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Summary

Analysis of rainfall data and subsequent modelling of the many variables
concerning rainfall is fundamental to many areas such as agricultural, ecolog-
ical and engineering disciplines and, due to the complexity of the underlying
hydrological system, it relies heavily on historical records. Daily rainfall
series are arguably the most used. In this context, we initially investigate
the modelling of daily rainfall interarrival times through a family of discrete
probability distributions known as the Hurwitz-Lerch-Zeta family, along with
two other distributions which are deeply related to the latter and have never
been considered with this aim. Building up on the relationships between
the interarrival times and certain other temporal variables, fundamental
in describing the alternation between periods of continuous rainfall and
periods of drought, we delineate a methodology particularly well-suited for
statistical applications. The latter procedure and the fitting performance
of the aforementioned distributions is shown on a dataset composed of a
variety of rainfall regimes.

Additionally, the multivariate modelling of rainfall variables has never been
more important, as a perceivable shift in the inter-relationships between these
variables could reflect climate changes in a region. In this context, copulas
are well known and valued for their flexibility. However, they lose their charm
when dealing with discrete random vectors. In this case, the uniqueness of the
copula is compromised, leading to inconsistencies which basically break down
the theoretical underpinnings of the inferential procedures commonly used in
the continuous case. Recently, Gery Geenens made a compelling case for a
new approach, grounding its beliefs in historical ideas regarding contingency
tables. The theoretical insights he gives, coupled with a computational tool
known as iterative proportional fitting procedure, open up the path to our
development of novel (semi-parametric or parametric) models for finitely
supported bivariate discrete random vectors. With this aim, we shall prove
a sklar-like decomposition of a bivariate discrete probability mass function
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between its margins and a copula probability mass function. Statistical
models hinging upon this representation are built and related inferential
procedures are studied both theoretically and empirically.

Of the same significance as modelling the behaviour of rainfall is its impact
on water bodies and land surfaces. For instance, understanding the time it
takes for rainfall to cause river levels to exceed a flood stage is of paramount
importance for flood prediction and management. More in general, it is
often crucial to determine the time at which certain hydrological thresholds
are crossed by some hydrological quantity. When the latter’s value in time
is modelled by a stochastic process, this problem can be restated in terms
of the first passage time. In this context, a practical computation of the
first passage time probability density and distribution function is a delicate
issue. Within this framework, we propose an approximation method based
on a series expansion. Theoretical results are accompanied by discussions
on the computational aspects. Extensive numerical experiments are carried
out for the geometric Brownian motion and the Cox-Ingersoll-Ross process,
showing the usefulness of the proposed method.
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Resumè

L’analyse des données de précipitations et la modélisation des nombreuses va-
riables associées sont fondamentales dans des domaines tels que l’agriculture,
l’écologie et l’ingénierie. En raison de la complexité du système hydrologique
sous-jacent, ces analyses reposent fortement sur des archives historiques, avec
les séries de précipitations quotidiennes étant parmi les plus utilisées. Dans
ce contexte, nous étudions initialement la modélisation des temps d’inter-
arrivée des précipitations quotidiennes à travers la famille de distributions
de probabilité discrètes connue sous le nom de Hurwitz-Lerch-Zeta, ainsi que
deux autres distributions étroitement liées qui n’ont jamais été considérées à
cette fin. En nous appuyant sur les relations entre les temps d’inter-arrivée et
d’autres variables temporelles essentielles pour décrire l’alternance entre les
périodes de pluie continue et de sécheresse, nous élaborons une méthodologie
particulièrement adaptée aux applications statistiques. Cette procédure et
la performance d’ajustement des distributions mentionnées sont démontrées
sur un ensemble de données couvrant divers régimes de précipitations.

De plus, la modélisation multivariée des variables de précipitations est
devenue cruciale, car un changement perceptible dans leurs interrelations
pourrait refléter des modifications climatiques régionales. Les copules sont
bien connues pour leur flexibilité, mais elles perdent de leur efficacité avec
les vecteurs aléatoires discrets, compromettant leur unicité et entraînant des
incohérences théoriques. Récemment, Gery Geenens a proposé une nouvelle
approche basée sur des idées historiques liées aux tableaux de contingence.
Ses perspectives théoriques, combinées à la procédure d’ajustement pro-
portionnel itératif, nous ont conduits à développer de nouveaux modèles
(semi-paramétriques ou paramétriques) pour des vecteurs aléatoires discrets
bivariés à support fini. À cette fin, nous démontrons une décomposition de
type Sklar d’une fonction de masse de probabilité discrète bivariée entre
ses marges et une fonction de masse de probabilité copule. Des modèles
statistiques basés sur cette représentation sont construits, et les procédures
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d’inférence associées sont étudiées théoriquement et empiriquement.
D’une importance égale à la modélisation du comportement des pré-

cipitations est leur impact sur les masses d’eau et les surfaces terrestres.
Comprendre, par exemple, le temps nécessaire pour que les précipitations
fassent dépasser les niveaux des rivières au-delà d’un seuil de crue est es-
sentiel pour la prévision et la gestion des inondations. Plus généralement,
déterminer le moment où certains seuils hydrologiques sont franchis par
une quantité hydrologique donnée est souvent crucial. Lorsque cette valeur
est modélisée par un processus stochastique, le problème se reformule en
termes de temps de premier passage. Dans ce contexte, le calcul pratique
de la densité de probabilité et de la fonction de distribution du temps de
premier passage est délicat. Nous proposons une méthode d’approximation
basée sur un développement en série. Les résultats théoriques sont accom-
pagnés de discussions sur les aspects computationnels. Des expériences
numériques étendues sont menées pour le mouvement brownien géométrique
et le processus de Cox-Ingersoll-Ross, démontrant l’utilité de la méthode
proposée.
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6.4.4 On the Monotonicity of Ĝn . . . . . . . . . . . . . . 261
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Chapter 1

Introduction

This thesis is dedicated to the exploration and development of some theoreti-
cally sound tools connected by the underlying unifying thread of hydrological
data analysis and modelling. It is structured into three main parts. The first
part focuses on the daily rainfall occurrence process, exploring the modelling
of daily rainfall interarrival times and related temporal rainfall variables
using a family of discrete probability distributions known as Hurwitz-Lerch-
Zeta distributions, along with two additional distributions related to the
latter, whose application in this context is new. The performance of these
distributions, immersed in a broader statistical procedure concerning the
aforementioned temporal variables, is shown on a novel and interesting
dataset composed of 6 Italian and British stations spanning a variety of
rainfall regimes. The second part uses the multivariate modelling of rainfall
variables as a starting point to shift to a more theoretical tone, exploring
new possibilities in the still relatively unexplored context of copula-like
modelling of discrete random vectors. Finally, the third part, motivated by
the problem of estimating the time at which some hydrological thresholds
are reached, proposes a practical method for approximating the first passage
time densities of some stochastic processes. The next sections will provide a
general introduction to all the aforementioned topics.

1.1 Rainfall Modelling

1.1.1 Daily Rainfall Data

Due to the complexity of hydrological systems, their analysis and modelling
relies heavily on historical records. Rainfall historical records are of various
time scales, from hourly data to annual data. However, daily rainfall series are
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arguably the most used information in environmental, climate, hydrological,
and water resources studies (Serinaldi, 2009). Rain gauge networks measuring
rainfall amount at a daily timescale operate in almost every country, and often
provide the only available input for climate and hydrological analyses. A
reliable and flexible single site model is the fundamental starting point of any
more complex multi-site model taking into account the spatial correlations
arising when observing a dense network of stations. Following Serinaldi (2009)
and McMahon and Srikanthan (2001), single site daily rainfall models can be
classified in the following way: (1) two-part models accounting separately for
occurrence (wet/dry) and amount processes; (2) transition probability matrix
models resorting to multistate Markov processes (3) resampling models based
on nonparametric bootstrap and analogous techniques; and (4) time series
models of the Autoregressive Moving Average (ARMA) type. Additionally,
these models are crucial for developing rainfall generators (see Wilks, 1999b,
for a review). Indeed, rainfall records are often too brief to conduct reliable
and meaningful analyses, and, to generate longer alternative rainfall scenarios
that are statistically consistent with observed data, stochastic models are
commonly used to simulate synthetic series.

Given the ever-growing interest in modelling and analysing the alternation
between period of continuous rainfall and periods of drought, the first part
of this thesis is devoted to exploring and improving some recent advances in
models of type (1), such as the ones contained in Agnese et al. (2014). The
latter is a strong starting point for establishing the usefulness of a particular
family of discrete probability distributions in describing the rainfall temporal
variables involved in models of type (1). These temporal variables are
introduced in the following section, together with the rainfall depth variable
which is used to describe the amount of rain in the rainy periods.

1.1.2 Univariate Models of Rainfall Temporal Variables

Rainfall manifests one peculiar characteristic which is common to many other
geophysical processes: intermittence (Wiscombe et al., 1994). Intermittence
is found in variables which are related to the internal and external structure
of rainfall. The most commonly seen for the external structure are the
dry spells ds and wet spells ws, meaning the sequences of rainy days and
non-rainy days. For the internal structure the usually considered variable is
the rainfall depth h in the wet periods (Bernardara et al., 2007). Developing
well-fitting models for these variables is crucial for constructing single-site
models for rainfall occurrence and establishing marginal models that can
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later be appropriately combined with copulas to extend the single-site model
further. In the following section, we review the modelling approaches that
form the foundation of the first part of this thesis.

Wet Spells, Dry spells and Chains

As already mentioned, at a local scale, a conventional method for addressing
intermittency in rainfall records involves the statistical analysis and mod-
elling of wet spells ws and dry spells ds, usually under the assumption of
their independence. In his seminal investigation, Chatfield (1966) scrutinized
a brief series of daily rainfall data from a single station in Kew (London) and
examined the relationships between observed frequencies of increasing dura-
tions of wet spells. Chatfield (1966) identified a nearly constant probability
that a wet day is succeeded by another rainy day. By the modelling point of
view, this behaviour can be replicated by the memoryless property enjoyed
in the discrete case solely by the geometric distribution. The latter has
since been extensively employed to depict the distribution of wet spells in
numerous studies (see, e.g. Kottegoda and Rosso, 1997; Racsko et al., 1991;
Zolina et al., 2013). Additionally, Chatfield (1966) noted an inclination of the
rainfall process towards persistence in the dry state, with the probability of
consecutive dry days increasing with their preceding count. This prompted
the adoption of the log-series distribution to model dry spells, owing to its
escalating ratios of subsequent occurrences. While both geometric and log-
series distributions have historically been utilized Green (1970) and remain
prevalent for inferring the probability laws governing wet and dry spells
(Chowdhury and Beecham, 2013; El Hafyani and El Himdi, 2022), their
general applicability has been questioned by some scholars. For instance,
Wilks (1999a) advocated for the use of a mixed geometric distribution to
model wet spells in the United States, while Deni et al. (2010) demonstrated
the efficacy of the compound geometric distribution in Peninsular Malaysia.
Moreover, mixed distributions have been observed to perform adequately
for both dry and wet spells in various contexts (Dobi-Wantuch et al., 2000;
Deni and Jemain, 2009).

More recently, Agnese et al. (2014) suggested to model both ws and ds
in a parsimonious way, by deriving their distribution from the one obtained
by investigating the probabilistic law of the so-called interarrival times it,
representing the series of times elapsed between two subsequent rainy days.
The latter approach makes up an important part of this work and therefore
it is of great interest to recall how the it have been treated in the literature,

31



especially concerning their role in describing the rainfall occurrence process.

The Interarrival Times

If we suppose that the interarrival times between rainy days are independent
and identically distributed (i.i.d.), one natural way to model them is through
the well known theoretical framework of renewal processes (Buishand, 1977).
The fundamental assumption of a renewal process is that it probabilistically
re-starts at each time of arrival, the so-called “renewal property”. The
simplest renewal process, the Bernoulli process, basically underlies the work
Chatfield (1966), for example. Before expanding on possible extensions of the
Bernoulli process which are more suitable to the discrete nature of temporal
variables arising from daily rainfall measurements, it is worth to mention
its very well known continuous counterpart: the Poisson process, which is
widely used for its simple mathematical tractability. An underlying Poisson
process implies that the interarrival times are independent and exponential
in distribution. For instance, within the domain of eco-hydrology, Laio
et al. (2001) advocated for the suitability of the exponential distribution
in modelling daily rainfall data observed in specific locations in Texas.
Conversely, Rodriguez-Iturbe et al. (1987) conducted an inference analysis
on hourly rainfall data from Denver, Colorado, and concluded that direct
reliance on Poisson process-based models offers limited utility. They proposed
an alternative approach employing a rectangular pulse model to better
encapsulate the underlying physics of the rainfall process. However, this
alternative model exhibited inadequacies in replicating the distribution of
dry period durations. Consequently, Rodriguez-Iturbe et al. (1988) proposed
an extension to the model, with a primary emphasis on short-term prediction.
Despite demonstrating favorable performance across various aggregation
periods ranging from 1 hour to 24 hours, this extended model is characterized
by a substantial number of parameters and poses challenges in data fitting
using conventional techniques such as maximum likelihood and method of
moments.

However, when modelling rainfall data at a daily scale, it is more natural
to treat it as a discrete random variable. For example, Foufoula-Georgiou and
Lettenmaier (1986) demonstrated the statistical advantages of treating the
rainfall occurrence process as a discrete process, rather than a continuous one.
That is why we now return to the simple Bernoulli process as a starting point.
The latter’s assumptions imply the that the interarrival times are independent
and geometric in distribution. Geometrically distributed interarrival times
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further imply that the rain probability is constant at any time, i.e., it is
independent from the time elapsed from the last rainy day. Alternative
methodologies capable of incorporating time-varying rain probabilities while
preserving the renewal property exist. For instance, previous studies in
hydrology have employed a straightforward Markov chain model for daily
rainfall occurrence (Buishand, 1978; de Groen and Savenije, 2006; Gabriel
and Neumann, 1962). In this model, the probability of rainfall on any given
day is contingent upon the weather status (rain or no rain) of exclusively the
preceding day. A more generalized approach involves relaxing the Markovian
assumptions by introducing a discrete process with after-effects, wherein the
rain probability at any time is influenced by the historical record since the last
rainy day, albeit maintaining the renewal property. One such method entails
the adoption of the logarithmic-series distribution, wherein the associated
rain probability exhibits a monotonically decreasing trend with the time
elapsed since the last rainy day (Gupta et al., 1997). Agnese et al. (2012)
extended this concept by employing the polylogarithmic-series distribution to
analyse it frequencies derived from daily rainfall data collected in Sicily and
Piedmont. They noted that, while this distribution generally outperforms
the logarithmic-series distribution, limitations persist, particularly during the
’warm season’ (April to September). It was then natural to consider a family
of discrete distributions which contains the aforementioned distributions
as special cases. The three parameter family Hurwitz-Lerch Zeta (HLZ)
satisfies the required property and shows to be a step forward with respect
to other commonly seen distributions, as concluded in the recent works
of Agnese et al. (2014) and Berro et al. (2019). Working on a dataset of
Sicilian and Piedmont stations respectively, they show it is able to faithfully
replicate statistical characteristics of interarrival times derived from rainfall
data, such as very high standard deviation and skewness, and frequencies
having a maximum at it = 1, followed by a monotone decrease towards a
remarkable tail.

