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Sapino2 and Brian Appavu3

1*SCAI, Arizona State University, Tempe, Arizona, USA.
2Dipartimento di Informatica, University of Torino, Turin, Italy.

3*Neurology, Phoenix Children’s, Phoenix, Arizona, USA.

*Corresponding author(s). E-mail(s): mravind1@asu.edu;
Contributing authors: candan@asu.edu; mlsapino@di.unito.it;

bappavu@phoenixchildrens.com;

Abstract

Deep learning has been applied successfully in sequence understanding
and translation problems, especially in univariate, unimodal contexts,
where large number of supervision data are available. The effectiveness
of deep learning in more complex (multi-modal, multi-variate) contexts,
where supervision data is rare, however, is generally not satisfactory.
In this paper, we focus on improving detection and prediction accuracy
in precisely such contexts – in particular, we focus on the problem of
predicting seizure onsets relying on multi-modal (EEG, ICP, ECG, and
ABP) sensory data streams, some of which (such as EEG) are inherently
multi-variate due to the placement of multiple sensors to capture spatial
distribution of the relevant signals. In particular, we note that multi-
variate time series often carry robust, spatio-temporally localized features
that could help predict onset events. We further argue that such features
can be used to support implementation of metadata supported multivari-
ate attention (or MMA) mechanisms that help significantly improve the
effectiveness of neural networks architectures. In this paper, we use the
proposed MMA approach to develop a multi-modal LSTM-based neu-
ral network architecture to tackle seizure onset detection and prediction
tasks relying on EEG, ICP, ECG, and ABP data streams. We experi-
mentally evaluate the proposed architecture under different scenarios –
the results illustrate the effectiveness of the proposed attention mech-
anism, especially compared against other metadata driven competitors.
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(a) spatial context (b) temporal data
Fig. 1 Spatio-temporal encoding of EEG data for seizure early prediction – from the
International 10-20 [3] (C=central, T=temporal, P=parietal, F=frontal, Fp=frontal polar,
O=occipital)

Keywords: Multi-modal seizure onset prediction, rare event prediction,
multi-variate attention

1 Introduction

Seizures are more wide-spread in population than most expects – about one
percent of Americans have some form of epilepsy, and nearly four percent will
develop epilepsy at some point in their lives [1]. Furthermore, the cumulative
incidence of post-traumatic epilepsy (PTE) ranges widely, from 2% to over
50% depending on the severity of the injury [2].

In fact, seizures can be caused by a wide range of reasons and may occur
due to diverse traumatic events (such as central nervous system infections,
intracranial hemorrhage, stroke, brain injury, cancer or vitamin deficiencies
[4–6]) and, consequently, can materialize in the form of diverse and unique
spatio-temporal neurological patterns.

The most common types of seizures can be distinguished by the location
where they begin within the brain. The seizures that involve networks in just
one hemisphere of the brain are referred to as focal onset seizures while those
that begin in both hemispheres of the brain are referred to as generalized onset
seizures. If the events shift laterally they are called ping-pong seizures.

Seizure prediction requires modeling of complex non-linear spatio-temporal
dynamics in various biological signals [7]. While evidence suggests that seizures
are preceded by characteristic changes in the electroencephalogram (EEG) sig-
nals that are potentially detectable before the onset of a seizure [8], further
evidence suggest that other sensory time series data, such as intracranial pres-
sure (ICP), electrocardiogram (ECG), and arterial blood pressure (ABP) [9]
are also very informative. Yet, despite the availability of multiple (multi-modal)
data to help detect and predict onset of a seizure, the diversity and unique-
ness of seizures pose a significant challenge. Deep learning has been applied
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successfully in sequence understanding and translation problems, especially
in univariate, unimodal contexts, where large number of supervision data are
available [10]. The effectiveness of deep learning in more complex (multi-modal,
multi-variate) contexts, such as seizure onset prediction, where supervision
data is rare, however, is generally not satisfactory. Existing solutions fail to
predict rare events despite recent advances, such as very rare seizure events in
highly personalized post-traumatic EEG data as noted in [11]. Multi-variate
time series like EEG carry robust localized multi-variate spatial features in
addition to temporal features. These spatial features may help better identify
these rare events when they have lateral patterns and are extremely rare like
0.5% at worst case. However, often there might not be enough data to train
these events, so it is usually impossible to identify and use these features by
neural architectures.

1.1 Our Contributions: Metadata supported
Multivariate Attention (MMA)

In this paper, we focus on improving detection and prediction accuracy
in precisely such contexts. In preliminary work, [11], we had proposed a
M2NN model which extended the conventional single-layer LSTM archi-
tecture, with dual regional attention layers that performed context analysis
across frequency channels for EEG data. Most existing work indeed relies on
EEG data for seizure detection [7]. In contrast, we argue that a multi-modal
approach to seizure forecasting is likely to produce more robust predictions
and focus on the problem of predicting seizure onsets relying on multi-modal
(EEG, ICP, ECG, and ABP) sensory data streams, some of which (such as
EEG) are inherently multi-variate due to the placement of multiple sensors to
capture the spatial distribution of the underlying signals (Figure 1). In particu-
lar, we note that multi-variate time series often carry robust, spatio-temporally
localized features that could help predict onset events. We further argue that
such features can be used to support implementation of metadata supported
multivariate attention (or MMA) mechanisms that help significantly improve
the effectiveness of neural networks architectures.

In this paper, we leverage the proposed MMA approach to develop a
multi-modal LSTM-based neural network architecture to tackle seizure onset
detection and prediction tasks relying on EEG, ICP, ECG, and ABP data
streams. We can summarize the key contributions of our work as follows:

• We propose a multi-modal, multi-variate LSTM-based neural architecture
that leverages a metadata supported multivariate attention (or MMA)
mechanism that uses robust multi-variate spatio-temporal features that are
extracted a priori - robust features are identified prior through a process
external to the neural network architecture [12] and fed into the neural
network as a side information. In particular, the robust multi-variate fea-
tures [12] are extracted by simultaneously considering, at multiple scales,
the temporal characteristics of the time series as well as external knowledge,
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including variate relationships that are a priori known. MMA is supported
with metadata describing the inter-relationships among the variates as
explained in Section 2.1.1 to capture the contexts between the multiple vari-
ates from different sources to enable in-context learning. In this paper, we
have considered two contexts namely frequency context and frequency and
spatial context. In the second context, spatial context is explicitly considered
when compared to the first where it is implicitly learned.

• We propose a deep learning approach which can leverage multi-variate fea-
tures extracted from the EEG modality as an attention mechanism. These
robust multivariate features are extracted outside of the neural network
and fed into the network as side information. In our prior work [11], we
had shown that such multi-variate features can be effectively extracted con-
sidering different frequency channels. In this paper, we further extend this
approach to capture multi-variate features across multiple EEG sensors and
experimentally show that the addition of spatial context leads to improved
detection and prediction of rare seizure onsets. The proposed approach ana-
lyzes EEG data with frequency context and frequency and spatial context
(with and without adaptive variate clustering) to predict the seizure onsets
5.1 minutes ahead of time. Adaptive variate clustering is proposed when
compared to the fixed number of clusters used in [11]. This is another method
intended mainly for patients with single and multiple seizure event clusters.
The number of clusters are adaptively learnt per patient using silhouette
score [13] with K-Means clustering; silhouette score being a way to measure
how similar a data point is within a cluster compared to other clusters [13].

• The approach learns and interprets variates from multiple modalities like
ICP, ECG and ABP (robust multivariate features are extracted considering
only the frequency context as ICP, ECG and ABP have no spatial context),
in addition to the EEG modality using a segmented LSTM (four separate
LSTMs for each input data source or modality) model.

• In addition to direct learning on a particular patient, the proposed
approach also is able to transfer learned models between patients - from a
donor/provider patient to a test patient of similar or dissimilar category.

In summary, the main contribution of the paper is the rare event inference
of seizure onsets. For this we have proposed an algorithm using metadata which
is compared against other attentioned and non-attentioned baselines. Unlike
our prior work [11], the approach considers multiple data modalities (ICP,
ECG and ABP, in addition to EEG) and also takes into account both frequency
and spatial contexts as metadata. We experimentally evaluate the proposed
architecture under different scenarios described in detail in Section 3.1. Since
our focus is seizure detection and prediction, the bulk of the experiments
have focussed on seizure detection and they have shown that the proposed
metadata-driven attention mechanism helps improve onset detection and pre-
diction accuracies by helping to focus on the most informative segments of
the multi-modal, multi-variate EEG, ICP, ECG, and ABP time series used in
seizure detection and prediction. In particular, for the task of detecting the
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preictal state (which appears before the seizure begins) five minutes before the
onset of a seizure – the results, reported in Section 3.3.1, shows the effective-
ness of the proposed attention mechanism, especially compared against other
metadata driven competitors [14].

Unfortunately, the EEG, ICP, ECG, and ABP time series used for evalu-
ation cannot be released due to HIPAA protections. We, therefore, included
in the manuscript experiments with additional public data sets from other
domains, including (a) COVID data, (b) traffic flow data, and (c) bitcoin
price data, that share some of the common characteristics of the seizure onset
detection data. In particular, both COVID and traffic flow data include spa-
tial metadata, whereas for the bitcoin data, we used the Pearson correlation
between variates to infer metadata to contextualize the prediction task. Exper-
iments have shown that the proposed MMA technique also generalizes to
these application domains (even though our motivating application is seizure
prediction).

1.2 Related Work

1.2.1 Seizure Prediction and Forecasting

Epileptic seizures have four states:

1. Preictal state is a state that appears before the seizure begins marked by
seizure ’aura’ symptoms ranging from a few minutes up to three days.

2. Ictal state is a state that begins with the onset of seizure and ends with a
seizure attack.

3. Postictal state that begins after ictal state.
4. Interictal state that starts after the postictal state of first seizure and ends

before the start of preictal state of consecutive seizure.

Predicting the preictal state before the onset of seizure is very useful. Work
on epileptic prediction [15] [16] [17] has been going on since a few decades
using machine learning and deep learning approaches. [7] includes an extensive
overview of the literature in this area. A Support Vector Machine (SVM) has
been used in [18] for seizure prediction using EEG modality. In [15], authors
show that the patient-specific classifier based on SVM can distinguish preictal
from interictal with a high degree of sensitivity and specificity using multiple
modalities like EEG and ECG. In [19], an overview of seizure detection and
related prediction methods are presented using EEG and ECG and authors
discusses their potential uses in closed-loop warning systems in epilepsy using
SVM. Authors in [19] note the importance of studying a combination of modal-
ities or detection technologies to interpret which yields the best results, and
emphasize that these approaches may ultimately need to be individualized for
patients.

In [20] authors develop a model that predicts epileptic seizures in sufficient
time before the onset of seizure starts and provides a better recall. Authors
have applied empirical mode decomposition (EMD) for preprocessing and have
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used time and frequency domain features for training the model for the predic-
tion task. Features extracted using a common spatial pattern (CSP) are used
for training a patient-specific, linear discriminant analysis classifier in [21] using
electroencephalogram (sEEG) signals. [22] looks at statistical features in high-
frequency bands of interictal iEEG work in efficiently identifying the seizure
onset zone in patients with focal epilepsy. Improved seizure prediction may
be achieved using other external variables. There can be physiological changes
observed in animals and human beings before the onset of a seizure. Changes
in blood flow, blood oxygenation, and metabolism have all been shown to hap-
pen before a seizure. [23] has critically reviewed the literature on data from
neocortical epilepsy using optical imaging. Optical measurements of blood flow
and oxygenation may become increasingly important for predicting as well as
localizing epileptic events. The combined use of electroencephalography (EEG)
and functional magnetic resonance imaging (EEG-fMRI) in epilepsy is stud-
ied in [24] for posttraumatic epilepsy. In [25] authors study seizure prediction
in scalp EEG using 3D convolutional neural networks with an image-based
approach. Prediction of neonatal amplitude-integrated EEG based on LSTM
method is studied in [26].

