financial insti-
tutions. Furthermore, it eases the development process of a federation by allowing both
simulated, proof-of-concept, and real-world deployment. Furthermore, it offers basic
support for some FL algorithms based on traditional ML models, such as XGBoost. All
the characteristics mentioned above make it possible to implement both the standard
FL (TabNet) and the MAFL (one-class SVM) workload in reasonable development time.
All the presented experiments are run in simulation mode.

Table 3.6 summarises the obtained experimental results. As can be seen, TabNet
AUC values obtained by the smaller clients (.800, .579) are noticeably lower than both

79



Model-Agnostic Federated Learning

the centralised (.967) and federated ones (.904). This difference in performance deter-
mines an advantage for small institutions participating in such a federation since they
will gain a better model than the one they could obtain. However, this knowledge trans-
fer does not happen the other way around: the larger institution obtains higher AUC
values (.973, .979) than the centralised (.967) and the federated (.904) scenarios. These
results mean that the standard fedAvg procedure used in the experiments cannot pro-
duce a federated model containing the knowledge of both the small and large parties.
Instead, it produces a model that is the average of them. This consideration implies
that some of the knowledge contained in the large institutions’ models is lost in the
aggregation process. These results would thus push large institutions to exclude small
clients from their federation since they would not gain anything from it and would
obtain a federated model worse than the one they would obtain by themselves. This
phenomenon is further highlighted by the fact that the federated model AUC mean
value (.904) is much lower than the centralised one (.967). A different, more complex
aggregation strategy needs to be implemented to justify the real-world deployment of
such a federation. Ideally, the knowledge of large and small institutions should be con-
tained in the final aggregated model, reaching performance comparable to those of the
centralised model. Furthermore, TabNet is very sensitive to its randomly selected initial
weights: it can happen that some runs do not converge at all. Such runs are excluded
from the presented results.

On the other hand, one-class SVM results are, unfortunately, a complete failure.
While the centralised model obtains an AUC value (.939) that is comparable to the cen-
tralised TabNet one (.967), the federated model’s AUC (.643) is not comparable to Tab-
Net’s one (.904). Even worse, no institution actually gains anything from the federation:
each local individual model AUC (.815, .819, .743, .700) is higher than the federated one
(.643), indicating that no knowledge accumulation is occurring in the federated model.
The only positive result obtained by one-class SVM is that it obtains better performance
when dealing with highly unbalanced datasets: the mean AUC of client 4 (.700) is much
higher than the one obtained by TabNet on the same client (.579). However, one-class
SVM is also heavily influenced by the random initialisation of its parameters, and it
performs very poorly if not finely tuned.

As an additional experiment, AdaBoost.F has been tested on this proof-of-concept
financial federation. Standard adaBoost is run on the whole (centralised) dataset as a
comparison metric. AdaBoost.F obtained the same accuracy value of centralised ad-
aBoost but with slightly better precision (.971) and recall (.857).
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Chapter 4

High-Performance Federated
Learning

This chapter discusses this PhD thesis’s second main scientific contribution: FastFL.
An analysis of modern commercial FL frameworks introduces all the design flaws that
could negatively impact their computational performance. The communication topolo-
gies, the chosen communication backend, and the programming languages used in such
software implementations are analysed, highlighting howmuch these elements can im-
pact computational performance. Since current FL frameworks are based on usability,
extensibility, and stability, their computational performance is not particularly devel-
oped. As discussed in the previous chapter, many new types of FL algorithms may
arise, each stressing the software’s computation or communication capabilities. Mod-
ern software is not ready to adapt to newer, non-DL-based FL algorithms or the grow-
ing scale of FL applications. An innovative top-down approach to FL is proposed to
address the abovementioned computational issues. The FastFlow parallel computing
framework is selected to handle both the communication topology and backend, and
the FastFL FL framework is built on top of it. It is high-performance oriented due to
its C/C++ implementation, supports TCP/MPI communications, and allows shared and
distributed memory executions of the same code. Having the bottom software layer, the
abstract, top-level interface to such framework is provided by the RISC-𝑝𝑏2𝑙 formal lan-
guage, able to describe abstractly any computation implementablewith FastFlow. These
two elements are then included into FastFL by offering automatic translation from the
high-level RISC-𝑝𝑏2𝑙 description of a federation into a low-level FastFlow implemen-
tation. A Python DSL wrapping the RISC-𝑝𝑏2𝑙 language is then described, completing
the software stack offered by FastFL. The computational performance of FastFL is then
analysed and discussed, proving that FastFL is a successful proof-of-concept of a high-
performance oriented FL framework.
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Table 4.1: Brief overview of the most widespread and mature FL frameworks available
in the literature. For each of them are reported the targeted applications, the deploy-
ment scenarios, the communication protocols used, the programming language used
for implementation, and the possibility of building federations based on custom com-
munication graphs.

Framework Target Scenario Comm. protocol Impl. Custom
comm. graph

TFF [16] Cross-silo Simulation
Real world gRPC/protobuf Python ×

PySyft [194] Cross-silo
Cross-device

Simulation
Real world Websockets Python ×

SecureBoost [44] Cross-silo Simulation
Real world gRPC/protobuf Python ×

FederatedScope [179] Cross-silo
Cross-device

Simulation
Real world gRPC/protobuf Python ×

LEAF [34] Cross-silo Simulation — Python ×
FedML [81] Cross-silo Simulation

Real world
gRPC/protobuf
MPI, MQTT Python ×

OpenFL [71] Cross-silo Simulation
Real world gRPC/protobuf Python ×

Flower [23] Cross-silo
Cross-device

Simulation
Real world gRPC/protobuf Python ×

FastFL [121] Cross-silo Simulation
Real world

TCP/Cereal
MPI/Cereal C/C++ ✔

4.1 Current federated learning frameworks’ limits
Many off-the-shelf FL frameworks are currently available, each with specific character-
istics. Figure 4.1 summarises the most well-known and mature of them based on [21].
As can be seen, most of them share the same design choices: all support the cross-silo
scenario, are implemented in Python, and offer simulation functionalities. Almost all
share the same communication protocol based on gRPC and protobuf. These simili-
tudes imply that the core design ideas behind many current FL frameworks are similar.
It derives that the derived software offers very similar functions engineered in differ-
ent ways. This fact does not hinder the different FL frameworks’ utility and efficacy,
especially considering the highly regulated environment in which FL has to foster coop-
eration. However, it highlights that the FL scenario is currently getting fixed on certain
expectations and axioms without trying to follow other possible development paths.
This section addresses this issue by considering three different aspects of current FL
frameworks that can particularly hinder computational performance.
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First, standard FL is mainly based on a master-worker approach, overlooking other
possible structures to handle communications between different parties. Despite many
pros, master-worker is not a remarkably scalable communication structure and is li-
able to the single-point-of-failure issue. Second, commonly used FL frameworks offload
their communication logic to a gRPC and protobuf backend, which is not particularly
fast or flexible. Standard HPC approaches, like MPI, could offer better communica-
tion costs, even if they require a more careful implementation. Lastly, most current FL
frameworks are implemented in Python. While this approach is convenient from a de-
velopment point of view, the amount of resources required by modern Python software
and the resulting computational performances are not compatible with a vision of FL
aiming at supporting the ever-evolving computing continuum environment. Addition-
ally, no FL framework is designed to natively support emerging computational architec-
tures, such as RISC-V. The emergence of alternative instruction set architectures (ISAs)
to x86-64 and ARM-v8 exacerbates the challenges in porting (optimised) libraries and
guaranteeing interoperability between heterogeneous systems. This research strand
proposes that the modern FL framework should be flexible in defining the system ar-
chitecture and communication patterns to open up research on alternative FL systems
and exploit optimised distributed runtimes for optimal performance on different ISAs.

4.1.1 Communication topologies
Communication topologies are a well-known topic in parallel and distributed comput-
ing. When multiple processes cooperate to solve a common task, allowing fast and
reliable information sharing between them is critical to enhance computational per-
formance. Processes can be organised according to several different topologies, each
with pros and cons. Thus, if it exists, the best communication topology for a given
task has to be chosen according to the specific deployment scenario. When making
these choices, communication link bandwidths, local computational power, available
storage, and business requirements should all be considered. It is worth noting that
different communication topologies can be exploited to carry out the same computa-
tion but with different properties, like the number of communications required or the
total amount of computation of the whole system. Three communication topologies
used later in this chapter to model DML workloads are characterised: master-worker,
peer-to-peer, and tree. They are graphically represented in Figure 4.1.

The master-worker topology is one of the most common and widely used. In this
schema, one process distinguishes itself from the ”master”, while all the others are
known as ”workers”. The master coordinates the workers, devoting its computing ca-
pabilities to split the computation into smaller shards, assigning them to the worker
processes and retrieving the partial results. The master is thus the pivot of the com-
putation and the only process directly communicating with all the other ones. This
latter aspect can be identified as this topology’s strongest and weakest property. On
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Figure 4.1: Three examples of communication topologies (tree, master-worker, and
peer-to-peer) that are not all supported by current FL frameworks. Each has its proper-
ties: the tree can be exploited for EI tasks (for example, a multiview detection system),
the master-worker for centralised FL workloads, and peer-to-peer for FL deployment
in which a central point of failure is not desirable.

the one hand, having a single synchronisation, communication, and management pro-
cess makes software development and deployment simple, simultaneously achieving a
decently low number of communications in the system. On the other hand, having a
multitude of processes continuously communicating towards a single process can easily
lead to difficulties in obtaining timely responses from the master, possibly saturating its
bandwidth and resources, thus slowing down the entire system. This fact can limit the
scalability properties of this approach. Also, having a single process handling a large,
complex system constitutes a single point of failure, meaning that the whole system
fails if this single process fails; it also opens up privacy issues since the master process
would be the preferred target for attacks. FL frameworks commonly implement this
communication topology and usually decline it into the client (worker)—server (master)
perspective. The workers are deployed on the client side, where data resides, receive
the ML centralised ML model from the master, actively train it on the local hardware,
and send it back to the master. The master is instead deployed server-side, usually on
a third-party service, like a could VM: it instantiates the client processes and provides
themwith the initial ML model; when it receives back the established number of locally
trained models, aggregates them and sends the result back to the workers. The process
continues iteratively until the ending condition is met; at this point, the master ends
the workers and terminates the FL systems.

The peer-to-peer topology offers an entirely different take on processes’ organisa-
tion and communication. In this case, no process distinguishes itself from the others:
they are all peers, each executing the same functions. The result is a completely dis-
tributed structure without a central communication point and, consequently, without a
single point of failure. It follows that the processes should handle computation and par-
tial computation results accumulation simultaneously, effectively acting as both clients
and servers, complicating code development and deployment. Performance-wise, this
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communication topology offers extended flexibility and attack resiliency. However, it
requires a higher number of communications to carry out the same computation, which
strongly limits scalability when dealing with a large number of peers. In the FL context,
this communication topology requires each process to train the local model on the local
data and then send it to all the other processes while simultaneously receiving all the
other processes’ locally trained models. As can be seen, the amount of data exchange
in this context grows exponentially in the number of peers, while in the master-worker
scenario, it grows linearly in the number of workers.

Finally, another communication topology that will be exploited later in this chapter
is the tree. A tree structure is a hierarchical system in which each process masters its
subgroup of processes. This structure starts iteratively from a single process, called root,
and proceeds recursively up to the last processes in the tree, called leaves, constituting a
direct, acyclic graph. This topology retains both master-worker and peer-to-peer prop-
erties. It maintains a single point of failure, the root node, but all the intermediate nodes
of the tree can fail without making the whole structure fail. It also limits the amount
of communications directed to a single process, thus limiting the communication chan-
nels bottleneck effect, and the total number of communications grows slower than the
peer-to-peer topology. When looking at FL, this structure can turn particularly useful
for distributed EI tasks, where the leaves of the tree act as data-harvesting processes,
the intermediate nodes as partial aggregation or feature extraction steps, and the root
as the decisional endpoint.

4.1.2 Communication backends
Having a lower-level look at how communications are implemented in practice, it can be
noticed that almost all of the FL frameworks listed in Table 4.1 rely on the gRPC/pro-
tobuf combination to provide this functionality. This design choice can be justified
from a software engineering point of view, easing the communication modelling effort.
gRPC (Google RPC) is an open-source, cross-platform framework implementing RPC
functionalities. It uses HTTP/2 for transport and protocol buffers (protobuf) as inter-
face description language. The RPC paradigm revolves around the procedure concept,
meaning that procedures and their inputs and outputs are the fundamental objects of re-
mote communication. In gRPC, this paradigm is notably declined towards web services:
a client-server architecture is assumed, in which the server exposes the procedures the
clients remotely call. To realise this, clients possess a stub, a gRPC object describing
the procedures available for remote calling on the server side. Thus, client-server com-
munications acquire point-to-point properties, with procedure execution as granularity
level. While effective in web-based, service-oriented software, it may not be the best
solution in the FL context due to its underlying assumptions. Having a communication
protocol capable of handling collective communications and working at a lower granu-
larity could greatly improve the malleability of FL software’s distributed structure while
obtaining even better communication performance as a byproduct.
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A possible programming model offering these properties is MPI. MPI is a de facto
standard in parallel and distributed application development and a must for HPC-ori-
ented software. The MPI standard establishes point-to-point and collective communi-
cation primitives, allowing them to behave blocking/non-blocking and synchronous-
ly/asynchronously according to the programmer’s needs. MPI thus defines a portable,
flexible standard that is open to implementation. OpenMPI and MPICH are the most
common open-source MPI implementations used in HPC practice. They have been
widely proven to be extremely efficient and scalable, and they are the communication
backend chosen by the vast majority of current HPC scientific software. Current HPC
distributed-memory systems are thus programmed mainly through the MPI standard
to achieve peak performance. The Top500, the list ranking the top 500 most powerful
supercomputers in the world, exploits the high-performance LINPACK benchmark to
measure peak Flop/s, which implements inter-node communications through the MPI
standard. Most MPI implementations target the C, C++, and Fortran languages, but
software packages extending this support to C#, Java, and Python are also available.
MPI is a lower-level, more general approach towards process communication than the
RPC protocol. Thanks to its broader set of primitives, it models almost any possible
inter-process communication topology. It also allows arbitrarily small granularity in
the communication contents. Thus, if correctly handled, this approach’s richness, flex-
ibility, and complexity can also offer better computational performance in the FL sce-
nario.

4.1.3 Programming languages
All FL frameworks depicted in Figure 4.1 are mainly implemented in Python. Python
is the go-to programming language for ML practitioners and represents the most used
programming language at the time of writing, followed by C, C++, and Java. Its multi-
paradigm approach, dynamic variable typing, and high-level syntax allow for fast code
development. All these characteristics make Python an excellent scripting language,
particularly well-suited to creating program prototypes quickly and easily. However,
these commodities came with a cost: performance. Python is inherently a single-
threaded programming language, offering limited support for multi-threaded applica-
tions. Thus, it cannot efficiently exploit the computational power of modern multi-core
CPUs. Furthermore, the dynamically typed variables imply a huge overhead at run-
time intrinsic to the language itself, and the pre-compilation phase to bytecode and the
following interpretation add levels of complexity that spoil the runtime performance.
Python syntax does not push developers to think about low-level details and efficiency.
Conversely, it makes it extremely easy to use high-level abstractions, leading to unbear-
able low performance when translated to low-level operations.

This effect can be seen especially in scientific computing and, consequently, inAI/ML
code. All major current AI/ML library ad frameworks, such as Sci-Kit Learn, PyTorch,
TensorFlow, et similia, are structured as a Python interface wrapping high-performance
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C/C++ code. This design choice makes the difference, allowing ML practitioners to ex-
ploit the computational performance of well-designed, low-level routines without wor-
rying about the technical details. This compromise came at the cost of the Pythonwrap-
ping overhead, which is usually bearable but not negligible, especially on low-power
devices. For example, it is possible to verify experimentally the overhead introduced by
using PyTorch’s Python interface in place of the C++ LibTorch interface on the RISC-
V platform. The RISC-V choice allows stressing the overhead on a platform with low
computational power and few optimised libraries. Using the MNIST benchmark from
the official PyTorch examples, a simple CNN is trained to compare the runtime perfor-
mance of the two APIs. Note that the two scripts train the same CNN architecture and
differ only in language and API use. The results averaged across 5 runs show that the
C++ API (314.5s) is about 30% faster than the Python API (442.8s). With this simple
example, it is already possible to understand how a hybrid Python/C/C++ FL frame-
work’s performance would improve over a full Python one. Such an FL framework can
be designed as a currently appreciated ML framework: a Python wrapper handling a
high-performance C/C++ core.

4.2 FastFederatedLearning
In this section, FastFL is introduced. Starting from discussing a lower-level oriented
FL framework capable of delivering higher computational performance than the state-
of-the-art, the FastFlow parallel programming language is described. FastFlow defines
basic computational units, i.e., building blocks, that can be composed to express a wide
range of parallel computations. A FastFlow program can then be deployed on shared
and distributed memory systems without needing any modification, effectively giving
FastFL the capability of handling both simulated and real-world FL deployments. The
proposed approach is straightforward to implement and exploits C/C++ and libtorch
to provide state-of-the-art ML results in a computationally efficient way. A first ver-
sion of FastFL is then described with its features, and experimental results on various
microarchitectures are presented, proving the efficacy of the proposed approach.