The HLZ family of discrete distributions is also considered the starting
point of the second main idea developed in Agnese et al. (2014): jointly
conveying the modelling of ws and ds by deriving their distributions from the
one of it. Agnese et al. (2014) showed that both the ws and ds distributions
can be easily derived from the it distribution, under the assumption that
rainfall interarrival times are i.i.d. Indeed, geometrically distributed ws
directly arise from the latter hypothesis on it, whereas the distribution of
ds follows the same probabilistic law adopted for fitting the it probabilities,
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albeit with a shifted support. However, an imposition of the geometric
distribution for the ws could turn out to be restrictive, as already discussed
in the previous part of this introduction. If the geometric distribution does
not fit ws correctly, this implies that the rainfall probability varies within
the rainfall event and two separated models for ws and ds may be needed for
a reliable evaluation of both quantities. In other words, the modelling of ws
and ds distributions separately may allow a relaxation of the i.i.d. hypothesis
on it. At the same time, it must be noted that modelling first the it sample
has the clear advantage of retrieving the probability distribution of both
ws and ds from a single fitting, often reducing the number of parameters
involved. One contribution of this thesis is then an extension of the approach
of Agnese et al. (2014) mentioned above, which is developed in our work
Baiamonte et al. (2024), where we conducted an in depth analysis of the
theoretical and empirical differences between modelling separately ws and
ds and modelling first it and deriving ws and ds as a byproduct. Empirical
results will be presented when applying this methodology on a novel dataset
of daily rainfall records composed of 6 Italian and British stations spanning
a variety of rainfall regimes. This application will show that a comparison of
the two procedures can shed light on some aspects of the data involved. The
same approach is also employed for two additional time variables, deeply
related to ws and ds: the wet chains wch, as previously introduced by
Berro et al. (2019), and the dry chains dch, seemingly never thoroughly
investigated in the literature before. These variables extend the concept
of wet and dry spells to sequences characterised by an interruption of one
no-rainy or one rainy day, respectively. They represent two quantities that
may be of interest for practical hydrological applications.

Additionally, the scientific literature on the statistical inference of rainfall
interarrival times is still rather sparse, hence another contribution of this
work is providing further evidence of the suitability of the Lerch family
to reproduce it frequencies in a wide range of rainfall regimes, possibly
encouraging further applications of the methodology. Within the same
context, to expand the range of options for fitting daily rainfall interarrival
times data, we will also explore two additional distributions that are closely
related to the Lerch family: the Poisson-stopped HLZ distribution, recently
introduced in Ong et al. (2020), and the one-inflated HLZ distribution,
which we construct following the approach in Gupta et al. (1995). Notably,
neither of these distributions has been previously considered for modelling
interarrival times. Hence, we shall report a description of the accurate
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fittings of these distributions on interarrival times arising from the above
mentioned dataset of rainfall measurements, accompanied by a comparison
with their performance with the HLZ distribution, presenting some of the
results contained in our work Agnese et al. (2022).

Rainfall Depths

Aa already stated, a main feature strictly related to the internal structure
of rainfall and fundamental for modelling the rainfall process is the depth
(or the intensity) h of the rainy days (Bernardara et al., 2007). In the
literature, Yang et al. (2020); Porporato et al. (2006) rainfall depths are
more often treated as continuous despite that sometimes these models fail to
account for the time discreteness of the sample process (Foufoula-Georgiou
and Lettenmaier, 1986). Moreover, daily rainfall depth measurements are
almost always performed by automatically counting how many times a small
bucket corresponding to 0.2 mm is filled. The latter causes an abundance
of ties in the data, which led us to treat the rainfall depth h as a discrete
random variable. According to this choice, another contribution of this thesis
is showing the satisfactory results of fitting the three parameter HLZ family
of discrete distributions and the PSHLZ distribution to h observations from
the previously mentioned rainfall records, based on the findings of our article
Agnese et al. (2022).

1.1.3 Bivariate Modelling of Hydrological Variables

The multivariate study of hydrological features is fundamental for aspects
such as design and management purposes, where univariate frequency analy-
sis proves to be unsatisfactory (Grimaldi and Serinaldi, 2007). Moreover, to
be able to fully describe rain as a climate feature, multivariate analysis is
often needed, as for example a rainfall hyetograph is completely character-
ized if peak intensity, volume event, duration, and peak time are modeled
together. In the past, bivariate frequency modelling of rainfall features
has usually been carried out following standard multivariate distributions
commonly found on textbooks (see, for instance, Johnson et al., 2000), such
as bivariate exponential and bivariate normal. However, these multivariate
distributions provide margins of the same family. This clearly has strong
limitations for rainfall data modelling, considering for example that many
rainfall characteristics present a long tail and thus are not gaussian. The
concept of copulas has then proved to be fundamental in this context. Indeed,
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thanks to Sklar’s theorem (Sklar, 1959), they let the joining of marginals
from arbitrary families into a joint distribution having them as marginals
and, conversely, one can extract a copula from a given multivariate distri-
bution in order to explore the dependence structure given by the original
multivariate distribution. Quite a few examples can be found in literature,
such as Baets et al. (2008); Onof et al. (2011); Serinaldi (2009), and many
others.

However, there has not been extensive work in the literature on the
bivariate modelling of the interarrival times it and the subsequent rainfall
depths h or of the well spells ws and the dry spells ds. Allowing the
possibility of dependence between these variables would greatly increase the
flexibility of a single site model for the daily rainfall process. When tackling
these problems in the particular context of daily data, one would be facing
two possible scenarios

1. one discrete (a daily temporal variable) and one continuous random
variable (if we consider h as continuous): mixed scenario;

2. two discrete random variables (two temporal variables or one temporal
variable and h as a discrete random variable): discrete scenario.

Both of them are not standard for copula modelling. Indeed, Sklar’s Theorem
does not guarantee uniqueness of the copula in the two above cases, leading to
inconsistencies, especially in the context of statistical inference. This problem
is non trivial and of mathematical, statistical and applied interest. The
second main part of this thesis is devoted to the discrete scenario. Following
the pioneering work Geenens (2020), we have developed a copula-like model
and related inferential techniques for the bivariate discrete scenario, with
a more general scope then the hydrological context just described, which
nevertheless remains an application of undoubted importance. The next
section is dedicated to introducing this line of research.

1.2 Copula-Like Models for Discrete Bivariate Ran-
dom Vectors

The well known theorem of Sklar (1959) provides a fundamental basis for the
extensive application of copulas, since it enables the separation of a random
vector’s dependence structure from its marginal components. Consequently,
copulas have become an extremely useful tool for modelling dependence
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between random vectors, valued for the flexibility that they are able to
provide in this context: through them, a practitioner is able to separately
model the margins and the dependence. Parametric copula families are
naturally employed to achieve this and ad-hoc inferential procedures have
been developed. However, this framework loses its charm when dealing with
discrete random vectors. Indeed, Sklar’s theorem affirms the uniqueness
of the copula solely on the cartesian product of the ranges of the marginal
distribution functions. Hence, the uniqueness of the copula is compromised
in the case of discrete margins, leading to possible inconsistencies which
complicates the inference of copulas for discrete random vectors, basically
breaking down some of the theoretical underpinnings of the inferential
procedures mentioned above (see Genest and Nešlehová, 2007, Section 2).
More precisely, only a so-called subcopula is identifiable when the margins
are discrete. A unique subcopula can then be extended in an infinite number
of ways to a copula (see, for example, de Amo et al., 2017). Nevertheless,
a practitioner could still decide to postulate a classical parametric copula
model and proceed with the same inference tools which are used in the
continuous case, as is advocated for a bivariate Bernoulli distribution in the
nice essay on copulas for count data Genest and Nešlehová (2007), albeit
with some required modifications and precautions. However, Faugeras (2017)
argues that while the former technique of extending a subcopula is clearly
subject to the arbitrary choice of the user, the latter parametric path could
additionally lead to various issues of identification. To cite one, sampling
fluctuations could lead to invalid estimated parameters (for example, an
estimated |θ̂n|>1 in the case of the Farlie-Gumbel-Morgenstern family of
copulas).

Furthermore, it is worth to mention here the literature involving the study
of discrete copulas (see, e.g., Perrone et al., 2019, and the references therein),
whose name would suggest a deep connection with our present context.
Following (Durante and Sempi, 2015, Definition 3.1.7), discrete copulas are
subcopulas with uniform grid domains. They have been investigated for their
interesting geometrical properties: they admit a representation as convex
polytopes, and this characterisation has been found to be extremely useful
in building maximum entropy checkerboard copulas (Perrone et al., 2019,
Section 3.1) which, interestingly enough, are mostly applied in climatology
and hydrology (see AghaKouchak, 2014, for a review). Additionally, empirical
copulas, which form the base of rank-based multivariate statistics analysis,
are discrete copulas themselves, and this fact adds to the important role
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that the latter may have in applications. However, as for instance can be
seen in Durante and Perrone (2020), both the aforementioned applications
of discrete copulas have found their use in the continuous case as far as
statistical aspects may be concerned.

To sum up, even though a small number of strategies to deal with copula
modelling in the case of discrete margins has been proposed in the literature,
it still remains fragmentary and seemingly inconclusive. Recently, Gery
Geenens in its seminal paper Geenens (2020) made a compelling case for an
approach which takes its roots in a more fundamental view of what the role
of a copula conceptually is: a margin-free representative of the dependence
between the elements of a random vector. Equivalently, we could say that a
copula embodies the information necessary to recover a joint distribution
when only the margins are given. He argues that this basic idea can be
suitably adapted to the discrete case and he develops his arguments in the
context of finitely supported discrete bivariate random vectors, grounding
its beliefs in historical ideas regarding the statistical analysis of contingency
tables. A contingency table, informally speaking, is a matrix representation
of a probability mass function (pmf) associated to a bivariate discrete
random vector. This simple connection made it clear that investigating such
a literature would provide interesting insights to build upon. Geenens (2020)
starts by recalling the works of Yule (1912) and Goodman and Kruskal
(1954), where it is advocated that adjusting frequencies of rows and columns
of contingency tables to (discrete) uniform would allow an easier comparison
of the association structures between tables. Following a suggestion dating
back to Mosteller (1968), which believed that a contingency table should be
decomposable into its two margins and a "nucleus" of association, he then
introduces equivalence classes of dependence. This concept translates the
choice of a representative of the dependence of a bivariate random vector
into the selection of a unique representer of the appropriate equivalence
class of dependence. Then, under the (arbitrary) choice of uniform margins
as the most "margin-less" property to uniquely identify this representer,
the usual concept of copula can fit this view. In the context of continuous
random vectors, the probability integral transform is well known as the
transformation which lets one "extract" the unique underlying copula from a
given continuous multivariate distribution. However, it does not work in the
discrete scenario. When restricting the focus on finitely supported discrete
bivariate random vectors, another, albeit somewhat hidden, contribution of
Geenens (2020) is then to propose the concept of I-projection (in the sense
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of Csiszár, 1975) on a Fréchet class of pmfs with uniform margins (that is,
the set of pmfs having uniform margins) as a way to associate a unique
copula pmf u to a given (bivariate) pmf p. Informally, given a probability
distribution p of interest and a setM of probability distributions, computing
an I-projection consists in finding an element of M, if it exists, that is the
“closest” to p in the sense of the Kullback–Leibler (or information) divergence.
When conducted on a Fréchet class, such projections turn out to preserve the
odds ratio matrix which encodes the dependence in the considered discrete
setting; see Agresti (2013, Section 2.4), Kateri (2014, p 43), Rudas (2018, p
123) or Geenens (2023, Section 4). In practice, the I-projection of a pmf
on a Fréchet class can be carried out using the iterative proportional fitting
procedure (IPFP), also known as Sinkhorn’s algorithm or matrix scaling in
the literature. The IPFP takes the form of an algorithm (actually of several
equivalent algorithms) whose aim is to adjust the elements of an input matrix
so that it satisfies specified row and column sums. The former conceptual
and theoretical insights, coupled with the latter practical tool, opened up
the path to the development of the novel (semi-parametric or parametric)
models for finitely supported bivariate discrete random vectors which forms
one of the main contribution of this thesis and has been investigated in our
article Kojadinovic and Martini (2024).

As the first fundamental building block in this regard, the work of Geenens
(2020) prompted us to explore the possibility of constructing a Sklar-like
decomposition for a finitely supported bivariate pmf p. Thanks to the under-
lying concept of I-projections, we shall prove such a property. Afterwards,
statistical models are built hinging upon this novel copula-like decomposition
which, similarly as what happens in the framework of copula modelling for
continuous random vectors (see, e.g., Hofert et al., 2018, Chapter 4 and
the references therein), enjoy the flexibility of separately specifying the
margins and the dependence, ideally governed by a copula pmf u. The latter
characteristic is what separates our proposal from more traditional methods
for modelling p, such as log-linear models (see, e.g., Agresti, 2013; Kateri,
2014; Rudas, 2018) and association models (see, e.g., Goodman, 1985; Kateri,
2014). Naturally, we then propose and investigate inferential procedures and
goodness of fit techniques, providing a detailed study of their asymptotic
properties. In this context, a result on the differentiability of I-projections
on Fréchet classes shall be presented, which, on one hand, is fundamental in
proving asymptotic properties of the statistical procedures we discuss, and,
on the other hand, holds an independent importance, since it seems to have
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never been treated before in the literature. Extensive numerical simulations
will provide more insights on the provided theoretical results. It is crucial
to emphasise that these analyses are conducted under the assumption of
strict positivity of the initial unknown pmf p. Indeed, I-projections may not
always exist, and to ensure the existence of the aforementioned copula-like
decomposition of p, we will additionally assume p has rectangular support
(that is, strictly positive). Interestingly, this assumption serves as the dis-
crete counterpart to the commonly made assumption of strict positivity of
the copula density within the interior of the unit square when modelling
multivariate continuous distributions using copulas. It is worth noting that,
as will be elaborated upon in our concluding remarks, the assumption of
rectangular support for p could be substituted with alternative conditions,
provided that certain practical challenges are managed. Fortunately, this
assumption of rectangular support aligns well with many applications.

The differentiability result mentioned above is the starting point for
another principal contribution of this thesis, based on the contents of our
recently submitted work Geenens et al. (2024). A well-known class of
alternatives to the Kullback–Leibler divergence (containing the latter) are
the so-called ϕ-divergences (see, e.g., Ali and Silvey, 1966; Csiszár, 1967;
Liese and Vajda, 1987; Csiszár and Shields, 2004, and the references therein)
and ϕ-projections are merely the analogs of I-projections based on ϕ-divergen-
ces. As previously mentioned, a key step in providing asymptotic results for
certain estimators of a copula pmf u is proving that I-projection on a Fréchet
class of pmfs with fixed arbitrary (positive) margins are differentiable in a
certain sense. We shall provide an extension of this result to the more general
context of ϕ-divergences. Similar findings (though not differentiability results
per se) can be found in Jiménez-Gamero et al. (2011, Section 2). In the case
where M consists of probability vectors derived from a given parametric
distribution and p is assumed to belong to M, these findings include the
well-known asymptotic properties of minimum ϕ-divergence estimators (see,
e.g., Read and Cressie, 1988; Morales et al., 1995; Basu et al., 2011, and
references therein). Since the results of Jiménez-Gamero et al. (2011) were
derived without requiring p to belong toM (thereby accommodating possible
model misspecification), they provide a foundation for developing a range of
inference procedures related to goodness-of-fit testing and model selection,
as detailed in Sections 3 and 4 of Jiménez-Gamero et al. (2011) (see also
references therein).