Multi-layer LSTM network is made use of in [27] [28] for studying the tem-
poral context in epileptic seizure prediction. In [29] a multi-layer convolutional
network is used for EEG classification tasks considering the spatial context.
Seizure classification from EEG signals using transfer learning, semi-supervised
learning and TSK fuzzy system is studied in [30] to provide interpretable
decisions. Interpretable EEG seizure prediction model is given in [31] using a
multi-objective evolutionary algorithm.

Seizure forecasting is a new development in terminology in [32], the strat-
egy can be described as forecasting also since the inference of high risk periods
is related to the way in which the patient functions. [33] studies the utility
of digital markers, wearables, and biosensors as parameters for a seizure-
forecasting algorithm. They argue that pairing up peripheral measurements to
brain states could identify new relationships and insights. Another key com-
ponent suggested in [33] is the diversity of the relationships in people having
seizures namely seizure type and frequency indicating that pooling findings
across groups is suboptimal, and that data collection will need to be done on
longer time scales to allow for individualization of potential seizure-forecasting
algorithms.

1.2.2 Rare Event Detection and Prediction

Rare event prediction has been studied recently in many works. In [34] authors
use rare event predictive modeling for breakthrough patents. Authors have
used a deep autoencoder and an anomaly detection approach to identify the
most rare breakthrough patents. In [35], a Bayesian network model having
causal and probabilistic semantics is used to forecast daily ozone states. Adap-
tive swarm balancing algorithms are studied in [36] for rare-event prediction
in imbalanced healthcare data. By combining SMOTE with meta-heuristic
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algorithms, authors create two methods for solving imbalanced dataset clas-
sification. In [37], authors solve the under-fitting problem for decision tree
algorithms by incremental swarm optimization in rare-event healthcare clas-
sification. Rare event prediction using similarity majority under-sampling
technique is studied in [38]. Deep over-sampling framework for classifying
imbalanced data is introduced in [39]. Trainable undersampling technique is
developed for class-imbalance learning in [40]. In [41], authors propose a new
concept of rebalancing imbalanced samples in a deeply transformed latent
space. Cost-sensitive learning of deep feature representations from imbalanced
data is studied in [42]. Imbalanced classification via major-to-minor transla-
tion is done in [43] where less-frequent classes are augmented via translating
samples (e.g., images) from more-frequent classes.

Applications in rare event prediction are studied in [44]. A real world
dataset is also provided from a paper-and-pulp manufacturing industry in [44].
The dataset is a multivariate time series process. The data is extremely rare
and is about a paper break event happening that commonly occurs in the paper
manufacturing industry. In [45], a method is proposed to choose training data
to improve the performance of deep learning models. The method represents
different length multi-variate time series split into categorical variables, and
measure the (dis)similarities using the distance matrix. A financial application
is considered in [46] using a dynamic churn prediction framework effectively
using rare event data. Variational disentanglement for rare event modeling is
studied in [47].

Zero-shot learning has been studied in images extensively in the past. As
part of their study in [48], authors build a Semantic Output Code (SOC) clas-
sifier for a neural decoding task and show that it can often predict words
that people are thinking, from functional magnetic resonance images (fMRI)
of their neural activity, without training examples for those words. Zero-shot
learning through cross-modal transfer is done to recognize objects in [49].
Due to the lack of clearly expressed semantic attributes in signals, zero-shot
learning is more difficult with signals. In [50], a Zero-Shot Learning (ZSL)
framework is developed using signal recognition and reconstruction convolu-
tional neural networks (SR2CNN). A combination of cross entropy loss, center
loss and autoencoder loss along with a distance metric space is introduced such
that semantic features have greater minimal inter-class distance than maximal
intra-class distance [50].

1.2.3 Attention Mechanism In Neural Networks

A neural network is thought to be an attempt to simulate simplified human
brain functions. An attempt to have deep neural networks do the same thing
as humans — selectively focus on a small number of important things while
disregarding others — is called Attention Mechanism. Attention mechanisms
in neural networks can, at a high level, be classified as (a) self attention, (b)
cross attention, and (c) externally-guided attention. Self attention mechanisms,
such as [51], consider the patterns in the provided data itself to identify aspects
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of the data to focus on. A common technique is to couple the given neural
network with an encoder-decoder architecture that help identify parts of the
input data that are most important to focus on [51]. Scaled dot-product self-
attention is introduced by [52] in an architecture called Transformers allowing
multiple attention heads for parallelization.

In [53], authors proposed that each input word should be given a certain
amount of relative value in addition to being taken into consideration by a
context vector; the suggested model looks for a set of points in the encoder
hidden states where the most pertinent information is present everytime it gen-
erates a phrase. In [54], authors look at two kinds of attentional mechanisms,
local attention that only looks at a subset of the source words at a time, and
global attention that always pays attention to all source words. Cross-attention
mechanisms are generally used in multi-variate/multi-modal machine learning
tasks, where two or more separate streams of data are simultaneously ana-
lyzed [55]. These cross attention mechanisms analyze the inter-relationships
between data in multiple streams to help identify what to focus on in each data
stream [55]. [56] presents a framework to represent multi-scale patterns via
cross-talking mechanism among multiple attention heads. Finally, externally-
guided attention mechanisms, such as [57], take into account pre-computed
saliency information, provided as a side channel, to guide which aspects of the
input data to attend.

The attention model proposed in this paper LSTM-MMA leverages multi-
headed attention in two layers - first to map metadata supported robust
multi-variate temporal (RMT) features which are separately extracted [12]
to input data and second to focus on latent semantics and LSTM output
sequences. The LSTM-MMA approach can be considered as an externally-guided
cross-attention mechanism, because multi-variate RMT features which are pre-
extracted leveraging metadata that describe the inter-relationships among the
variates is used to help guide the proposed attention mechanisms.

1.2.4 Spatio-temporal Forecasting

The proposed metadata-driven forecasting approach is related to spatio-
temporal forecasting problem – in particular to those settings where the
spatial relationships are encoded through a graph. Diffusion Convolutional
RNN (DCRNN) [14] is a network for spatio-temporal forecasting, which relies
on a graph convolution approach to take into account the spatial context or
neighbors of a node (e.g. in a traffic network) using an adjacency matrix.
DCRNN [14] uses the diffusion convolution operator to identify the diffusion
of features for k-hops and improves the robustness of the forecasting process
relying on these graph-informed features. Spatio-Temporal Graph Convolu-
tional Networks (STGCN) [58], is another metadata-informed competitor to
tackle the time series forecasting problem. STGCN [58] is a deep learning
framework that leverages graph convolutional networks to capture both spatial
(using an adjacency matrix) and temporal dependencies in traffic data repre-
sented as graphs. GCN-LSTM [59], a variant of STGCN is also inspired by
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Meaning

V Set of variates
m Number of variates
M Set of metadata showing variate relationships
T Temporal length of multi-variate time series
Y Data matrix describing the multi-variate time

series
~q Query vector in the attention model
~k Key vector in the attention model
~v Value vector in the attention model
~h Number of attention heads
S Feature scales created by the RMT algorithm
F RMT feature set identified in the input data
l Length of the RMT feature descriptor vector
nt Number of selected RMT features covering

time instance t
r Target rank for feature dimensionality reduc-

tion (the reduced feature descriptor length)
k Number of variates (for k-means based vari-

ate reduction)
Table 1 Key notations

graph convolutional networks. We have adapted DCRNN [14], STGCN [58] and
GCN-LSTM [59] networks as metadata-informed forecasting competitors to
the proposed MMA approach.

2 LSTM-MMA : LSTM with Metadata Supported
Multi-Variate Attention (MMA)

Brain seizures are rare – even in patients with post-traumatic seizure.1 There-
fore, as we discussed in the introduction, our goal in this paper is to increase
the robustness of the neural nets by relying on a priori metadata (such as the
frequency and spatial context of the sensory data streams). As described in
the introduction, in this section, we propose segmented multiple LSTMs-based
neural architecture with a metadata supported multi-variate attention (MMA)
mechanism that leverages robust multi-variate temporal features that are fed
into the neural network as a side information. In particular in this paper, we
propose LSTM-MMA, which leverages available meta data such as spatial context
of EEG data to extract robust, multi-variate, spatial as well as temporal fea-
tures that help the neural architecture to focus on key events of the input data
that are potentially relevant for rare event prediction.

1

The EEG real world dataset is imbalanced, time steps having seizure-positive labels are 7% of the
total at best and < 2% at the worst (the labels are provided by expert physicians; see Section 3.1.1
for dataset details).
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2.1 Meta-Data Enriched Multi-Variate Time Series
Model

In this paper, we consider a metadata-enriched, multi-variate timeseries model.
In particular,

a multi-variate time series is defined as a triple Y = (V,Y,M), where

• V = {v1, . . . , vm} is a set of m variates;
• Y is an T ×m

data matrix where T is the temporal length of multi-variate time series; and
• M is an application specific metadata graph that describes how the various

variates in V are related to each other.

Below we describe how the data matrix and metadata are constructed for the
EEG data.

2.1.1 EEG Time Series and Metadata Graph

In the case of the EEG data, the multi-variate time series consists of the
recorded signals from each of the sensors as depicted in [3] and is taken into con-
sideration for analysis. Note that, depending on the system and configuration
target being used, there can be 15 to 26 sensors used for different patients.

The raw EEG data that is million time stamps in length is segmented
into eight second windows and power spectral density of each time win-
dow is computed by performing Fast Fourier transform on each of the
individual signal segments thereby compressing the signal. The result is a
multi-variate EEG time series with a total of upto 520 variates. This multi-
variate time series is accompanied with a metadata graph that describe the
spatial context as depicted in Figure 1 according to the International 10-20
system (C=central, T=temporal, P=parietal, F=frontal, Fp=frontal polar,
O=occipital) [3]. Given these, in our experiments (reported in Section 3) for
seizure onset prediction, the metadata context is captured in two alternative
ways:

• frequency context, where we ignore the spatial context for EEG sensors,
but consider the neighbor relationships among frequency channels – more
specifically, the set V of variates correspond to the frequency channels for
each EEG sensor and the metadata graphM connects neighboring channels
in a given sensor to each other.

• frequency and spatial context, where we also consider the spatial placement
of the EEG sensors – in this case, we have the same set of variates, but
not only the neighboring frequency channel variates corresponding to the
same sensor are connected to each other in the metadata graphM, but also
frequency channel variates corresponding to the same sensor in neighboring
sensors according to the spatial context depicted in Figure 1 are connected
to each other.
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These two contexts frequency context and frequency and spatial context are
used for direct learning and transfer learning approaches for LSTM-MMA as
explained in 3.1.1.

2.2 Robust Multi-Variate Temporal Features

Our key argument in this paper is that multi-variate time series carry robust
localized multi-variate temporal and spatial features that could help predict
critical events; however, the lack of sufficient data to train for these events
makes it impossible for neural architectures to identify and make use of these
features. We therefore, propose that these features are identified through a
process external to the neural network architecture [12] and then used as a
side information to train the neural network.