4.2.1 The FastFlow parallel programming language
The C++ header-only FastFlow library [7] provides application designers with essen-
tial features for parallel programming via suitable abstractions (e.g., Pipeline, ordered
Task-Farm, Divide&Conquer, Parallel-For-Reduce, Macro Data-Flow) and a carefully
designed runtime system (RTS). At the lower software layer of the library, there are
the so-called Building Blocks, recurrent data-flow compositions of concurrent activi-
ties working in a streaming fashion, which are used as the primary abstraction layer
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(a) Shared-memory streaming graph (b) Distributed-memory streaming graph
with K+1 groups (G0,..., Gk)

Figure 4.2: Graphical representation of a FastFlow application and how it can be run
interchangeably in shared and distributed memory. The communication topology is
represented as a composition of building blocks in a data-flow graph, partitioned into
distributed groups.

for building FastFlow parallel patterns and, more generally FastFlow streaming topolo-
gies [163, 6]. Parallel building blocks are: pipeline (ff_pipeline), task-farm (ff_-
farm), and all-to-all (ff_a2a). Sequential building blocks are: standard node (ff_-
node), multi-input/output node (ff_minode/monode), and the node combiner (ff_-
comb). They can be combined and nested in different ways, forming either acyclic or
cyclic concurrency graphs, where nodes are FastFlow concurrent entities and edges are
communication channels carrying data pointers. Building blocks mainly target sys-
tem programmers who want to build new frameworks or RTSs. All high-level parallel
patterns offered by the FastFlow library have been implemented using building blocks.
Following the principles of the structured parallel programmingmethodology, a parallel
application (or one of its components) is conceived by selecting and adequately assem-
bling a small set of well-defined building blocksmodelling data and control flows. These
can be combined and nested differently, forming acyclic or cyclic concurrency graphs.

The original FastFlow release implemented nodes as concurrent entities and edges
as communication channels carrying data pointers. The FastFlow runtime system has
recently been extended to deploy FastFlow programs in distributed-memory environ-
ments [161]. The distributed RTS has been implemented by leveraging building blocks
and extending them to preserve the original data-flow streaming programming model.
By introducing a small number of edits, the programmer may port shared-memory par-
allel FastFlow applications to a hybrid implementation (shared-memory plus distributed-
memory) in which parts of the concurrency graph will be executed in parallel on dif-
ferent machines according to the well-known SPMD model. Such refactoring involves
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introducing distributed groups (dgroups) that identify logical partitions of the build-
ing blocks that compose the application streaming graph according to a small set of
graph-splitting rules. An example of a FastFlow application partitioned in distributed
groups is given in Figure 4.2. Inter-dgroup (i.e., inter-process) communications lever-
age raw TCP/IP or MPI, whereas intra-dgroup communications use highly efficient
lock-free shared-memory communication channels [5]. A distributed FastFlow appli-
cation is accompanied by a JSON configuration file that defines the dgroup-to-machine
mapping and a set of non-functional properties helpful to tune the application exe-
cution, e.g., the communication protocol, the thread-to-core affinity setting for each
dgroup, the amount of transparent message batching for outbound communications.
Concerning program launching, the dff_run software module is responsible for de-
ploying and launching the FastFlow distributed application. It launches the applica-
tion processes, each with the appropriate parameters (e.g., dgroup name), following the
mapping dgroup-host described in the JSON configuration file. For applications using
the MPI library as a communication protocol, the dff_run is just a wrapper of the
well-known mpirun launcher.

In the distributed FastFlow RTS, data serialisation can be carried out in two ways.
The programmer may select the best approach between the two for each data type
flowing into the inter-group channels (i.e., the data types produced/received by the
edge nodes of a dgroup). The first approach employs the Cereal serialisation library
[79]. It can automatically serialise base C++ types and compositions of C++ standard-
library types; it just requires implementing simple mapping functions for custom or
user-defined types. The second approach lets the user specify its serialisation and de-
serialisation function pair. When feasible, this latter might help avoid the need for ex-
tra copies by the serialisation process itself. This work uses Cereal based serialisation,
which guarantees portable representations over different architectures.

FastFlow targeted x86_64, ARM and Power processors. Porting the FastFlow’s low-
level thread-based RTS to support RISC-V systems has been painless. We just needed
to extend the machine-dependent implementation of theWrite Memory Barrier and the
ticks cycle counter used for implementing the Single-Producer Single-Consumer lock-
free queue and the non-blocking RTS behaviour. The blocking RTS is instead imple-
mented atop standard POSIX condition variables.

4.2.2 Three FastFL use case examples
Three DML communication topologies are considered to showcase the flexibility of
the proposed approach (see Figure 4.1): master-worker, a mesh made of peers, and a
tree-based structure. These three topologies have been described and discussed in Sec-
tion 4.1.1. The first two are use cases suitable for FL tasks, while the latter is for EI.
Three software implementations are created, one for each use case, all relying on Fast-
Flow to describe the architecture and communication topology and the Cereal library
to perform serialisation. ML operations such as loading, training, and testing a DNN,
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are based on the PyTorch library via the C++ API, namely libtorch. Models are specified
as the generic PyTorch torch::nn::Module class, allowing FastFL to work with any
PyTorch model.

The master-worker and the peer-to-peer topologies are based on the all-to-all build-
ing block (ff_a2a), which efficiently models together the reduce and broadcast op-
erators required by both workflows and rounds are modelled as cycles (i.e., feedback
channels) created by activating the wrap_around feature. The ff_a2a building block
defines two sets of nodes connected according to the shuffle communication pattern;
each node in the first set is thus connected to all nodes in the second set. A master-
worker topology is obtained if the first set contains the aggregator node and the right
set all worker nodes. The ff_a2a building block is also exploited to create the mesh
topology. Peers are split into a modified aggregator, which additionally trains and in-
cludes a model trained on local data, and a distributor, which sends the local model
to the other peers’ aggregators. All aggregators are assigned to the left set and all
distributors to the right set of the ff_a2a building block. Aggregator and distributor
of the same peer are tied together by assigning them to the same distributed group.
Leveraging the message routing options, each aggregator sends its aggregated model
only to its distributor; in contrast, each distributor forwards the aggregated model to
all other aggregators on the feedback channel. All nodes are designed for modularity
and implemented as derived ff_node C++ classes. Multi-input multi-output nodes, i.e.,
aggregator node in the master-worker topology and peer nodes in the mesh topology,
are implemented by exploiting the combiner building block (ff_comb) by combining a
multi-input adapter forwarding messages and a multi-output node containing the logic.
The aggregation methodology is specified as a separate policy class for future exten-
sibility, e.g., FedAvg for federated averaging. Similarly, workers allow specifying the
training strategy, i.e., optimiser, to use as (automatic type inferred) template argument.
The serialisation of models with Cereal requires specifying overloaded save and load
functions for the specific class defining the PyTorch model. These are implemented as
simple wrappers around the load and save functions offered by the PyTorch frontend
for model (de-) serialisation. The two abovementioned FL use cases exploit a simple
Multilayer Perceptron (MLP) comprised of three fully connected layers as DNN. The
selected task is training to recognise digits from the MNIST dataset1. As hyperparame-
ters, cross-entropy is used as a loss function and SGD as the optimiser, with a learning
rate of 0.01 and momentum of 0.5. Concerning the MNIST dataset, the training set is
split into equally sized random subsets assigned to each worker; this has been done to
simulate a genuine federation in which each client possesses only a subset of the whole
data distribution.

The EI is showcased by using a tree topology for modelling a control-room use case,
which aims to solve the underlying problem of raising alerts for man-on-the-ground

1http://yann.lecun.com/exdb/mnist/
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events. Leaf nodes containing multiple cameras feed into local pre-trained standard
YOLOv5 networks pre-processed video images by resizing them to the correct reso-
lution (e.g., 640x640), adding a border, and ensuring the image has the correct tensor
shape. After applying the YOLOv5model, the aggregation nodes post-process the result
to extract the bounding boxes with a classification score larger than a given threshold
(detecting man-on-the-ground events) and output aggregating results along the tree
until the control room located at the root. The inference runs on a 2-level tree topology
with 148 frames at each leaf node with levels connected using the all-to-all building
block (ff_a2a). The subsequent ff implementation resulted in nesting two levels of
all-to-all BB, similar to an extended master-worker topology. The network provided by
the YOLOv5 maintainers is exported into a TorchScript archive to work with PyTorch-
based networks in a C++-only environment. TorchScript archives have the advantage
of serialising the Python code describing the network and the necessary weights. The
Python code is represented in the archive using a subset of Python itself (TorchScript
is the name of this subset); weights are serialised in pickle format. When a TorchScript
archive is deserialised, the Python is just-in-time compiled, and the binary is dynami-
cally linked into the running program.

4.2.3 Experimental results
Each FastFL use case is tested on three hardware architectures hosted on the two re-
search systems described below. The Monte Cimone [19] system is the first physical
prototype and test-bed of a complete RISC-V (RV64) compute cluster, integrating not
only all the essential hardware elements besides processors, namelymainmemory, non-
volatile storage, and interconnect, but also a complete software environment for HPC,
as well as a full-featured system monitoring infrastructure. Monte Cimone comprises
eight computing nodes running Linux Ubuntu 21.04 and is enclosed in four computing
blades. Each computing node is based on the U740 SoC from SiFive and integrates four
U74 RV64GCB application cores, running up to 1.2 GHz and 16GB of DDR4, 1 TB node-
local NVME storage, and PCIe expansion cards. Each Monte Cimone computing node
integrates separated shunt resistors in series with each of the SiFive U740 power rails as
well as for the on-board memory banks, which can be leveraged to attain fine-grained
power monitoring of power rails, including the core complex, IOs, PLLs, DDR subsys-
tem and PCIe one. The power rails current and voltage are monitored by a PXIe-4309
board from National Instruments. The PXIe-4309 module features 8 ADC devices and
supports a maximum data acquisition rate of 2 MSamples per second. Collected current
and voltage traces are then post-processed to obtain an average power consumption for
each application run. The EPI-TO system is a modular cluster designed to experiment
with the technologies under development in the European Processor Initiative (EPI).
It includes an ARM-v8 module (4 nodes), an x86-64 module (4 nodes), and a RISC-V
module (2 nodes). The x86-64 module comprises 4 Supermicro servers, each includ-
ing 2 Intel Xeon Gold 6230 CPU (20-cores@2.10GHz) sockets, and 1536GB RAM. The
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Table 4.2: Experimental FastFL setting. The chosen model and dataset general infor-
mation are reported for the three tested topologies (master-worker, peer-to-peer, tree).
The forward and backward pass FLOPs are estimated using the PyTorch profiler.

Topology Model # param. Aggregator data Worker/Peer data Forward FLOPs Backward FLOPs
Master-worker Custom MLP 52.6K 10K test images 7.5K train images 105.1K (1 image) 109.8K (1 image)
Peer-to-peer Custom MLP 52.6K — 7.5K train + 10K test images 105.1K (1 image) 109.8K (1 image)
Tree YOLO v5n 1.87M — 148 frames 2.68G (1 frame) —

ARM-v8 module comprises 4 ARM-dev kits, each including one socket Ampere-Altra
Q80-30 (80-core@3GHz), 512GB RAM, 2 x NVIDIA BF-2 DPU, and 2 x NVIDIA A100
GPU. The Intel and Ampere servers are connected via an Infiniband HDR and a 1Gb/s
Eth networks. The GPUs are not used in the present experiments. All nodes run Linux
Ubuntu 20.04 and share a high-performance BeeGFS file system. All the servers are set
to use the “performance governor” mode. The RISC-V module is composed of 2 servers
identical to Monte Cimone servers.

Many steps have been taken to ensure a fair comparison between the different archi-
tectures since they have different degrees of computational power and maturity: x86-64
and ARM-v8 platforms are server-grade machines, while RISC-V is still a young and ex-
perimental embedded-like platform (even if some more HPC-oriented prototypes, such
as the Ventana processors, are being actively developed). First of all, the number of
cores available to each machine has been taken into account; since the least powerful
platform from this point of view is SiFive RISC-V (4 cores per node), all the processes
in the Intel and Ampere experiments are capped consequently so that precisely 4 cores
would be assigned to each of them: this is done through the taskset command. Monte
Cimone offers a maximum of 8 computational nodes, so the proposed experiments are
calibrated on a federation of a maximum of 8 workers. Since the number of Intel and
Ampere servers is limited to 4, two nodes per server are placed when running 8 node
configurations. In such cases, the node threads are placed in different areas of the pro-
cessors and near the memory banks to limit the interference between them as much as
possible. Due to the invasive PyTorch threading policy, only using the taskset com-
mand is insufficient in this scenario. Even if the process is restricted to 4 cores, PyTorch
still creates a thread pool of as many threads as available cores. This behaviour can lead
to many threads swapping between each other, which can spoil PyTorch’s performance
and subsequently ruin the fairness of the comparison. This problem has been resolved
by setting OMP_NUM_THREADS=4, thus limiting the OpenMP threads created by PyTorch
to 4, making it behave on Ampere exactly like on the SiFive platform. The MKL_NUM_-
THREADS=4 has also been set to prevent the MKL library from creating more threads
than the assigned cores to obtain the same behaviour on Intel. Another precaution
to exploit the few cores available at maximum is to use FastFlow’s TCP backend in-
stead of the MPI one. The motivation behind this is the computational behaviour of
the OpenMPI blocking receive. When issued, it actuates a busy waiting policy, di-
rectly occupying a core at 100% of its capability, which would skew the energy results.
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Moreover, in the context of SiFive RISC-V, this means wasting 1/4 of the available com-
putational power. We thus resorted to the TCP backend. Lastly, a shared workload
for the different experiments has to be set. Table 4.2 summarises the data details used
and estimated model complexity. Due to the massive difference in the computational
performance of the various machines, the choice has been made with particular atten-
tion to the SiFive RISC-V. We have chosen to train the MLP on MNIST for 100 epochs,
subdivided into 20 federated rounds composed of 5 epochs each. This choice allows the
learning curve to stabilise and, at the same time, allows the assessment of relevant mea-
surements (e.g., communication and computation costs). We also experimented with a
larger ML workload: training a ResNet18 network on the CIFAR10 dataset. Unfortu-
nately, such a configuration required 24 hours on the RISC-V processor to complete a
single training epoch, which is incompatible with the experimental setting.

A brief video of 148 frames containing peoplemoving has been chosen for the YOLO-
v5 experiments. Note that these choices, especially using only a subset of the available
cores, do not hinder x86-64 and ARM platforms in favour of RISC-V. In fact, due to the
chosen workload, the total computation time increases with the number of involved
cores. This effect is due to the reduced benefits gained in parallelising the training of a
small model and the additional costs required by thread handling and synchronisation
(particularly under the Python threading model).

The results of the experiments are reported extensively in Table 4.3. As can be seen,
SiFive is an order of magnitude slower than the other systems, being almost always be-
tween 25-35 times slower than Intel and Ampere. This is to be expected due to the plat-
form’s young stage of development, the absence of optimised libraries for deep learning-
specific computations, and the lack of vectorial accelerators. The lack of vectorial units
is particularly detrimental to the SiFive processor. The code running on the other two
platforms is compiled with libraries explicitly optimised for exploiting vectorial units
(the oneMKL library for Intel and the Arm Performance Library for Ampere). On the
other hand, the gap in performance between Intel and Ampere is negligible: Ampere
is almost as fast as Intel in the computation while consuming an order of magnitude
less power. The difference in power consumption is discussed in more detail in the
following. However, it can be easily assessed that the Ampere system, at least in this
restricted context, is energetically far more optimised than the Intel one; SiFive, on the
other hand, presents an energy consumption of 2-5 times Ampere’s, while Intel is up to
of an order of magnitude.

From a scaling perspective, all experiments behaved as expected: the recorded ex-
ecution times are congruous with the weak scalability law since they remain constant
or slightly increase with the number of processes; this confirms the goodness of the
software and the capabilities and flexibility of the FastFlow runtime.

The heterogeneous experiments are another strong point in favour of the FastFlow
capabilities: thanks to the Cereal serialisation backend, it is possible to create a feder-
ation in which different workers are hosted on different computational systems. This
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Table 4.3: Computational performance obtained by FastFL with the three tested topolo-
gies (mater-worker, peer-to-peer, tree) on the three tested microarchitectures (x86-64,
ARM-v8, RISC-V). The number of OpenMP (and MKL on Intel) threads has been set
to 4 and bound to 4 physical cores, and each result is averaged over 5 runs. The hy-
brid Intel-Ampere experiments are executed by allocating processes equally on each
microarchitecture’s cluster.

(a) MNIST master-worker training results. Performance metrics are collected on 20 federation
rounds of 5 training epochs each (100 epochs total); each client is assigned 1/8 of the entire
dataset.

master + 2 workers master + 4 workers master + 7 workers
time (s) energy/worker

(J): Δ (tot)
time (s) energy/worker

(J): Δ (tot)
Time (s) energy/worker

(J): Δ (tot)

x86-64 (Intel) 23.84 973 (1992) 23.56 1011 (2069) 24.38 1049 (2146)
ARM-v8 (Ampere) 23.33 133 (483) 25.66 146 (531) 25.86 148 (535)
RISC-V (SiFive) 674.47 269 (2562) 673.70 269 (2560) 687.03 274 (2610)
Intel-Ampere 29.50 — 29.55 — 33.34 —

(b) MNIST peer-to-peer training results. Performance metrics are collected on 20 federation
rounds of 5 training epochs each (total 100 epochs); each client is assigned 1/8 of the entire
dataset.