The main objective of our developments in this context is to attempt to
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unify and extend the previous results. Building on the approaches of Gietl
and Reffel (2013, 2017), we consider finite measures on finite spaces, rather
than restricting our attention solely to probability measures on finite spaces.
With a slight strengthening of the main condition from Jiménez-Gamero
et al. (2011) and a crucial additional assumption missing from that reference,
we first present a general result on the continuous differentiability of ϕ-
projections under some appropriate conditions. By additionally assuming
the convexity of the setM, we show that the previously mentioned conditions
can be derived from simpler conditions that are straightforward to verify.
From a statistical inference perspective, such results enable the immediate
determination of the consistency and the asymptotic distribution of ϕ-
projection estimators. Simulation examples shall provide an example of the
practical application of the theoretical results provided.

Finally, we make note that when aiming to study the asymptotics of
ϕ-projections and/or minimum ϕ-divergence estimators beyond the finite
discrete setup, another line of research involves exploiting the dual represen-
tation of ϕ-divergences (see, e.g., Keziou, 2003; Broniatowski and Keziou,
2006, 2009). This more complex approach is out of the scope of this thesis,
as it appears unnecessary for the discrete finite setting under consideration.

1.3 First Passage Times in Hydrology

The previous sections have introduced examples of tools from the field of
probability and statistics developed to help in understanding the behaviour
of rainfall. However, the discipline of hydrology encompasses various aspects
such as the distribution, movement, and quality of water, both above and
below the Earth’s surface. Therefore, of the same significance of the be-
haviour of rainfall is its impact on water bodies and land surfaces. Closely
related to the latter is a slightly more general problem: modelling the time
at which certain hydrological thresholds are crossed by some hydrological
quantity. When the latter’s value in time is modelled by a stochastic process,
the problem mentioned above can be restated in terms of the well known
first passage time (FPT) problem (see, for instance, Stechmann and Neelin,
2014). As an example, consider a river basin where the water level follows a
stochastic process influenced by continuous rainfall and other hydrological
inputs. The FPT would then represent the time required for the water level
to rise to a flood stage for the first time and knowing the distribution of the
FPT would serve as a valuable tool for modelling the likelihood and timing
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of potential flood events. This could be achieved by computing the FPT
probability density function (pdf) and/or cumulative distribution function
(cdf). In general, providing a closed form of the latter two is known to
be a delicate issue. Exploring a practical way for doing so for some one
dimensional diffusion processes is the third main contribution of this thesis.
The next section introduces this line of research.

1.3.1 FPT Time Density Approximation

One-dimensional diffusion processes play a key role in the description of
fluctuating phenomena belonging to different fields of applications as physics,
biology, neuroscience, finance and others (Karlin and Taylor, 1981; Øksendal,
1998). These models are described by stochastic differential equation of the
following type

dYt=M(Yt)dt+Σ(Yt)dWt, Y0 =y0,

where the drift coefficient M and the diffusion coefficient Σ are real functions
such that the above equation admits a unique solution with continuous
trajectories and satisfying the Markov property. Here, {Wt}t≥0 denotes a
standard Wiener process and y0∈R is the initial condition.

In particular, the class enjoying a linear drift, that is

dYt=(−τYt+µ)dt+Σ(Yt)dWt, Y0 =y0, (1.1)

where τ >0 and µ∈R, is widely used for its mathematical tractability and
flexibility. The volatility Σ(Yt) determines the amplitude of the noise and,
according to its dependence on Yt, it characterizes families of stochastic
processes which are solution of (1.1). If

Σ(Yt)=
√
aY 2

t +bYt+c, a,b,c∈R

the solution of (1.1) is called Pearson diffusion process (Forman and Sørensen,
2008). The coefficients a,b and c are such that the square root is defined for
all the values of the state space (y1,y2) of Yt, with −∞≤y1< y0<y2≤+∞.
A wide range of well-known processes belongs to this class (σ>0) :

• Ornstein-Uhlenbeck process: a= b=0,c=σ2 and Σ(Yt)=σ;

• Inhomogeneous geometric Brownian motion: a=σ2,b= c= 0 and Σ(Yt) =
σYt;

• Jacobi diffusion: a=−σ2,b=σ2 and Σ(Yt)=σ
√
Yt (1−Yt)+c;
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• Feller process (CIR model): b=σ2,a=0 and Σ(Yt)=σ
√
Yt+c.

Throughout this thesis we will focus on the geometric Brownian motion
(GBM) and on the Feller process. The former has been selected for its
mathematical tractability, which leads to the possibility of computing a
closed form of the FPT pdf. In the hydrological context it has been used,
for example, to model river flows (Lefebvre, 2002). The latter, albeit not as
simple as the GBM, has been considered for its variety of applications not
only in a biological context (Ditlevsen and Lansky, 2006; Feller, 1951; Lansky
et al., 1995) but also in survival analysis, in the modelling of nitrous oxide
emission from soil and in other applications such as physics and computer
science (see Ditlevsen and Lansky, 2006, and references therein). In the
mathematical finance it is known under the name of Cox-Ingersoll-Ross
model (CIR) (Cox et al., 1985). For simplicity, we shall use the latter
acronym as we continue. In this thesis we consider the dynamics of Yt until
it crosses a threshold S for the first time, the so called (upcrossing) FPT,
defined as

T := inf {t≥0 :Yt≥S |0<y0<S} .
Many contributions in the literature (Giorno et al., 1986; Going-Jaeschke and
Yor, 2003; Linetsky, 2004; Masoliver and Perelló, 2014) focus on computing
the Laplace transform (LT) of the pdf g(t) :=g (t |y0,S) of T , namely

g̃(z)=
∫ ∞

0
e−ztg(t)dt, z >0. (1.2)

The literature emphasizes the computation of the LT of g because the pdf
itself is typically not known analytically and neither can be derived through
direct inversion of (1.2). Nevertheless, from g̃ we can compute the probability
of crossing the threshold S, that is P(T |y0) = ∫∞

0 g(t)dt, and the mean FPT,
that is E[T ], in the following way

P(T |y0)= g̃(z)|z=0 and E[T ]=− dg̃(z)
dz

∣∣∣∣∣
z=0

Moments of T of any orders can be computed using higher derivatives
of g̃, when they exist. As is widely recognized, the moments of T provide
valuable insights into the statistical properties of g and of FPT events. A
different strategy to get the moments of T is using the transition pdf of the
process defined as f (y,t |y0,τ) = ∂

∂yP(Yt<y |Yτ =y0) for y∈ (y1,y2) and t≥0.
Indeed, if {Yt}t≥0 admits a stationary distribution ϕ(y) = limt→∞f (y,t |y0,0)
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independent of y0, the Siegert formula (Siegert, 1951) allows us to compute
the moments of T as

E [T n]=n
∫ S

x0

2 dz
[Σ(Yt)]2ϕ(z)

∫ z

−∞
ϕ(x)E

[
T n−1

]
dx, n∈N+ .

While they can be employed for the GBM, both the depicted strategies
are impractical to compute the moments of T for a CIR process. In this
case, although a closed-form expression for g̃ exists, computing its higher
derivatives is cumbersome. Consequently, research has often concentrated
on evaluating only the mean and variance of T (Ditlevsen and Lansky, 2006;
D’Onofrio et al., 2018), or, at most, the third moment (Giorno et al., 1988).
Similar computational challenges arise when calculating moments of T using
the Siegert formula, despite the fact that the stationary distribution for a
CIR process is known to be a shifted gamma distribution. Simulations of the
underlying stochastic process paths using Monte Carlo methods remain an
effective tool for obtaining manageable estimates of g, which are particularly
valuable for analysing asymptotic properties. Another strategy involves
writing the FPT distribution as a Sturm-Liouville eigenfunction expansion
series, initially presented for the CIR process in Linetsky (2004), using the
classical approach of Kent (1980) and Kent (1982). Although this strategy
provides an expression for the FPT density, in these references information
on the moments of T could be obtained only numerically and the procedure
refers exclusively to diffusion processes without natural boundaries. A
discussion on the FPT of the CIR process in the presence of entrance, exit
and reflecting boundary at the origin is given in Martin et al. (2011), solving
the Sturm-Liouville boundary problem in the case τ =0.

Recently, an important step in the FPT problem for the CIR process
came from Di Nardo and D’Onofrio (2021), where the authors managed to
compute closed form formulae for the cumulants of T of any order for the
CIR process regardless of the nature of the boundaries. They relied on the
particular form of g̃ for the CIR process, which is the ratio of two power
series whose algebra is simplified if we consider log g̃. They took advantage of
the formal power series algebra (Charalambides, 2002) to give first a closed
form expression of the cumulants. Recall that if T has moment generating
function E

[
ezT

]
<∞ for all z in an open interval about 0, then its cumulants

{ck(T )}k≥0 are such that
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∑
k≥1

ck(T )z
k

k! = logE
[
ezT

]
for all z in some (possibly smaller) open interval about 0. Cumulants have
nice properties compared with moments such as the semi-invariance and the
additivity (McCullagh, 1987).

Overdispersion and underdispersion as well as asymmetry and tailed-
ness of the FPT pdf might be analysed through the first four cumulants.
Examples on how to employ the first four cumulants in the estimation of
the parameters of a model fitted to data is given in (Antunes et al., 2020;
Seneta, 2004). The employment of cumulants in the FPT literature is not
new (Ramos-Alarcón and Kontorovich, 2013). However, their application
has been limited to few cases and not in the direction addressed for the
first time in Di Nardo and D’Onofrio (2021). Indeed, from the cumulants,
one can easily recover the moments. The knowledge of the latter is the
key to developing a Laguerre series expansion of the FPT pdf g which,
when truncated to an order n>0, provides an approximant ĝn of g. This
approach for evaluating the FPT pdf of the CIR process seems to have been
investigated only recently in Di Nardo and D’Onofrio (2021). Another main
contribution of this thesis is then expanding on the latter reference and it
is based on our works Di Nardo et al. (2023) and Di Nardo et al. (2024).
We review the theoretical underpinnings of the methodology and we use
them to provide sufficient conditions for the existence of the required series
expansion when specifically considering the FPT context. Moving to the
more practical aspects, an efficient evaluation of ĝn is proposed through
an iterative algorithm and corresponding stopping criteria are provided,
improving over the classical convergence-based stopping criteria, which are
commonly seen in the literature along with simple graphical checks (see,
e.g., Provost and Ha, 2016). Among other considerations on computational
aspects of the method, we discuss the possibility of correcting ĝn when it is
negative, a delicate issue which is known in literature, but, at the best of
our knowledge, still requires attention. Additionally, all the previous aspects
are also examined for the FPT cdf, which was not previously considered in
Di Nardo and D’Onofrio (2021).

The possibility of constructing a bonafide approximating pdf opens the
path to the development of interesting applications, seemingly never inves-
tigated in this framework. For instance, a novel acceptance-rejection type
algorithm which exploits the form of ĝn is proposed. The distinctiveness of
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our proposal lies in its innovative use of the functional form of the series rep-
resentation of the unknown density. Although acceptance-rejection methods
have been utilised in FPT contexts, as highlighted by Herrmann and Zucca
(2019) and Mijatović et al. (2015), they have been built with remarkably
different techniques and, additionally, they have not been applied specifically
to the CIR process. Furthermore, this approach is particularly beneficial
given the lack of exact simulation methods for CIR sample paths.

Another novel application consists in an approximated maximum likeli-
hood estimation procedure which has the aim of estimating the parameters
of the underlying stochastic process. In this case, we show how the proposed
approximation can be used to adapt the well known maximum likelihood
estimation to the case where a closed form of the FPT density is not available,
but the FPT moments are known and a sample of FPTs is available.

Noteworthily, both the mentioned applications are particularly amenable
to possible extensions in a more general setup, as shall be explained in the
concluding remarks which end this thesis.

An in depth analysis of the efficacy of the method and of the applications
is conducted through various numerical experiments for the GBM, where
the knowledge of the true FPT pdf enables a direct comparison with the
approximant ĝn, and for the CIR, where the absence of a closed form of g
creates the perfect scenario to show the usefulness of the proposed method.

1.4 Structure of the Thesis

This thesis is organised as follows. The first part of Chapter 2 is based upon
the theoretical sections of our work Agnese et al. (2022). It is dedicated to
reviewing the HLZ distribution (HLZD) and expressing its properties in a
more compact way, eventually providing some new insights. For example, a
new result on its convolution is provided. In order to further enlarge the
choices for fitting daily rainfall interarrival times data, we also provide details
on the Poisson-stopped HLZ distribution (PSHLZD), whose properties are
expressed by exploiting the known Bell Polynomials, and on the one inflated
HLZ distribution (OIHLZD). Afterwards, certain other temporal variables
closely related to the daily rainfall interarrival times, namely the wet and
dry spells and the wet and dry chains, are introduced. It is then shown how
their distribution can be recovered from the one of the interarrival times and
viceversa. Building up on these relations, a recently proposed methodology
for the modelling and empirical analysis of these temporal variables is then
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detailed, expanding on the contents of the methodological sections of our
article Baiamonte et al. (2024). More in detail, firstly a procedure called
direct method (DM) is presented, where the distribution of wet spells and
dry spells (as well as of the corresponding chains) is derived as a consequence
of the assumption of i.i.d. interarrival times. Note that in this case, the wet
spells will have a geometric distribution. Secondly, the latter assumption is
relaxed by using an indirect method (IM) where wet spells and dry spells
are modelled separately, hence including the possibility of accounting for a
non-constant rain probability inside a rainfall cluster.

Chapter 3 presents the empirical results obtained by using the procedure
previously detailed on daily rainfall data, arising from measurements at 6
Italian and British stations which span a variety of rainfall regimes and
were never investigated before in the literature. It is based on providing
the details of the empirical analyses presented in our works Agnese et al.
(2022) and Baiamonte et al. (2024). In the first part of this chapter, we
describe and compare the fits of the HLZD, the PSHLZD and the OIHLZD
on the interarrival times and the rainfall depths obtained from the above
mentioned dataset. In the second part, we apply and compare the DM
and IM on the same data. The results when using the DM highlight how
the geometric distribution does not always reasonably reproduce the ws
frequencies, even when it are well fitted by the Lerch distribution. Improved
performances are shown to be obtained with the IM, owing to the relaxation
of the assumption on the independence and identical distribution of the
interarrival times. A further improvement on the fittings is obtained when
the datasets are separated into two periods, suggesting that the inferences
may benefit for accounting for the local seasonality.

Motivated by the problem of describing the dependence between some of
the variables encountered in the previous chapters, in Chapter 4 we explore
the theoretical development of copula-like models for discrete random vectors
found in our work Kojadinovic and Martini (2024). We begin by recalling
the ideas contained in the essay on dependence between discrete random
vectors Geenens (2020), laying out a framework where a copula pmf plays
the role of a representative of the dependence between two finitely supported
discrete random variables. We will highlight how the main ingredient of this
construction is the concept of I-projection (in the sense of Csiszár, 1975) on
a Fréchet class of pmfs with fixed arbitrary (positive) margins. By using the

47



latter tool, we are able prove a Sklar-like decomposition for a bivariate pmf
p into its two margins and a unique copula pmf u. Under the additional
assumption that p has a rectangular support, this decomposition is then
exploited to build a statistical model for p and ultimately the inference annd
goodness of fit testing of the underlying unique copula pmf u is tackled. The
main tool in proving asymptotic results for parametric and nonparametric
estimation procedures for u is the delta method. As a result that is both
key for the application of the latter and of independent interest, we prove
that I-projections (in the sense of Csiszár, 1975) on a Fréchet class of pmfs
with fixed arbitrary (positive) margins are differentiable in a certain sense.
Theoretical results are complemented by finite-sample experiments and a
data example. Unfortunately, the latter does not concern rainfall data.
However, such a possible application shall be discussed in the future work
section at the end of the thesis.