2.2.1 Overview of the Metadata Supported RMT Extraction
Process

In this paper, we rely on the metadata supported robust multi-variate tempo-
ral (RMT) feature extraction algorithm proposed in [12]. Intuitively, a RMT
feature is a fragment of a multi-variate time series that is maximally different
from its immediate neighborhood, both in time and across variate relationships
specified by the metadata as shown in [12]. Multi-variate temporal features of
interest can be of different lengths and may cover different number of variates.

As shown in [12], the Gaussian smoothing process is guided by a metadata
graph, which captures the variate relationships (e.g. defined by the spatial
context for EEG data) – and a scale space is constructed through iterative
smoothing of both the time series and the metadata graph in order to locate
such features of different sizes. This creates different resolution versions of the
input data and, thus, helps identify features with different amount of details
in time and in spatial context (in terms of the number of variates involved).
We denote the set of scales, each corresponding to a different temporal; feature
size, created by this process with S.

Next, the process identifies candidate features of interest across multiple
scales of the given multi-variate time series by searching over multiple scales
and variates of the given series. Each candidate RMT feature that is not poorly
localized has a temporal-scope (a beginning and an end in time) and a variate-
scope (a set of variates involved in the feature). These candidate features of
interest are those with the largest variations with respect to their neighbors in
time, variates, and scale.

At the following step, those candidate features that are poorly localized
(and hence are inappropriate to use as key events) are eliminated.

The above process leads to a set, F , of RMT features where each feature,
fi ∈ F , extracted from Y, is a pair of the form, fi = 〈posi, ~di〉:

Here, posi = 〈vi, ti, si〉 is a VTS triple denoting the position of the feature
in the scale-space of the multi-variate time series, where vi is the index of the
variate at which the feature is centered, ti is the time instant around which
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Fig. 2 (Multi-modal) LSTM-MMA model which enhances traditional LSTM neural network
architecture with a metadata supported, multi-variate attention (MMA) mechanism

the duration of the feature is centered, and si ∈ S is the temporal/variate
smoothing scale in which the feature is identified; and note that this triple also
defines the temporal and variates scopes of the RMT feature.

~di is a descriptor vector, representing a gradient histogram describing the
temporal structure (in terms of the distribution of local gradients) correspond-
ing to the identified key event. Note that the above approach to identify RMT
features has several advantages as mentioned in [12].

In addition to being robust against noise and transformations such as tem-
poral shifts, dropped/missing variates, the identified salient features have scale
invariance which enables multi-resolution analysis. The temporal and spatial
scales at which a multi-variate feature is located give an indication about the
scope both in terms of duration and the number of variates involved of the
multi-variate feature. The value of si is the temporal/spatial scope of the key
event corresponding to the RMT feature. In particular, since we use Gaussian
smoothing to obtain the scale-space, each scale si has a corresponding Gaus-
sian smoothing parameter, σi, and the temporal scope of the feature is 6σi since
3σi from the center point ti, in both directions, would cover approximately
99.73% of the contributions to the smoothing.

2.2.2 EEG Data and RMT Features

In the case of EEG data, we consider the connectivity graph, M, outlined in
Section 2.1.1, that considers neighborhoods in frequency and spatial contexts.

The input data (after Fast Fourier transformation) from all EEG sensors at
a particular time segment are concatenated and RMT features are extracted
for that time segment. These are then fed into the proposed LSTM-MMA model
as described next.
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2.3 Metadata Supported Multivariate Attention (MMA)

In this section, we develop a LSTM-MMA model which enhances traditional
LSTM neural network architecture with a metadata supported, multi-variate
attention (MMA) mechanism (Figure 2).

In particular, a multi headed attention unit has been used in the model
inspired by the transformer from [52] to operate on input data Y, along with
the RMT features extracted from this Y. Intuitively, the multi headed attention
maps a query and set of key-value pairs to an output. The query vector ~q
represents the inference question, the key ~k represents the available context
information, and a value vector ~v specified the values on which the attention
is applied. The attention matrix is constructed through the dot product of all
keys and queries, normalized via softmax, to create a mapping of elements in
the key sequence corresponding to the data needed for each query. After taking
softmax, the normalized attention matrix is applied on the value vector. More
specifically, given query, key, and value vectors, ~q, ~k, and ~v, respectively, we
have

Attention(~q,~k,~v) = softmax(
~q~kT

√
dk

)~v, (1)

where dk is the length of the key vector ~k.

2.3.1 First Metadata Supported Multi-Variate Attention
Layer

Intuitively, the first attention layer of LSTM-MMA helps the multi-modal LSTM
model to focus on different parts of the combined EEG, ICP, ECG and
ABP data, as a function of the concatenated RMT features corresponding to
each time step. Therefore, in the first layer, the query vector, ~q is the RMT
descriptors extracted from the input data.

The key, ~k, and value, ~v, vectors both are set to be the input multi-variate
time series.

With respect to a given time instance, t can be within the scopes of multiple
RMT features. As shown in Figure 3, the time instance t is covered by multiple
RMT features. Nevertheless, the distance of t to the centers of these features
may be different, therefore its contribution to these features may vary. To
account for this, for each feature f∗ that covers t in its scope, we compute a
contribution value

contrib(t, f∗) = e−
1
2 ( t∗−tσ∗ )2 , (2)

which captures the Gaussian nature of the smoothing process applied to obtain
the features. Note that, since the contrib(t, f∗) takes a value between 0 and 1,
it can be treated also as a probability of contribution. Therefore, to identify a
set of features, Ft, that correspond to time instance t, we randomly select nt
RMT features based on the individual contribution probabilities of the features
covering t. Let us denote the length of the RMT feature descriptor vector
with l (in our experiments l = 128). In LSTM-MMA, for each time instance t, we
stack the nt many RMT feature descriptors corresponding to features in Ft,
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Fig. 3 Three features, fi, fj , fk, and fl centered around time instances, ti, tj , tk, and
tl respectively – note that the scopes of the RMT features are defined by the Gaussian
smoothing parameters (σi, σj , σk and σl corresponding to each feature); the time instance
t is within the scopes of the first three of these four features, but since t is closest to tj its
contribution is highest relative to the feature fj

constructing a data structure (a matrix, Mt) of size nt × l. The above process
is done individually for each of the data sources/modalities to get matrix Mt

which is then fed into LSTM-MMA to support attention at time t.

2.3.2 Second Metadata Supported Multi-Variate Attention
Layer

The first attention layer helps LSTM-MMA to focus on different latent semantics,
as a function of the RMT features. Therefore in the second layer, the query
vector, ~q, is the output of the LSTM models combined with the attention
weights from first layer; whereas the key, ~k, and value vectors, ~v, are the LSTM
output sequences, each with its own descriptive vector.

For the second attention layer, we are using a MultiHead attention unit as
it allows the model to jointly attend to information from the different latent
subspaces. Each attention head is of the form

headi = Attention(~qWQ,i,~kWK,i~vWV,i), (3)

where WQ,i,WK,i and WV,i are the weights corresponding to the query, key
and value vectors, respectively.

MultiHead Attention from the transformer model [52] is applied as follows
for our purposes in both attention layers. MultiHead Attention is subdivided
into Pre and Post Attention modules so we have a handle to the Attention
matrix itself for explainability purposes. Pre-Attention module returns the
normalized Attention matrix after softmax operation on the dot product of all
keys and queries. Value vector is then taken through a linear transformation via
a fully connected layer. Then in the Post-Attention module a dot product takes
place between the Attention matrix and linearly transformed Value vector.

Given the query, key and value vectors, an h-headed model is trained by
considering

MultiHead(~q,~k,~v) = [head1; . . . ; headh]WO, (4)

where WO captures the weights for the overall output. In our experiments, the
number of heads is set to eight as in the paper [52] in the first and second layer
for the EEG multi-modal dataset.
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2.3.3 L1 Regularized MultiHead Attention

We also trained a variant of the transformer model with weights to the atten-
tion heads namely Least Absolute Shrinkage and Selection Operator (Lasso)
regularization (L1) [60]. In this variant we have an additional parameter in the
Post-Attention module for learning the weights on a head. Relevant heads in
the MultiHead Attention are paid more attention and less relevant heads are
not selected using Lasso (L1) regularization. The learned weights of the heads
are applied to the output of the dot product between the Attention matrix
and Value vector.

MultiHead(~q,~k,~v) = [WH,1head1; . . . ; WH,hheadh]WO, (5)

Note that, as we see in Figure 2 at the final step, the output of the
dual attention layer goes through a final activation step to complete the
inference process: sigmoid activation is used for binary (“no-event”, “event”)
classification, whereas for regression tasks, we have used mean squared error
metric.

2.4 Noise Reduction in Multi-modal RMT Features used
for Attention

The process for RMT feature extraction described in Section 2.2 leads to a
descriptor vector for each RMT feature – the descriptor size2 must be selected
in a way that reflects the temporal characteristics of the time series; if a
multi-variate time series contains many similar features, it might be more
advantageous to use large descriptors that can better discriminate: these large
descriptors would not only include information that describe the correspond-
ing features, but would also describe the temporal contexts in which these
features are located.

2.4.1 PCA-based Reduction of RMT feature descriptors

As described in the previous section, in LSTM-MMA, we stack multiple RMT
feature descriptors corresponding to each time step for a modality leading to
a data structure (matrix) Mt for each time instant t. While this structure
can be fed as is to the attention mechanism, we note that due to its size
and noise inherent in the feature extraction process, this may not be a very
effective strategy. We instead consider noise elimination and dimensionality
reduction of the RMT feature descriptors before they are fed into the attention
process. This is done for each data channel of a modality once using Principal
Component Analysis (PCA) with a user provided target rank r, before the
stacking operation.

In PCA based approach, the input is an a × b matrix Mt, where a = nt
is the number of RMT feature descriptors in a data channel of a particular
modality and b = l is the length of the RMT feature descriptor vector. We first

2In experiments reported in Section 3, the descriptor vector length is 128.
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obtain the corresponding a×a covariance matrix Ct, which is then decomposed
into Ct = UtΣtU

T
t , where the a × c matrix Ut records the c eigenvectors and

diagonal matrix Σt records the corresponding eigenvalues of the matrix Ct.
Given a target rank r ≤ c, we then decompose Ct as Ĉt = U

′

tΣt
′U
′T
t where the

a×r matrix U
′

t records the r eigenvectors and diagonal matrix Σt
′ records the

corresponding eigenvalues of the matrix Ĉt with target rank r. The matrix U ′t
is used as input instead of matrix Mt for the stacking operation.

Finally the reduced and stacked RMT feature descriptors of each modality
are concatenated, that is RMT feature descriptor data from each channel/sen-
sor of EEG along with ICP, ECG and ABP modalities are concatenated and
then fed into the attention mechanism as the query matrix. Note in case of
frequency and spatial context, RMT feature data from all EEG time segments
are concatenated as a single channel before reducing and stacking operations.

2.5 Variate Reduction using Adaptive Clustering

We also consider an additional variate reduction strategy to complement the
learning process. In particular, we apply k-means clustering to the input data
to reduce the number of variates from m to k. The clustering is applied on the
variates in the combined time series data of all the EEG data channels, ICP,
ECG and ABP channels. After the clusters are obtained under the Euclidean
distance model, the resulting k cluster centroids are used to construct the data
matrix passed to the first layer of LSTM-MMA (note that the RMT features used
for attention are extracted directly from the original data matrix before the
variate reduction). Optimum k clusters were learned using Scikit-learn’s [13]
silhouette score method, which is an indicator of the quality of a cluster. Note
that the EEG data might have difference in density with ICP, ECG and ABP
data, that is EEG may be packed more loosely than others for some patients.
In such cases a trial and error method is utilized to choose the next larger k
given by the silhouette score method [13].