2 peers 4 peers 8 peers
time (s) energy/peer

(J): Δ (tot)
time (s) energy/peer

(J): Δ (tot)
time (s) energy/peer

(J): Δ (tot)

x86-64 (Intel) 23.15 2082 (4261) 24.05 2162 (4422) 24.95 2210 (4522)
ARM-v8 (Ampere) 24.39 169 (535) 24.90 173 (546) 26.65 185 (585)
RISC-V (SiFive) 819.35 409 (3195) 815.55 407 (3180) 933.62 466 (3641)
Intel-Ampere 45.20 — 39.13 — 50.88 —

(c) YOLO tree-based inference results. Performance metrics are collected by assigning each leaf
a 148-frame video.

root + 2 leaves root + 4 leaves root + 7 leaves
time (s) energy/leaf

(J): Δ (tot)
time (s) energy/leaf

(J): Δ (tot)
time (s) energy/leaf

(J): Δ (tot)

x86-64 (Intel) 19.76 1520 (2389) 19.38 1491 (2343) 19.01 1462 (2298)
ARM-v8 (Ampere) 37.16 291 (848) 39.88 312 (910) 43.15 338 (985)
RISC-V (SiFive) 1201.51 841 (4926) 1205.77 844 (4943) 1212.77 848 (4972)
Intel-Ampere 35.65 — 35.65 — 36.10 —

feature is not trivial since moving data from one system to another usually implies con-
version issues. No compatibility issue emerged in these experiments, and the hetero-
geneous cooperation worked smoothly from a computational performance perspective.
We successfully ran a distributed master-worker training across all the computational
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Table 4.4: Comparison between the tested systems’ (x86-64, ARM-v8, RISC-V) CPU-
only power consumption per FLOP and thermal design characteristics. The Joule/FLOP
values are obtained as the mean of 3 different master-worker configurations.Δ Energy/FLOP Energy/FLOP Avg power (idle) TDP/socket
x86-64 (Intel) 6.3 nJ 12.8 nJ 44 W 125 W
ARM-v8 (Ampere) 0.9 nJ 3.2 nJ 15 W 250 W
RISC-V (SiFive) 1.7 nJ 15.9 nJ 3.4 W 5 W

platforms exploited in this study (Intel, Ampere, and SiFive), highlighting the proposed
software stack’s flexibility and compatibility features. This fact is crucial since the fed-
eration of different entities cannot come with the requirement that all entities employ
the same underlying computational infrastructure.

While not explicitly relevant to this discussion, it is worth reporting that the mea-
sured classification accuracy of the tested systems acts as a sanity check. All the pro-
posed FL architectures achieve the expected learning performances. Specifically, the
MLP model achieved more than 95% of accuracy in all configurations, reaching up to
97% in most runs (YOLOv5 performances are not relevant here since pre-trained models
are used).

Finally, to give a perspective to the presented performance, one of the proposed sce-
narios (the master-worker structure with 4 workers) is reproduced with OpenFL, one of
the mature FL frameworks from related work. To further highlight the effort towards
the RISC-V developers community, OpenFL is ported to this computational platform.
This porting required recompiling in ad-hoc ways the software dependencies (ninja,
openblas, grpc/grpcio, and crytography). As reported in table 4.3a, the proposed SiFive
implementation can complete the training of 100 epochs over the MNIST dataset in
673.70 seconds on average ( 11 minutes and 7 seconds). Conversely, OpenFL, with the
same model, hyper-parameters, data pre-processing and distribution, achieved an av-
erage running time of 2,486 seconds ( 41 minutes and 26.42 seconds). Additionally, the
same experiment is repeated on the x86-64 platform: even in this case, the efficiency
of the proposed implementation is confirmed (23.56 seconds) with respect to OpenFL
(59.15 seconds). The difference between the two execution times is stunning, and itsmo-
tivations have already been discussed throughout the entire paper; this is just another
example of how a more high-performance-orientated FL framework would benefit the
overall FL research environment.

Looking at Table 4.4, it can be assessed that the three tested systems belong to dif-
ferent computing classes. Indeed, the table reports idle CPU and system power con-
sumption as well as the Thermal Design Power (TDP) per node and system type. The
Ampere and Intel CPUs are server processors with TDPs of over 100 Watts, while the
SiFive CPU is an embedded-class processor with TDPs below 5 Watts. Table 4.3 reports
the dynamic energy (Δ) as well as total energy per worker/peer/leaf when training the
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Figure 4.3: Three minutes of power consumption traces of FastFL training/inference on
the Monte Cimone RISC-V cluster. It can be seen that different communication topolo-
gies tested (master-worker, peer-to-peer, tree) imply different power consumption pat-
terns.

MNISTmodel (a,b) and inference of the YOLOv5 model (c). The Intel and Ampere CPUs
have comparable performance, but the Ampere CPU has a lower power consumption of
almost an order of magnitude. This fact makes the Ampere CPU the most performing
one and the most energy-efficient one in this study. When compared to the Intel CPU,
the Ampere one attains an average reduction for delta and total energy of 8.3x (4.3x) for
the MNIST master-worker case, 5.7x (3.7x) for the MNIST peer-to-peer case and 4.7x
(2.6x) for the YOLOv5 tree-based case. The SiFive CPU, compared to the Ampere one,
attains an average delta (total) energy consumption that is only 1.9x (5.0x) higher for
the MNIST master-worker case, 2.4x (6.0x) for the MNIST peer-to-peer case, and 2.7x
(5.4x) for the YOLOv5 tree-based case.

While this is an unexpected result, given the absence of SIMD/Vector extension for
the SiFive compute nodes, the significantly longer compute times drive up the con-
sumed energy. We expect improved results once new silicon implements the RISC-V
ISA vector extensions. Figure 4.3 reports an extract of three minutes of the CPU power
consumption (in the y-axis) for a single SiFive compute node for the three experimen-
tal settings. We can notice that the MNIST master-worker (MNIST M-W in the figure)
achieves significantly lower power consumption than the MNIST peer-to-peer (MNIST
P2P in the figure) while having a lower time to solution. The additional computation
can explain this fact due to each peer computing its global model and the increased
traffic to handle peer-to-peer communication. Data transfers are visible in both traces
as lower power consumption segments, each corresponding to a federated round. The
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YOLOv5 tree-based experiment has a higher computational intensity due to the higher
model complexity, which translates into a higher peak power consumption.

When comparing the different configurations, an overall increase in the time-to-
solution can be noticed while increasing the number of workers/peers/leaves, which
directly translates into an increase in the energy consumption of the models. The scal-
ability is different for the peer-to-peer and master-worker communication topologies,
where the master-worker time-to-solution overhead saturates with the 4 workers case;
in contrast, the peer-to-peer time-to-solution overhead continues to scale with the num-
ber of peers. This behaviour is expected due to the latter’s exponential cost of commu-
nication scalability.

In Table 4.4, the different processors’ energy efficiency (Joules per floating-point op-
eration) is reported by extracting the floating-point operations for each training epoch
and the energy consumed by a single worker in the master-worker scenarios. The re-
ported values are calculated following the equation:

𝐸FLOP = 𝑃 ⋅ 𝑡epoch[𝑁images ⋅ (𝑁Forward + 𝑁Backward)]
where 𝑃 is the mean consumed power, 𝑡epoch the time to train one epoch, 𝑁images the
number of images, and 𝑁Forward, 𝑁Backward the profiled FLOPS for forward and back-
ward pass. Taking into account only the energy effectively consumed by the computa-
tion (Δ energy), both Ampere and SiFive result to be more energy efficient than the Intel
CPU, respectively 7x and 3.7x; this is good, especially for the SiFive platform, given the
system’s novelty. On the other hand, if the whole system consumption is taken into
account, then the results are dramatically different: in this case, Ampere and Intel are
more energy efficient than SiFive, by 5x and 1.2x, respectively; this is due to the higher
execution time required by the SiFive platform to complete the same amount of com-
putation done by the other two processors.

4.3 A federated learning domain-specific language
The following Section proposes a top-down approach to implementing an FL (or EI) sys-
tem. The typical FL abstraction stack is modified by building upon the FastFL approach,
proving that a more flexible and powerful FL framework architecture is possible. This
approach deals with high-level issues, such as modelling distributed computation, and
low-level issues, such as software portability to different microarchitectures. The pro-
cess starts with defining the system through a formal language describing distributed
processes, an adapted version of the RISC-𝑝𝑏2𝑙 [6] language. This definition is then
implemented by mapping it to the building blocks of the FastFlow parallel library [7].
On top of the RISC-𝑝𝑏2𝑙 language, a DSL is then formalised. This FL-oriented DSL is
inspired by state-of-the-art ML frameworks, in which an easy-to-use Python wrapper
wraps the complexity of the underlying high-performance C/C++ implementation. The
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proposed DSL acts then as a Python wrapper of the underlying FastFL implementation,
allowing it to exploit its potentialities and performances, abstracting from the techni-
cality of its use.

4.3.1 The RISC-𝑝𝑏2𝑙 formal language
The first step in creating an abstraction layer wrapping FastFL is to design a high-level
modelling language. Such a language should be sufficiently abstract to allow modelling
a wide range of distributed computations while still being sufficiently specific to be
easily applicable in different contexts. With this aim in mind, the RISC-𝑝𝑏2𝑙 formal
language [6] for parallel processes is chosen and adapted to describe distributed ML
workloads. RISC-𝑝𝑏2𝑙 is based on basic logical units called building blocks, recurrent
data-flow compositions of concurrent activities working in a streaming fashion, which
are the primary abstraction layer for building parallel patterns and, more generally,
streaming topologies [163, 6]. The RISC-𝑝𝑏2𝑙 building blocks match the FastFlow build-
ing blocks in a one-to-one fashion, thus allowing for a straightforward implementation
of a system given its formal specification. The FastFlow software was born in 2010 and
was developed along the RISC-𝑝𝑏2𝑙 language. They are two sides of the same coin: that
is the reasonwhy it is possible tomap one formalism into the other so straightforwardly.
This fact makes FastFlow an already available high-performance software implemen-
tation of RISC-𝑝𝑏2𝑙, which is also already compatible with the RISC-V ISA. These facts
were crucial for choosing RISC-𝑝𝑏2𝑙 as language abstraction for this research idea. The
translation from RISC-𝑝𝑏2𝑙 into FastFlow is as follows: the sequential and sequential
wrappers can be mapped into a ff_node, the spread and 1-to-N operators to a ff_-
loadbalancer, the reduce and N-to-1 to a ff_gatherer, the feedback into a wrap_-
around, the parallel into a ff_farm and, finally, the pipe into a ff_pipeline. As can
be seen, the correspondence between the two formalisms is almost 1-to-1. Right now,
the translation from the formalism to the code has to be done manually, but a small
compiler can do such a job. This concept will be discussed later in Section 4.3.2.

However, since RISC-𝑝𝑏2𝑙 is born for modelling parallel computation, it must be
adapted to handle the distributed workflows involved in DML. The RISC-𝑝𝑏2𝑙 language
is thus made location-aware by introducing a distribute building block, which expresses
the distributed computation of a function on a set of nodes specified via a superscript.
Table 4.5 reports the syntax and description of all RISC-𝑝𝑏2𝑙 building blocks used in
this dissertation. Parallelism is no longer specified in terms of the number of threads
but in sets of nodes, maintaining a coherent semantic. Formally, the numerical sub-
scripts used by the parallel operator is replaced with a superscript referring to sets of
nodes. The switch to superscripts underlines the semantic change from the original
RISC-𝑝𝑏2𝑙 formal language. The advantage of using such a formalism is the possibil-
ity of designing and discussing the distributed system clearly and structured before its
implementation. Furthermore, this formalism allows discussion of a designed compu-
tation’s computational properties and applies optimisations before the implementation
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Table 4.5: Brief description of the RISC-𝑝𝑏2𝑙 building blocks. The sequential and paral-
lel wrappers constitute the basic elements of the language, effectively abstracting the
domain-specific computations that are then combined through the other operators to
model complex parallel (and distributed) computations.

Syntax Semantics(( 𝑓 )) Sequential wrapper Wraps any sequential code into a RISC-𝑝𝑏2𝑙
“function”.(| 𝑓 |) Parallel wrapperWraps any parallel code into a RISC-𝑝𝑏2𝑙 “function”.[| Δ |]𝑁 Distribute Computes |𝑁 | Δ distributively on the node set 𝑁 producing|𝑁 | outputs.Δ1 • … • Δ𝑛 Pipe Uses 𝑛 different programs as stages to process the input data items
and to obtain output data items.(𝑔 ⊳) Reduce Computes a output item using an 𝑙 level (𝑙 ≥ 1) 𝑘-ary tree. Each
node in the tree computes a 𝑘-ary function 𝑔.(𝑓⊲) SpreadComputes 𝑛 output items using an 𝑙 level (𝑙 ≥ 1) 𝑘-ary tree. Each
node in the tree computes a 𝑘-ary function 𝑓.⊲𝐷−𝑃𝑜𝑙 1-to-N Sends data received on the input channel to one or more output
channels. 𝐷 − 𝑃𝑜𝑙 ∈ [𝑈 𝑛𝑖𝑐𝑎𝑠𝑡(𝑝),𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡, 𝑆𝑐𝑎𝑡𝑡𝑒𝑟].⊳𝐺−𝑃𝑜𝑙 N-to-1 Sends data from the 𝑛 input channels on the single output chan-
nel. 𝐺 − 𝑃𝑜𝑙 ∈ [𝐺𝑎𝑡ℎ𝑒𝑟,𝐺𝑎𝑡ℎ𝑒𝑟𝑎𝑙𝑙,𝑅𝑒𝑑𝑢𝑐𝑒].⃖⃖ ⃖⃖ ⃖(Δ)𝑐𝑜𝑛𝑑 Feedback Routes output data 𝑦 back to the input channel according to𝐶𝑜𝑛𝑑(𝑥).

phase. The interested reader is encouraged to refer to [6] for the complete set and
detailed composition of the original RISC-𝑝𝑏2𝑙 formal language.

By using the exposed RISC-𝑝𝑏2𝑙 formalism, the master-worker FL process can be
described as

((init)) • ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖([|(|test|) • (|train|)|]𝑊 • (FedAvg ⊳) • ⊲Bcast)𝑟
where ((init)) is the function initialising the communication graph and creating the
starting models, 𝑊 is the set of workers, and 𝑟 is the condition checking if the prefixed
number of rounds has been reached. On the other hand, the peer-to-peer mesh FL
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process can be formalised through RISC-𝑝𝑏2𝑙 as
[|((init))|]𝑃 • ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖([|(|test|) • (|train|) • ⊲Bcast • (FedAvg ⊳)|]𝑃)𝑟

Finally, the three-level tree topology can be modelled through RISC-𝑝𝑏2𝑙 as
((init)) • ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖([|infer|]𝐿 • (ℱ ⊳) • [|combine|]𝐶 • (ℱ ⊳) • ((alert))𝑅)∞

where 𝐿, 𝐶,𝑅 are the sets of leaf, control and root nodes, and ℱ is the function routing
to the father node.

As can be seen, the two formalisations are similar, which is not casual; it is possible to
prove logically that the two formulas yield the same outputs if given the same inputs,
modulo a different number of computations and communications. This fact can be
easily seen by comparing the last two terms of both feedback blocks; with a bit of
rewriting, it is possible to state that(FedAvg⊳)• ⊲Bcast≡ [| ⊲Ucast𝐴 |]𝑊 • (FedAvg⊳)
and [| ⊲Bcast •(FedAvg⊳)|]𝑃 ≡ [| ⊲Bcast |]𝑃 • [| ⊳FedAvg |]𝑃
With this new formulation, it is easy to see that, even if they are equivalent output-wise,
these two computations exploit different amounts of communications ([| ⊲Ucast𝐴 |]𝑊 vs.[| ⊲Bcast |]𝑃) and computations ((FedAvg⊳) vs. [| ⊳FedAvg |]𝑃). This result implies that the
two computations are mathematically equivalent output-wise: the two communication
topologies produce the same final ML model, with the same learning performances, as-
suming the same hyper-parametrisation and modulo the differences in communication
involved in the process. This simple analysis exemplifies the potential of using a formal
tool such as RISC-𝑝𝑏2𝑙 for modelling and discussing distributed systems. Given the two
above descriptions, it is straightforward to translate them into ff programs.