Chapter 5 is based on our recently submitted work Geenens et al. (2024)
and develops some of the ideas found in Chapter 4 in a different direction.
Indeed, one of the main contributions of Chapter 5 is an extension of the
above mentioned differentiability result to the more general context of ϕ-diver-
gences for finite measures on finite spaces. To this aim, we define ϕ-divergen-
ces in the latter more general context, recall their main properties as stated
in Gietl and Reffel (2017), provide conditions under which they are strongly
convex in their first argument, and define ϕ-projections. Subsequently, we
present conditions under which ϕ-projections are continuous and continuously
differentiable, and demonstrate that these can be replaced by considerably
simpler conditions when the set M onto which one wishes to ϕ-project is
convex. When the target set for the ϕ-projection is convex, we demonstrate
that the necessary assumptions can be derived from easier conditions which
are particularly amenable to verification. Given this, we show that for
many common choices of ϕ-divergences, ϕ-projections are automatically
continuously differentiable when M is a subset defined by linear equalities,
a context typically arising in applications. We conclude the chapter by
showing how these findings can be easily used to derive the asymptotics of
ϕ-projection estimators (i.e., minimum ϕ-divergence estimators), providing
examples for projections onto parametric sets of probability vectors, sets
of probability vectors with specified fixed moments, and Fréchet classes of
bivariate probability arrays.
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After briefly returning to the context of probabilistic modelling in hy-
drology, in Chapter 6 a method for approximating the first passage time
probability density and/or distribution function of some stochastic processes
is detailed, giving the necessary details for what has been proposed in our
works Di Nardo et al. (2023) and Di Nardo et al. (2024), on which this
chapter is based upon. This approximation is obtained by truncating a series
expansion involving the generalised Laguerre polynomials and the gamma
probability density, and it relies on the knowledge of the moments, or equiva-
lently, of the cumulants of the FPT random variable. We begin by providing
the necessary background on the underlying theory. After particularising the
latter to the FPT context, we provide the theoretical results fundamental
for applying the procedure outlined previously to a FPT density g and FPT
cdf G, such as sufficient conditions for the existence of the proposed series
expansion and the study of the order of convergence. Then, the issue of the
actual computation of the approximants is tackled. An iterative algorithm
with suitable stopping criteria and theoretically sound corrections for the
possible negativity of the approximants are some of the key aspects that are
then explored. Afterwards, the FPT problem for the GBM and the CIR
process are recalled, focusing on the known results useful for carrying out
the proposed approximation. Given these, extensive numerical examples
covering different shapes of the FPT pdfs and cdfs are presented for both the
GBM and the CIR process aiming to discuss the strengths and weaknesses
of the proposed approach. At last, three applications are considered: in
addition to the previously mentioned acceptance rejection like algorithm
and approximate maximum likelihood estimation, it will be shown how the
laguerre gamma series estimation can give rise to a known estimator when
only a sample of FPTs is available and neither the density nor the moments
of T are known.

Finally, after summarising our contributions, in Chapter 7 we provide
possible extensions that could lead to future projects.

Before the beginning of each chapter, a disclaimer will indicate which of
the five published articles and one preprint, co-authored by the author of
this work, it is primarily based upon.

A brief note regarding notation shall be given to the reader before com-
mencing to go through the manuscript. As it is clear by the introduction
and the structure of the thesis just delineated, the topics treated in this
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work are linked by an unifying thread but undoubtedly remain somehow
heterogeneous and may refer to different branches of literature. This is the
reason why each chapter may propose its own notational section with slight
changes with respect to the preceding ones, with the aim of abiding to the
customs of the corresponding literature practices.

All simulations, numerical experiments or computations in the thesis were
carried out using the R statistical environment (R Core Team, 2024) or the
Mathematica software (Wolfram Research, Inc., 2023).
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Chapter 2

Modelling Rainfall Interarrival
Times and other Temporal
Variables

This chapter is based on Agnese et al. (2022)

Modelling the frequency of interarrival times and rainfall depths with
the poisson hurwitz-lerch zeta distribution, Fractal and Fractional 6(9)

and on Baiamonte et al. (2024)

Applying different methods to model dry and wet spells at daily scale
in a large range of rainfall regimes across Europe, Advances in

Statistical Climatology, Meteorology and Oceanography, 10(1), 51–67.

Rainfall data are usually available in the form of cumulative amounts
over disjoint equispaced time intervals, and, as already mentioned in the
introduction, the most available data are daily measurements. In this context,
one way to model the rainfall process is to define an event as a day with
measurable precipitation and consider a suitable discrete-time stochastic
process to describe the probabilistic structure of the occurrence of rainfall. A
description of the process giving the amount of rain on the rainy days is then
provided separately. Consider {hn}n∈N to be the series of (possibly zero)
rainfall amounts and let h∗>0 be a rainfall threshold. Then, the binary
series {xn}n∈N indicating the rainfall events as prescribed by h∗ is defined
by xn=1{hn≥h∗} for all n∈N. A classical and basic choice for describing
the mechanism which generates the relevant events is that of a renewal
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process (see, e.g., the monograph Cox, 1970). The key series in describing a
renewal process is the sequence of interrarrival times {itn}n∈N corresponding
to the series of times passed between each event in {xn}n∈N. Indeed, the
defining property of a renewal process is that it "probabilistically" restarts
at each event and it is formalised by imposing that the the interrarrival
times {itn}n∈N are independent and identically distributed (i.i.d.). Then, a
reasonable description of the rainfall process can be given by the bivariate
discrete-time process (itn,h∗

n)n∈N, which consists of the interarrival times
and the subsequent rainfall depths greater than h∗. We shall consider that
itn is independent from h∗

n for all n∈N. As the modelling of the latter is
somehow secondary in the scope of this thesis, we shall briefly discuss it here
before focusing more on the former.

Rainfall Depths and the Rainfall Amount Process

Over the course of the first two chapters of this thesis, we shall make two
simple assumptions regarding {h∗

n}n≥0. Firstly, we will consider that h∗
n

are i.i.d., even though relaxations of one or the other restrictions can be
found in some works, but mostly for other smaller time scales. Indeed,
as explained in the comprehensive review Wilks (1999b), most stochastic
weather generators often assume that precipitation amounts on wet days
are independent and follow the same distribution. Adjusting the model
to consider different probability distributions for precipitation based on
the day’s sequence within a wet spell (e.g., higher rainfall on a wet day
after another wet day than after a dry day) has been studied by, for in-
stance, Katz (1977), Buishand (1977, 1978) and Chin and Miller (1980).
However, this additional complexity generally does not significantly affect
the outcomes. Similarly, the autocorrelation between successive nonzero
precipitation amounts is often statistically different from zero but is usually
small and of little practical relevance (Katz, 1977; Buishand, 1977, 1978;
Foufoula-Georgiou and Lettenmaier, 1987). On the other hand, accounting
for the serial correlation of nonzero precipitation amounts becomes crucial
when the precipitation model operates on an hourly (or smaller) time scale
rather than daily (Katz and Parlange, 1995).

Additionally, as already said in the introduction, we define the common
rainfall depth h as a discrete random variable. It is well established in the
literature (see, for instance, Yang et al., 2020; Porporato et al., 2006) that
rainfall depths are typically treated as continuous variables. However, daily
rainfall depth measurements are often recorded by automatically counting

52



2 – Modelling Rainfall Interarrival Times and other Temporal Variables

the number of times a small bucket, corresponding to 0.2 mm, is filled. This
measurement process frequently results in a high number of ties in the data,
which motivated us to treat the variable h as discrete. Additionally, this
approach allows us to demonstrate the considerable flexibility of the discrete
distributions that will be examined later in this chapter.

Interarrival Times

When the common distribution of the interarrivals is assumed to be geometric
we are in the case of the Bernoulli renewal process. However, as well known,
the geometric distribution enjoys the memoryless property. Consequently, it
forces the conditional probability of having an event at time k given that it
has not happened before to be constant for any k∈N. The latter value is also
known as failure rate. It is clear that this may be restrictive, especially with
the aim of modelling the rainfall occurrence, where a constant failure rate
would translate into a rainy day probability which does not take into account
the past. A correction can be obtained by adopting a distribution for which
the associated rain probability is a function of the time elapsed from the
last rainy day. For instance, in the case of the logarithmic-series distribution
such a relationship is monotonically decreasing. Actually, both the geometric
and the logarithmic-series distributions are part of a larger three parameter
family of discrete distributions known as the Hurwitz-Lerch-Zeta (HLZ)
family. The full three parameter HLZ distribution (HLZD) has been recently
proposed in Agnese et al. (2014) and in Berro et al. (2019) as a model
for interarrival times data arising from rainfall measurements at the daily
scale. In other words, they assumed that the rainfall events are generated
following the mechanism of a renewal process whose interarrivals are i.i.d.
with common law the HLZ distribution. The latter has proven to provide
satisfactory fittings as it is able to replicate both the numerous occurrences
of the value equal to one, which represent the uninterrupted sequences of
rainy days, and some large values scattered over time and responsible for
drought phenomena.

As a tentative step forward, in Agnese et al. (2022) we proposed to model
the common it rv using the Poisson-stopped HLZD (PSHLZD), which is
strictly related to the HLZD. This discrete distribution can model an excess
of zeroes (paralleling the excess of it=1) and can present a remarkable tail
(Liew et al., 2020). The PSHLZD has been used in the same reference for
comparisons with the negative binomial distribution, a popular model for
fitting over-dispersed count data. Indeed, the PSHLZD can be seen both as
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a Poisson-stopped sum of HLZD’s as well as a generalisation of a negative
binomial distribution. The Poisson contribution allows us to model the
superposition of i.i.d. HLZD’s in the observed time series as rare event.

This chapter is structured as follows.

We start the following section by briefly recalling the Bell Polynomials
and some of their properties. The combinatorial aspects of these polynomials
let us rewrite and prove known properties of the forthcoming probability
distributions in a compact and modern way, in addition to providing some
new minor results. Then, after establishing some notation and stating
well known definitions, the HLZ family of discrete probability distributions
is introduced and reviewed. We recall some of its properties, including
expressions for moments and cumulants. New results on its log-concavity
and convolution are provided. The PSHLZD is introduced immediately
after, where the Bell Polynomials will be more involved. Finally, the One
Inflated HLZ (OIHLZ) is dealt with in detail. All the descriptions of the
distributions are accompanied by a brief explanation of how the maximum
likelihood estimation (MLE) of their parameters can be carried out.

Afterwards, we introduce and describe some additional temporal variables
which are linked to interarrival times and provide an alternative and slightly
more complex way to model the rainfall occurrence process. We provide
the probabilistic relationships between the interarrival times and the new
introduced variables. Given these connections, two procedures for describing
the rainfall occurrence process, particularly adapt to statistical applications,
are proposed.

2.1 Bell Polynomials in a Nutshell

We refer the reader to Charalambides (2002) for an extensive treatment of
the Bell polynomials and their role in combinatorics. In the following we
try to collect some of their properties which are used in this chapter and
throughout the thesis. The partial exponential Bell polynomials are usually
written as

Bn,j(z1, . . . ,zn−j+1)=
∑ n!

(1!)r1r1!(2!)r2r2! ·· ·
zr1

1 ·· ·z
rn−j+1
n−j+1 n∈N, j≤n

(2.1)
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where the summation is over all the solutions in non-negative integers
r1, . . . ,rn−j+1 of r1 +2r2 + ·· ·+(n−j+1)rn−j+1 =n and r1 +r2 + ·· ·+rn−j+1 =
j. A lighter expression is obtained using partitions of the integer n with length
j. Recall that a partition of an integer n is a sequence π= (π1,π2, . . .) of weakly
decreasing positive integers, named parts of π, such that π1 +π2 + ·· ·=n.
A different notation is π=(1r1,2r2, . . .), where r1,r2, . . . , named multiplici-
ties of π, are the number of parts of π equal to 1,2, . . . respectively. The
length of the partition is l(π) = r1 +r2 + ·· · and the vector of multiplicities is
m(π) = (r1,r2, . . .). We write π⊢n to denote that π is a partition of n. Thus
the partial exponential Bell polynomials (2.1) can be rewritten as (see, e.g.,
Di Nardo et al., 2008)

Bn,j(z1, . . . ,zn−j+1)=
∑

π⊢n,l(π)=j
dπzπ (2.2)

where the sum is over all the partitions π⊢n with length l(π)= j and

zπ = zr1
1 z

r2
2 ·· · dπ = i!

(1!)r1r1!(2!)r2r2!·· ·
. (2.3)

Using integer partitions, the explicit expression of the partial exponential
polynomials can be recovered in R using the kStatistics package (Di Nardo
and Guarino, 2022). A useful property used in the following is

Bn,j(abz1, . . . ,ab
n−j+1zn−j+1)=aj bnBn,j(z1, . . . ,zn−j+1) (2.4)

with a,b constants. Equation (2.4) follows from (2.2) since from (2.3) we
have

(abz1)r1(ab2z2)r2 ·· ·=ar1+r2+···br1+2r2+···zπ =aj bnzπ

taking into account that l(π)= r1 +r2 + ·· ·= j and r1 +2r2 + ·· ·=n.
The n-th complete exponential Bell polynomial in the indeterminates

z1, . . . ,zn is defined as

Bn(z1, . . . ,zn)=
n∑
j=0

Bn,j(z1, . . . ,zn−j+1) (2.5)

with {Bn,j} the partial exponential Bell polynomials as in (2.1). Note that n
is the positive integer corresponding to the maximum degree of the monomials
in (2.5). This polynomial sequence satisfies the following recurrence

Bn+1(z1, . . . ,zn+1)=
n∑
j=0

n
j

zj+1Bn−j(z1, . . . ,zn−j) (2.6)
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with the initial value B0 =1. The generating function of {Bn} is the formal
power series composition

exp[hz(t)−z0]=
∑
n≥0

tn

n!Bn(z1, . . . ,zn)∈R[[t]] (2.7)

where R[[t]] is the ring of formal power series in t and hz(t) is the generating
function of {zk}k≥0, that is

hz(t)=
∑
k≥0

tk

k!zk.

A different expression of the n-th complete exponential Bell polynomial
involves integer partitions as follows

Bn(z1, . . . ,zn)=
∑
π⊢n

dπzπ (2.8)

where the sum is over all the partitions π⊢n,dπ and zπ are given in (2.3).
In particular we have

Bn(λz1, . . . ,λzn)=
∑
π⊢n

λl(π)dπzπ (2.9)

with λ a constant. Now, suppose to replace λl(π) in (2.9) with a numerical
sequence {al(π)}. Thanks to this device, the complete exponential Bell
polynomials result as a special case of a wider class of polynomial families,
the generalized partition polynomials

Gn(a1, . . . ,an;z1, . . . ,zn)=
∑
π⊢n

dπal(π)zπ (2.10)

where the sum is again over all the partitions π⊢n. A different expression
of (2.10) involves the partial exponential Bell polynomials {Bn,j} in (2.1)

Gn(a1, . . . ,an;z1, . . . ,zn)=
n∑
j=1

ajBn,j(z1, . . . ,zn−j+1). (2.11)

An example of a well known and useful polynomial family arising from (2.11)
is the logarithmic, defined as

Ln(z1, . . . ,zn)=
n∑
j=0

(−1)j−1(j−1)!Bn,j(z1, . . . ,zn−j+1). (2.12)

Apart from their combinatorial properties, the Bell polynomials and the
logarithmic polynomials have a well known use in probability, which is
connecting moments and cumulants of a random variable. Such relationships
are summarised in Appendix 2.A.
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2.2 Notation and Preliminaries on Discrete Random
Variables

Before proceeding, let us very briefly clarify the notation used in the first
part of this chapter, and, afterwards, recall some useful definitions and
results. Let (Ω,F ,P) be an underlying probability space. As usual, with
discrete random variable (rv) we will refer to a measurable function

X :Ω→T,

where T is countably infinite or finite. We will usually consider T ⊂Z. The
law or distribution of X is fully characterised by its probability mass function
(pmf) pX defined as

pX(x)=P(X=x), x∈T.
Actually, we shall mostly equivalently refer to the sequence of probabilities

{px}x∈T , x∈T,

where px=pX(x) for x∈T .