3 Experiments

In this section, we present experiment results to evaluate the effectiveness
of LSTM-MMA (LSTMs with metadata supported multi-variate attention) in
predicting onsets in multi-variate multi-modal time series. (a) Since our moti-
vating application is seizure prediction, the primary data set we use is EEG
data, complemented with other physiological data sources, including ICP, ECG
and ABP, with rare seizure events labeled by physicians. Since the data set
cannot be released due to HIPAA protections, in order to illustrate the broader
applicability, reproducibility, and generalizability of the proposed techniques,
we also evaluate LSTM-MMA in other rare event prediction and forecasting tasks,
namely (b) anomaly prediction in COVID data for the different states in
United States, (c) traffic flow forecasting, and (d) bitcoin price forecasting.3

3Since the healthcare data is HIPAA protected, we make the code available. Also we have
publicly available multi-modal COVID, traffic, Bitcoin and S&P index datasets and code for
reproduction of results at https://rb.gy/umbzt8 .
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LSTM-MMA and baseline Hyperparameters(using Keras 2.3.1) Value

Batch size for seizure 60
Epochs for seizure classification task ≤17

Hidden nodes of LSTM for EEG 100
Hidden nodes of LSTM for ICP, ECG and ABP 20

Batch size for COVID 60
Epochs for COVID regression task 150

Hidden nodes of LSTM for COVID 100
L1 regularization penalty for COVID 0.001

Batch size for Traffic 10
Epochs for Traffic regression task ≤20

Hidden nodes of LSTM for Traffic 100
L1 regularization penalty for Traffic 0.0001

Batch size for Bitcoin 16
Epochs for Bitcoin regression task 10

Hidden nodes of LSTM for Bitcoin 8
L1 regularization penalty for Bitcoin 0.00001

Learning rate(Adam optimizer) for all datasets 0.001
Number of LSTM-MMA attention heads for EEG, Bitcoin, Traffic (h) (8,8)

Number of LSTM-MMA attention heads for COVID (h) (8,52)

RMT Hyperparameters Value

Smallest scope ∼ 60 time units
Largest scope ∼ 420 time units

Scales for freq. context for EEG (–S˝) 12
Scales for freq. & spat. context for EEG(–S˝) 3

Scales for ICP, ECG and ABP (–S˝) 3
Descriptor length (l) 128

Reduced descriptor length with PCA (r) 10
Table 2 Default hyperparameters

As mentioned in Section 1.1, two additional datasets namely COVID and
traffic datasets evaluate spatial context as metadata and bitcoin dataset has
correlation of variates using Pearson correlation [61] as metadata.

Unless specified otherwise, the experiments are conducted using the default
hyperparameter values in Table 2. MacBook Pro with Intel UHD Graphics
630 1536 MB and Linux machines (Ubuntu 18.0)4with GPU 16GB RAM were
used for experiments.

3.1 Evaluation Scenarios

Here we describe the four multi-variate data sets we have considered in these
experiments, along with the supporting metadata and the prediction and fore-
casting tasks. Evaluation usecases are mainly LSTM-MMA with spatial context
(explicit) and without spatial context (implicit). Adaptive Clustering evalu-
ation usecases are done for EEG, ICP, ECG and ABP datasets for variate
reduction as mentioned in Section 2.5. For COVID, traffic and bitcoin datasets
which have smaller number of variates when compared to EEG multimodal

4Provided by NSF testbed “Chameleon: A Large-Scale Re-configurable Experimental Environ-
ment for Cloud Research”.
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dataset, we evaluate spatial context with and without L1 (Lasso) regression
(instead of clustering) which selects those features that are useful. We also
provide alternative baselines/competitors against LSTM-MMA, as explained in
Section 3.2 for comparison of results.

3.1.1 Seizure Data and Seizure Onset Prediction Task

We first describe the seizure data sets, EEG, ICP, ECG and ABP. The data
set is partitioned into a training set, validation set, and test set, with 60%,
20%, and 20% of the original data each, respectively. In order to ensure that
each region namely training, valid and test has similar distribution of positive
and negative labels, the time series are chunked and these chunks are shuffled
in a way that preserves the rate of positive labels in each of the three regions.

Seizure Onset

In these experiments, the seizure onset is defined as the first 48 seconds (6× 8
time units) of the seizure event.

Seizure Onset Prediction Task

The seizure onset prediction task is defined as identifying a seizure onset occur-
rence between 4.4 (33 time units) to 5.1 (38 time units) minutes ahead of the
time.

EEG Seizure Dataset

The first set of experiments were performed on the EEG dataset provided by
Phoenix Children’s. The dataset records EEG time series and seizure events,
marked by physicians, for 19 patients with 86 seizure events. There are two
types of patients - patients with patterns of seizure and patients with single
or multiple clusters of seizure events. These patients have approximately 7%
anomalies at most. There are also several patients marked with very low per-
cent, 2% or less anomalies with 0.5% anomalies at worst. Five specific patients
each from a particular category namely ”ping-pong” seizure (seven seizure
events), ”single long seizure” cluster having one single event of seizure, ”multi-
ple seizure” clusters - one patient with 7% anomalies (three seizure events) and
another one with 2% or less anomalies (four seizure events), lateral seizures
which have both lateral patterns and seizure clusters (seven seizure events) are
chosen for reporting purposes. There are a total of 22 seizure events reported
for these 5 patients. The data set contains EEG recordings of 8 second windows
upto 106,000 windows. The raw EEG data were recorded from 26 channels
with a sampling rate of 256 Hz, using both referential and bipolar montage.
While the sensor readings are used directly in referential montage, in bipolar
montage the signals are differenced according to a spatial connectivity graph
and the differenced data are used instead of the original readings. The EEG
time series are segmented into eight second windows and, for each window, the
corresponding power spectral density, with 20 frequency bands, is computed
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using Fast Fourier transform (0 to 19 Hz with 1 Hz bins). This leads to a time
series with (26×20) = 520 variates and (216×106÷ (256× 8)) = 105944 time
steps.

In Section 2.1.1, we described the (a) frequency and (b) frequency and
spatial metadata used for implementing metadata supported multi-variate
attention (MMA) on EEG data. The time series were chunked into sequences
of length 500 for training the LSTM (default unless specified). For patients
with very short seizures (2% and lower anomalies), the chunk lengths were
reduced to 50 instead of using 500 as they had zero anomalous samples in the
training region to do a threeway test-train split with sequence length of 500.
For the frequency and spatial context scenario, time segment length of 500 is
used for RMT feature extraction (default unless specified). The chunks were
shuffled in such a way that training, validation, and testing sets have similar
ratios of events.

ICP, ECG, and ABP Datasets

The Intra Cranial Pressure (ICP) data were recorded with a sampling rate
of 125 Hz. ICP data also have 8 second windows like EEG data and power
spectral density, with 20 frequency bands (0 to 7.6 Hz with 0.4 Hz bins) is
computed using Fast Fourier Transform. The electrocardiogram (ECG) data
were recorded with a sampling rate of 500 Hz. ECG data also have 8 second
windows like EEG and ICP data and power spectral density, with 20 frequency
bands (0 to 7.6 Hz with 0.4 Hz bins) are computed using Fast Fourier Trans-
form. The Artial blood pressure (ABP) data were recorded with a sampling
rate of 125 Hz. ABP data also have 8 second windows like ICP and ECG data
and power spectral density, with 20 frequency bands (0 to 7.6 Hz with 0.4 Hz
bins) are computed using Fast Fourier Transform.

Metadata

In Section 2.1.1, we described the frequency and spatial contexts used for
implementing metadata supported multi-variate attention (MMA) on EEG
sensor data.

Unlike EEG data, ICP, ECG and ABP data sets do not have spatial
context.

Model Transfer Across Patients

In this section, we consider both direct and transfer learning scenarios. In direct
learning the same patient’s data (all 19 patients) are used for both training
and testing. In transfer learning scenarios, model trained with one patient’s
data is used for predicting onsets for one another patient. The patient with
”ping-pong” seizure having seven seizure events is chosen as donor as it shows
highest pattern diversity. Rest of the 19 patients are test patients (having a
total of 86 - 7 = 79 seizure events) in transfer learning scenarios. For reporting
purposes, we have chosen five patients from particular categories as mentioned
earlier - ”ping-pong” seizure patient who is the donor and four test patients
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for transfer learning (reporting a total of 22 - 7 = 15 seizure events for transfer
learning) - as the proposed methods work similarly for patients belonging in
a particular category. Note that when the test patient is a patient with very
short seizures (2% and lower anomalies), the donor/provider is also trained
with chunk lengths of 50 instead of 500.

The input data from the EEG sensors of the donor/provider patient are
given as input along with ICP, ECG and ABP to multiple (four) segment-
ed/separate LSTMs. In data preprocessing, different versions or combinations
of multi-modal data (both for freq. context and freq. and spat. context) are
made by masking to enable learning, so as to learn which of the modalities are
strong predictors. The model learns to make predictions on both full and par-
tial data simultaneously to get results. Based on the Critical Onset F1 Score
described in Accuracy Measures 3.1.1, ranking can be done between the four
sources of variates from EEG, ICP, ECG and ABP modalities.

Accuracy Measures

For the seizure onset prediction tasks, we assess the accuracy of different
models using the F1-score metric (i.e., harmonic means of recall and precision):

F1Score =
(2×Recall × Precision)

(Recall + Precision)
(6)

Here, Recall is the ratio between the number of positive samples correctly
classified as positive (True Positive) by the model to the sum of true posi-
tives and true samples falsely predicted as negatives (True Positive + False
Negative). Precision is the ratio between the number of positive samples cor-
rectly classified as positive (True Positive) by the model to sum of the true
positives and negative samples falsely predicted as positives (True Positive +
False Positive). For the EEG, ICP, ECG and ABP datasets, we have defined
two additional accuracy metrics for early prediction task which is a binary
classification task. Critical Onset Recall and Critical Onset Precision accuracy
metrics are calculated in the critical region between non-seizures and onset
region for early prediction of seizure onset. The Onset region is our positive
class and Non-Seizure region is our negative class for seizure early prediction
task.

The Critical Onset Recall, Critical Onset Precision and Critical Onset F1
Score are defined as follows:

CriticalOnsetRecall =
TrueOnset

(TrueOnset+ FalseNonSeizure)
(7)

CriticalOnsetPrecision =
TrueOnset

(TrueOnset+ FalseOnset)
(8)

Each experiment has been executed a minimum of 10 times and we com-
pute modified Recall and Precision namely Critical Onset Recall and Precision
as per equations 7 and 8 for each run. Critical Onset Recall and Precision
values are then used to calculate Critical Onset F1 score using equation 6 for
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each run. The mean of these accuracy measures namely Critical Onset Recall,
Precision and micro F1 scores from the 10 runs is computed for reporting pur-
poses. For each run we use an adaptive threshold cutoff(s) strategy where the
Critical Onset F1 score is best for the imbalanced dataset. This is because the
traditional threshold of 0.5 is not found to be suitable for imbalanced datasets,
the threshold is observed to be way lower.

3.1.2 COVID Dataset and Prediction of Rate of Change

The second task has two goals, predicting the rate of change of log of cases
and rate of change of log of deaths for 52 US states for the next day.