4.3.2 High-level federated learning modelling
Having successfully modelled the three provided use cases with the RISC-𝑝𝑏2𝑙 formal
language exposed some critical aspects of this tool. On the one hand, RISC-𝑝𝑏2𝑙 is
excellent at modelling distributed workloads but is not intended for a large audience.
RISC-𝑝𝑏2𝑙 is a theoretical tool, subject to future investigation, changes, and updates.
Furthermore, it is not straightforward to use, requiring the user’s theoretical knowledge
and abstraction efforts, which pose a significant barrier to its use. On the other hand,
modelling a DML scenario with RISC-𝑝𝑏2𝑙 does not automatically provide a working im-
plementation. The user is still in charge of manually translating the abstract RISC-𝑝𝑏2𝑙
building block sequence to a practical FastFlow implementation, dealing with all the
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low-level coding aspects involved. It should also be considered that the FastFL approach
entirely relies on a C/C++ software stack. While this design choice preserves compu-
tational efficiency, it also implies programming skills that may be outside the common
knowledge of ML practitioners. All these factors introduce a huge usability overhead
compared to other off-the-shelf FL frameworks, making FastFL not the best choice for
typical deployments.

Inspired by state-of-the-art ML frameworks, a Python wrapper can be exploited to
overcome these burdens. As done by PyTorch, TensorFlow, Sci-Kit Learn, and many
others, the high-performance C/C++ implementation is wrapped by a simple, easy-to-
use Python wrapper. This approach has the advantage of abstracting the ML practi-
tioner from the low-level details of the implementation while allowing fast and straight-
forward code writing. Furthermore, Python is the de facto standard programming lan-
guage for ML workloads, thus not requiring ML practitioners to learn another language
to use FastFL. Guided by these principles, a Python wrapper for FastFL is proposed. It
is designed as a top-level abstraction on top of RISC-𝑝𝑏2𝑙, which abstracts the FastFlow
backend. How this abstraction stack is concretely turned into a working FL frame-
work is described in Section 4.3.3. In the following, the proposed Python interface is
formalised and discussed.

The creation of the FastFL Python wrapper follows two different principles. On the
one hand, it should be coherent with the RISC-𝑝𝑏2𝑙 syntax, meaning expressing a signif-
icant subset of all the possible computations formalisable through RISC-𝑝𝑏2𝑙, if not all.
As a reference, the three communication topologies discussed in Section 4.3.1 are con-
sidered the minimum support target. The first step is to create a sufficiently simple yet
expressive enough RISC-𝑝𝑏2𝑙 Python interface. The sequential and parallel wrappers
are modelled by a single class, namely Wrapper, containing the actual business code to
be run on the systems. The two wrappers have been merged since their differences are
insignificant at this level of abstraction. Each other operator involved in modelling the
selected use cases is then modelled as a different Python class maintaining its original
name, apart from the distributed wrapper, which is renamed Parallel, indicating that
the same function is executed in parallel on different devices. All classes modelling
the behaviour of a RISC-𝑝𝑏2𝑙 building block are derived from the base abstract class
BuildingBlock. Each class contains template C/C++ FastFlow code parametrised at
runtime based on the provided arguments.

On the other hand, the proposed Python interface should have simple syntax to al-
low a seamless construction of FL topologies. To this aim, a list-based syntax is chosen,
similar to the one adopted by common ML frameworks. The FL system is then de-
scribed as a list of BuildingBlock objects, each appropriately parametrised, eventually
containing sublists of other building blocks. This structure defines a FLGraph object,
an abstract description of an FL learning process ready to be materialised. Until the
materialisation, this object can be modified freely, allowing the automatic parametric
building of FL topologies.

Given the above definitions, a master-worker FL process can be formalised as

101



High-Performance Federated Learning

FLGraph([
Wrapper(”Initialisation”),
Feedback([
Parallel([
Wrapper(”Train”),
Wrapper(”Test”)
]),
Reduce(”FedAvg”),
Broadcast(),
])

])

It can be seen that this code snippet closely resembles the formula RISC-𝑝𝑏2𝑙 master-
worker formula given in Section 4.3.1. Similarly, the peer-to-peer mash can be defined
as

FLGraph([
Parallel([
Wrapper(”Initialisation”)
]),
Feedback([
Parallel([
Wrapper(”Train”),
Wrapper(”Test”),
Broadcast(),
Reduce(”FedAvg”),
]),
])

])

while the tree-based EI use case as

FLGraph([
Wrapper(”Initialisation_inference”),
Parallel([
Wrapper(”Inference”),
Reduce(”Father”),
Wrapper(”Combine”)
]),
Reduce(”Father”),
Wrapper(”Control_room”)

])

Note that these code snippets are almost all needed to run a complete federation. The
federation is ready to run with a few more lines of code defining the DNN model and
the dataset.

The proposed FastFL Python wrapper can be considered a DSL for FL having seen
these experiments. It is a programming language devised explicitly to efficiently model
a restricted class of problems unrelated to low-level implementational details. This
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fact also implies that this FL DSL is not restricted to model RISC-𝑝𝑏2𝑙 and FastFlow
computations but could be used with any other parallel programming framework back-
end. Exactly as FastFlow abstracts the programmer from the communication backend,
allowing a seamless deployment on shared memory or distributed memory through
TCP or MPI communication, this FL DSL abstracts the programmer from the backend,
concretely implementing the computation. For example, it is possible to envision a
workflow-based backend for the FL DSL, which would allow the execution of an FL
task as a workflow and exploit all the benefits of this technique.

4.3.3 Practical implementation into FastFL
Now that the whole abstraction stack is ready, the automatic top-to-bottom translation
must be combined. Once the FLGraph object is correctly configured, it is sufficient
to call its compile method to start the process. Compiling the FLGraph means re-
cursively inspecting each BuildingBlock constituting it and correctly instantiating
the template code associated. Some particular BuildingBlock sequences are recog-
nised and merged during this process, thus obtaining specific and optimised code for
the most common situations. This process is particularly delicate since the template
code is written in C/C++ with FastFlow. Any effort in augmenting the flexibility of the
BuildingBlock classes thus corresponds to generating correct and efficient C/C++
code from a high-level Python specification. This step is thus the pivot point of the en-
tire process, hiding the efficient C/C++ implementation under the Python DSL’s hood.

The compilation and linking steps occur once the C/C++ source code is ready. Such
commands are handcrafted carefully, and the library paths can be customised by appro-
priately configuring FastFL. Since this process is done on the local machine, it derives
that at the time of writing, FastFL can only run on clusters of homogeneous machines.
Supporting heterogeneous use cases, as discussed in Section 4.4, requires moving the
source code on each machine for the compilation and linking, also considering the dif-
ferences in local library paths, compiler versions, and software stack in general. Build-
ing such a flexible deployment process is a work in progress and one of the main aims
of the near future developments of FastFL. An example of FL deployment on a het-
erogeneous cluster of machines in a partially automated way is exposed in Section 5.1
exploiting Singularity containers and the StreamFlow WMS.

Once the C/C++ FastFlow executable is ready, the deployment configuration takes
place. FastFlow relies on a JSON configuration file to handle distributed deployments.
Such a file declares all the groups participating in the computation (usually one per
node), identifying them through an IP address and explicitly indicating which port to
use for communication. It also specifies the name associated with each group, which
must match the group names inserted in the C/C++ FastFlow code automatically gen-
erated. It can optionally specify custom commands to be appended to the distributed
execution commands. This JSON configuration is generated automatically based on
the FastFL runtime configuration, allowing it to quickly move from a shared memory
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deployment to a large distributed one without any effort requested by the programmer.
Finally, the provided DNN model is analysed. FastFL can handle both DNN defini-

tions and TorchScript-compiled models. In the first case, however, the model is instan-
tiated and compiled into a TorchScript file. This process is done for two reasons. On the
one hand, the TorchScript compilation can be configured to optimise the saved model,
thus increasing the obtained performance even more. On the other hand, this makes
the model definition portable and easily transferrable between different machines. Now
that everything is ready, the FL deployment begins, and the FL tasks start.

As seen, FastFL takes care of all low-level aspects of the FastFlow backend. This
approach allows the ML practitioner to focus on the FL process’s high-level details, ab-
stracting from the technicalities of a real-world high-performance deployment. This
fact is particularly evident when comparing the coding effort required from the high-
level point of view to the actual low-level code produced. For example, the following
code snippet produces a master-worker deployment on 5 computational nodes of a clus-
ter:

import torch
import torch.nn as nn
import torch.nn.functional as F

from python_interface.DSL.flgraph import *
from python_interface.DSL.flgraph.flgraph import *
from python_interface.configuration import Configuration
from python_interface.dataset import Dataset
from python_interface.experiment import Experiment
from python_interface.model import Model

DATA_PATH = ”_PATH_TO_DATASET_”
nodes = [”small-0” + str(rank) + ”:800” + str(rank) for rank in range(

1, 5)]

class Net(nn.Module):
...

ff_executable = FLGraph([
Wrapper(”Initialisation”),
Feedback([
Parallel([
Wrapper(”Train”),
Wrapper(”Test”)
]),
Reduce(”FedAvg”),
Broadcast(),
])

]).compile()

config = Configuration(endpoints=nodes, executable_path=ff_executable)
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model = Model(model=Net(), example=torch.rand(128, 1, 28, 28),
optimize=False)

dataset = Dataset(DATA_PATH)
experiment = Experiment(config, model=model, dataset=dataset)

experiment.run_experiment()

Many customisable aspects are hidden in this example to show the simplicity with
which it is possible to create a working FL deployment with FastFL.

4.4 First FastFL experimental results
This section briefly summarises two experimental uses of FastFL. First, an experimen-
tal investigation of its scaling performance is proposed. FastFL weak and strong scal-
ing performance are collected on an HPC infrastructure and discussed. The other two
mature FL frameworks used in this dissertation, OpenFL and Flower, are used as com-
parisons. Following, a practical, real-world use of FastFL is proposed. A multi-view
pedestrian detection system is implemented, inspired by MVDet [84]. Since this use
case fits an EI workload, FastFL is exploited for its implementation. The proposed sys-
tem is then compared to an alternative centralised implementation, always based on
FastFL.

4.4.1 Scaling performance
The success of many disruptive ML models is not solely due to innovative technical
breakthroughs but also to the vast quantity of data on which they have been trained.
Fl can be seen as a further step in developing the DML scaling capabilities, offering an
innovative tradeoff between the federation size and the learning performance of the
final ML model: the more nodes in the federation, the more data is processed simulta-
neously, but the more unpredictable is the effect on the final MLmodel. FL thus exhibits
two significant costs from the computational perspective: ML model training and pa-
rameters communication. These aspects stand out from the ML field. They should be
analysed from the distributed computing perspective, where the decomposition of a
workload into computing and communication costs is a well-established practice. The
following proposes a preliminary study of the scalability property of the most mature
and widely used FL framework available on the market, investigating how different
software designs can handle federations with varying numbers of clients and varying
data quotas. This scenario does not consider learning performance since the focus is
on computational performance and FL frameworks’ software design.

The literature lacks studies on scalability and flexibility, which are fundamental
when leveraging FL in a production-ready deployment where computational efficiency
is critical. On the one hand, scalability identifies the FL framework’s capability of deal-
ingwith a growing number of clients. This property is a crucial feature of such software,
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Figure 4.4: Strong (top) and weak (bottom) scaling performance comparison of OpenFL,
Flower, and FastFL training a ResNet18 on the MNIST dataset for 100 epochs on the C3S
HPC infrastructure. Both scaling (left) and wallclock times (right) are reported; missing
data indicates an execution time greater than 6 hours.

and many studies consider it a future direction for research in FL [92, 21]. In particu-
lar, [171] highlights the lack of comparison between FL frameworks as hindering the
scientific advancement toward high-performance frameworks. On the other hand, flexi-
bility is crucial when deploying an FL system since it identifies the framework’s capabil-
ities to adapt to different scenarios. Almost every framework provides specific use-case
examples, but these are rarely tested in realistic scenarios involving different computing
power available, network speeds, microarchitectures, and data splitting. For example,
according to the systematic literature review of [171], 29 out of 34 reviewed papers
that conducted experiments on classification choose MNIST or CIFAR-10 as datasets,
and only 11 out of 34 choose a non-iid setting. Some FL frameworks provide examples
even with different communication protocols; others have incomplete documentation,
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Table 4.6: Strong and weak scaling wallclock execution times (s) obtained by the tested
FL frameworks (OpenFL, Flower, FastFL) on various federation configurations, ranging
from 1 up to 32 clients. Missing data means that the setting required more time to
complete than the maximum allowed by the C3S HPC cluster, i.e., 6 hours.

1 client 2 clients 4 clients 8 clients 16 clients 32 clients

St
ro
ng OpenFL 14967 8433 5051 4104 4870 7517

Flower 14872 7672 4184 2435 1633 1415
FastFL 10175 5414 2821 1656 1085 905

W
ea
k OpenFL 14967 15578 15853 16624 18216 —

Flower 14872 14636 14999 15046 15128 15385
FastFL 10249 9951 10090 10340 10407 10607

making deployment very difficult when changing datasets, models, or data processing
pipelines.

Awidespread FL scenario is identified to produce a reliable and practically applicable
analysis [183]. As previously discussed, the most widely used FL scenario is horizontal,
cross-silo FL with a master-worker topology. These keywords imply a situation with
a small number of institutions (<100), each with high storage capacity, high computa-
tional capabilities, fast and reliable network connection, and data that share the same
feature space. A central server coordinates the participants, aggregates the clients’
models, and broadcasts back the aggregated model. The C3S HPC centre of the Uni-
versity of Turin is used to provide sufficiently reliable computational performance for
the experiments. The federation’s nodes are allocated to different computational nodes
(OmniPath network, 2xintel Xeon CPU E5-2697 v4 per node). A standard ResNet18 is
trained as a benchmarkworkload for 50 federated rounds onMNIST. Thismodel/dataset
combination is sufficiently standard in the ML community to provide widely apprecia-
ble results. All experiments are deployed on bare metal without any containerisation
technology involved.

Figure 4.4 and Table 4.6 report the computational performance of two mature FL
frameworks, i.e., OpenFL and Flower, and FastFL. OpenFL and Flower are based on sim-
ilar technologies. They are built entirely in Python and exploit gRPC/protobuf as a
communication backend. Refer to Table 4.1 for further details. It is immediately appar-
ent that the two selected commercial FL frameworks exhibit radically different scaling
behaviours despite adopting a very similar software architecture. Flower efficiently
scales up to the maximum number of nodes tested (32 nodes), while OpenFl’s perfor-
mance radically spoils with federations larger than 8 clients. The apex of this behaviour
is the 32-node scenario, in which OpenFL cannot complete the training in the maximum
node allocation time allowed by C3S, i.e., 6 hours. However, with restricted federation
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(<4 nodes), it can be observed that OpenFL and Flower do not exhibit so radically differ-
ent computational performance. This fact implies that the baseline performance of both
software is determined by the same technological choices made by both frameworks.
Consequently, it can be deduced that the different software design choices adopted by
the two software play a crucial role in determining the scaling performance: it is evident
that OpenFL’s communication protocol is unable to efficiently handle a large number of
clients despite using the same gRPC/protobuf approach as Flower. Regarding FastFL, it
can be seen as a Flower competitor: they expose very similar scaling behaviours, mod-
ulo a wallclock time offset in favour of FastFL. It can be hypothesised that FastFL is thus
capable of handling large numbers of clients as nicely as Flower while constantly ob-
taining lower wallclock times thanks to its underlying computational choices (FastFlow
backend and C/C++ implementation).

4.4.2 Multiview detection
EI is a research field undergoing strong experimental efforts due to the convergence
of many phenomena. The abundance of pervasive computational devices [124] offers
lots of spare computational power exactly where data are harvested. Many approaches
exploit this latent computing power to process data timely, especially for medical pur-
poses [138, 80]. However, as ML models became increasingly complex and computa-
tionally power-consuming, edge devices adapted like in a co-evolution schema [181].
Thus, AI-specialised edge devices have flourished, like TPUs [149], NPUs [160], FP-
GAs [78], and many others based on innovative computing paradigms, like in-memory
computing [85]. All this hardware-related research effort is devoted to increment the
efficiency of AI-related computations, trying to mitigate as much as possible the nat-
ural computing and battery life limitation of such devices, but many real-world still
incorporate only CPUs as compute due to cost, thermal and power constraints [11].

ML-based detection systems can be modelled in many ways, but reliance on DNNs
is one constant. Single-view detection [192, 132, 188, 83] addresses the case in which
just a single image of a scenario is available for inference at a time. Such methods can
be anchor-based or not and can handle occlusion issues by exploiting techniques such
as part-recognition, non-maximal suppression, and repulsion loss. Additional informa-
tion exploited by the inference can be domain-specific, like the detection of heads and
feet when searching for people, or can be obtained through the use of particular image
acquisition tools, such as RGB-D cameras and LIDAR detectors, to obtain single im-
ages correlated with more spacial information. Multiview detection exploits multiple
sources of image acquisition to produce a single inference [84, 70, 157] to overcome
occlusion problems. The principal research focus in this scenario is aggregating the
information retrieved from multiple data sources. Popular approaches target combin-
ing multiple single-view detection, aggregating the features extracted from each image,
and applying geometrical transformation to the camera outputs.