2.2.1 Probability Generating Function

The probability generating function (pgf) provides a compact representation
of a discrete probability distribution and facilitates the computation of
moments and the study of other properties of the random variable. The pgf
GX of X is defined as:

GX(t)=E[tX ]=
∑
x∈T

pxt
x,

where t is a real number for which the series converges. Indeed, as we
continue, if not specified otherwise t is assumed to be in a such a way. Note
that GX always exists for −1≤ t≤1 with GX(0)=p0 and GX(1)=1. We
report some of its properties.

1. By the definition of GX , for every x∈T we have that

px= G
(x)
X (0)
x! ,

where the superscript (x) denotes differentiation x times.

2.
E[X]=G

(1)
X (1).

57



3. If Y is a discrete random variable independent from X with pgf GY ,
then the PGF of Z=X+Y is the product of the individual pgfs

GZ(t)=GX ◦GY ,

where ◦ denotes the usual composition of functions.

2.2.2 Log-Convexity and Log-Concavity

A discrete distribution {px}x∈T is said to be log-concave if

p2
x≥px−1px+1, x∈T. (2.13)

Log-convex is defined with the inequality sign reversed, that is it must hold
that

p2
x≤px−1px+1, x∈T. (2.14)

Log-convexity and log-concavity are useful in deriving other properties of a
distribution. An example is given in the following.

2.2.3 Unimodality and Strong Unimodality

A discrete distribution {px}x∈T is said to be unimodal if there exists an
x̄∈T such that px≥px−1 for all x≤ x̄ and px≤px−1 for all x≥ x̄. A discrete
distribution {px}x∈T is strongly unimodal if the convolution of {px}x∈T with
any unimodal distribution is unimodal. Strong unimodality has the following
characterization (Keilson and Gerber, 1971, Theorem 2).

Theorem 2.2.1. Let a discrete rv X with support T ⊂Z. A necessary and
sufficient condition for strong unimodality of X is log-concavity of {px}x∈T .

Given the latter, the next proposition is straightforward.

Proposition 2.2.2. A strongly unimodal discrete rv X with support T ⊂Z
is unimodal.

Proof. Condition (2.14) is equivalent to
px+1

px
≤ px
px−1

, x∈T. (2.15)

From (2.15) it follows that inf{x∗∈T : px∗+1
px∗ ≤1} is the mode.
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2.2.4 Parameter Estimation and Model Selection

Consider the measurable space (Ω,F). A parametric family P is a set of
probability measures Pθ on (Ω,F) defined as

P={Pθ : θ∈Θ},

where Θ⊆Rd for some fixed positive integer d. An usual assumption is
that of identifiability, meaning that the map θ→Pθ is injective. In the
present context of discrete random variables, Pθ could be given in the form
of a sequence of probabilities, which, with some abuse of notation, we can
denote by pθ ={pθx}x∈T . Let x =(x1,x2, . . . ,xn) be a random sample from
a population with pmf {px}x∈T . Assuming there exists θ0∈Θ such that
pθ0 ={px}x∈T , parameter estimation is a crucial step in statistical inference
to find an appropriate θ such that the probability measure Pθ of a parametric
family fits well to the given sample x. One of the most known approaches
to this is the classical maximum likelihood estimation which is the main
parameter estimation procedure employed in the first two chapters of this
thesis.

2.2.5 Maximum Likelihood Estimation

For a fixed sample x =(x1,x2, . . . ,xn), the likelihood function is defined by

Ln(θ |x)=
n∏
i=1
pθxi
. (2.16)

The maximum likelihood estimator of the parameter θ based on a sample x
(see, for instance, Casella and Berger, 2002, Chapter 7) is

θ̂(x)=argmax
θ∈Θ

L(θ |x).

In practice, is it often simpler to work with the natural logarithm of the
likelihood function, the log-likelihood

ln(θ |x)=
n∑
i=1

log(pθxi
). (2.17)

Usually, the log-likelihood function is differentiable and first order optimal-
ity conditions can be employed to find the so called maximum likelihood
equations, which, when solved, provide the desired estimator. However, it is
often the case that for certain parametric families the obtained system of
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equations may not have a closed-form solution. Numerical methods such as
the Newton-Raphson method or the EM algorithm could be implemented to
seek numerical solutions. These methods usually return a local maximum
that depends on the choice of the starting guess. A stochastic optimisation
algorithm that returns the global maxima is preferred when the equations
have no analytic solution. For instance, the simulated annealing type of ran-
dom search algorithm will be used in this thesis to obtain the ML estimates
for various models (see, for instance, Robert and Casella, 2004, Chapter 5).

As we noted in the introduction, the family of discrete distribution we
will discuss is a generalization of other well known probability distributions.
The act of generalising a parametric probability distribution introduces more
parameters into the model and the full parameter form of a parametric family
will perform, in terms of maximised log-likelihood values, at least as well as
any other special cases having a smaller number of parameters. However,
the inclusion of additional parameters in the model is not always statistically
justified (Wilks, 1938). To avoid over-fitting, several information-theoretic-
based criteria have been developed for model selection. These include the
Akaike information criterion (AIC), Bayesian information criterion (BIC)
that make use of different functional forms of the maximum log-likelihood
statistic to measure the divergences between the proposed models and the
real model (see, e.g., Van Der Hoeven, 2005). Other hypothesis testing
approaches such as the likelihood ratio test, Wald’s test, and the score test
are also available (see, for example, Cox and Hinkley, 1974, Section 9.3). In
this thesis, the likelihood ratio test will be used to select the appropriate
model from a nested family of distributions.

2.2.6 Likelihood Ratio Test

Consider a simpler nested model with reduced parameter space Θ0 such that
Θ0⊂Rd0⊂Θ, with d0 a positive integer. The likelihood ratio test statistic
for testing

H0 : θ∈Θ0 versus H1 : θ∈Θc
0

is
Dn=−2log supΘ0Ln(θ |x)

supΘLn(θ |x) .

Let θ̂0(x) be the ML estimator for θ in Θ0, the test statistic Dn can be
written as

Dn=−2(ℓn(θ̂0(x) |x)−ℓn(θ̂(x) |x)).
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A well known theorem of Wilks (1938) states that as the sample size n goes
to infinity

Dn
d→χ2

d−d0,

under H0. That is, Dn is approximately χ2 distributed, with degrees of
freedom equal to the difference between the number of free parameters of
the alternative and the null models.

2.3 The Hurwitz-Lerch Zeta Distribution

We shall employ the standard notation used for instance in Gupta et al.
(2008). Let T (z,r,u)= zΦ(z,r+1,u+1), where

Φ(z,r,u)=
∞∑
n=0

zn

(n+u)r (2.18)

is the Lerch Transcendent function, defined for u /∈{0,−1,−2,−3, . . .} and r
in the set of complex number C when |z|<1, or r in the half plane Re(r)>1
when |z|=1 (Bateman and Erdélyi, 1953).
Definition 2.3.1. A discrete random variable Y ∼HLZD(a,θ,s) if

py = θy

T (θ,s,a)(y+a)s+1 , y∈N+, (2.19)

where a>−1 and s∈R if θ∈ (0,1) or s>0 if θ=1.
Expression (2.19) comprises a wide range of well known discrete distribu-

tions, some of which are reported in Table 2.1 below.

Table 2.1: Lerch family of probability distributions with the corresponding parameter
domains.

ID Probability distribution θ s a
1 3-par Lerch (0,1) R (−1,∞)
2 2-par polylogarithmic (0,1) R 0
3 1-par logarithmic (0,1) 0 0
4 1-par geometric (0,1) -1 1
5 2-par extended log (0,1) 0 (−1,∞)

The pgf of Y ∼HLZD(a,θ,s) is

GY (z)= θΦ(zθ,s+1,a+1)
Φ(θ,s,a) , 0<zθ≤1, (2.20)

with GY (0)=0.
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2.3.1 Moments and Cumulants

HLZD moments have a closed form expression involving the Lerch Transcen-
dent function. Differently from Aksenov and Savageau (2005), we find this
closed form expression using (2.19).

Proposition 2.3.2. If Y ∼HLZD(a,θ,s), then

ξk :=E[Y k]=
k∑
j=0

(−a)k−j
k
j

Φ(θ,s+1−j,a)
Φ(θ,s+1,a+1) , k∈N+ . (2.21)

Proof. Fix k∈N+. Using the binomial expansion of yk =(y−a+a)k, we
have

ξk =
∞∑
y=1

ykP(Y =y)=
∞∑
y=1

yk
θy−1

Φ(θ,s+1,a+1)(y+a)s+1

=
∞∑
y=1

 k∑
j=0

k
j

(y+a)j(−a)k−j
 θy−1

Φ(θ,s+1,a+1)(y+a)s+1

=
k∑
j=0

k
j

(−a)k−j 1
Φ(θ,s+1,a+1)

∞∑
y=1

θy−1

(y+a)s+1−j

from which (2.21) follows by taking into account (2.18).

As a corollary, the mean and the variance are respectively:

E[Y ]= T (θ,s−1,a)
T (θ,s,a) −a Var[Y ]= T (θ,s−2,a)

T (θ,s,a) −
(T (θ,s−1,a)
T (θ,s,a)

)2
.

Remark 2.3.3. Suppose θ=1. Recall that we can have convergence of
the series Φ(1,s,a) only if s>0. By inspecting the r.h.s. of (2.21), we have
that ξk will be infinite for any k≥k′, where k′ is the first integer such that
s+1−k′≤0. □

More generally, for k∈N+ the k-th central moment can be recovered as

ξ′
k :=E[(Y −ξ1)k]=

k∑
j=0

k
j

ξj1 ξk−j

and the factorial moments as

(ξ)k =E[Y (Y −1)·· ·(Y −k+1)]=
k∑
j=0

s(k,j)ξk (2.22)
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with s(k,j) the Stirling numbers of the first kind (Charalambides, 2002).
HLZD cumulants are such that

κn(Y )=Ln(ξ1, . . . ,ξn), n∈N+,

where {ξj} are the moments of Y ∼HLZD(a,θ,s), given in (2.21), and Ln
is the n-th logarithmic polynomial (2.12). Let us recall that, if the mo-
ment generating function (mgf) MY (t) of Y is well defined in a suitable
neighborhood of 0, then the coefficients {κn(Y )}n≥1 in the expansion

MY (t)=exp
∑
n≥1

tn

n!κn(Y )


are the cumulants of Y. The first cumulant is the mean E[Y ], the second
cumulant is the variance Var(Y ), the skewness and the kurtosis of Y can be
recovered using the third and the fourth cumulant of Y respectively. More
details are given in Appendix 2.A.

2.3.2 Mode

The HLZ distribution is a particular case of a wider class of distributions
called the Modified Power Series Distributions (MPSD) introduced by Gupta
(1974).

Definition 2.3.4. A discrete random variable Y ∼MPSD(a,g,f) if

py = a(y)g(θ)y
f(θ) , y∈T ⊂N (2.23)

where a(y), g(θ) and f(θ) are positive, bounded, and differentiable functions
of y and θ respectively with f(θ)=∑

y∈T a(y)g(θ)y. □

Using this wider class of distributions, we will prove that Y ∼HLZD(a,θ,s)
is unimodal for all s∈R. The following result follows straightforwardly from
Theorem 2.2.1 by substituting (2.23) into (2.14).

Proposition 2.3.5. Y ∼MPSD(a,g,f) is strongly unimodal if and only if
{a(y)}y∈T is a logarithmically concave sequence.

Given these facts, we can state the next result.

Proposition 2.3.6. Suppose Y ∼HLZD(a,θ,s).
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(i) If s≥−1, the sequence {qy}y≥1 is monotonically decreasing and the mode
is y=1.

(ii) If s<−1, Y is strongly unimodal and therefore also unimodal.

Proof. Similarly to what stated in Section 2.3 of Gupta et al. (2008), we
have

py
py−1

= θ

(
1− 1

a+y

)s+1
, y∈{2,3, . . .}. (2.24)

Since θ∈ (0,1), a>−1 and s≥−1, the rhs of (2.24) is always between 0
and 1, thus (i) follows. From Theorem 2.2.1 and Proposition 2.2.2, for
(ii) we have to prove that {py}y≥1 is log-concave, that is it satisfies (2.14).
Using Proposition 2.3.5, since a(y)= 1

(y+a)s+1 , we simply need to show that
(1−(y+a)−2)s+1≥1 for all y∈N. The latter holds if s<−1.

2.3.3 Failure Rate

From Definition 2.3.1 we have that Y ∼HLZD(a,θ,s) has cumulative distri-
bution function (cdf)

P(Y ≤k)=1−θkT (θ,s,a+k)
T (θ,s,a) , k∈N+ . (2.25)

Following P. L. Gupta and Tripathi (1997), we define the failure rate r of a
discrete rv X supported on N+ as

rX(k)= P(X=k)
P(X≥k) , k∈N+ . (2.26)

From (ii) in Theorem 1 of Gupta et al. (2008) we have that if X is log-convex
then rX is a non-increasing function of k. Hence we can state the following
simple result.

Proposition 2.3.7. Let Y ∼HLZD(a,θ,s). Then it holds that

rY (k)= θ

(a+k)s+1T (θ,s,a+k−1) , k∈N+ . (2.27)

Moreover, if s≥−1, rY is a non-increasing function of k.

Proof. Expression (2.27) immediately follows from (2.25) and (2.19). Ac-
cording to the discussion slightly above, we have to prove that p2

y≤py−1py+1,
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y∈N+ or, equivalently, that py

py−1
− py+1

py
≤0, y∈N+. As in the proof of

Theorem 1 in Gupta et al. (2008) we have

py
py−1

− py+1

py
= θ

(a+y−1
a+y

)s+1
−
(

a+y

a+y+1

)s+1= θ

[(b2−1)s+1−(b2)s+1

[b(b+1)]s+1

]
,

where b=a+k. The above centered display is less or equal then zero when
s≥−1.

2.3.4 Convolution

The family of HLZ distributions is not closed under convolution. Nevertheless,
as a subclass of MPS distributions, the HLZD convolution still returns a
MPSD. Indeed, more in general we will prove that the family of MPS
distributions is closed under convolution.

Theorem 2.3.8. If Y1, . . . ,Yj are independent rvs identically distributed to
Y ∼HLZD(a,θ,s), then Y1 + ·· ·+Yj∼MPSD(aj,g,fj) with fj(θ) = [T (θ,s,a)]j,

aj(y)= j!
y!

∑
π⊢y,l(π)=j

dπ(aπ)s+1 with aπ =(a+1)−r1(a+2)−r2 ·· · , y∈Tj,

(2.28)
dπ as given in (2.3) and Tj ={y1 + ·· ·+yj ∈N :y1, . . . ,yj ∈T}.