For these experiments, COVID data from January 21st 2020 till the peak
month of March 2021 (upto February 28th 2021) in [62] joined with an exter-
nal data namely demographic data [63] and was processed to get 5 variates
namely (a) log of cases, (b) log of deaths, (c) days from the beginning of the
dataset, (d) rate of change of log of cases, and (e) rate of change of log of
deaths. Sequence/chunk length used for segmenting this dataset is 20. The
time segment length for RMT spatial feature extraction is also 20. The data
set is partitioned into a training set, validation set, and test set, with 60%,
20%, and 20% of the joined data.

Metadata

The metadata for the COVID prediction task is a graph, where each node is
one of the 5 variates for one of the 52 US states and two nodes corresponding
to the same variate have an edge between them if the corresponding states are
neighbors.

Accuracy Measures

For the COVID prediction task (which requires a regression model, rather
than a classification model), we report root mean squared error (RMSE), mean
squared error (MSE), and mean absolute error (MAE). Due to very low MSE
values, four positions after the decimal is used here.

3.1.3 Traffic Flow Forecasting

Our third data set focuses on a regression task for traffic prediction based
on modeling spatial and temporal dynamics in road networks, to predict the
travel time for a given departure time. The dataset is provided by Highways
England [64]. This dataset offers the average travel/journey time for 15-min
time intervals starting in April 2009 on all motorways and ”A” roads in Eng-
land that are under the control of the Highways Agency, often known as the
Strategic Road Network. On motorways and ’A’ routes, information about
speed and traffic flow is also provided, along with the average journey time
at 15-min intervals. There are 96 distinct possible departure times because
there are 96 time periods in a day. The dataset’s journey times were derived
using GPS-based real-world vehicle observations. In this section, we consider
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31 day period for the month of January 2011, the length of the time series
being 31 × 96 = 2976 time steps. The time series were split into sequences
of length 4 for training. The multi-modal inputs to the LSTM model are the
previous travel times and departure times from multiple sensors on same road
and different roads. There is an embedding layer used for representing time
for regression problem, this is to learn traffic congestion similarities between
previous timestamps and the query timestamp. In the experiments we look at
the previous 4 travel times (one hour history) to predict the next travel time
(15 minutes). We have selected the highways/roads A11 with Hatris link sen-
sors ’AL2272’, ’AL2270’, ’AL2844’ as neighboring sensors and another road
A1 with sensor ’AL1165A’ for the travel time study. There are 20 (5 * 4) vari-
ates in traffic dataset: travel time, day type, total traffic flow, average speed,
and quality index. We are forecasting the traffic flow time for ’AL2272’ based
on the neighborhood graph.

Metadata

The metadata for the traffic flow forecasting task is a graph, where each node
is one of the 5 variates for one of the sensors in a road in England and two
nodes corresponding to variates of two sensors in the same road have an edge
between them as the corresponding sensors are neighbors and 0 if they are not
on the same road according to [64]. The training set is 70%, valid set 20%,
test set 10% of the input data to include outliers in training data.

Accuracy Measures

For the traffic flow forecasting task (which requires a regression model, rather
than a classification model), we report root mean squared error (RMSE), mean
squared error (MSE), and mean absolute error (MAE).

3.1.4 Bitcoin Price Forecasting

Bitcoin is one type of cryptocurrency that has been steadily increasing over the
past several years, with occasional abrupt drops that have no apparent impact
on the stock market. Due to the constant fluctuations it would be good to learn
to forecast the bitcoin price. As training datasets, we used the historical price
of bitcoin(BITCOIN USD or BTC USD) and S&P 500 index of US companies
from Yahoo website 5. The respective costs for both of them are listed on
the Yahoo financial website and are expressed in US dollars. It has a Date
timestamp, the value at Open, High, Low, Closing price, Adjusted Closing
price and the volume traded in Bitcoin and USD. We use the normalized value
at Open, High, Low, Closing price, Adjusted Closing price and the volume
as the predictors. We are analyzing the price of bitcoin for the time period
from January 2nd 2018, to July 29th 2022. We are forecasting using a sliding
window starting from p = 30th day onwards.

5https://finance.yahoo.com/quote/BTC-USD?p=BTC-USD
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Metadata

The metadata for the bitcoin price forecasting task is a graph, where each
node is one of the 6 variates for one of the two assets bitcoin and S & P
500. All corresponding 6+6 variates of the two assets are given a score in
the metadata matrix using Pearson correlation coefficient which measures the
linear correlation between two variates [61].

Accuracy Measures

For the bitcoin price forecasting task (which requires a regression model, rather
than a classification model), we report root mean squared error (RMSE), mean
squared error (MSE), and mean absolute error (MAE). Due to very low MSE
values, four positions after the decimal is used here.

Patient with ”Ping-Pong” Seizures

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

LSTM-MMA w/o var. cluster; freq. & spat. context 0.83 0.91 0.87

LSTM w/o var. cluster; no context 0.63 0.23 0.34

LSTM w/o var. cluster; no context; with self-attention 0.68 0.26 0.38

CNN w/o var. cluster; no context 0.42 0.13 0.20

CNN w/o var. cluster; no context; with self-attention 0.83 0.58 0.68

DCRNN w/o var. cluster; freq. & spat. context 0.53 0.03 0.06

STGCN w/o var. cluster; freq. & spat. context 0.11 0.02 0.03

GCN-LSTM w/o var. cluster; freq. & spat. context 0.83 0.08 0.14

ICP

LSTM-MMA w/o var. cluster; freq. context (spat. context N/A) 1.00 0.50 0.67

LSTM w/o var. cluster; no context (spat. context N/A) 0.23 0.06 0.10

LSTM w/o var. cluster; no context; with self-attention (spat.
context N/A)

0.70 0.12 0.20

CNN w/o var. cluster; no context (spat. context N/A) 0.48 0.04 0.07

CNN w/o var. cluster; no context; with self-attention (spat.
context N/A)

0.60 0.15 0.24

DCRNN w/o var. cluster; freq. context (spat. context N/A) 0.90 0.25 0.39

STGCN w/o var. cluster; freq. context (spat. context N/A) 0.06 0.06 0.06

GCN-LSTM w/o var. cluster; freq. context (spat. context
N/A)

0.22 0.03 0.05

EEG and ICP

LSTM-MMA w/o var. cluster; freq. & spat. context 0.87 1.00 0.93

LSTM w/o var. cluster; no context 0.52 0.29 0.37

LSTM w/o var. cluster; no context; with self-attention 0.63 0.37 0.47

CNN w/o var. cluster; no context 0.39 0.08 0.13

CNN w/o var. cluster; no context; with self-attention 1.00 0.13 0.23

DCRNN w/o var. cluster; freq. & spat. context 0.70 0.09 0.16

STGCN w/o var. cluster; freq. & spat. context 0.06 0.06 0.06

GCN-LSTM w/o var. cluster; freq. & spat. context 0.83 0.06 0.11

EEG, ICP and ECG

LSTM-MMA w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

LSTM w/o var. cluster; no context 0.42 0.45 0.43

LSTM w/o var. cluster; no context; with self-attention 0.85 0.35 0.50

CNN w/o var. cluster; no context 0.43 0.02 0.04

CNN w/o var. cluster; no context; with self-attention 1.00 0.14 0.25

DCRNN w/o var. cluster; freq. & spat. context 0.75 0.04 0.08

STGCN w/o var. cluster; freq. & spat. context 0.06 0.11 0.08

GCN-LSTM w/o var. cluster; freq. & spat. context 0.22 0.20 0.21

EEG, ICP, ECG and ABP

LSTM-MMA w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

LSTM w/o var. cluster; no context 0.47 0.34 0.39

LSTM w/o var. cluster; no context; with self-attention 0.75 0.34 0.47

CNN w/o var. cluster; no context 0.46 0.02 0.04

CNN w/o var. cluster; no context; with self-attention 0.58 0.09 0.16

DCRNN w/o var. cluster; freq. & spat. context 0.90 0.01 0.02

STGCN w/o var. cluster; freq. & spat. context 0.11 0.11 0.11

GCN-LSTM w/o var. cluster; freq. & spat. context 0.67 0.04 0.08

Table 3 Comparison of LSTM-MMA against baselines for direct learning freq. & spat.
context using EEG, ICP, ECG and ABP data (5.7 % rare event) – PCA reduction applied
by default on RMT attention (the higher, the better)– pmax = 5.1m, pmin = 4.4m.
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Patient with Single Long Seizure

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

LSTM-MMA w/o var. cluster; freq. & spat. context 0.92 0.06 0.11

LSTM w/o var. cluster; no context 0.53 0.02 0.04

LSTM w/o var. cluster; no context; with self-attention 0.60 0.06 0.11

CNN w/o var. cluster; no context 0.88 0.01 0.02

CNN w/o var. cluster; no context; with self-attention 0.80 0.05 0.09

DCRNN w/o var. cluster; freq. & spat. context 0.63 0.02 0.04

STGCN w/o var. cluster; freq. & spat. context 0.60 0.01 0.02

GCN-LSTM w/o var. cluster; freq. & spat. context 0.83 0.02 0.04

ICP

LSTM-MMA w/o var. cluster; freq. context (spat. context N/A) 1.00 1.00 1.00

LSTM w/o var. cluster; no context (spat. context N/A) 0.53 0.78 0.63

LSTM w/o var. cluster; no context; with self-attention (spat.
context N/A)

1.00 1.00 1.00

CNN w/o var. cluster; no context (spat. context N/A) 0.90 0.99 0.94

CNN w/o var. cluster; no context; with self-attention (spat.
context N/A)

0.97 0.97 0.97

DCRNN w/o var. cluster; freq. context (spat. context N/A) 1.00 1.00 1.00

STGCN w/o var. cluster; freq. context (spat. context N/A) 0.83 0.83 0.83

GCN-LSTM w/o var. cluster; freq. context (spat. context
N/A)

0.83 1.00 0.91

EEG and ICP

LSTM-MMA w/o var. cluster; freq. & spat. context 0.99 0.87 0.93

LSTM w/o var. cluster; no context 0.39 0.59 0.47

LSTM w/o var. cluster; no context; with self-attention 0.80 0.35 0.49

CNN w/o var. cluster; no context 0.50 0.10 0.17

CNN w/o var. cluster; no context; with self-attention 0.95 0.76 0.84

DCRNN w/o var. cluster; freq. & spat. context 0.77 0.20 0.32

STGCN w/o var. cluster; freq. & spat. context 0.83 0.50 0.62

GCN-LSTM w/o var. cluster; freq. & spat. context 0.17 0.50 0.25

EEG, ICP and ECG

LSTM-MMA w/o var. cluster; freq. & spat. context 1.00 0.90 0.95

LSTM w/o var. cluster; no context 0.38 0.35 0.36

LSTM w/o var. cluster; no context; with self-attention 0.90 0.39 0.54

CNN w/o var. cluster; no context 0.31 0.13 0.18

CNN w/o var. cluster; no context; with self-attention 1.00 0.58 0.73

DCRNN w/o var. cluster; freq. & spat. context 0.68 0.24 0.35

STGCN w/o var. cluster; freq. & spat. context 0.50 0.13 0.21

GCN-LSTM w/o var. cluster; freq. & spat. context 0.33 0.67 0.44

EEG, ICP, ECG and ABP

LSTM-MMA w/o var. cluster; freq. & spat. context 1.00 0.92 0.96

LSTM w/o var. cluster; no context 0.27 0.38 0.32

LSTM w/o var. cluster; no context; with self-attention 0.90 0.47 0.62

CNN w/o var. cluster; no context 0.28 0.17 0.21

CNN w/o var. cluster; no context; with self-attention 0.80 0.36 0.50

DCRNN w/o var. cluster; freq. & spat. context 0.39 0.13 0.20

STGCN w/o var. cluster; freq. & spat. context 0.50 0.14 0.22

GCN-LSTM w/o var. cluster; freq. & spat. context 0.33 0.67 0.44

Table 4 Comparison of LSTM-MMA against baselines for direct learning freq. & spat.
context using EEG, ICP, ECG and ABP data (7 % rare event) – PCA reduction applied
by default on RMT attention (the higher, the better)– pmax = 5.1m, pmin = 4.4m.