MVDet (MultiView Detector) is a state-of-the-art multiview detector that identifies
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Figure 4.5: Distributed implementation of a multiview detection system with FastFL.
The workflow starts with each camera acquiring the current time step frame; the frame
features are then extracted by a ResNet18 and warped according to the camera perspec-
tive matrix directly on the edge; then all the warped feature maps are collected by the
aggregator, which aggregates them via the spatial aggregation model, producing the
position estimation map; this last result is then sent to the control room for operational
decision. This process is repeated iteratively.

persons standing and moving across an open public area. The main idea is to use a
trained base model, e.g. ResNet18 or VGG11, to extract the features from each camera
frame and transform it via a homography, i.e. perspective warp, projecting it to the
bird eye view of the area. The results are then fed into an aggregation model, which
detects the position of all the persons in the area. Bringing the MVDet model to a
real-world edge environment requires methodological and implementational choices.
Starting from the original MVDet code, two different computational stages are identi-
fied: a parallelisable one that comprehends the frame acquisition, feature extraction,
and perspective warping, and, conversely, a sequential one that is the multiview aggre-
gation. Since the system is synchronous at the frame level, the multiview aggregation
is data-dependent on the previous processing steps: it can not start until all the cam-
era frames from the current time step have been acquired and processed. Following
the original MVDet paper, the number of camera inputs expected by the aggregator is
seven.

Given this computational scenario, two different edge implementations of theMVDet
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system are proposed: a more distributed one and a more centralised one. The dis-
tributed implementation is depicted in Figure 4.5. It takes full advantage of the model
partitioning technique, allocating part of the ML models on the edge devices while try-
ing to parallelise the execution as much as possible by assigning all the parallelisable
code to a different camera. Conversely, the centralised implementation fully exploits
model offloading, allocating all the computational burden on the server while requir-
ing the camera to acquire the frames. This implementation takes full advantage of the
computational power available on the edge, maintaining the computation as near the
data as possible while alleviating the computational burden on the aggregation server.
The main drawback of this structure is that the feature exchange between the cameras
and the aggregator is heavier than the simple frame exchange.

Due to the targeted scenario, i.e. edge devices, energy efficiency is critical to the
computation. Commercial DML software is Python-based, requiring computational and
memory capabilities that not every edge device can afford. Furthermore, popular DML
software is being developed primarily based on user-friendliness and additional secu-
rity features, such as Homomorphic Encryption and Secure Multiparty Computation,
rather than computational performance. While this strategy comes in handy when
dealing with powerful computing devices, an edge-oriented DML framework should be
as efficient as possible by reducing its consumption of resources (computation, mem-
ory, energy). Also, most commercial DML software is very solidly designed to handle
only one communication topology, the master-worker one. Any other communication
structure would require heavy software modifications, resulting in a not-as-intended
use of the frameworks. This use case is particularly well-fit for a tree-based structure,
which is not currently implementable with commercial DML software. Due to these
two motivations, efficiency and communication topology malleability, FastFL is chosen
as the DML framework for implementing the proposed system.

The application architecture is based on several building blocks, i.e. specialisations
of the ff_node class, the primary logical unit exposed by FastFlow, connected in a
tree-like structure. At the leaves of the tree, multiple ff_monode_t, named camera are
placed, each representing a different camera in the system. These building blocks are
executed in parallel independently. For the distributed implementation, a new frame is
read at each time step, its features extracted by a pre-trained base model, i.e. ResNet18,
and warped according to a perspective transformation to consider the camera view
angle. Conversely, for the centralised implementation, the camera just acquires the
current time step frame. Each camera sends the result to the next tree level. This
level consists of a ff_minode_t called aggregator, which takes multiple inputs and
returns a single output. In the distributed implementation, results collected from all
children Camera are aggregated by the spatial aggregation model into the final position
estimation map. Conversely, for the centralised implementation, the aggregator node
also takes over the feature extraction and perspective warping for each received camera
frame. Finally, the position estimation map is sent to the tree’s root, i.e. ControlRoom
node, where real-time decisions can be taken in a real-world deployment. Figure 4.5
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summarises the distributed implementation architecture. In case of multiple open areas,
the application supports multiple subtrees, one for each area, each consisting of an
aggregator with multiple camera as children.

The original MVDet experiments are reproduced to prove the proposed approach’s
effectiveness experimentally, measuring the computation performance of the two im-
plementations. The Wildtrack multiview dataset [39] comprises 7 static cameras cap-
turing views of a public open area with dense groups of pedestrians standing and walk-
ing. The dataset provides each camera with the accurate position and view angle and
400 time-synchronised full-HD frames. All experiments are run on the HPC4AI cloud
computing facility [8] exploiting 10 virtual machines, each one equipped with 8 64-
bit vCPUs mapping to dedicated cores of an Intel Xeon Gold-6230 @2.10GHz processor
(Skylake, IBRS), 16GB RAM, 1 Gb/s interconnection network, and running Ubuntu 22.04
as operating system. CPU-only nodes are used to better model the capabilities of edge
devices, which often forgo GPUs for cost, energy, and thermal constraints. In contrast,
the single-core performance of modern SoC can be in line with that of a vCPU. Each sys-
tem component (7 Camera, 1 Sync, 1 Aggregator and 1 ControlRoom node) is deployed
on a different VM. The time needed to process one complete set of camera frames and
produce the estimated positions is assumed as the performance metric. Experiments
are replicated 5 times; the mean computing time plus the 95% confidence interval is
reported.

The proposed multiview detection systems are tested under different combinations
of computational power assigned to the critical software components, i.e. Camera and
Aggregator, thus simulating how different edge devices with varying performance im-
pact the system. The computing power is modulated by varying the number of cores
available to the different components using taskset and providing hints to the number
of threads to spawn to libtorch via the MKL_NUM_THREADS and OMP_NUM_THREADS envi-
ronment variables. Specifically, the systems are tested, assigning to each Camera 1, 2, 4,
or 8 cores and to the Aggregator 4 or 8 cores for 16 different computational power con-
figurations. Different network conditions are also emulated by limiting the bandwidth
available to the different nodes to study how it affects the performance of the proposed
system. Indeed, edge devices typically need to rely on slower networks, e.g. cellular
connections. Kollaps is a decentralised container-based network emulator, exploiting
Docker Swarm (or Kubernetes) to deploy and run distributed computationswith specific
network topology made of bridges and links with specific upload/download bandwidth,
latency, and jitter characteristics enforced using the traffic control capability of
the Linux kernel. The systems are tested with 10/10 Mbps per Camera and 100/100
Mbps for the aggregator, representing a low bandwidth scenario. The Camera band-
width is then increased to 25/284 Mb/s, which represents the average upload/download
speed achieved by the best 5G network in Italy in 2022 [131] and, consequently, the net-
work bandwidth of the aggregator is increased to 1/1 Gb/s to cope with the aggregated
bandwidth from the Cameras. The latter configuration is tested, assigning 4 or 8 cores
to the aggregator.
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Table 4.7: Computational performance obtained by the proposed MVDet FastFL im-
plementation at varying computational power and network bandwidth. The first two
scenarios adopt a bandwidth comparable with current Italian cities’ 5G performance,
while the third simulates a resource-constrained edge deployment.

Aggregator
cores

Aggregator bandwidth
up/down

Camera bandwidth
up/down

Centralised
(s/set)

Distributed
(s/set)

4 cores 1/1 Gb/s 25/284 Mb/s 15.38 49.68
8 cores 1/1 Gb/s 25/284 Mb/s 11.98 46.89
8 cores 100/100 Mb/s 10/10 Mb/s 14.22 108.79
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Figure 4.6: Computational performance comparison between the two MVDet FastFL
implementation (centralised, distributed). The reported values are the seconds needed
to process each set of 7 frames +/- the 95% confidence interval over 5 runs, in all com-
binations of computational power assigned to the server (4, 8 cores) and cameras (1, 2,
4, 8 cores).

Figure 4.6 presents the results across the 16 computational power configurations. It
can be noticed how the centralised implementation performance is basically unaltered
by the amount of computing power given to the camera, while doubling the number of
cores given to the aggregator almost halves the amount of time required to process a
single frame, i.e. from 13.57 s to 7.66 s on average. Conversely, the distributed approach
is more sensible to the computing power given to both Camera and Aggregator, steadily
increasing its computational performance when the computing resources given to the
system (Camera and Aggregator nodes) increase from 12.97 s/set using a total of 7𝑥1 +4 = 11 vCPUs to 4.23 s/set using a total of 7𝑥8 + 8 = 64 vCPUs.
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By comparing the two systems, it is clear that the distributed implementation ob-
tains globally lower computational times, achieving better computational performance
with respect to the centralised approach thanks to exploiting the computational power
spread over the computing continuum. The higher the computing power of the camera,
the more significant the performance gap, i.e. up to 1.92x faster with 4 cores per aggre-
gator and 8 cores per camera. However, also the network plays a role. Indeed, in the
1 (8) cores per camera (Aggregator), the centralised approach beats the decentralised
approach by a small margin due to the increased communication time to transmit the
3.5x larger feature maps instead of the plain captured frames.

Looking at Table 4.7, observing how both implemented systems behave under dif-
ferent network bandwidth conditions is possible. To better simulate a low-power edge
system, each camera node is allocated 2 cores. As can be seen, the distributed imple-
mentation particularly suffers from bandwidth limits. As explained before, the feature
maps are way heavier than the plain frames; hence, bandwidth limits have a particu-
lar impact on the system performance, regardless of the amount of computing power
allocated to each component. This behaviour can be noted especially in the last row
of Table 4.7, in which the centralised system is 7.65x times faster than the distributed
one. In a 5G network with higher bandwidths, this speedup decreases to 3.23x-3.91x, a
reduction of 42.22%-51.11% compared to the previous scenario. Instead, when the net-
work is not the bottleneck, the distributed approach is the best in almost all scenarios,
as shown in Figure 4.6. Please note that the MVDet model is reported as is without any
optimisation for communication so as not to alter the model performance. While pos-
sibly having a detrimental effect on the model performance, the communication cost
could be lowered by compressing the feature maps or retraining the model with feature
maps having a lower number of channels.

This comparison clearly shows how the environment can influence the real-world
deployment of an edge inference system. Computational power and network band-
width allocated to each computing continuum element are crucial, but there is no one-
fits-all strategy to implement such systems. Workload distribution across the contin-
uum can often become disadvantageous if it leverages critical resources that the cen-
tralised counterpart, instead, is not so reliant on. Nevertheless, the same distributed
deployment can efficiently exploit all the available resources in an ideal scenario, thus
outperforming the more centralised approach. Since environmental conditions change
over time, future edge inference systems should consider this variability and try to ac-
commodate and adapt to it, especially if they claim to be flexible, reliable, and efficient.
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Chapter 5

Cross-Facility Federated
Learning

5.1 Federating across multiple HPCs
This last chapter introduces the most recent advancements of the author’s research
work. Another vision of FL is proposed, aiming at exploiting geographically distributed
computational power. In this sense, FL becomemore than amethodological tool for run-
ning privacy-preserving DML tasks; it become an additional tool capable of increasing
the scalability of DML workloads outside the single data centre. FL thus exposes a new
tradeoff between a DML system’s scalability and learning performance while natively
allowing privacy-preserving data handling. This property allows the exploitation of
sparse computational power, making it possible to run large DML workloads that a sin-
gle HPC or cloud infrastructure cannot handle. A federated training of the LLaMA LLM
is deployed on three geographically distributed HPC centres, proving that the publicly
available computational power can be exploited to run a state-of-the-art DMLworkload.
Such large-scale deployment requires specific tools to be handled correctly; this disser-
tation identifies the StreamFlow WMS as suitable for the task. This proof-of-concept
federation aims to democratise AI development, contrasting the big-tech companies’
approach of building large, private data centres to train cutting-edge ML models. All
the obtained results and updates on this topic are periodically released publicly on the
official cross-Facility Federated Learning website1.

5.1.1 The compute divide and the xFFL approach
The compelling growth in resource requirements of current ML models is reaching
never-seen peaks [150]. With the emergence of LLMs, the number of parameters of

1https://hpc4ai.unito.it/hpc-federation/
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state-of-the-art DNN suddenly increased from hundreds of millions to tenths or even
hundreds of trillions, effectively blowing up an order of magnitude [113]. The most
well-known examples of such trends are the GPT models. Such growth in models’ size
is upheld by the synchronously increasing size of available datasets, which can reach
hundreds of terabytes. It is immediately apparent that enormous computational re-
sources and time are needed to train such models on such data. Developing these AI
models is outside the possibility of common research institutions and companies [22].
Thus, large private companies are the only organisations capable of accumulating the
necessary computational power to produce these models. They usually build private
clusters specifically designed for AI workloads. The frontiers of AI development are
thus becoming prerogatives of privates, excluding publicly funded research. This fric-
tion between privately and publicly available computing power is just one example of
the so-called compute divide.

Publicly available computing power is a reality, though. HPC centres are widespread
worldwide, and many offer the possibility to obtain many computational hours for re-
search purposes. For example, through the EuroHPC PRACE initiative, the European
Union allows access to a publicly available portion of the computing hours of the HPC
centres on its territory. This mechanism allows the researchers to obtain thousands
of node hours in world-class European HPC centres. However, even if they are as-
signed sufficient computing power, public HPC centres’ terms of use and regulation
make them completely different from private clusters. Typically, a maximum number
of computational nodes per cluster is fixed, and it is impossible to scale further on a
single infrastructure. Furthermore, submitted jobs cannot run for an indefinitely long
time, but the expected running time has to be declared ahead of time, respecting the
policies of the HPC centre. Jobs exceeding their declared running time are killed by
the cluster management system. Also, queue waiting time has to be taken into con-
sideration. Private HPC centres have many users queuing for resource users, and job
scheduling thus imposes waiting times before the requested resources are available.
These control mechanisms are handled by complex scheduling systems such as SLURM
or PBS, which are the gateway to access computational resources and whose use is not
immediate.

Exploiting the joint computational power frommultiple publicly available HPC clus-
ters can be a solution to mitigate the computing divide between private and public in-
stitutions. Ideally, a large complex computation can be split into multiple sub-computa-
tions and run simultaneously on multiple HPC centres. The partial results obtained on
each machine can then be aggregated on one of the machines, giving the final result of
the global computation. If the process is iterative, such global results can bemoved back
to the clusters, and the computation can restart from where it stopped. This approach
allows a large computation to be run on a set of HPC centres as a single, geographically
distributed computational cluster while respecting the individual HPC centres’ terms
of use. FL appears to be particularly fit for this scenario [193, 180, 40] The presented
methodology is named cross-Facility Federated Learning (xFFL) in the following.
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Not all computations are suitable for this approach. The queue waiting time must
be considered each time a computation has to be run on an HPC centre. Such time is
generally unpredictable and can vary fromminutes to hours based on the cluster utilisa-
tion, requested resources, external events like maintenance, etc. Furthermore, moving
the partial results from one location to another relies on the public internet network.
Data transfer between HPC centres is thus subject to varying bandwidths and network
speeds, making the process slow and error-prone. The proposed approach is thus partic-
ularly suitable for large computations requiring a large amount of computational time
and resources while not requiring fast communication between the sub-computations.

Manually handling the proposed process is not sustainable. Interaction with mul-
tiple HPC centres simultaneously is not straightforward. It requires a control system
capable of interacting with the various scheduling systems adopted by the different cen-
tres while simultaneously handling the data transfer processes and checking on the run-
ning jobs. Thus, aWMS capable of handling hybrid workflows can be considered an ap-
propriate tool for handling such a complex and distributed workload. StreamFlow [49]
is chosen as WMS to orchestrate the cross-HPC federation. StreamFlow implements
the CWL standard and is natively container-oriented, offering excellent support for
multi-container-oriented tasks. Furthermore, it supports hybrid workflows, allowing
the execution of different workflow steps on different computational infrastructures. It
thus fits perfectly the nature of the proposed methodology.

5.1.2 Proof-of-concept experiments
If experimentally investigating an HPC-oriented methodology implies motivating HPC
use in the first place, investigating a cross-HPC methodology intrinsically requires it
even more. Large, computationally bound, timely use cases are needed to test the pro-
posed approach’s real-world efficiency and efficacy, and world-leading HPC infrastruc-
tures are required to provide solid experimental results. The complexity of a cross-HPC
deployment is high indeed, encompassing many architectural and performance aspects.
Preparing and optimising the experimental software for the different CPU/GPU archi-
tectures, considering the different intra-, inter-, and cross-communication costs, and
ensuring software stack compatibility across the different computing centres are just a
few aspects that should be considered when designing such a workload. Computations
that are not adequately capable of scaling across many computing nodes or mainly rely
on fast communications may not adequately exploit the proposed approach. A single-
HPC deployment is still the best option in such cases.