Proof. Observe that if Y1, . . . ,Yj are rvs i.i.d. to Y ∼MPSD(a,g,f), then
Y1 + ·· ·+Yj∼MPSD(aj,g,fj) with fj(θ)=f j(θ) and

aj(y)=


j!
y!By,j[a(1), . . . ,a(y−j+1)], y∈Tj

0, y /∈Tj.
(2.29)

Indeed in (2.23), set a(y) = 0 if y /∈T and consider the sequence {py}y≥1 such
that py =0 if y /∈T. By using Lemma 1 in Eger (2016), we have

P(Y1 + ·· ·+Yj =y)= j!
y!By,j(p1, . . . ,py−j+1) (2.30)

where {By,j} are the partial exponential Bell polynomials (2.1). From (2.30)
with pi replaced by a(i)g(θ)i/f(θ) for i=1, . . . ,y−j+1 and using (2.4) we
have

P(Y1 + ·· ·+Yj =y)= j!
y!
g(θ)y
f j(θ)By,j[a(1), . . . ,a(y−j+1)]. (2.31)
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Thus Y1 + ·· ·+Yj∼MPSD(aj,g,fj) with fj(θ)=f j(θ) and aj(y) given in
(2.29). From (2.31) note that aj(y)=0 if 1,2, . . . ,y−j+1 /∈T. By replac-
ing g(θ) = θ,f(θ) =T (θ,s,a) and a(k) = (k+a)−(s+1) for k= 1, . . . ,y−j+1 in
(2.31) we have

aj(y)= j!
y!By,j

[
(a+1)−(s+1), . . . ,(a+y−j+1)−(s+1)

]
, y∈N+ .

The result follows after some manipulations, rewriting the partial Bell
exponential polynomials as in (2.2).

2.3.5 Tail Behaviour

Following Section 4 of Liew and Ong (2012), we report a brief description of
the tail behaviour of Y ∼HLZD(a,θ,s).

Proposition 2.3.9. Let Y ∼HLZD(a,θ,s). Then Y has a long tail if and
only θ=1.

Proof. From (2.19) it can be readily computed that

lim
y→∞

py+1

py
= θ,

after which the statement is immediate.

The latter result indicates that θ is the parameter which governs the
thickness of the tail.

Remark 2.3.10. This fact can also be deduced by the following argument.
We have that the mgf of Y ∼HLZD(a,θ,s) is

GY (et)= θΦ(etθ,s+1,a+1)
Φ(θ,s,a) , (2.32)

with GY the pgf of Y . Recall that in general the Lerch transcendent function
Φ(z,r,u) converges for u>0 if z and r are any complex numbers with |z|>1
or |z|= 1 and Re(r)>0 (Bateman and Erdélyi, 1953). Under the parametric
assumptions in (2.19), when θ∈ (0,1) there always exists a neighbourhood
of the origin where GY (et) exists finite. Hence, Y does not have a heavy
tail and therefore neither a long tail. Since we must have θ≤1 for the
convergence of the series Φ(θ,s,a), if θ = 1 we have that GY (et) will be
infinite for any t>0 from the fact that etθ>1 for any t>0. To see this from
yet another perspective, recall Remark 2.3.3. □

66



2 – Modelling Rainfall Interarrival Times and other Temporal Variables

2.3.6 Maximum Likelihood Estimation

Consider a vector y = (y1, . . . ,yn) of independent observations of Y ∼HLZD(a,θ,s).
The MLE of (θ,s,a) is

(θ̂, ŝ, â)=argmax
(θ,s,a)∈Θ

ℓn(θ,s,a |y), (2.33)

with Θ = (0,1)×(−∞,+∞)×(−1,∞), ℓn(θ,s,a |y) = logLn(θ,s,a |y) the log-
likelihood function and

Ln(θ,s,a |y)=
n∏
i=1

P(Y =yi).

The MLE of the HLZD parameters (θ,s,a) has been studied by Gupta in
Gupta et al. (2008), where the Author derives the following formula

ℓn(θ,s,a |y)= logθ
n∑
i=1
yi−(s+1)

n∑
i=1

log(a+yi)−n log[Φ(θ,s+1,a)]. (2.34)

Additionally, he showed that the three likelihood equations arising from
maximizing the log-likelihood correspond to the following equations of the
generalised method of moments. In particular we have

n∑
i=1

yi
n

=E[Y ], (2.35)

n∑
i=1

log(a+yi)
n

=E[log(a+Y )], (2.36)

n∑
i=1

1
n(a+yi)

=E
[ 1
a+Y

]
. (2.37)

For the case of the Log distribution (ID = 1 in Table 2.1), the single
parameter θ can be estimated by solving (2.35) for s=0 and a=0, for the
case of the Polylog distribution (ID = 2 in Table 2.1) the two parameters θ
and s can be obtained by solving the system of equations (2.35) and (2.36)
with a=0 and for the case of the 2-parameters Log distribution (ID = 5
in Table 2.1) the two parameters θ and a can be obtained by solving the
system of equations (2.35) and (2.37) with s=0.

Closed form solutions of the above equations are not available and the
moments E[log(a+Y )] and E[1/(a+Y )] must also be numerically approxi-
mated. As noted in Section 2.2.5, the likelihood equations may be solved
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by standard numerical methods to obtain the MLE. However, it is well
known that this does not guarantee that global maxima of the likelihood
have been achieved. In order to avoid this problem, a global optimisation
method can be employed to solve (2.33). The global optimisation method
takes advantage of the bounds of the parameters. For instance, the MLE
of the parameters can be obtained through a global optimisation algorithm
known as Simulated Annealing. Simulated annealing is a stochastic global
optimisation technique applicable to a wide range of discrete and continuous
variable problems. It makes use of Markov Chain Monte Carlo samplers, to
provide a means to escape local optima by allowing moves which worsen
the objective function, with the aim of finding a global optimum. Technical
details can be found in Bélisle (1992), a variant of which is the algorithm
implemented in the Optim function in the base Stats R-package. The latter
has been used in this thesis.

2.4 The Poisson-Stopped Hurwitz-Lerch Zeta Distri-
bution

Definition 2.4.1. Let λ>0, θ∈ (0,1), a>−1 and s∈R. A discrete random
variable X∼PSHLZD(λ,a,θ,s) if its pgf is

GX(t)=exp
(
λ

[
θΦ(tθ,s+1,a+1)

Φ(θ,s,a) −1
])
, 0<θt≤1, (2.38)

where Φ is the Lerch Transcendent as in (2.20). □

According to Definition 2.4.1, X∼PSHLZD(λ,a,θ,s) takes non-negative
integer values and belongs to the class of generalized rvs as defined in
Charalambides (1977). Indeed given two independent rvs Z and Y, with pgf
GZ and GY respectively, the generalized rv X has pgf

GX =GZ ◦GY . (2.39)

The composition (2.38) matches (2.42) when Y ∼HLZD(a,θ,s) and Z is
a Poisson (PS) rv of parameter λ>0, independent of Y, since GZ(t)=
exp[λ(t−1)]. As we continue, to avoid confusion, we will refer to the sequence
of probabilities associated to Y ∼HLZD(a,θ,s) as {qx}x∈N+, unless specified
otherwise.

In the following we analyse in detail the properties of the PSHLZD using
the complete exponential Bell polynomials. Some of the properties given in
Liew et al. (2020) will also be briefly recalled.

68



2 – Modelling Rainfall Interarrival Times and other Temporal Variables

Proposition 2.4.2. If X∼PSHLZD(λ,a,θ,s) then

px=


e−λ, x=0,
e−λ

x! Bx(λq1, . . . ,λx!qx), x∈N+,
(2.40)

where Bx is the complete exponential Bell polynomial (2.5) of degree x.

Proof. Observe that GY (0)=0 and GY (t)=∑
x≥1x!qxtx/x!. The result fol-

lows from (2.7) with z0 =0 and hz(t)=GY (t), since from (2.38) we have

exp(−λ)exp[λGY (t)]=
∑
x∈N

tx

x!e
−λBx(λ1!q1, . . . ,λx!qx).

Corollary 2.4.3. If X∼PSHLZD(λ,a,θ,s) then p0 =P (X=0)= e−λ and

px= θxe−λ∑
π⊢x

(
λ

T (θ,s,a)

)l(π) (aπ)s+1

mπ! x=1,2, . . . . (2.41)

where the sum is over all the partitions π⊢x, mπ! = r1!r2!·· · and aπ is given
in (2.28).

Proof. From (2.40), using (2.8) and (2.3), we have

px= e−λ

x!
∑
π⊢x

x!
(1!)r1r1!(2!)r2r2! ·· ·

(λ1!q1)r1(λ2!q2)r2

= e−λ∑
π⊢x

λr1+r2+···

r1!r2! ·· ·
[(a+1)−(s+1)]r1[(a+2)−(s+1)]r2 ·· ·θr1+2r2+···

T (θ,s,a)r1+r2+···

by which (2.41) follows observing that r1 +r2 + ·· ·= l(π) and r1 +2r2 + ·· ·=
x.

As a corollary of Proposition 2.4.2 and recursion (2.6), the sequence
{px}x∈N in (2.40) satisfies the following equations.

Corollary 2.4.4. If X∼PSHLZD(λ,a,θ,s) then

px+1 = λ

x+1
x∑
j=0

(j+1)qj+1px−j, x∈{1,2, . . .}

and p0 = e−λ.
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Proof. The result follows using (2.6) since we have

px+1 = e−λ

(x+1)!Bx+1(λq1, . . . ,λ(x+1)!qx+1)

= e−λ

(x+1)!
x∑
j=0

x
j

Bx−j(λq1, . . . ,λ(x−j)!qx−j)(j+1)!qj+1

= e−λ

(x+1)!
x∑
j=0

x!
(x−j)!j!px−j

(x−j)!
e−λ (j+1)!qj+1.

If s≥0 and −1<a≤0, the PSHLZD is unimodal. It is a consequence
of (Liew et al., 2020, Property 1), where the authors, with the above
parameters, prove the discrete self-decomposability of a PSHLZD, which
implies unimodality (Steutel and van Harn, 1979).

2.4.1 Log-Concavity

Under suitable conditions, the PSHLZD is log-concave.

Proposition 2.4.5. If X∼PSHLZD(λ,θ,a,s) and s≥−1, then X has a
log-concave cdf, that is

[P(X≤x)]2≥P(X≤x−1)P(X≤x+1), x∈N .

Proof. According to (Badía et al. (2021), Theorem 1), a random sum ∑Z
i=1Yi

of i.i.d. rvs has a log-concave cdf if Z is strongly unimodal and the common
distribution of {Yi}i≥1 has a decreasing pdf. Thus, the result follows as X∼∑Z
i=1Yi with Z∼PS(λ), which has a log-concave pmf (strongly unimodal),

and Y ∼HLZD(θ,a,s) with a decreasing pmf when s≥−1 (see Proposition
2.3.6).

Proposition 2.4.5 gives a sufficient condition to get cdf log-concavity. A
different way is to consider the sequence of probabilities {px}. Indeed, if
X has a log-concave pmf (2.14), then its cdf is also log-concave (Badía
et al., 2021). In the more general setting of generalised rvs, we can state
the following. Recall that X is a generalised random variable if given two
independent rvs Z and Y , with pgf GZ and GY respectively, it has pgf

GX =GZ ◦GY . (2.42)
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Proposition 2.4.6. Suppose X is a generalised rv. Then it has a log-concave
pdf if and only if the sequence

px= 1
x!Bx(1!q̃1, . . . ,x!q̃x;1!q1, . . . ,x!qx), x∈N+, (2.43)

with p0 =P(X=0)=GZ [GY (0)], q̃x=P(Z=x) and qx=P(Y =x), is log-
concave.

Proof. Expression (2.43) follows from (2.3) in Charalambides (1977) using
the general partition polynomials (2.8).

When Z∼PS(λ) a necessary and sufficient condition to recover strong
unimodality is related to the magnitude of q1 and q2, as the following theorem
shows.

Theorem 2.4.7. If X is a generalized rv with Y strongly unimodal and
Z∼PS(λ), then X is strongly unimodal if and only if λq1≥2q2.

Note that a similar result is proved in (Yu (2009), Theorem 4). We
provide a different proof using the following lemma.

Lemma 2.4.8. If {zj}j≥1∈ [0,∞) is a log-concave sequence, then the se-
quence { 1

n!Bn(z1, . . . ,zn)}n≥1 is log-concave if and only if z1≥2z2, with {Bn}n≥0
given in (2.5).

Proof. If {zj}j≥0 with z0 =1 is a log-concave sequence of non-negative real
numbers and the sequence {a(n)}n≥0 is defined by

∞∑
n=0

a(n)
n! y

n=exp
 ∞∑
j=1

zj
j!y

j

 (2.44)

then the sequence {a(n)
n! }n≥ is log-concave (Bender and Canfield, 1996).

Equation (2.44) parallels (2.7). Therefore, the sequence { 1
n!Bn(z1, . . . ,zn)}n≥1

results as log-concave if the sequence {zj}j≥0 is log-concave. Note that for
j≥2 we have

z2
j

[(j−1)!]2 ≥
zj−1

(j−2)!
zj+1

j! ,

which easily reduces to j z2
j ≥ (j−1)zj−1zj+1 always satisfied when {zj}j≥1

is log-concave. Now let j=1. We have {zj}j≥0 is log-concave if and only if
z1≥2z2 and the result follows.
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Proof of Theorem 2.4.7. Following the same arguments of Proposition 2.4.2,
for a generalized rv with Z∼PS(λ), (2.43) reduces to

P(X=x)= e−λ

x! Bx(λ1!q1, . . . ,λx!qx)

with qx=P(Y =x) for x∈N+ . The sequence {e−λ

x! Bx(λ1!q1, . . . ,λx!qx)}x≥1 is
log-concave if and only if the sequence { 1

x!Bx(λ1!q1, . . . ,λx!qx)}x≥1 is log-
concave. The result follows using Lemma 2.4.8.

Corollary 2.4.9. If s<−1, X∼PSHLZD(λ,θ,a,s) is strongly unimodal if
and only if λq1≥2q2.

2.4.2 Moments and Cumulants

Exploiting the properties of Bell polynomials, we can recover closed form
expressions of PSHLZD moments and cumulants in terms of moments of
Y ∼HLZD(a,θ,s).

Proposition 2.4.10. If X∼PSHLZD(λ,a,θ,s) then

µk :=E[Xk]=Bk(λξ1, . . . ,λξk), k∈N+, (2.45)

with Bk the k-th complete exponential Bell polynomial (2.5) and ξ1, . . . ,ξk
the first k moments of Y ∼HLZD(a,θ,s) given in (2.21).

Proof. If MX and MY are the mgfs of X∼PSHLZD(λ,a,θ,s) and Y ∼
HLZD(a,θ,s) respectively, then

MX(t)=GX(et)= eλ[GY (et)−1] = eλ[MY (t)−1] (2.46)

from (2.42). Equation (2.45) follows as the rhs of (2.46) can be written as
(2.7), with hz(t)=λMY (t) and z0 =λ.

Remark 2.4.11. Taking into account (2.46), if X∼PSHLZD(λ,a,θ,s) then
X∼Y1 + ·· ·+YZ with Y ∼HLZD(a,θ,s) and Z∼PS(λ), that is X is a com-
pound Poisson rv. Therefore the PSHLZD is an infinitely divisible distribu-
tion (Sato, 2013). □

Moments (2.45) can be explicited written using (2.9). A straightforward
corollary of recursion (2.6) is the following.

Corollary 2.4.12. µk+1 =λ
∑k
j=0

(
k
j

)
µk−jξj+1, k∈N+ .
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If µ′
k :=E[(X−µ1)k] denotes the k-th central moment ofX∼PSHLZD(λ,a,θ,s)

then
µ′
k =

n∑
k=0

n
k

(−λξ1)n−kBk(λξ1, . . . ,λξk), k∈N+ .