3.2 Alternative Baselines

We have chosen LSTM [28] [65], CNN [29], Diffusion Convolution RNN
(DCRNN [14]), Spatio Temporal Graph Convolution Network (STGCN [58])
and GCN-LSTM [59] as state of the art baselines for considering temporal and
spatial aspects for onset prediction and forecasting tasks. More specifically, we
consider 7 competitors against the proposed MMA based attention mechanism:
Competitor #1 (Vanilla LSTM). Four segmented/separated (one for EEG,
ICP, ECG and ABP) LSTM layers without context or MMA (Metadata
Supported Multi-variate Attention) is the first baseline we are using. All
LSTM based models have the intermediate outcomes (in Keras this is the
return sequence=True parameter turned on which makes it possible to access
the hidden state output for each input time step) processed as opposed to
looking only at the last output state.
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Patient with Multiple Seizures

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

LSTM-MMA w/o var. cluster; freq. & spat. context 0.92 0.23 0.37

LSTM w/o var. cluster; no context 0.82 0.08 0.15

LSTM w/o var. cluster; no context; with self-attention 0.40 0.13 0.20

CNN w/o var. cluster; no context 0.72 0.19 0.30

CNN w/o var. cluster; no context; with self-attention 0.60 0.22 0.32

DCRNN w/o var. cluster; freq. & spat. context 0.92 0.13 0.23

STGCN w/o var. cluster; freq. & spat. context 0.33 0.06 0.10

GCN-LSTM w/o var. cluster; freq. & spat. context 0.17 0.14 0.15

ICP

LSTM-MMA w/o var. cluster; freq. context (spat. context N/A) 1.00 0.50 0.67

LSTM w/o var. cluster; no context (spat. context N/A) 0.97 0.22 0.36

LSTM w/o var. cluster; no context; with self-attention (spat.
context N/A)

0.90 0.45 0.60

CNN w/o var. cluster; no context (spat. context N/A) 0.60 0.14 0.23

CNN w/o var. cluster; no context; with self-attention (spat.
context N/A)

0.64 0.21 0.32

DCRNN w/o var. cluster; freq. context (spat. context N/A) 1.00 0.50 0.67

STGCN w/o var. cluster; freq. context (spat. context N/A) 0.17 0.11 0.13

GCN-LSTM w/o var. cluster; freq. context (spat. context
N/A)

1.00 0.17 0.29

EEG and ICP

LSTM-MMA w/o var. cluster; freq. & spat. context 0.97 0.13 0.23

LSTM w/o var. cluster; no context 0.83 0.13 0.22

LSTM w/o var. cluster; no context; with self-attention 0.70 0.14 0.23

CNN w/o var. cluster; no context 0.67 0.08 0.14

CNN w/o var. cluster; no context; with self-attention 0.40 0.13 0.20

DCRNN w/o var. cluster; freq. & spat. context 0.85 0.02 0.04

STGCN w/o var. cluster; freq. & spat. context 0.17 0.11 0.13

GCN-LSTM w/o var. cluster; freq. & spat. context 0.83 0.11 0.19

EEG, ICP and ECG

LSTM-MMA w/o var. cluster; freq. & spat. context 1.00 0.17 0.29

LSTM w/o var. cluster; no context 0.80 0.17 0.28

LSTM w/o var. cluster; no context; with self-attention 0.40 0.18 0.25

CNN w/o var. cluster; no context 0.65 0.05 0.09

CNN w/o var. cluster; no context; with self-attention 0.40 0.19 0.26

DCRNN w/o var. cluster; freq. & spat. context 0.93 0.02 0.04

STGCN w/o var. cluster; freq. & spat. context 0.17 0.04 0.06

GCN-LSTM w/o var. cluster; freq. & spat. context 0.17 0.20 0.18

EEG, ICP, ECG and ABP

LSTM-MMA w/o var. cluster; freq. & spat. context 1.00 0.22 0.36

LSTM w/o var. cluster; no context 0.82 0.11 0.19

LSTM w/o var. cluster; no context; with self-attention 0.40 0.25 0.31

CNN w/o var. cluster; no context 0.78 0.04 0.08

CNN w/o var. cluster; no context; with self-attention 0.60 0.18 0.28

DCRNN w/o var. cluster; freq. & spat. context 0.88 0.08 0.15

STGCN w/o var. cluster; freq. & spat. context 0.17 0.03 0.05

GCN-LSTM w/o var. cluster; freq. & spat. context 0.17 0.14 0.15

Table 5 Comparison of LSTM-MMA against baselines for direct learning freq. & spat.
context using EEG, ICP, ECG and ABP data (7 % rare event) – PCA reduction applied
by default on RMT attention (the higher, the better)– pmax = 5.1m, pmin = 4.4m.

Competitor #2 (LSTM with Self-Attention). For the second baseline,
we provide four segmented (one for EEG, ICP, ECG and ABP) LSTM with-
out context, but we add attention using input data instead of RMT features
as the query vector. LSTM output is used as the key and value vector thereby
condensing attention into a single layer instead of the dual layer attention in
LSTM-MMA. This baseline is a form of self-attention with dot product between
(weighted) input data by (weighted) LSTM output followed by softmax opera-
tion to get attention vector which is applied on the (weighted) LSTM output.
This baseline is different from the scaled dot-product self-attention used in
Transformers with multiple attention heads [52].
Competitor #3 (Vanilla CNN). For the third baseline, we have CNN with
four segmented convolution layers (one for EEG, ICP, ECG and ABP followed
by a Batch Normalization layer); each convolution layer has 3 * 3 kernels,
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output filters 20 and activation ReLU with zero padding (padded evenly such
that output has the same dimension as the input). Vanilla CNN baseline has
no context or MMA (Metadata Supported Multi-variate Attention).
Competitor #4 (CNN with Self-Attention). The CNN baseline without
context is given self-attention in a similar manner as that of LSTM in the
second baseline using input data instead of RMT features as the query vector
and is considered as the fourth baseline. CNN output is the key and value
vector here.
Competitor #5 (DCRNN). We consider Diffusion Convolution RNN
(DCRNN [14]) as the fifth baseline against LSTM-MMA which takes into account
both the spatial and temporal contexts. DCRNN is a graph convolution
approach [14] that we have adapted for the seizure dataset with the same freq.
& spat. context metadata matrix to serve as adjacency matrix, but it does
not have the ability to rely on metadata supported, multi-variate attention
(MMA) as proposed in this paper. The DCRNN model [14] is trained with a
Gated Recurrent Unit (GRU). Number of diffusion hops for DCRNN is kept
1 for all datasets.
Competitor #6 (STGCN).

STGCN [58] is the sixth baseline against LSTM-MMA which takes into account
both the spatial and temporal contexts. STGCN [58] is another graph con-
volution approach that we have adapted with the freq. & spat. context. The
architecture of STGCN [58] consists of a graph convolutional layer using an
adjacency matrix, temporal gated 1D convolutional layers, and fully connected
layers. The graph convolutional layers operate on the spatial dimension of the
EEG graph, allowing the model to aggregate information from neighboring spa-
tial sensors and capture spatial dependencies. The temporal 1D convolutional
layer for EEG operate on the output of graph convolution; each convolution
layer has 3 * 3 kernels, output filters 20 and activation ReLU with causal
padding (padded the layer’s input with zeros in the front to enable prediction
of the values of early time steps), enabling the model to capture the temporal
patterns and trends in the data. Above temporal convolution layer for EEG is
multiplied element wise (Hadamard product) with another 1D temporal con-
volutional layer with a different activation; each convolution layer has 3 * 3
kernels, output filters 20 and sigmoid activation with causal padding. Together
these two temporal convolution layers form a gated convolution layer [58]. ICP,
ECG and ABP also follow the same process but they have only gated temporal
convolution layers as they do not have spatial context. The gated convolution
layers are followed by a fully connected layer.
Competitor #7 (GCN-LSTM).

GCN-LSTM is the seventh baseline against LSTM-MMA which takes into
account both the spatial and temporal contexts. The architecture of GCN-
LSTM is adapted similar to STGCN [58] and consists of a graph convolutional
layer using an adjacency matrix, temporal 1D convolutional layers, and fully
connected layers. The graph convolutional layers operate on the spatial dimen-
sion of the EEG graph as in the case of STGCN [58]. The temporal 1D
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convolutional layer for EEG also operate on the output of graph convolution;
each convolution layer has 3 * 3 kernels, output filters 20 and activation ReLU
with causal padding as in the case of STGCN [58]. But in the GCN-LSTM
model, after the first temporal convolution layer there is a LSTM layer (instead
of another temporal convolution layer) with return sequence=True parameter
turned on. The output of convolution is fed to a LSTM layer for EEG inspired
by [59]. ICP, ECG and ABP also follow the same process but they have only
temporal convolution layers as they do not have spatial context.

DCRNN [14], STGCN [58] and GCN-LSTM [59] takes in same adjacency
matrix for seizure dataset as in LSTM-MMA to find the neighbors of a EEG
sensor. For the COVID, traffic and bitcoin datasets also, same spatial context
metadata matrix is used in LSTM-MMA and baselines with context like DCRNN
[14], STGCN [58] and GCN-LSTM [59]. Other baselines like attentioned and
non-attentioned LSTM and CNN have no context at all. For all baselines with
and without context, the timeseries data has segments of common sequence
length for data preprocessing namely 500 (default unless specified) for the
seizure dataset, 20 for the COVID dataset, 4 for the traffic dataset and 30 for
the bitcoin dataset as is in the case of LSTM-MMA. The timeseries data sets are
partitioned into a training set, validation set, and test set, with the same split
ratio for all baselines as in LSTM-MMA.

We train baselines with the same hyperparameters as LSTM-MMA, given in
Table 2, namely batch size (batch size=60), number of epochs (unless speci-
fied), and optimizer (Adam optimizer). A lower batch size of 30 is observed to
be better for DCRNN as batch size of 60 sometimes caused memory issues for
the seizure dataset. We report results using the accuracy measures defined in
Sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4 for all baselines.

3.3 Results

In this subsection, we present the results for seizure onset prediction, COVID,
traffic, bitcoin forecasting tasks as detailed earlier. In the default experiments,
we considered the version of the forecasting algorithm without variate cluster-
ing as we aim to observe the impact of the metadata supported MMA attention
mechanism, without additional optimizations (such as variate clustering). We
also present a separate ablation study which illustrates that variate clustering
is an effective optimization technique (especially in the seizure detection data
where the number of variates is very large).

3.3.1 Seizure Onset Prediction Task

Seizure Onset Prediction Task results are reported from Tables 3 through 12.
Each table from Table 3 through 8 reports results on a single patient for
direct learning. Tables 9 through 12 refer to transfer learning scenarios from a
donor/provider patient to a test patient.
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Comparison against the Baselines

As we see in Tables 3 through 5, the LSTM-MMA model is able to provide
significantly better overall accuracy, when compared against the baselines.