FL is particularly suitable for cross-HPC workloads for many reasons. Data can be
partitioned effortlessly on the different HPC centres, modulating the local workload
according to each machine’s computational power and available computing hours. The
training of different data partitions is independent of one another; they can thus be
executed in parallel on different infrastructures, independently of the local job queue
waiting time. The intermediate result aggregation is not frequent, so even long data
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transfer times become manageable.
A first cross-HPC FL small-scale experiment is set up to validate the feasibility of

the proposed methodology. A VGG16 is trained over two datasets: a standard MNIST
dataset, residing on the CINECAMARCONI100 HPC facility located in Bologna (single-
node technical specifications: 2x16-core IBM POWER9 AC922, 256 GB RAM and 4
NVIDIA V100 GPUs), and a grayscaled version of SVHN, residing within HPC4AI facil-
ity located in Torino (single-node technical specifications: 80-core Arm Neoverse-N1,
512 GB RAM, 2 NVidia A100 GPU) [48]. This national-scale xFFL deployment allowed
experimentationwith the StreamFlow backend on a standard FL task, allowing the iden-
tification of the major bottlenecks and issues of the xFFL methodology. The federation
is run in two configurations: 100 1-epoch federated rounds and 50 2-epoch federated
rounds. The federations ran smoothly, and their final obtained models showed the ex-
pected accuracy performance on both datasets (>0.99 on MNIST and >0.90 on SVHN).
The same setup is run on a pure cloud-based environment offered by HPC4AI and com-
pared to an off-the-shelf solution: Intel® OpenFL. The obtained time-to-solution results
confirmed that the xFFL approach does not inject overwhelming overheads at this scale:
the 100 rounds configuration ran in 2h40m and the 50 rounds one in 2h20m when or-
chestrated by StreamFlow, while they executed respectively in 3h06m and 2h09m when
handled by Intel® OpenFL. These results suggest that the xFFL approach offers inter-
esting computational performance at this scale and that larger deployments should be
tested to find its limits. The code of this first xFFL experiment is publicly available on
GitHub2.

An LLM FL use case is proposed as a proof-of-concept large scale workload for the
proposed cross-HPC methodology. Meta®’s LLaMA-2 is chosen as an exemplar state-
of-the-art LLM, while the cleaned mC4 Italian corpus (clean_mc4_it) is chosen as an
exemplar linguistic dataset. LLaMA-2 is an open-source, freely available LLM produced
by Meta®. Many versions of LLaMA-2 are available for download, ranging from 7 to
70 billion parameters. These transformer-based models express state-of-the-art con-
versational performance, with the larger one outperforming even GPT-4 [164]. Such
models are trained on Meta®’s private cluster, the Meta Research Super Cluster, com-
prising 760 NVIDIA DGX A100 systems as computing nodes for a total of 6,080 GPUs.
DGX systems are interconnected through the NVIDIA Quantum 1600 Gb/s InfiniBand
two-level Clos fabric with no oversubscription. RSC’s storage tier has 175 petabytes of
Pure Storage FlashArray, 46 petabytes of cache storage in Penguin Computing Altus
systems, and 10 petabytes of Pure Storage FlashBlade [89]. The Meta® training dataset
encompasses 2 trillion data tokens; the training of all models took jointly 3,311,616 GPU
computing hours, for an equivalent CO2 emission of 539 tons [164]. LLaMA-2 with 7
billion parameters is thus selected for the experimental’s simplicity and feasibility.

A cleaned version of the mC4 Italian split is always used as one of the experimental

2https://github.com/alpha-unito/streamflow-fl
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Table 5.1: LLaMA-2 (7B version) estimated one epoch training wallclock time on the
clean_mc4_it dataset (4,085,342 fixed 2048 token-length data samples) at different num-
bers of nodes, ranging from 2 to 128. The deployment is done bare-metal with a PyTorch
version manually compiled on the Leonardo supercomputer (1 node = 4 NVIDIA A100
GPUs).

#Nodes #GPUs Loading
time (s)

Queuing
time (s)

Estimated execution
time (hours)

Aggregate data
processing speed (it/s) Speedup Efficiency

2 8 34 2 774 0.35 2.00 1.00
4 16 34 2 385 0.99 4.02 1.00
8 32 34 2 193 2.83 8.02 1.00

16 64 34 2 98 8.16 15.80 0.99
32 128 38 2 49 23.19 31.59 0.99
64 256 90 222 25 66.32 61.92 0.97

128 512 120 438 14 179.02 110.57 0.86

datasets in the following experiments [144, 182]. This dataset is a preprocessed version
of the mC4 corpus Italian split. It omits documents containing despicable words, too
short (<3 words) or too long (>1000 characters) sentences, sentences not ending with
end-of-sentence punctuation, documents which are either too short (<5 sentences or
500 characters) or too long (>50,000 characters), and so on. The result is a cleaned
Italian corpus of 103 million documents, comprising 41 billion words. The ’tiny’ split of
the corpus is chosen since the full corpus size is prohibitive and incompatible with the
experiment time requirements. Thus, the experiments are run on 10million documents,
comprising 4 billion words, for a total of 4,085,342 training samples and 13252 testing
samples, each comprising 2048 tokens.

The experimental setting is organised as follows. Data is preprocessed, manually
split, and moved to each HPC centre according to the available computational power
and time. StreamFlow is deployed on an external cloud machine, which will also act as
the federation’s aggregator. LLaMA is distributed among the computing nodes through
the Fully Sharded Data Parallel (FSDP) methodology on the single HPC centre, using
different sharding strategies for each infrastructure according to the local hardware
characteristics. From a high-level perspective, the LLaMAmodel is sharded at the intra-
node level and replicated on each node. This distribution strategy means that a model
parallel approach is exploited intra-node, while a data parallel approach is exploited
inter-node.

Previous scaling experiments on Leonardo (the Italian pre-exascale HPC system; its
technical details are given in section 5.1.3) showed almost ideal scalability of the FSDP
methodology up to 16 nodes (64 GPUs), as reported in Table 5.1, confirming the LLaMA
scaling capabilities when trained distributedly with the FSDP strategy. Note that the
model’s weights are re-initialised at the beginning of the deployment and that all of
them are trained during the process: this is a full-scale LLM training, not a fine-tuning.
Due to limited resource availability, the total execution time required to train LLaMAv2
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Figure 5.1: Schema of the proof-of-concept xFFL LLaMA-2 (7B version) hybrid workflow
deployment. StreamFlow automatically deploys the model on the two HPC facilities
(interacting with SLURM), retrieves the trained parameters, aggregates them on a third
machine, and repeats the process until convergence.

7B on the whole dataset is estimated. This estimation is possible since the training
time is linear in the training dataset size, modulo having fixed hyperparameters. Once
the aggregate data processing speed (usually expressed in terms of iterations/second)
is stable, estimating the total execution time becomes straightforward, knowing the
number of iterations needed for the dataset (1 iteration = 1 data batch = 4 data samples
= 8192 tokens in our testbed). During preprocessing, the documents are converted into
fixed-length sequences of 2048 tokens through the standard LLaMAv2 tokeniser. As a
result, the Italian dataset used consisted of 10 million documents comprising 4 billion
words, converted into a total of 4,085,342 training samples and 13,252 testing samples
of 2048 tokens each.

The first effective deployment of this LLaMA-2 7B experimental setup is done on two
EuroHPC infrastructures: Leonardo and Karolina (as depicted in Figure 5.1). Leonardo
is the Italian pre-exascale HPC system hosted by CINECA in Bologna; its technical de-
tails are given in section 5.1.3. Karolina is a petascale HPC ranking 113th in the Top500
list (Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Infiniband
HDR200, HPE) hosted by the IT4Innovations National Supercomputing Center at the
VSB-Technical University of Ostrava, Czechia. The deployment is done bare-metal on
both infrastructures, exploiting manually compiled PyTorch versions. Leonardo uses a
subset of the cleaned version of the mC4 Italian split, while Karolina adopts a subset of
the standard mC4 corpus Czech split [137]. This choice suggests the applicability of the
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Table 5.2: LLaMA-2 (7B version) transfer times between the computing facilities. The
cloud VM is located in Bologna, physically near Leonardo. LLaMA-2 7B weighs approx-
imately 13 GB on disk (saved in half precision).

Leonardo@CINECA Karolina@IT4I Ada Cloud VM@CINECA
Queuing
time (s)

Transfer
time (s)

Queuing
time (s)

Transfer
time (s)

Model aggregation
time (s)

Min 0 138 0 178 118
Avg 34 217 175 242 133
Max 164 360 699 344 143

xFFL approach in a real FL context, in which different computing infrastructures hosted
in different countries have access to radically different private data. This use case thus
aims to produce a single bilingual LLM through FL training on two different linguistic
corpora. Learning performance, however, is not investigated here since the focus of
this discussion is on the computational performance of cross-facility computations and
not on the FL training performance of LLMs. We retained the same data quantity from
the mC4 Czech dataset to ensure balanced execution times (4,085,342 training samples
and 13,252 testing samples of 2048 tokens each). Each dataset occupies about 102GB of
disk space, much more than the 13GB required by the half-precision representation of
the LLaMAv2 7B weights.

Scalability in a xFFL execution is hard to achieve. In addition to the overheads of dis-
tributed training on a single HPC, FL exhibits several other potential overhead sources.
The major sources of additional overhead in a xFFL deployment are:

• Model exchange time across a geographical-scale network;

• Aggregation time (either centralized or distributed);

• Load imbalance between different sites due to different dataset sizes and/or differ-
ent computing power;

• Job queue waiting time (typically the main performance issue due to the inherent
stochasticity of this time span).

The values of these additional overheads measured during the Leonardo-Karolina xFFL
deployment experiments are reported in Table 5.2. The load imbalance overhead is
not reported since the same amount of data is used on both infrastructures in the pre-
sented experiment. As can be observed, the model aggregation and transfer times are
predictable and stable. In contrast, the queuing time is much more variable and un-
predictable, making the system’s overall execution time unpredictable. Note that each
training round between the aggregation point is modelled as a single job that, thus, is

121



Cross-Facility Federated Learning

submitted by StreamFlow to the queuing system and then is subject to a queue time
before execution. With frequent aggregations, the queuing time on public HPC infras-
tructures can quickly become the major bottleneck of the xFFL deployment. Neverthe-
less, xFFL proved to be suitable and stable enough to handle a real-world deployment
on two HPC infrastructures. All the developed code for this deployment is open-source
and freely available on GitHub3.

5.1.3 Creating the first European HPC federation
Experimental setup

The last iteration of the xFFL experiment focuses more on broadening the distributed
computation scale, targeting a more realistic use case. This time, LLaMA-3 8 billion is
trained using a prompt-tuning approach for an open-ended generation task. The dataset
used is again the cleaned mC4 Italian partition. Data is fed to the LLM with a generic
prompt (“Scrivi un documento”-“Write a document”), and the perplexity between the
generated text and the document passed on the template is calculated. Aggregation
happens on a VM hosted by CINECA Ada cloud in Bologna as in the Leonardo-Karolina
setting.

Three world-leading HPC centres are selected for this experiment: Leonardo (CI-
NECA, Bologna, Italy), LUMI (CSC, Kajaani, Finland), and MeluXina (LuxProvide, Bis-
sen, Luxembourg). Technical details describing these HPC infrastructures are given at
the end of this paragraph. Their heterogeneous CPU/GPU architectural characteristics
make it possible to showcase how to design and manage complex software capable of
harvesting computational power, notwithstanding the underlying hardware. Leonardo
offers the de facto standard Intel/NVIDIA architecture, LUMI the alternative full-AMD
architecture, and MeluXina a hybrid AMD/NVIDIA solution. These three HPC centres
represent the vast majority of HPC architectures populating the Top500 at the time of
writing and offer an excellent scenario for obtaining reliable and generalisable experi-
mental results.

The HPC centres’ geographical distribution is also considered; a graphical repre-
sentation is given in Figure 5.2. Cross-HPC workloads aim to exploit geographically
distributed computational power to a level never seen before. Thus, it is fundamen-
tal to investigate how large distances between these infrastructures can interfere with
computational performance. Considering that Leonardo is located in Bologna, Italy,
LUMI in Kajaani, Finland, and MeluXina in Bissen, Luxembourg, the total geographi-
cal distance separating these three HPC centres is ∼ 5,183𝐾𝑚 as the crow flies (much
more than the ∼ 782𝐾𝑚 between Bologna and Ostrava), covering a total land area of∼ 678.061𝐾𝑚2 (∼ 16% of the entire EU surface area). These massive distances, however,

3https://github.com/alpha-unito/xffl
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Figure 5.2: Representation of the third xFFL experiment’s geographical extent. The dis-
tance between these three HPC centres is ∼ 5,183𝐾𝑚 as the crow flies (much more than
the∼ 782𝐾𝑚 between Bologna andOstrava), covering a total land area of∼ 678.061𝐾𝑚2
(∼ 16% of the entire EU surface area).

influence cross-HPC distributed computations, especially spoiling the data transfer per-
formance between geographically distant infrastructures: minimising data transfer is
mandatory. Given this geographical setting, these experiments are thus considerable
as the first concrete step toward a European cross-HPC federation, effectively bringing
together the computational power scattered across Europe.

Another fundamental aspect characterising the three chosen infrastructures is their
relative computing power. All the given data in the following are to be intended at
the time of writing (Top 500 - November 2023 update). Leonardo is a pre-exascale sys-
tem achieving a performance peak of 238.70 PFlop/s (LINPACK 𝑅𝑚𝑎𝑥), ranking 6th in
the Top 500 list. LUMI is also a pre-exascale system and the largest supercomputer
in Europe. It achieves a performance peak of 379.70 PFlop/s (LINPACK 𝑅𝑚𝑎𝑥), rank-
ing 5th in the Top 500 list. These two supercomputers are the two largest currently
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available in Europe. MeluXina, on the other hand, is a more modest infrastructure,
achieving a performance peak of 10.52 PFlop/s (LINPACK 𝑅𝑚𝑎𝑥), ranking 71th in the
Top 500 list. These computational performance differences highlight another key as-
pect of cross-HPC workloads: load balancing. Harvesting sparse computational power
requires carefully managing the available resources, especially considering the capabil-
ities of each device. Different-size machines can be exploited together successfully if
the workload deployed on each is tailored to the available resources. Similar execution
times on eachmachine directly reduce data transfer and synchronisation waits between
them, speeding up the global cross-HPC execution time and improving resource usage
simultaneously. This fact is especially true for iterative applications that require one
or more synchronisation steps at each cycle, such as modern simulation software or
distributed ML training algorithms.

Singularity containers are exploited to avoid platform-specific code issues while al-
lowing the portability and reproducibility of the experiments [103]. TheNVIDIA official
optimised PyTorch images are used on the Intel-NVIDIA and AMD-NVIDIA architec-
tures, Leonardo and MeluXina. To optimise the computational performance on LUMI,
the LUMI’s official Singularity image for PyTorch (lumi-pytorch-rocm-5.6.1-python-
3.10-pytorch-v2.2.0-dockerhash-f72ddd8ef883.sif) is used after being updated with the
necessary Python packages. This approach proved more computationally efficient than
running bare-metal code, especially on NVIDIA architectures.

Technical details of Leonardo, LUMI, and MeluXina are given below to complete
the experimental setting overview. Leonardo comprehends 4992 liquid-cooled compute
nodes interconnected through an NVIDIAMellanox network, with Dragon Fl+, capable
of a maximum bandwidth of 200Gbit/s between each pair of nodes. The type of com-
puting node exploited in these experiments is a custom BullSequana X2135 ”Da Vinci”
blade equipped with an Intel Xeon 8358 Ice Lake 32 cores 2.6GHz CPU, 512 (8 x 64) GB
RAM DDR4 3200MHz, 4 NVIDIA A100 SXM6 custom Ampere 64GB HBM2 GPU, and
2 NVIDIA HDR 2x100Gb/s cards. LUMI comprehends 5026 compute nodes (2,978 GPU
nodes + 2,048 CPU nodes) interconnected through an HPE Cray Slingshot-11 200Gbps
network interconnect (NIC). The LUMI-C nodes (CPU) have a single endpoint, while the
LUMI-G nodes (GPU nodes) have 4 endpoints - one for each GPU. Each endpoint pro-
vides up to 50 GB/s of bidirectional bandwidth. The LUMI-G nodes exploited in these
experiments have an AMD EPYC ”Trento” 64-core CPU, 512 (8x64) GB RAM DDR4,
and 4 AMD MI250x 128GB HBM2e GPUs. MeluXina comprehends 813 compute nodes
(573 CPU nodes + 200 GPU nodes + 20 FPGA nodes + 20 large-memory nodes) inter-
connected with an InfiniBand (IB) HDR 200Gb/s high-speed fabric. The GPU nodes
exploited in these experiments have 2 AMD Rome 32 cores 2.35 GHz CPUs, 512 GB
RAM, and 4 NVIDIA Ampere A100 40GB HBM GPUs.
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Table 5.3: LLaMA-3 (8B version) execution time subdivided in its main components.
The training is done on 20,000 training samples of 2,048 tokens each on the Leonardo
HPC.

#Nodes Model loading (s) Distributed setup (s) Training (s) Testing (s)

1 120.6 87.8 3,321.4 54.4
2 123.6 95.3 1,700.0 27.0
4 120.6 158.4 788.4 13.0
8 121.8 94.5 432.6 6.0

16 131.8 95.7 223.4 3.0
32 131.4 110.0 115.0 1.0
64 122.0 109.5 63.2 ∼ 0

128 118.6 119.2 40.8 ∼ 0
256 117.2 124.8.8 22.8 ∼ 0

Experimental results

It is crucial to analyse the computational performance of the selected HPC infrastruc-
ture on AI-related tasks to give a fair perspective on the obtained experimental results.
AI workloads exhibit specific computational performance and resource usage different
from the standard computing benchmarks, i.e., LINPACK. The performance results pre-
sented in the following are obtained by training LLaMA-3 8 billion parameters on 20,000
training tokens from the ’tiny’ cleaned mC4 Italian corpus on the Leonardo HPC.