Proposition 2.4.13. If X∼PSHLZD(λ,a,θ,s) then
(µ)k :=E[X(X−1)·· ·(X−k+1)]=Bk(λ(ξ)1, . . . ,λ(ξ)k), k∈N+ (2.47)

where (ξ)1, . . . ,(ξ)k are the first k factorial moments of Y ∼HLZD(a,θ,s)
given in (2.22).
Proof. Let us recall that, if QX(t) is the factorial mgf of {(µ)k}, then QX(t) =
GX(t+1) with GX the pgf of X. Therefore we have

QX(t)=GX(t+1)=exp
(
λ[GY (t+1)−1]

)
=exp

(
λ[QY (t)−1]

)
, (2.48)

with QY (t) the generating function of the factorial moments {(ξ)k}. Equation
(2.47) follows as the rhs of (2.48) can be written as (2.7), with z0 =λ and
hz(t)=λQY (t).
Proposition 2.4.14. If κn(X) is the n-th cumulant of X∼PSHLZD(λ,a,θ,s)
then κn(X) =λξn, for n= 1,2, . . . where ξn is the n-th moment of Y ∼HLZD(a,θ,s)
given in (2.21).
Proof. The result follows since

logMY (t)= log[eλ(MX(t)−1)]=λ[Mx(t)−1]=
∑
n≥1

tn

n!λE[Xk].

2.4.3 Maximum Likelihood Estimation

Suppose to have a sample x =(x1, . . . ,xn) of independent observations of
X∼PSHLZD(λ,a,θ,s). The MLE of (λ,θ,s,a) is

(λ̂, θ̂, ŝ, â)= argmax
(λ,θ,s,a)∈Θ

ℓn(λ,θ,s,a |x),

with Θ = (0,∞)×(0,1)×(−∞,+∞)×(−1,∞), ℓn(λ,θ,s,a,x) = logLn(λ,θ,s,a |x)
the log-likelihood function and

Ln(λ,θ,s,a,x)=
n∏
i=1

P(X=xi).

The MLE of the PSHLZD parameters in this case must be directly tack-
led with the global optimisation method described in Section 2.3.6, since
ℓn(λ,θ,s,a) is not analytically tractable referring to (2.41).
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2.5 The One Inflated Hurwitz-Lerch Zeta Distribution

Definition 2.5.1. A discrete random variable Z∼OIHLZD(p,a,θ,s) if

P(Z=1) = p+(1−p)P(Y =1),

P(Z=x) = (1−p)P(Y =x), x∈{2,3, . . .},
(2.49)

with p∈ [0,1] and Y ∼HLZD(a,θ,s). □

This definition parallels the definition of the Zero Inflated Modified Power
Series Distribution given by Gupta in Gupta et al. (1995). If GZ(t) denotes
the pgf of Z∼OIHLZD(p,a,θ,s) then

GZ(t)=pt+(1−p)GY (t) (2.50)

and the HLZD is retrieved by setting p=0.

2.5.1 Moments and Cumulants

From (2.50), the ordinary moments of Z can be easily recovered from the
ordinary moments of Y ∼HLZD(a,θ,s).

Proposition 2.5.2. If Z∼OIHLZD(p,a,θ,s) then

νk :=E[Zk]=p+(1−p)ξk k∈N, (2.51)

with ξk the k-th moment of Y ∼HLZD(a,θ,s).

Proof. The result follows from (2.50) since

MZ(t)=GZ(et)=pet+(1−p)GY (et)=pet+(1−p)MY (t).

For example, we have

E[Z]=p+(1−p)E[Y ],
Var[Z]= (1−p)

[
Var[Y ]+p(1+E[Y ]2)−2E[Y ]

]
.

Proposition 2.5.3. If Z∼OIHLZD(p,a,θ,s) then

(ν)k :=E[Z(Z−1)·· ·(Z−k+1)]=
{
p+(1−p)(ξ)1, k=1,
(1−p)(ξ)k, k∈{2,3, . . .}. (2.52)

with (ξ)k the k-th factorial moment of Y ∼HLZD(a,θ,s).
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Proof. The result follows from (2.50) since
QZ(t)=GZ(t+1)=p(t+1)+(1−p)GY (t+1)=p(t+1)+(1−p)QY (t)

(2.53)
with QY (t) the factorial mgf of Y ∼HLZD(a,θ,s). Expression (2.52) follows
by expanding the rhs of (2.53) since we get

QZ(t)=1+[p+(1−p)(ξ)1]t+(1−p)
∑
k≥2

tk

k!(ξ)k.

The OIHLZD cumulants are
κn(Z)=Ln(ν1, . . . ,νn), n∈N+,

with {νj} moments of Z∼OIHLZD(p,a,θ,s) given in (2.51), and Ln the
n-th logarithmic polynomial (2.12).

2.5.2 Maximum Likelihood Estimation

To estimate the OIHLZD parameters using MLE, let us first rewrite (2.49)
using (2.23), that is

P(Z=1) = 1−w,

P(Z=x) = (1−p)a(x)g(θ)x
f(θ) , x∈{2,3, . . .}

(2.54)

where we set w=(1−p)[1−P(Y =1)], g(θ)= θ, a(x)=(a+x)−(s+1) and
f(θ)=T (θ,a,s). Further rewrite (2.54) as

P(Z=1)=1−w
P(Z=x)=wP(W =x), x∈{2,3, . . .}

where W has a One Truncated Hurwitz-Lerch Zeta Distribution (OTHLZD)
(Conceição et al., 2017), that is

P(W =x) := 1
1− a(1)g(θ)

f(θ)

a(x)g(θ)x
f(θ) , x∈N+ . (2.55)

Suppose z=(z1, . . . ,zn) is a vector of independent observations of Z∼
OIHLZD(p,a,θ,s) and l(θ,a,s,w,z) = logLn(θ,a,s,w |z) is the log-likelihood
function with

Ln(θ,a,s,w |z)=
n∏
i=1

P(Z= zi).
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If nj is the number of times the integer j appears in the vector z for j∈N+

then the log-likelihood ℓn(θ,a,s,w |z) can be written as

ℓn(θ,a,s,w |z)=n1 log(1−w)+(n−n1)log(w)+
∞∑
j=2

nj log
(

P(Y = j)
1−P(Y =1)

)
.

Now set
ℓn,1(w |z)=n1 log(1−w)+(n−n1)log(w) (2.56)

and
ℓn,2(θ,a,s |z)=

∞∑
j=2

nj

(
P(Y = j)

1−P(Y =1)

)
. (2.57)

From (2.56) and (2.57), the parameters (θ,a,s,w) can be estimated sepa-
rately, that is the estimation ŵ can be recovered from ℓn,1(w |z) and the
estimations (θ̂, â, ŝ) from ℓn,2(θ,a,s |z). The latter ones give the MLE of the
parameters of W ∼OTHLZD(θ,s,a) in (2.55) using the vector z restricted
to the observations which are greater than 1.

Remark 2.5.4. The estimation p̂ of p can be recovered from ŵ as

p̂=1− ŵT (θ̂, â, ŝ)
T (θ̂, â, ŝ)−a(1)θ̂

.

□

Fitting results of the three presented discrete distributions on a dataset
of daily rainfall measurements will be provided in the next chapter. In the
following sections we shall describe other temporal variables connected to
the interarrival times.

2.6 Models for Other Temporal Variables

As already noted in the introduction, at a local scale, a conventional method
for addressing intermittency in rainfall records involves the statistical analysis
of uninterrupted sequences of rainy days, referred to as wet spells ws,
and sequences of non-rainy days, termed dry spells ds, usually under the
assumption of their independence. Of the same interest are two additional
time variables, strongly associated to ws and ds, called wet chains wch
and dry chains dch. More precisely, in the following with wch we will refer
to sequences of rainy days, possibly interrupted by 1-day dry periods, in
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(wet) days. Note that also a cluster of rainy days ws is counted in wch,
we only add the possibility of having holes (1-day dry periods) inbetween
the clusters. Similarly, with dch we will refer to sequences of dry days,
possibly interrupted by 1-day rainy periods, in (dry) days. Again, also
a cluster of dry days ds is counted in dch, with the added possibility of
having 1-day rainy interruptions inbetween the clusters. From a hydrological
perspective, the aforementioned wch could be seen as a single rainy sequence
in a broad sense. This characterization stems from the understanding that
the occurrence of a singular non-rainy day amidst a series of consecutive rainy
days does not substantially impact the overall wet status of the sequence,
as if the entirety of this period can be attributed to a single meteorological
perturbance. Similarly, an analogous rationale can be extended to dch,
wherein the interruption of a sequence of dry periods by a lone rainy day
may not significantly alter the prevailing dry conditions, as long as we assume
that the single rainy interruptions enjoy a limited rainfall depth. The latter
hypothesis seems reasonable when considering that the rainfall intensity
during such isolated rainy days tends to be minimal, typically lasting for
only a few hours. It should be noted that the definition of chains can be
easily extended to interruptions longer than a single day (i.e., a 2-day wch
is a sequence of it=1, it=2, and it=3, ending with it>3). However, the
chains can become less and less realistic as single rainy or dry sequences
when increasing the lengths of the possible interruptions.

Before proceeding, let us now briefly delineate the connections of the
upcoming discussion with the framework of renewal processes delineated
in the beginning of this chapter. Recall that we have initially defined
a renewal process by specifying a sequence {itn}n≥0 of i.i.d. interarrival
times. Under this assumption, it is easy to prove that a sequence of rainy
days ws has a geometric distribution and a sequence of dry days ds share
the same distribution as it, albeit with a shifted support (see upcoming
Propositions 2.6.1 and 2.6.2). However, while more complex, a natural way
to be less restrictive is to select arbitrary distributions for ws and ds. In
this scenario, the counterpart of the renewal process is its generalization
known as alternating renewal process (see, for instance, the appendix of
Buishand, 1977). It is used to model a system which alternates between two
states, namely the wet state and the dry state in our application. Hence,
it is characterized by the sequence of times spent in each state which we
denote by {wsn}n≥0 and {dsn}n≥0. Again, the fundamental assumption
is that {wsn}n≥0 (resp. {dsn}n≥0) are i.i.d. with common distribution ws
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(resp. ds), and, additionally, the two sequences {wsn}n≥0 and {dsn}n≥0 are
independent. Finally, as done in the case of the standard renewal process,
the description of the rainfall process is finalized by additionally considering
the process {h∗

n}n≥0 describing the amount of rain on the rainy days. After
this discussion, the approach we proposed in Agnese et al. (2014) and that
we delineate in the forthcoming sections can be summarised as follows.
With the aim of a parsimonious procedure, one can opt for the ordinary
renewal process and, consequently, choose a model for it and then derive
the distributions of the other temporal variables of interest, as shall become
clear in the next section. If more flexibility is needed, one can consider
the alternating renewal process and, as shall be shown later, derive the
distribution of it.

We will start by exposing the probabilistic relationships between it, ws,
wch and dch in the two different settings delineated above. Additionally,
we shall also investigate the derivation of the probability distribution of the
total volume of rainfall in a given wet spell, denoted by hcl. The role of the
standing assumptions of each scenario will be emphasized, showing how they
reasonably simplify the computations involved.

Figure 2.1: Example of a possible realisation of the binary rainfall occurrence process
{xn}n∈N where observations of it, ws, ds, wch and dch are highlighted. The arrows denote
the rainy days.

2.6.1 Probabilistic Relationships

As we continue, we will work by alternating between the two following
assumptions.

Assumption 1 (Direct method). The rainfall occurrence process is a stan-
dard renewal process and we consider the associated sequence {itn}n≥0 of
i.i.d. interarrival times.
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Assumption 2 (Indirect method). The rainfall occurrence process is an
alternating renewal process. We consider the two associated sequences of
holding times {wsn}n≥0 and {dsn}n≥0, which are i.i.d. with common distri-
bution ws and ds respectively. Additionally, the two sequences {wsn}n≥0
and {dsn}n≥0 are independent.

Let us start by focusing on the wet spells ws and the interarrival times it.
It is natural to consider the derivation of ws from it under Assumption 1
first.

Proposition 2.6.1 (ws from it). Suppose Assumption 1 holds. Then we
have that

ws∼Geom(P(it>1)).

Proof. Consider the case ws=m, where m is a positive integer. In order to
properly define the event of a wet spell of length m in terms of interarrival
times, we have to consider an associated sequence of interarrival times
random variables it0, . . . ,itm. Given the definition of it and ws, we have that

{ws=m}=


{it0>1} m=1,
m−1⋂
i=0
{iti=1}∩{itm>1} m>1.

(2.58)

Under the assumption itn
iid∼ it for all n∈N it follows that

P(ws=m)=
P(it>1) m=1

[P(it=1)]m−1P(it>1) m>1.
(2.59)

For what regards ds, the result is straightforward by their definition.

Proposition 2.6.2 (ds from it). Under Assumption 1 we have that

P(ds=k)= P(it=k+1)
P(it>1) , k∈N+ . (2.60)

Proof. A little thought reveals that for any n∈N and k∈N+ we have

{dsn=k}={itn=k+1|itn>1}.

The result then follows from Assumption 1.
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Viceversa, one would like to obtain the distribution of it from the ones of
ws and and ds under Assumption 2. The approach used for this purpose is
different from the one in this section and the derivation is thus postponed
to Section 2.6.2.

Let us now focus on deriving the probability distributions of the chains
wch and dch from the one of it under Assumption 1, or, alternatively, from
the ones of ws and ds under Assumption 2. We start by considering wch.
Intuitively, under Assumption 1, we can derive the distribution of wch from
the one of it by accounting for the probabilities that it is equal to 1 and/or 2,
and weighting the probability of different combinations of sequences of rainy
days: indeed, a chain of m∈N+ wet days could be interrupted by m′ holes,
where 0≤m′≤m−1, with different occurrence probabilities at varying m′.
Let us be more detailed in the proof of the following proposition.
Proposition 2.6.3 (wch from it). Suppose Assumption 1 holds. Then we
have that

P(wch=m)=
m−1∑
i=0

m−1
i

P(it=2)iP(it=1)m−1−iP(it>2), m∈N+ .

(2.61)
Proof. Consider the case wch=m, where m>1. In order to properly define a
wet chain event of length m in terms of interarrival times, we consider an as-
sociated m+1 sequence of interarrival times random variables it0,it1, . . . ,itm.
Let Im={0, . . . ,m−1}. Then we have that, from the definition of wch,

{wch=m}=
m−1⋃
i=0

⋃
(j1,...,ji)∈Ci

ji+1,...,jm∈Im\{j1,...,ji}

{itj1 =2, . . . ,itji =2,itji+1 =1, . . . ,itjm =1,itm>2}

(2.62)
where

Ci={(j1, . . . ,ji) : jk∈{0, . . . ,m−1} for k=1, . . . ,i and jk<jk+1 for k=1, . . . ,i−1} .

Consider now that itn iid∼ it for all n∈N. It follows that for every (j1, . . . ,ji)∈
Ci and ji+1, . . . ,jm∈ Īm with i∈ Im we have

P({itj1 =2, . . . ,itji =2,itji+1 =1, . . . ,itjm =1,itm>2})

=
i∏

k=1
P({itjk

=2})
m−1∏
k=i+1

P({itjk
=1})P({itjm >2})

=P(it=2)iP(it=1)m−1−iP(it>2).
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Hence, the result is obtained from the fact that |
m−1⋃
i=0

Ci|=
(
m−1
i

)
and from

the additivity of P.