• As mentioned in Section 3.1.1 there are two types of patients - patients with
patterns of seizure and patients with one or more clusters of seizure events.

• For ”ping-pong” seizure patient, results are reported in Table 3. When
analyzing the EEG data for the ”ping-pong” seizure, where the spatial con-
text is important, DCRNN, STGCN and GCN-LSTM models are not able
to provide good results – the proposed metadata supported multi-variate
attention, however, enables the LSTM-MMA model to achieve relatively higher
accuracy, especially high precision, for this scenario that requires spatial
context. LSTM-MMA with frequency and spatial context is observed to be the
best model for patients with patterns of seizure, best results are shown in
bold. Self-attentioned CNN and LSTM models and GCN-LSTM have high
recall for EEG but precision is lower than LSTM-MMA. The precision is low
for DCRNN model for all signals whereas both the recall and precision are
lower for STGCN model when compared to LSTM-MMA model for all signals.

• In contrast, in the case of ”single long seizure” cluster patient, it is especially
difficult to identify the single key event using spatial context with EEG signal
and leverage it during model training, when compared to other patients
having multiple seizures, as observed in Table 4. However for the ICP signal
which has no spat. context, LSTM with self attention and DCRNN has
similar (perfect) results similar to LSTM-MMA for patients with single seizure
cluster as seen in Table 4. CNN model with self attention gives near perfect
precision and recall for the ICP signal in Table 4. CNN model without
context, GCN-LSTM and STGCN also has a high recall and precision with
the ICP signal.

• In Table 5 in the case of ”multiple seizure” cluster patient, the accuracy for
EEG is better with spatial context when compared to ”single long seizure”
event patient, as there are multiple - three - key events. However ICP is
the strong predictor here also for almost all models. This is firstly because
the ICP signal does not have spatial context and because, unlike the ping-
pong seizure, the seizure events are more homogeneous in these two cases in
Tables 4 and 5 for patients with single and multiple seizure clusters.

Ablation Study – Model Direct Learning

In Tables 6 through 8, we analyze the impact of various components of LSTM-
MMA through an ablation study:

• Table 6 presents results for the ”ping-pong” seizure case which have multiple
(seven) seizure onsets. As we see here, the best accuracies are obtained for
all considered multi-modal scenarios when leveraging the spatial context of
EEG, along with the underlying frequency context. Both recall and precision
improved significantly when spatial context of EEG is considered for this
usecase.
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Patient with ”Ping-Pong” Seizure

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 0.52 0.85 0.65

w/o var. cluster; freq. & spat. context 0.83 0.91 0.87

with var. cluster; freq. context 0.67 0.70 0.68

with var. cluster; freq. & spat. context 0.75 0.70 0.72

ICP

w/o var. cluster; freq. context 1.00 0.50 0.67

w/o var. cluster; freq. & spat. context 1.00 0.50 0.67

with var. cluster; freq. context 1.00 0.80 0.89

with var. cluster; freq. & spat. context 1.00 0.80 0.89

EEG and ICP

w/o var. cluster; freq. context 0.52 0.71 0.60

w/o var. cluster; freq. & spat. context 0.87 1.00 0.93

with var. cluster; freq. context 0.75 0.59 0.66

with var. cluster; freq. & spat. context 0.90 0.56 0.69

EEG, ICP and ECG

w/o var. cluster; freq. context 0.54 0.53 0.53

w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

with var. cluster; freq. context 0.78 0.70 0.74

with var. cluster; freq. & spat. context 0.95 0.63 0.76

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 0.61 0.64 0.62

w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

with var. cluster; freq. context 0.73 0.65 0.69

with var. cluster; freq. & spat. context 0.90 0.67 0.77

Table 6 Ablation study using LSTM-MMA model for direct learning using EEG, ICP, ECG
and ABP data (5.7% rare events, optimum k = 50 clusters) – PCA reduction applied by
default on RMT attention (the higher, the better)– pmax = 5.1m, pmin = 4.4m.

Patient with Single Long Seizure

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 0.80 0.02 0.04

w/o var. cluster; freq. & spat. context 0.92 0.06 0.11

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

ICP

w/o var. cluster; freq. context 1.00 1.00 1.00

w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG and ICP

w/o var. cluster; freq. context 1.00 0.87 0.93

w/o var. cluster; freq. & spat. context 0.99 0.87 0.93

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG, ICP and ECG

w/o var. cluster; freq. context 1.00 0.88 0.94

w/o var. cluster; freq. & spat. context 1.00 0.90 0.95

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 1.00 0.90 0.95

w/o var. cluster; freq. & spat. context 1.00 0.92 0.96

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

Table 7 Ablation study using LSTM-MMA model for direct learning using EEG, ICP, ECG
and ABP data (7% rare events, optimum k = 100 clusters) – PCA reduction applied by
default on RMT attention (the higher, the better)– pmax = 5.1m, pmin = 4.4m.

• As we see in Table 7, for the ”single long seizure” case, the ICP signal pro-
vides the best (in fact perfect) accuracies. Even though the spatial context
of EEG generally helps, the precision with the EEG signal is overall lower
than that with the ICP. This is because, unlike the other patients (such
as the ping-pong seizure patient), this patient has only a single onset that
makes it difficult to discover the spatial context.
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Patient with Multiple Seizures

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 1.00 0.18 0.31

w/o var. cluster; freq. & spat. context 0.92 0.23 0.37

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

ICP

w/o var. cluster; freq. context 1.00 0.50 0.67

w/o var. cluster; freq. & spat. context 1.00 0.50 0.67

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG and ICP

w/o var. cluster; freq. context 0.70 0.12 0.20

w/o var. cluster; freq. & spat. context 0.97 0.13 0.23

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG, ICP and ECG

w/o var. cluster; freq. context 1.00 0.10 0.18

w/o var. cluster; freq. & spat. context 1.00 0.17 0.29

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 1.00 0.09 0.17

w/o var. cluster; freq. & spat. context 1.00 0.22 0.36

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

Table 8 Ablation study using LSTM-MMA model for direct learning using EEG, ICP, ECG
and ABP data (7% rare events, optimum k = 50 clusters) – PCA reduction applied by
default on RMT attention (the higher, the better)– pmax = 5.1m, pmin = 4.4m.

• ICP is also the best signal for the ”multiple seizures” cases which have
multiple seizure onsets (Table 8). In this case, we see that spatial context
underlying the EEG signal does help improve the accuracies for multi-modal
scenarios involving EEG data streams.

• In general, the results with spatial context for EEG is observed to be best for
the ”ping-pong seizure” patient where spatial context is important as noted
in Table 6. On the other hand, adaptive variate clustering done on EEG
data streams gives perfect accuracy for patients with ”single long seizure”
cluster event and ”multiple seizure” cluster events as observed in Tables 7
and 8 for both frequency and frequency and spatial contexts.

Ablation Study – Model Transfer Learning

We next investigate the impact of transferring models learned from one patient
to another. In particular, we use the patient with ”ping-pong” seizures, which
show highest pattern diversity, as the donor and apply the learned model to
other patients, with single, multiple, and lateral seizures.

• In Tables 9 to 12, we see that the model transfer is highly effective and
that the spatial context captured by the metadata supported multi-variate
attention (MMA) mechanism, proposed in this paper, generally helps with
effective transfer of knowledge from one model to the other.

• ICP is the best signal in Table 9 on transfer learning to patient with ”single
long seizure” event as is the case in Table 7 on direct learning. Though
spatial context helps to improve results for EEG alone scenario on transfer
learning, ICP signal wins hands down as the best predictor for this patient
with perfect accuracy for both frequency and frequency and spatial context.
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Patient with Single Long Seizure – Model Transferred from ”Ping-Pong” Patient

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 0.88 0.18 0.30

w/o var. cluster; freq. & spat. context 1.00 0.21 0.35

with var. cluster; freq. context 1.00 0.58 0.73

with var. cluster; freq. & spat. context 1.00 0.78 0.88

ICP

w/o var. cluster; freq. context 1.00 1.00 1.00

w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG and ICP

w/o var. cluster; freq. context 0.98 0.13 0.23

w/o var. cluster; freq. & spat. context 1.00 0.13 0.23

with var. cluster; freq. context 1.00 0.85 0.92

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG, ICP and ECG

w/o var. cluster; freq. context 0.90 0.07 0.13

w/o var. cluster; freq. & spat. context 1.00 0.05 0.10

with var. cluster; freq. context 1.00 0.93 0.96

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 1.00 0.08 0.15

w/o var. cluster; freq. & spat. context 0.96 0.05 0.10

with var. cluster; freq. context 1.00 0.93 0.96

with var. cluster; freq. & spat. context 1.00 1.00 1.00

Table 9 Ablation study using LSTM-MMA model for transfer learning using EEG, ICP,
ECG and ABP data (7% rare events, optimum k = 200 clusters) from ”Ping-Pong” seizure
patient – PCA reduction applied by default on RMT attention (the higher, the better)–
pmax = 5.1m, pmin = 4.4m.

• The patient with ”multiple seizure” cluster events - three events - in Table
10 is noted to do better with transfer learning from ping-pong seizure patient
using spatial context for all signals than by direct learning from this patient
in Table 8.

• Another patient with ”multiple seizure” cluster events - four events - and
0.8% anomaly in Table 11 also does well with transfer learning from ping-
pong seizure patient using spatial context.

• Finally in Table 12 we transfer from ”ping-pong” seizure patient to a patient
with lateral seizures - having 7 events - and 0.5% anomaly. For this patient
also transfer learning using spatial context of EEG works well.

Summary of the Seizure Prediction Experiments

The seizure prediction experiments reported so far has shown that the proposed
LSTM-MMA approach with metadata-supported multi-variate attention provides
significant gains in prediction accuracy against competitors. The ablation stud-
ies have further illustrated the effectiveness of the MMA approach in leveraging
the frequency and spatial contexts provided by the metadata associated with
the multivariate time series.

3.3.2 COVID Prediction Task

In this section, to illustrate the generalizability of the proposed techniques,
we apply the proposed LSTM-MMA architecture to a different prediction prob-
lem. Table 13 shows prediction accuracies for LSTM-MMA and for baselines, with
LSTM-MMA, DCRNN, STGCN and GCN-LSTM leveraging the spatial context
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Patient with Multiple Seizures – Model Transferred from ”Ping-Pong” Patient

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 0.92 0.26 0.41

w/o var. cluster; freq. & spat. context 0.95 0.70 0.81

with var. cluster; freq. context 1.00 0.48 0.65

with var. cluster; freq. & spat. context 1.00 0.85 0.92

ICP

w/o var. cluster; freq. context 1.00 0.57 0.73

w/o var. cluster; freq. & spat. context 1.00 0.57 0.73

with var. cluster; freq. context 1.00 0.85 0.92

with var. cluster; freq. & spat. context 1.00 0.85 0.92

EEG and ICP

w/o var. cluster; freq. context 1.00 0.38 0.55

w/o var. cluster; freq. & spat. context 0.88 0.57 0.69

with var. cluster; freq. context 0.90 0.55 0.68

with var. cluster; freq. & spat. context 1.00 0.55 0.71

EEG, ICP and ECG

w/o var. cluster; freq. context 0.97 0.26 0.41

w/o var. cluster; freq. & spat. context 1.00 0.41 0.58

with var. cluster; freq. context 0.90 0.47 0.62

with var. cluster; freq. & spat. context 1.00 0.48 0.65

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 1.00 0.30 0.46

w/o var. cluster; freq. & spat. context 1.00 0.34 0.51

with var. cluster; freq. context 0.90 0.39 0.54

with var. cluster; freq. & spat. context 1.00 0.45 0.62

Table 10 Ablation study using LSTM-MMA model for transfer learning using EEG, ICP,
ECG and ABP data (7% rare events, optimum k = 200 clusters) from ”Ping-Pong” seizure
patient– PCA reduction applied by default on RMT attention (the higher, the better)–
pmax = 5.1m, pmin = 4.4m.

in predicting rate of change of log of cases and rate of change of log of deaths in
US States. These results do not consider variate clustering. As can be observed
in Table 13, the RMSE and MSE are generally lower when we complement
LSTM-MMA with MMA, which takes into account spatial context, and L1 regu-
larization. LSTM-MMA without spatial context (implicit context with ones along
the diagonal of the metadata matrix) with and without L1 regularization also
have very low MSE and MAE values. STGCN, is in the third place, has signifi-
cantly lower RMSE and MSE when compared to other baselines for predicting
COVID rate of change of log of cases and deaths. DCRNN comes at the next
place in predicting rate of change of log of cases and deaths. LSTM without
context with self attention and GCN-LSTM have a similar MSE as that of
DCRNN in predicting rate of change of log of deaths.