The code’s relatively poor scalability performance is the first thing to be noticed. As
can be seen in Table 5.3 and graphically in Figure 5.3, the distributed setup time (”other
sequential code” in the figure) starts increasing from 16 nodes (64 GPUs), suggesting
evenmore significant overheads on larger-scale deployments. This setup time, together
with the model loading time, determines the computation’s non-scalable component,
limiting the overall code scaling performance. The experiments target the LLaMA 8B
model; larger LLMs will yield even larger overheads. The training and testing code,
on the other hand, seems to scale almost perfectly up to 64 nodes (256 GPUs). Such a
limit is intrinsic to the FSDP technique itself: since the global batch size of the training
increases with larger deployments, the distributed computing libraries implementing
FSDP are not optimised to span more than that. These performance issues do not seem
to be correlated with the problem’s size (i.e., the size of the training dataset) or to the
FSDP distributed training technique itself. These statements are confirmed by the fact
that increasing the training dataset size does not change the code’s scaling behaviour
and that the performance of the FSDP code section yields nice scalability performance
up to 64 nodes, as can be observed in Figure 5.4.

This in-depth scalability analysis on Leonardo provides a fair baseline for comparing
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Figure 5.3: LLaMA-3 (8B version) execution time subdivided in its main components.
The training is done on 20,000 training samples of 2,048 tokens each on the Leonardo
HPC.

the performance offered by the other two HPC infrastructures selected for this experi-
ment: LUMI andMeluXina. It should be noted that the different infrastructures differ in
their node structure, memory and computational power; thus, the LLaMA-3 8B deploy-
ment has to be tailored specifically for each platform. For example, a single instance of
LLaMA-3 8B fits into a single Leonardo or LUMI node but requires two nodes onMeluX-
ina. This difference is due to the GPU RAM available on the computing nodes. Each
Leonardo node is equipped with 4 custom NVIDIA A100 for a total of 256 GB of GPU
RAM, each LUMI node is equipped with 4 AMD MI250x for a total of 512 GB of GPU
RAM, while each MeluXina node is equipped with 4 NVIDIA A100 for a total of 160 GB
of GPURAM. Note that each LUMIGPU comprises two graphics compute dies, meaning
that each LUMI node is equipped with 8 64GB RAM GPUs for a practical perspective.
This difference in model allocation also implies greater communication overhead on
MeluXina since training a single model requires inter-node communication, while this
is not the case on Leonardo and LUMI. Finally, a different dataset size is selected for
each HPC system to obtain equal workloads from a time-to-solution perspective. This
process is based on selecting a workload lasting 1 hour on the smallest available de-
ployment on each system. It resulted in 16,384 training samples on Leonardo, 4,096 on
LUMI, and 8,192 on MeluXina.

The obtained computational performance on the three HPC systems is reported in
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Figure 5.4: LLaMA-3 (8B version) scaling performance on Leonardo. Both the whole
deployment code and the FSDP code are analysed. The training is done on samples of
2,048 tokens each on the Leonardo HPC.

Figure 5.5. It appears clear that the scalability problems discussed in the previous para-
graphs are unrelated to the underlying hardware: also on LUMI and MeluXina the
whole code’s scalability performance starts to spoil after 16 nodes, while the FSDP code
scales reasonably well on all infrastructures and also on a high number of nodes. From
a scaling perspective, LUMI performs better than the other two infrastructures. While
this is true from a strict perspective, it has to be noted that the three HPC systems
expose radically different absolute computational times, meaning that the scalability
performance on its own its not sufficient to determine the most efficient single-HPC
deployment. Figure 5.6 depicts the difference in absolute compute time required to pro-
cess the same amount of data on each HPC infrastructure (16,384 training samples). As
can be seen, LUMI is slower in processing data from an absolute time perspective. This
lower computing performance can mitigate the communication overheads implied by
FSDP, thus exposing an ’artificially’ better scaling performance compared to Leonardo
and MeluXina.
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Figure 5.5: Comparison between LLaMA-3 (8B version) scaling performance on Leonar-
do, LUMI and MeluXina. Both the whole deployment code and the FSDP code are anal-
ysed. The training is done on a different number of tokens on each HPC infrastructure
to accommodate the different computing power.

Table 5.4: LLaMA-3 (8B version) transfer time between Leonardo, LUMI, MeluXina and
the Cloud VM. LLaMA-3 8B weights ∼ 15𝐺𝐵 on disk saved in half precision. Experi-
ments are repeated 33 times.

From To Max time (min:sec) Min time (min:sec) Average time (min:sec)

Cloud VM Leonardo 06:33 03:57 04:23
Cloud VM LUMI 13:55 08:20 09:32
Cloud VM MeluXina 03:50 03:18 03:36
Leonardo Cloud VM 06:34 05:45 06:00
LUMI Cloud VM 76:38 16:04 27:51
MeluXina Cloud VM 40:43 06:34 27:42

Considering all these single-HPC considerations, the xFFL performance results ob-
tained on the three systems together are exposed. Many xFFL experiments are launched
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Figure 5.6: Comparison between LLaMA-3 (8B version) scaling performance on Leonar-
do, LUMI and MeluXina. Both the whole deployment code and the FSDP code are anal-
ysed. The training is done on 16,384 training samples of 2048 tokens each on each HPC
infrastructure.

Table 5.5: LLaMA-3 (8B version) queuing and execution times on Leonardo, LUMI and
MeluXina. The training is done on a different number of tokens on each HPC infras-
tructure to accommodate the different computing power.

Leonardo LUMI MeluXina

# Nodes Queue time
(min:sec)

Execution time
(min:sec) # Nodes Queue time

(min:sec)
Execution time

(min:sec) # Nodes Queue time
(min:sec)

Execution time
(min:sec)

1 51:08 49:49 1 13:35 50:50 2 00:01 34:33
2 03:03 27:05 2 05:05 26:36 4 11:28 16:46
4 04:35 15:18 4 07:39 14:37 8 50:58 10:36
8 04:29 09:37 8 09:28 08:27 16 41:38 07:26

16 38:11 06:09 16 03:42 05:25 32 00:18 06:09

to train LLaMA-3 8B (15 GB disk size in half-precision format). The base FL configu-
ration consists of 1 Leonardo node, 1 LUMI node, and 2 MeluXina nodes. Data is split
according to each facility’s computing power to obtain balanced execution times, as
exposed in the previous paragraphs. As shown in Table 5.4, there appear to be dif-
ferences in the transfer time between the Cloud VM and the supercomputer and vice
versa. It is possible that such unbalance is due to an unforeseen StreamFlow behaviour
to be corrected; however, this issue is currently under active investigation. On the other
hand, queue times present an extremely variable behaviour. Figure 5.5 summarizes the
queuing and execution times of the xFFL experiments in this setting. As can be seen,
high-usage periods can easily increase the queueing time needed for the xFFL to be ex-
ecuted. While these factors strongly hinder the scalability property of xFFL, it should
be noted that the proposed system automatically and correctly manages such delays,
meaning that such overheads will not be an issue on a private or free cluster. However,

129



Cross-Facility Federated Learning

data has been collected on a small set of runs; more extensive experimentation is re-
quired for proper evaluation. Queue-aware scheduling policies that adjust workloads
based on predicted queue times should be investigated to mitigate the impact of outliers
jobs.
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Chapter 6

Conclusions

This last chapter wraps up the dissertation. The major limitations of the presented
work are exposed, identifying possible interesting research scenarios derived from this
dissertation. Some future works already foreseen are discussed, highlighting that the
presented dissertation is an organic component of a live, evolving research path and
not just a sterile academic milestone. Finally, the conclusions summarise the exposed
concepts and proposed research ideas, integrating them into the broader social and
technological framework described in the introduction, giving the dissertation cohesion
and integrity.

6.1 Limitations and future work
The presented research path gives an overview of the major structural problems of
current DML practice focusing on FL. Such issues’ practical aspects are considered, al-
ways highlighting their implementational aspects. Such an approach makes this work
particularly application-oriented, focusing on real-world use cases, data analysis, and
large-scale distributed DML deployments. In this sense, this dissertation gives practi-
cal insights into the DML research scenario and proposes experimental tools to solve
such issues. Such an approach favours the development of usable software, thus pro-
moting a tangible impact in the research community. However, it partially neglects the
investigated issues’ more theoretical and methodological aspects. Each chapter of this
dissertation tries to present at least some methodological considerations about the pro-
posed works, but theoretical considerations are not always present. Thus, a limitation
of the presented researchwork is the prevalence of a practical, implementation-oriented
approach to the DML scenario, which may have overlooked more high-level method-
ological and theoretical aspects.

Federated Learning as a Service (FLaaS) is a proposed future work to solve this lack.
FLaaS aims to overturn the traditional FLmethodology completely. Instead of designing
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a federation as a structure built from a set of institutions cooperating on the same learn-
ing problem, FLaaS envisions a federation as a service offered by a set of institutions
to allow a third party to solve its learning problem. According to this vision, the data-
holding institutions are no longer the active part of the federation but a coordinated
net of servers willing to participate in a federation. This innovative vision allows insti-
tutions to allow external researchers to access potentially unused local datasets while
maintaining traditional FL’s privacy properties. In this sense, FLaaS can be envisioned
as a new knowledge-shared paradigm in which a researcher with an exciting research
idea can easily identify which nodes of the FLaaS platforms hold data that can be of
interest for his/her research and run an FL workload on them. The main benefits of
this approach are that researchers outside a data-holding institution can exploit the FL
properties to conduct their research and that data-holding institutions that do not know
how to exploit their local data can share them, helping scientific advancements (eventu-
ally under fee payment). FLaaS thus envisions a new FL paradigm, possibly impacting
standard FL practices, software, and methodologies. It is currently being developed,
and many companies have expressed interest in the project.

Another issue of this dissertation is the widespread spectrum of the proposed ideas.
Many software and hardware concepts are discussed in this thesis. Cardiological and
financial research, traditional, deep, and distributed ML, FL, EI, HPC, cloud, and edge
computing, different microarchitectures including RISC-V, software design and imple-
mentation, parallel and distributed computing, workflows, containers, and so on. These
topics are too many and different to be adequately discussed and exposed in one re-
search work and too many to be deeply and profoundly understood in a three-year
Ph.D. path. It derives that this dissertation lacks a well-focused and specialised contri-
bution, preferring instead a more cross-topic and transversal contribution, often more
towards HPC, ML, or even applicative domains.

A future research work merging all the proposed DML ideas is proposed to mit-
igate such an issue. Ideally, the future development of FastFL aims at incorporating
all research ideas discussed before its exposition, such as distributed boosting, and af-
ter, such as cross-HPC deployments. In this sense, FastFL is the main experimental
software actively developed by the author, and it will include all the experience and
ideas developed during the PhD period. Notably, the FLaaS idea exposed just above is
designed to support FastFL and containerisation technologies such as Docker and Sin-
gularity. Furthermore, integration with the StreamFlow WMS is envisioned to handle
complex, distributed FL workloads as workflows. Such an approach guarantees many
advantages, such as the native support of containerisation technologies, the already de-
veloped SLURM and PBS interface for HPC offload, and built-in fault tolerance in case
of node failure. This way, all the proposed research ideas can converge into one single
software encapsulating all the ideas developed across three research years, offering a
unified, compact, and coherent research product.

Finally, the xFFL experimentation showed that LLM training workflows scale dif-
ferently on different HPC facilities mainly due to overhead handling (model loading,
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PyTorch distributed setup). FSDP training scales well up to 256 GPUs on all the tested
HPC facilities, but with very different absolute compute times that should be consid-
ered. Carefully balancing data to obtain homogeneous execution times for each round
is fundamental, but some overheads are unpredictable, i.e., queuing times. The xFFL de-
ployment can be further optimised by reducing the model loading time using high-end
storage and I/O optimisation techniques (e.g., GPUDirect storage), investigating strate-
gies to avoid PyTorch cold restarts on all nodes (caching, faster setup algorithms), or
reducing the amount of communication involved in the process. Furthermore, it should
be noted that investigating xFFL performance at larger scales will probably result in
discovering new computing and communication bottlenecks in the underlying com-
munication libraries (e.g., NVIDIA NCCL). Larger deployments will also need different
training hyperparametrisation to preserve learning performance. Finally, HPC instabil-
ity has to be considered: node failures, network instabilities, and frequent maintenance
periods make it difficult to use three facilities at the same time and would probably
prevent using even more simoultaneously. Also, the extreme heterogeneity in their
interfaces, structure, computing hours allocation policies, computing time accounting
(node hours vs GPU hours vs core hours), container support (there is no standardway to
build Singularity containers on the systems, and is even not allowed on some facilities),
and so on pose a significant obstacle to the construction of large-scale international
HPC federations.

6.2 Conclusion
This dissertation explores many aspects of the FL paradigm. All the proposed research
ideas are designed to push the boundaries of current FL practice, ranging from low-level
perspectives, such as the support and power consumption of different microarchitec-
tures, to high-level perspectives, such as modelling distributed computation through
theoretical tools. This PhD thesis highlights that FL is much more than what was orig-
inally defined by Kairouz and McMahan:

• FL is an enabling methodology to allow the pooling of distributed data, easing
the process of data harvesting and agreement between the different parties. Sec-
tion 3.1.4 proves this by replicating the performance of a state-of-the-art cardio-
logical risk score, the PRAISE score, by training the sameMLmodel on a federated
version of the same dataset through the FL methodology, thus bypassing all the
effort and time needed to create the original PRAISE data lake.

• FL can be generalised to classical ML models through a careful algorithmic design.
Section 3.2 demonstrates the versatility of FL by implementing the AdaBoost.F
model-agnostic FL algorithm into the Intel® OpenFL framework. This innovation
enables the application of FL in fields where DNNs are not always viable, such as
medicine (Section 3.1) and finance (Section 3.3).
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• FL is not bound to themaster-worker topology nor high-level Python implementa-
tions. Chapter 4 shows that through a high-level formal language (RISC-𝑝𝑏2𝑙) and
careful low-level implementation (FastFlow), it is possible to envision a new full-
stack vision of FL deployment, with both a more flexible communication topology
and better computational performance.

• FL is a powerful, loosely synchronous methodology that enables new trade-offs
between ML training scalability and learning performance. This power is demon-
strated in Chapter 5.1, where FL is exploited to deploy large-scale, distributed LLM
training on geographically distributed HPC infrastructures, bridging the digital di-
vide.

The investigated topics already flow into practical and tangible contributions to the re-
search community, i.e., open-source software implementations. This effort will allow
the research community to experiment and explore the proposed FL research vision
with the plurality of concepts and topics involved. The proposed work aims to em-
power a distributed vision of ML, pushing towards software, tools, and methodologies
to allow AI to flourish pervasively together with the help of everybody, overcoming
current computational and technological constraints restricting AI pioneering in the
hands of few and large private companies. AI is a tool in the hands of the world, but
not everyone can deploy, improve, and use it. The capability of developing effective AI
systems is becoming a pivotal point of the current technological and social scenario, and
the proposed research efforts and products aim at democratising it as much as possible.
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Appendix A

Federated Learning
Applications

This appendix collects two practical FL investigations conducted by the author during
his abroad period. All the exposed studies and results are obtained in collaboration with
the Computer Laboratory of the University of Cambridge, Cambridge, UK. Themethod-
ological idea behind these studies is the same: applying FL to a domain in which data is
critical and investigating the approach’s feasibility. The selected use cases are DTI and
solar wind prediction. All the proposed experiments are based on actual data, with hun-
dreds of experiments run on large HPC and cloud infrastructure. This appendix thus
provides learning, computational, and domain-specific performance results, engaging
the interest of three research communities.

A.1 Drug-Target Interaction
This section delivers the first-ever FL benchmark for the DTI task. At the time of writ-
ing, the only study in the literature that applies FL to DTI is FL-QSAR, which presents
the first federated model trained for a related drug discovery task. Unfortunately, it
stops short of analysing FL performance beyond demonstrating its feasibility for up to
4 clients [41]. A novel technique named diffusion is developed to provide a more com-
prehensive study framework for FL applications. Through diffusion, it is possible to
identify and explain a significant and material difference in the sensitivity of FL to non-
IID data in the DTI task. A state-of-the-art DTI scenario is thus proposed and analysed
through the diffusion technique. The importance of data ownership structure in FL
for DTI is discussed as a significant performance determinant and a key aspect when
engaging real-world actors in cooperative model training. The reported experiments
aim to represent the complexities a federation of pharmaceutical labs would entail as
realistically as possible. The whole spectra of IID-ness and data ownership distribu-
tion are explored, and core FL algorithms are used to provide general and applicable
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experimental results.

A.1.1 Background
This research work proposes to fit the GraphDTA graph neural network on the KIBA
drug-target dataset split among multiple clients through FL, thus simulating a phar-
maceutical laboratories federation. The Graph Drug-Target Affinity (GraphDTA) [126]
mode is a graph DNN currently used as the backbone of many current state-of-the-art
models [88, 127, 61]. GraphDTA regresses the drug-target pair onto a continuous mea-
surement of binding affinity for that pair, the KIBA score, that is later exposed. This
model requires the target to be a 1D sequence and the drug as amolecular graph, making
it possible for the model to capture the bonds among atoms directly. No fancy aggrega-
tion strategies are implemented, and neither is the model’s structure refined to fit the
federated task. Only the stateful components of GraphDTA are modified and replaced
with stateless ones to accommodate better the FL process: layer normalisation instead
of batch normalisation and SGD instead of ADAM. These choices allow for more sta-
ble learning curves and cleaner convergence of the federated model without harming
its performance. Both FL and non-FL experiments are run with the same adjusted ar-
chitecture. On the other hand, the Kinase Inhibitor BioActivity (KIBA) dataset reports
246,088 scores for 52,498 chemical compounds and 467 kinase targets, originating from
three separate large-scale biochemical studies. The target proteins are encoded in the
SMILE format and converted to a suitable graph representation before the FL process.

The experimental setup builds on the experiments usually associated with FL bench-
marks while substantially expanding them. First, the model is compared against a suit-
able alternative. Given the lack of prior work, there was no ready candidate for this
comparison. A centralised model is unsuitable since its use is unrealistic due to regula-
tory and commercial considerations. Cryptographic approaches to data anonymisation
would be usable in real life; however, they are not a direct competitor to FL. However,
they can augment each other and provide joint solutions similar to what FL with dif-
ferential privacy does [170]. Ultimately, a simple Bergman’s ensemble [27] of models is
chosen, with each model being trained separately on a different data split of the entire
dataset. Data splits are maintained constants when comparing FL and Ensemble Learn-
ing. The choice of baseline algorithms for both FL and the ensemble is deliberate, as
any extension applicable to one can be straightforwardly re-engineered for use with the
other [135]. Therefore, working with simple implementations provides us with a fair,
uncoloured comparison of the two approaches rather than of their two extensions. The
metric used to evaluate each experiment is the Mean Squared Error (MSE); in the case
of FL, the MSE of the global model is computed, while in the case of bagging, the MSE
of the ensemble is considered. The test set is the same for all experiments, allowing for
a fair comparison of different runs.

The reported experiments exploit the open-source FLOWER [23] framework to pro-
vide FL functionalities and the FedAvg aggregation strategy. The code is available on
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Table A.1: Learning performance obtained by DTI-FL and an ensemble alternative on
the KIBA dataset. The % difference columns refer to the federated values compared to
the ensemble ones: positive difference in the MSE highlights worse relative FL perfor-
mance and vice versa.

IID distribution non-IID distribution
Ensemble MSE Federated MSE % difference Ensemble MSE Federated MSE % difference

2 clients 0.509 0.530 +4.08% 0.550 0.556 +1.19%
4 clients 0.563 0.577 +2.58% 0.556 0.556 -0.05%
8 clients 0.567 0.574 +1.30% 0.568 0.574 +1.20%

16 clients 0.576 0.578 +0.42% 0.573 0.578 +0.690%
32 clients 0.709 0.599 -15.53% 0.579 0.578 -0.024%

GitHub1. The provided code works with PyTorch but will eventually be compatible
with TensorFlow. It is being shared for the benefit of the Biologists working on DTI
and those interested in proving and capitalising on FL’s usefulness as a secure, privacy-
preserving, and performance-conserving platform for sharing pharmaceutical data un-
der regulatory and commercial constraints.

A.1.2 Experimental results
Table A.1 shows the obtained experimental performance on the proposed system in dif-
ferent scenarios. Learning performance differences are reported between the federation
of deep model architectures and an ensemble of the same architectures. An experiment
is successful if the federated model performance matches the non-private distributed
alternative. The reported experimental results show that FL can retain up to 15% better
performance relative to the distributed alternative while ensuring no data or any other
high-level summary is revealed [23]. The general trend in the IID results points to a
relative advantage for the ensembles at very low client counts that quickly dissipates,
turns into parity, and, from 16 clients up, fully reverses as the client count increases.
Second, the non-IID data display effective parity practically at all client counts, indicat-
ing that FL can deal with unequal data distributions much better than the distributed
alternative. This matched performance makes it a clear favourite for future distributed
learning research in the DTI domain, alongside FL’s solid privacy and security guar-
antees, which are entirely lacking in the distributed alternative, Furthermore, seeing
that the IID and non-IID performances are effectively matched, the FL performance
developed under varying non-IID conditions is investigated.

Data non-IID-ness in DTI is two-dimensional as there are two model inputs. The
proteins and the chemicals are jointly considered to predict their interaction. Conse-
quently, it is possible to investigate the distribution one dimension at a time, either

1https://github.com/Giemp95/FedDTI
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non-IID to the protein or chemical inputs, or explore it in both dimensions simultane-
ously. Neither of these three approaches can be ruled out as a priory as the input classes
are statistically independent. Consequently, the domain does not lend itself easily to
the established notions of non-IID-ness in FL, and non-IID-ness should be tested un-
der all three conditions. The proposed experiments investigate the entire continuum of
IID-ness rather than just its two extremes. The IID data distribution is a random draw;
each client has an equal chance of owning each data point. A non-IID distribution as-
signs proteins or drugs to specific clients, who then own all experiments that contain
the protein or drug assigned to them. In the real world, these would be the laboratories
looking for drugs targeting a specific protein or investigating the effects of a specific
drug.

Each row of each map in Figure A.1 is obtained by first assigning to each client all
experiments corresponding to an exclusive collection of either proteins or drugs. Then,
at each step along the continuum, the clients exchange some of their data with their
neighbours. This exchange follows a Gaussian curve, introducing an uneven repre-
sentation of each data class outside its assigned client. This method is called diffusion
since different IIDness levels are obtained through data diffusion from each client to its
neighbours. This choice makes the distribution more realistic since it is unlikely that all
clients but one would hold the same amount of data in any given class. The desired mix
of protein- and drug-centric clients for the protein and drug experiments is obtained by
splitting the data into two sub-datasets and then treating each as a separate one-class
non-IID experiment. This scenario is closest to what is expected in the real world. Each
square in the figure reports the average over ten training iterations of the given model’s
loss performance relative to the centralised case. The client counts presented in these
figures reflect the cross-silo setup of this domain.

Figure A.1 shows the heat maps exploring the IID-ness space along the protein, drug,
and both dimensions. As expected, having a higher client count hurts the performance
at all non-IID-ness levels. The more fragmented the dataset, the more challenging the
aggregation, as the larger client count implies fewer data per client in this setup, spoil-
ing the individual client models. However, the different levels of IID-ness do not appear
to be linked to the model’s performance. In other words, while a general trend towards
worse performance can be detected in each column, such a trend is less evident in the
rows. This property is exciting, as it implies that it does not matter whether all client
labs test the same combination of proteins or if each client has their own or substan-
tially similar portfolio. It also means that what is a significant drain on FL’s robustness
in other domains is not a factor in the DTI domain.

In summary, unlike in other domains in which FL has been investigated, in the DTI,
due to its unique data structure, the input IID-ness does not play a significant role,
making the domain singularly unique among FL domains. This observation is crucial as
resilience to non-IID data distribution is usually the chief robustness metric for compar-
ing different aggregation strategies in FL. With data distribution eliminated as a major
limitation to the DTI-FL implementation’s robustness, data quantity distribution, i.e.
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(a) Protein-based IID-ness variation. (b) Chemical-based IID-ness variation.

(c) Combined IID-ness variation.

Figure A.1: Learning performance (MSE) % change relative to the smallest client count
and highest concentration obtained by FL-DTI at protein-based (top-left), chemical-
based (top-right), protein- and chemical-based (bottom) IID-ness variation and different
client counts (up to 33 clients).

uneven data ownership, is considered the next candidate for a significant performance
driver.

Data distribution imbalance plays a significant role in FL’s performance at DTI. Data
distribution imbalance and unevenness in the data quantity among clients are of partic-
ular concern in the DTI domain, as the participant landscape is composed of a hodge-
podge of big and small entities. While plausible in some domains, the often-made as-
sumption that clients have access to about the same amount of data is contrary to the
structure of the pharmaceutical industry. Moreover, when this assumption is relaxed, it
is arguable that exploiting more clients will speed up the training process while, in con-
trast, data quantity distribution among the clients will ultimately not impact the model
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(a) Data quantity IID-ness variation. (b) Data quantity IID-ness variation over dif-
ferent numbers of clients.

Figure A.2: A.2a (left)): Learning performance (MSE) % change relative to the small-
est client count and the highest concentration obtained by FL-DTI for a selection of
client counts and a range of data quantity distributions sampled equidistantly. A.2b
(right)): Learning performance (MSE) % change relative to training FL-DTI based on
the dominant client’s (60% of the) data is reported for adding up to 40% of extra data in
increments of 10% and divided among 1 to 4 additional clients.

performance [176]. Figure A.2 challenges this assumption and examines data quantity
distribution’s impact on the model performance under varying client counts.

Figure A.2a investigates the interplay between client count and data quantity dis-
tribution profile. The dataset is distributed among multiple clients. The same single
client is designated as the dominant client and receives a variable percentage of the
data. The rest of the data is distributed unevenly among the rest of the clients follow-
ing the Gaussian curve, achieving a reasonably uneven distribution in line with the
approach exposed in the previous subsection.

Increasing the client count makes the problem harder, increasing the error. This
time, however, the rate of performance deterioration depends on the unevenness of
data allocation among the clients. At each client count, irrespective of the ownership
inequality level, it holds that moving to a more concentrated data ownership favours
the model’s performance. This effect is significant throughout the tested conditions but
grows stronger the closer the tested setup is to the highly centralised data ownership.

Crucially, the co-dependent effect is not only present in the overwhelmingly domi-
nant client case (far left), where it could be discounted as a case of mode collapse into
a pseudo-centralised setup, but it holds throughout the tested conditions. This persis-
tence makes such observation particularly salient. There is a cost to having a diluted
client data ownership structure. The next step is to investigate the interplay of this cost
with the benefit of adding new data.

Figure A.2b investigates the trade-off between the benefit of adding more data to
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an existing federation and the cost resulting from increasing the client count and thus
diluting the client data ownership structure. The progression starts with a single client
allocated a 60% share of the data. Without loss of generality, this can represent a preex-
isting federation of clients. The remaining 40% of the dataset is available for addition.
The heat map reports the error implications from adding this data in increments of 10%
distributed among 1 to 4 clients.

Predictably, increasing the amount of additional data and spreading this data among
fewer clients improve model performance in Figure A.2b. What is less predictable is
that the rate of improvement is about the same in both of these dimensions, which is
indeed remarkable. In the tested situation, increasing the concentration of data owner-
ship can, in some cases, have as strong a positive effect on the model’s performance as
adding 10% of the data. The benefit of additional data can substantially offset the cost
due to the changed data ownership distribution. The symptom of this is that the top
left to bottom right diagonal, where the forces work against each other, varies much
less than the bottom left to top right diagonal, where they reinforce each other. The
strength of this effect, and in particular its potential to overturn the benefits of sub-
stantial dataset increases, suggests questions beyond this paper’s scope. Nevertheless,
they are significant as they call for rethinking the data imbalance vision as a mere con-
vergence speed issue. The leveraging of this observation and its use in the design of
superior aggregation strategies is left as future work.

A.2 Solar wind speed prediction
DML is the future of onboard computation in space as it offers scalability, resilience, and
flexibility that a centralised setup can not match. In the communication space, it trades
in the cost of a full-dataset aggregation for an intermittent exchange of training mes-
sages. This research work explores the communication cost landscape of centralised
and federated DNN training, considering a spatial use case. The issue of predicting
solar wind speed days in advance is considered, and actual NASA data is exploited
to carry out the investigation. Many experiments are run on Google Cloud computing
resources to prove the feasibility of the proposed approach. They give materially signif-
icant recommendations relevant to the design of future space missions as they identify
a substantial trade-off between the benefits of adding new data and the cost of adding
more clients. This work is conducted under FDL supervision and founded by Trillium
Technologies Inc.

A.2.1 Background
Onboard computation is relevant to current missions and necessary for future ones.
It allows researchers to significantly reduce the communication costs associated with
sending large amounts of data a long way to the Earth. Extreme solar winds can impact
communication, disrupting satellites and spacecraft operativity. Accurately forecasting
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the solar wind speed onboard is thus an essential proving ground for future AI deploy-
ment in space. FL is thus proposed to train a state-of-the-art transformer model for
solar wind speed prediction [30] on the Extreme UV images taken by the NASA Solar
Dynamics Observatory [74, 130]. FL performance is investigated and compared to the
centralised model under IID and non-IID conditions, searching for significant commu-
nication savings. Results for forecasting at a four-day lag from a single 211 Å image are
presented.

A.2.2 Experimental results
Figure A.3 present the obtained experimental results. Each subfigure investigates the
interplay between the federation client count and a major driver of performance and
generalisation. Heath maps are used to illustrate performance loss relative to the cen-
tralised setup. Non-IID-ness increases towards the right in Figure A.3a, as does equality
of data split in Figure A.3b.

The centralised and federated training successfully replicates the expected perfor-
mance observed in the original solar wind prediction paper. The proposed experi-
ments follow the same general training curve patterns as the baseline centralised setup,
achieving a statistically indistinguishable MSE of 0.098. However, they differ markedly
in their communication costs. The basic distributed (non-federated) setup requires the
communication of all gradients at each training step. In the proposed setup, this is
330MB of gradients 1095 times per epoch or about 361.35GB in total. This number
is unfavourable to the 35GB size of the entire dataset. Meanwhile, FL can work with
communicating a comparable 330MB tensor of data just once per epoch in the most
conservative and basic setup.

The benchmark performance experiments confirm that distributed setups replicate
the centralised case for up to 8 clients. Beyond this point, there is a 20% performance
fall. Ownership concentration experiments dive into the issue of client count tolerance
dependence on the data ownership structure. They show that thinly spread data dis-
tribution patterns hamper convergence as client models fail to converge. Non-IID-ness
tolerance experiments investigate FL’s resilience to increasing client counts as data dis-
tribution changes. As each client’s data became less diverse, i.e., focused only on a spe-
cific solar cycle period (more non-IID), the system’s tolerance for a higher client count
decreased. Indeed, the proposed experiments demonstrate this data-ownership trade-
off. A 40% of the data is held out, resulting in an apparent performance loss. Adding
it back in tranches of 10% and spread among 1-4 clients clearly shows that the highest
rate of improvement is achieved when the data is added in through the smallest number
of clients. Indeed, adding the first 10% in a single chunk gives 3x relative improvement
than when spread out. Notably, the similarity between the 1-way and 2-way splits sug-
gests a minimal sufficient data requirement. Put together, it is necessary to pay close
attention to the client data collection, ownership structure, and concentration for the
benefits of distributed training to be realised, as these were shown to be persistent and
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(a) Solar wind-based IID-ness variation. (b) Data quantity IID-ness variation.

(c) Data quantity IID-ness variation over differ-
ent numbers of clients.

Figure A.3: Learning performance (MSE) % change relative to the smallest client count
and highest concentration obtained by FL at different levels of solar wind-based (A.3a)
and data quantity-based (A.3b) non-IIDness. A.3c): Learning performance (MSE) %
change relative to training solar-FL solely based on the dominant client’s (60% of the)
data is reported for adding up to 40% of extra data in increments of 10% and divided
among 1 to 4 additional clients.

material determinants of performance.
It is finally possible to asses that FL significantly lowers the communication cost of

message passing relative to its distributed peers. Furthermore, the proposed extensive
battery of experiments shows that the observed results are robust to a wide array of
changes in the client count and the degree of data distribution heterogeneity.
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Nomenclature

Acronyms / Abbreviations

ACS Acute Coronary Syndrome

AFC Anti Financial Crime

AI Artificial Intelligence

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

AUC Area Under the ROC Curve

BARC-MB Bleeding Academic Research Consortium major bleeding

CNN Convolutional Neural Network

CWL Common Workflow Language

DL Deep Learning

DNN Deep Neural Network

DP Differential Privacy

DSL Domain Specific Language

EI Edge Inference

FL Federated Learning

FLaaS Federated Learning as a Service

FLOPS FLoating point Operations per Second

FPGA Field-Programmable Gate Array

FPR False Positive Rate
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Nomenclature

GDPR General Data Protection Regulation

GPU Graphical Processing Unit

HE Homomorphic Encryption

HPC High-Performance Computing

IID Independent and Identically Distributed

IoT Internet of Things

ISA Instruction Set Architecture

KNN K-Nearest Neighbours

LLM Large Language Model

LSTM Long-Short Term Memory

LVEF Left Ventricular Ejection Fraction

MACE Major Adverse Cardiac Events

MAFL Model Agnostic Federated Learning

ML Machine Learning

MLP Multi-Layer Perceptron

MPI Message Passing Interface

NLP Natural Language Processing

PCA Principal Component Analysis

PH Proportional Hazard

ReAMI Recurrent Acute Myocardial Infarction

ROC Receiving Operating Characteristic

RPC Remote Procedure Call

SGD Stochastic Gradient Descent

SMC Secure Multi-party Comuptation

SMP Secure Multi-party Comuptation

SVM Support Vector Machine
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Nomenclature

TEE Trusted Execution Environment

TPR True Positive Rate

TPU Tensor Processing Unit

VM Virtual Machine

WMS Workflow Management System
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