3.3.3 Traffic Forecasting Task

Results for traffic forecasting task are observed in Table 14. The RMSE and
MSE are lower when we complement LSTM-MMA with MMA, which takes into
account spatial context, and L1 regularization. These results do not consider
variate clustering. LSTM-MMA without spatial context with L1 (implicit con-
text with ones along the diagonal of the metadata matrix), LSTM-MMA with
and without spatial context (implicit and explicit spatial context) without L1
regularization, CNN based baselines like CNN without any context but with
and without self-attention and STGCN also fares well, have significantly lower
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Patient with Multiple Seizures (0.8% anomaly) – Model Transferred from ”Ping-Pong” Patient

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 0.90 0.62 0.73

w/o var. cluster; freq. & spat. context 1.00 0.71 0.83

with var. cluster; freq. context 1.00 0.80 0.89

with var. cluster; freq. & spat. context 1.00 0.85 0.92

ICP

w/o var. cluster; freq. context 1.00 1.00 1.00

w/o var. cluster; freq. & spat. context 1.00 1.00 1.00

with var. cluster; freq. context 1.00 1.00 1.00

with var. cluster; freq. & spat. context 1.00 1.00 1.00

EEG and ICP

w/o var. cluster; freq. context 1.00 0.84 0.91

w/o var. cluster; freq. & spat. context 1.00 0.92 0.96

with var. cluster; freq. context 1.00 0.85 0.92

with var. cluster; freq. & spat. context 1.00 0.95 0.97

EEG, ICP and ECG

w/o var. cluster; freq. context 1.00 0.58 0.73

w/o var. cluster; freq. & spat. context 1.00 0.78 0.88

with var. cluster; freq. context 1.00 0.76 0.86

with var. cluster; freq. & spat. context 1.00 0.87 0.93

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 0.93 0.74 0.82

w/o var. cluster; freq. & spat. context 1.00 0.70 0.82

with var. cluster; freq. context 1.00 0.66 0.80

with var. cluster; freq. & spat. context 1.00 0.71 0.83

Table 11 Ablation study using LSTM-MMA model for transfer learning using EEG, ICP,
ECG and ABP data (2% and lower rare events, optimum k = 250 clusters) from
”Ping-Pong” seizure patient– PCA reduction applied by default on RMT attention (the
higher, the better)– pmax = 5.1m, pmin = 4.4m.

MSE when compared to LSTM based baselines like GCN-LSTM, LSTM with-
out context without self-attention and GRU based baseline like DCRNN for
forecasting traffic flow.

3.3.4 Bitcoin Forecasting Task

Results for bitcoin forecasting task are observed in Table 15. These results do
not consider variate clustering. As can be observed, the RMSE and MSE are
lowest, when we complement LSTM-MMA with MMA, which takes into account
metadata supported correlation context and L1 regularization, closely followed
by LSTM-MMA with context but without L1 regularization. LSTM-MMA without
context (implicit context with ones along the diagonal of the metadata matrix)
with and without L1 regularization, LSTM without any context with self-
attention also have lower RMSE, MSE, and MAE when compared to CNN
without context, GCN-LSTM, DCRNN and STGCN baselines for the bitcoin
dataset.

4 Conclusions

Post traumatic seizure prediction tasks are hampered by the rareness of such
events. Arguing that multi-variate multi-modal time series carry robust local-
ized temporal and spatial features that could help identify these rare seizure
events, we proposed a metadata supported multi-variate attention (or MMA)
technique, which leverages robust multi-variate temporal and spatial features,
and presented an LSTM-based architecture to predict onset of seizure events.
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Patient with Lateral Seizures(0.5% anomaly)– Model Transferred from ”Ping-Pong” Patient

Mean Mean Mean
Model CORecall COPrecision F1 Score

EEG

w/o var. cluster; freq. context 1.00 0.42 0.59

w/o var. cluster; freq. & spat. context 1.00 0.75 0.86

with var. cluster; freq. context 0.80 0.24 0.37

with var. cluster; freq. & spat. context 1.00 1.00 1.00

ICP

w/o var. cluster; freq. context 1.00 0.33 0.50

w/o var. cluster; freq. & spat. context 1.00 0.33 0.50

with var. cluster; freq. context 1.00 0.39 0.56

with var. cluster; freq. & spat. context 1.00 0.39 0.56

EEG and ICP

w/o var. cluster; freq. context 1.00 0.34 0.51

w/o var. cluster; freq. & spat. context 1.00 0.36 0.53

with var. cluster; freq. context 0.80 0.08 0.15

with var. cluster; freq. & spat. context 0.95 0.59 0.73

EEG, ICP and ECG

w/o var. cluster; freq. context 1.00 0.34 0.51

w/o var. cluster; freq. & spat. context 1.00 0.37 0.54

with var. cluster; freq. context 0.80 0.08 0.15

with var. cluster; freq. & spat. context 0.98 0.75 0.85

EEG, ICP, ECG and ABP

w/o var. cluster; freq. context 1.00 0.42 0.59

w/o var. cluster; freq. & spat. context 1.00 0.78 0.88

with var. cluster; freq. context 0.80 0.08 0.15

with var. cluster; freq. & spat. context 1.00 0.78 0.88

Table 12 Ablation study using LSTM-MMA model for transfer learning using EEG, ICP,
ECG and ABP data (2% and lower rare events, optimum k = 100 clusters) from
”Ping-Pong” seizure patient– PCA reduction applied by default on RMT attention (the
higher, the better)– pmax = 5.1m, pmin = 4.4m.

Experiments on EEG, ICP, ECG and ABP data show that the proposed LSTM-
MMA model is highly effective in improving model accuracy for rare event early
prediction tasks. Generally we observed that the model learns robust features
well when EEG and other modality data are smoothed with variate cluster-
ing and when given frequency and spatial context to the modalities. We also
observed that while the EEG signal may sometimes be ineffective, there are
secondary modalities like ICP that are strong predictors (with best F1 score)
for predicting seizure onset events.

Additional experiments done on publicly available multi-variate COVID,
traffic, bitcoin datasets show that LSTM-MMA model is effective on regression
tasks as well.
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Rate of change of log of cases

Model RMSE MSE MAE

LSTM-MMA w/o spat. context 0.0102 0.0001 0.0044

LSTM-MMA w/o spat. context; with L1 0.0104 0.0001 0.0044

LSTM-MMA with spat. context 0.0103 0.0001 0.0082

LSTM-MMA with spat. context; with L1 0.0101 0.0001 0.0078

LSTM w/o var. cluster; no context 0.0374 0.0014 0.0320

LSTM w/o var. cluster; no context; with self-
attention

0.0361 0.0013 0.0344

CNN w/o var. cluster; no context 0.1024 0.0105 0.0794

CNN w/o var. cluster; no context; with self-
attention

0.0316 0.0010 0.0291

DCRNN with spat. context 0.0192 0.0004 0.0138

STGCN with spat. context 0.0141 0.0002 0.0096

GCN-LSTM with spat. context 0.0436 0.0019 0.0394

Rate of change of log of deaths

Model RMSE MSE MAE

LSTM-MMA w/o spat. context 0.0141 0.0002 0.0087

LSTM-MMA w/o spat. context; with L1 0.0141 0.0002 0.0087

LSTM-MMA with spat. context 0.0120 0.0001 0.0073

LSTM-MMA with spat. context; with L1 0.0119 0.0001 0.0073

LSTM w/o var. cluster; no context 0.0308 0.0009 0.0263

LSTM w/o var. cluster; no context; with self-
attention

0.0265 0.0007 0.0238

CNN w/o var. cluster; no context 0.2262 0.0512 0.1813

CNN w/o var. cluster; no context; with self-
attention

0.0849 0.0072 0.0720

DCRNN with spat. context 0.0258 0.0007 0.0178

STGCN with spat. context 0.0141 0.0002 0.0091

GCN-LSTM with spat. context 0.0265 0.0007 0.0244

Table 13 Comparison of the LSTM-MMA model against baselines for COVID prediction –
PCA reduction applied by default on MMA (the lower, the better) – for next p = 1 day.

Traffic travel time forecasting

Model RMSE MSE MAE

LSTM-MMA w/o spat. context 4.77 22.76 3.33

LSTM-MMA w/o spat. context; with L1 4.75 22.52 3.34

LSTM-MMA with spat. context 4.75 22.61 3.31

LSTM-MMA with spat. context; with L1 4.74 22.48 3.28

LSTM w/o context 7.39 54.65 5.61

LSTM w/o context; with self-attention 6.47 41.81 4.91

CNN w/o context 5.79 33.50 4.21

CNN w/o context; with self-attention 5.37 28.79 3.96

DCRNN with spat. context 6.69 44.76 5.09

STGCN with spat. context 5.74 32.91 4.07

GCN-LSTM with spat. context 13.79 190.21 12.33

Table 14 Comparison of the LSTM-MMA model against baselines for Traffic forecasting –
PCA reduction applied by default on MMA (the lower, the better) – for next p = 15 minutes.

Bitcoin price forecasting

Model RMSE MSE MAE

LSTM-MMA w/o context 0.0013 1.6652 * 10−6 0.0011

LSTM-MMA w/o context; with L1 0.0012 1.5550 ∗ 10−6 0.0011

LSTM-MMA with context 0.0012 1.4469 * 10−6 0.0010

LSTM-MMA with context; with L1 0.0012 1.3580 * 10−6 0.0010

LSTM w/o context 0.0013 1.7531 ∗ 10−6 0.0012

LSTM w/o context with self-attention 0.0013 1.6288 ∗ 10−6 0.0011

CNN w/o context 0.0013 1.7674 ∗ 10−6 0.0012

CNN w/o context with self-attention 0.0013 1.7523 ∗ 10−6 0.0012

DCRNN with context 0.0014 1.8660 ∗ 10−6 0.0012

STGCN with context 0.0014 2.0544 ∗ 10−6 0.0013

GCN-LSTM with context 0.0013 1.7690 ∗ 10−6 0.0012

Table 15 Comparison of the LSTM-MMA model against baselines for Bitcoin forecasting –
PCA reduction applied by default on MMA (the lower, the better) – from p = 30 days
onwards.
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