Remark 2.6.4. Let us show that the probability distribution derived for
wch arises in a simple probabilistic experiment. Consider p≥0 and q≥0,
playing the role respectively of P(it= 2) and of P(it= 1) in Proposition 2.6.3
and its proof. Consider a sequence of independent trials E1,E2, . . . each with
three possible outcomes

Type 1 success w.p. p,
Type 2 success w.p. q,
Failure w.p. 1−p−q.

Then let us consider the random variable

X := number of trials before a failure.

We have that by combinatorial arguments

P(X=k)=
k−1∑
i=0

k−1
i

piqk−1−i(1−p−q), k∈N+ .

□

It is also of interest to derive the probability distribution of wch from
the ones of ws and ds under Assumption 2. The setting and derivation are
slightly more convoluted, as can be seen in the proof of the next proposition.
Recall that a partition of an integer n is a sequence π= (π1,π2, . . .) of weakly
decreasing positive integers, named parts of π, such that π1 +π2 + ·· ·=n.
A different and useful notation is π=(1r1,2r2, . . .), where r1,r2, . . . , named
multiplicities of π, are the number of parts of π equal to 1,2, . . . respectively.
The length of the partition is l(π) = r1 +r2 + ·· · and the vector of multiplici-
ties is m(π)=(r1,r2, . . .). We write π⊢n to denote that π is a partition of
n.

Proposition 2.6.5 (wch from ws and ds). Suppose Assumption 2 holds.
Then we have that for m∈N+

P(wch=m)=
∑
π⊢m

l(π)!
r1! ·· ·rm!

∏
π′∈π

P(ws=π′)[P(ds=1)]l(π)−1P(ds>1), (2.63)
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or, equivalently,

P(wch=m)=
m∑
k=1

pk∗
ws(m)[P(ds=1)]k−1P(ds>1), (2.64)

where we denote the pmf of ws by pws and the k-fold convolution of pws by
pk∗
ws.

Proof. Consider the case wch=m, with m∈N+. In order to define the
event of a chain of length m in terms of wet spells and dry spells, we
have to consider two associated sequences of wet spells random variables
ws0,ws1, . . . ,wsm∗ and dry spells random variables ds0,ds1, . . . ,dsm′, with
m∗≤2m−1 and m′≤2m. By the definition of a wet chain wch, we have
that

{wch=m}=
⋃
π⊢m

⋃
Iπ

{wsj1 =π1,dsj1 =1,wsj2 =π2,dsj2 =1, . . . ,wsjl(π) =πl(π),dsjl(π) >1},

(2.65)
where

Iπ ={(j1, . . . ,jl(π)) : jk∈{1,2, . . . ,l(π)} and jk /= jl for k,l=1, . . . ,l(π) with l /=k}.

Now suppose that wsn iid∼ws and independent from dsn
iid∼ds for all n∈N . It

follows that for every (j1, . . . ,jl(π))∈ Iπ with π⊢m we have

P
(
{wsj1 =π1,dsj1 =1,wsj2 =π2,dsj2 =1, . . . ,wsjl(π) =πl(π),dsjl(π) >1}

)
=

l(π)∏
k=0

P({wsjk
=πk})

l(π)−1∏
k=0

P({dsjk
=1})P

(
{dsjl(π) >1}

)
)

=P(ws=π′)[P(ds=1)]l(π)−1P(ds>1).

Hence, (2.63) is obtained from the fact that |Iπ|= l(π)!
r1!···rm! and from the

additivity of P. Now, suppose to rearrange (2.63) in order to specify the
sum over partitions of m of a fixed length k, that is

P(wch=m)=
m∑
k=1

∑
π⊢m
l(π)=k

k!
r1! ·· ·rm!

∏
π′∈π

P(ws=π′)[P(ds=1)]k−1P(ds>1).

The term ∑
π⊢m
l(π)=k

k!
r1! ·· ·rm!

∏
π′∈π

P(ws=π′)
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in the previously centered display is actually the probability that the sum
of k i.i.d. wet spells of any duration is equal to m, that is P(∑k

j=1wsj =m).
The pmf of the sum ∑k

j=1wsj for an arbitrary number k of i.i.d. ws is known
and obtained as the the k-fold convolution of pws, that is pk∗

ws. Then, we can
rewrite (2.63) with a more condensed notation as (2.64).

The derivation of the distribution of the dry chains dch from the ones of
ds and ws can be based upon (2.63). Indeed, a little thought reveals that it
is sufficient to reverse the roles of ws and ds in the derivation of (2.63) to
obtain the following proposition, stated without proof since the arguments
are the same as the ones employed for the previous result.
Proposition 2.6.6 (dch from ws and ds). Suppose Assumption 2 holds.
Then we have that for m∈N+

P(dch=m)=
∑
π⊢m

l(π)!
r1!·· ·rm!

∏
π′∈π

P(ds=π′)[P(ws=1)]l(π)−1P(ws>1), (2.66)

or, equivalently,

P(dch=m)=
m∑
k=1

pk∗
ds(m)[P(ws=1)]k−1P(ws>1).

From (2.66) and the reasoning behind its computation we can infer the
derivation of the distribution of dch from the one of it, when taking into
account how to obtain ws and ds from it as shown in Propositions 2.6.1 and
2.6.2.
Proposition 2.6.7 (dch from it). Suppose Assumption 1 holds. Then we
have that for m∈N+

P(dch=m)=
∑
π⊢m

l(π)!
r1! ·· ·rm!

∏
π′∈π

P(it=π′ +1)[P(it>1)]l(π)−1P(it=1). (2.67)

Let us now derive the probability distribution of the total volume of
rainfall in a given wet spell, that is hcl, from the ones of the interarrival
times and rainfall depths.
Proposition 2.6.8 (hcl from it and h). Suppose Assumption 1 holds. Addi-
tionally, consider a sequence of rainfall depths hn iid∼h and independent from
the sequence of interarrival times itn iid∼ it for all n>0. Then for k∈N+ we
have that

P(hcl=k)=P(h=k)P(it>1)+
k∑

m=2
pm

∗

h (k)[P(it=1)]m−1P(it>1), (2.68)
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where ph is the pmf of h and pm∗

h is the m-fold convolution of ph with itself.
Proof. Initially fix a wet spell ws of length m. To properly define the event
of the total volume of rainfall being equal to k, we consider an associate
m sequence of rainfall depth random variables h1, . . . ,hm. We have that for
k>m

{hcl=k,ws=m}=
⋃
π⊢k

l(π)=m

⋃
(j1,...,jm)∈Cm

{hj1 =π1, . . . ,hjm =πm,ws=m},

(2.69)
where

Cm={(j1, . . . ,jm) : jk∈{0, . . . ,m−1} and jk /= jl for k,l=1, . . . ,m}.

Under our assumptions, we have that the sequence of rainfall depths hn iid∼h is
independent from the sequence wsn iid∼ws obtained from the sequence itn iid∼ it,
n∈N. Using combinatorial arguments analogous to the ones employed in
the proofs of the previous propositions, we can write

P(hcl=k,ws=m)=
∑
π⊢k

l(π)=m

m!
r1! ·· ·rk!

∏
π′∈π

P(h=π′)P(ws=m). (2.70)

where ∑ π⊢k
l(π)=m

m!
r1!···rk!

∏
π′∈πP(h=π′) amounts to computing the m-fold con-

volution of ph with himself1, that is pm∗

h . Then, by simply marginalising, we
can write for k∈N+ that

P(hcl=k)=
∞∑
m=1

P(hcl=k,ws=m) (2.71)

=
∞∑
m=1

pm
∗

h (k)P(ws=m) (2.72)

=
k∑

m=1
pm

∗

h (k)P(ws=m) (2.73)

=P(h=k)P(it>1)+
k∑

m=2
pm

∗

h (k)[P(it=1)]m−1P(it>1), (2.74)

where the third equality comes from the fact that if m>k, {π⊢k|l(π)=
m}=∅2 and the fourth equality comes from Proposition 2.6.1.

1Indeed, under our hyphoteses, the random variable hcl is equal to the random sum
∑ws

i=1hi where
hi

iid∼ h and all independent from it and thus from ws.
2This is equivalent to saying that if m>k, k /∈ Supp(

∑ws
i=1hi|ws=m).
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Remark 2.6.9. Note that since ws appears in (2.73) and the distribution
of ds can be easily recovered from the one of it, the pmf of hcl can be also
derived from the ones of ds, ws and h. □

2.6.2 Relationships Between the Variables’ Counts in a Series of
Observations

In the previous section we have postponed the derivation of the distribution
of it from the ones of ds and ws under Assumption 2. The reason why
is that an intuitive probablistic approach, as the one employed in the
previous derivations, seems to be unattainable in this case. Therefore we
have proceeded in a slightly different way, which stems from relationships
regarding the counts of temporal variables arising from the same series of
rainfall observations, that shall be described below and also hold independent
interest. Let a series of rainfall data be defined as h ={h1, . . . ,hn}, where h
(mm) is the rainfall depth recorded at a fixed uniform unit τ of time (e.g., a
day). Let any k∈{1, . . . ,n}. A day k is considered rainy if the rainfall depth
hk≥h∗, where h∗ is a fixed rainfall threshold. The sub-series of h of the
rainy days can be defined as the event series t ={t1, . . . ,tnr}, where nr≤n is
an integer multiple of the time-scale τ . The sequence built with the times
elapsed between each element of t (except the first one) and the immediately
preceding one is defined as the interarrival time series it={it2, . . . ,itnr}.
Consider k∈{1, . . . ,nr}. If itk =1, the rainy day k immediately follows
another rainy day k−1, while an isolated rainy day k is identified if it
satisfies the condition

itk>1 and itk+1>1. (2.75)

Thus, any sequence of m∈N+ consecutive 1 values in it represents an
uninterrupted sequence of rainy days and is an observation of a wet spell
ws of duration (size) m+1 and we will refer with ws to the series of
these observations. Additionally, the series of non-rainy days ds, composed
of observations of the dry spell ds, can be derived from it by using the
relationship

dsk = itk−1 for any itk>1. (2.76)

Hence, as we continue, note that with it, ws and ds we refer to series of
observations of it, ws and ds respectively obtained from the same h. We
denote by Nx=k (resp. Nx>k) the cardinality of the set {x∈x :x=k} (resp.
{x∈x :x>k}), where x∈{it,ws,ds}. Moreover, let Nx be the length of the
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series x. It is easily derived that

Nit=1 =
max
x∈ws∑

k= min
x∈ws

Nws=k (k−1), (2.77)

Nit>1 =Nws, (2.78)
Nit=k =Nds=kk whenever k>1. (2.79)

Let us also recall the concept of empirical frequency. For a series of observa-
tions x∈{it,ws,ds}, we define the empirical frequency distribution as the
map fx :N+→ [0,1] defined as

fx(k)= 1
Nx

∑
i∈N+

1{xi=k} = Nx=k

Nx
, k∈N+ .

The domain of fx has been defined as N+ since the three considered random
variables have such a common support. Throughout the first two chapters of
this thesis, the vector {fx(k)}k≥1 shall usually be referred to as the empirical
frequencies or observed frequencies of the series x.

Proposition 2.6.10. We have that

fit(1)=

max
x∈ws∑

k= min
x∈ws

fws(k) (k−1)

max
x∈ws∑

k= min
x∈ws

fws(k)k
. (2.80)
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Proof. Exploiting the properties of the empirical frequencies and the rela-
tionships (2.77) and (2.78) we have that

max
x∈ws∑

k= min
x∈ws

fws(k) (k−1)

max
x∈ws∑

k= min
x∈ws

fws(k) k

=

max
x∈ws∑

k= min
x∈ws

fws(k) (k−1)

max
x∈ws∑

k= min
x∈ws

fws(k) (k−1)+
max
x∈ws∑

k= min
x∈ws

fws(k)
=

=

max
x∈ws∑

k= min
x∈ws

fws(k) (k−1)

max
x∈ws∑

k= min
x∈ws

fws(k) (k−1)+1
=

max
x∈ws∑

k= min
x∈ws

fws(k)Nws (k−1)

max
x∈ws∑

k= min
x∈ws

fws(k)Nws (k−1)+Nws

=

=

max
x∈ws∑

k= min
x∈ws

Nws=k (k−1)

max
x∈ws∑

k= min
x∈ws

Nws=k (k−1)+Nws

= Nit=1

Nit=1 +Nit>1
= Nit=1

Nit
=fit(1).

Let pit and pws be the pmfs of it and ws respectively.

Proposition 2.6.11. Suppose that it and ws are series of i.i.d. observations
of it and ws, obtained from the same series h={h1,h2, . . . ,hn}, where n is
the sample size. Then we have that

pit(1)= E[ws]−1
E[ws] . (2.81)

Proof. Let x̄n=∑n
i=1

xi

n denote the sample mean of a series of observations
x. Thus (2.80) can be rewritten as

fit(1)= w̄sn−1
w̄sn

. (2.82)

Let the sample size n go to infinity. Then we have that Nit→∞ and Nws→
∞. Under the assumptions that it and ws are series of i.i.d. observations
of it and ws, the Strong Law of Large Numbers (SLLN) implies that w̄sn
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converges almost surely to E[ws] as n→∞. In the same way, the SLLN
implies that the empirical frequencies fit(k) a.s. converge to the probabilities
pit(k) as n→∞ for all k∈N. The uniqueness of the limit then provides the
desired result.

Remark 2.6.12. Expression (2.80) can then be used for computing the
probability of it=1 when interested in deriving the distribution of it from
the ones of ds and ws under Assumption 2. Then for k>1 we use (2.76)
and we get

P(it=k)=


E[ws]−1
E[ws] k=1,

P(ds=k−1)[1−P(it=1)] k>1.
(2.83)

□

2.7 The Direct and Indirect Methods

Given the relationships presented above and recalling the discussion at the
beginning of Section 2.6, one could proceed in the two following ways to
provide a model for the temporal variables described above.

Direct method
Assume the rainfall occurrence process is governed by a renewal process

and consider the associated sequence of interarrival times itn iid∼ it. Ad-
ditionally, assume that itn iid∼ it is independent from the sequence hn

iid∼h
describing the rainfall amount process. Knowing pit and ph, derive the pmfs
of {ws, ds, wch, dch, hcl};

Indirect method
Assume the rainfall occurrence process is governed by an alternating

renewal process and consider the independent associated sequences of wet
spells wsn iid∼ws and dry spells dsn iid∼ds. Additionally, assume that wsn iid∼ws
is independent from the sequence hn

iid∼h describing the rainfall amount
process. Knowing pws, pds and ph obtain the pmfs of {it, wch, dch, hcl}.

In Fig. 2.2 we can see a summary of them.
The next chapter is devoted to applying the contents of what has been

presented in these sections to data consisting of daily rainfall measurements.
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Model it

Derive ws, ds, wch, dch

Derive hcl

Model h

Model ws Model ds

Derive hcl

Model h

Derive it, wch, dch

DIRECT INDIRECT

Figure 2.2: Direct and indirect methods.

More specifically, a first part shall present comparisons of fittings of the
HLZD, PSHZLD and OIHLZD. A second part will illustrate a statistical
application and comparison of the direct method and indirect method.
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Appendix

2.A Cumulants, Moments and Bell Polynomials

Recall the definition of the moment generating function (mgf) or a random
variable X, that is

MX(z)=E
[
ezX

]
.

If X is a random variable whose moment generating function MX(z)<∞ for
all z in an open neighborhood of 0, its moments {mn}n≥0 can be recovered
as mn= dnMX

dzn

∣∣∣∣∣
z=0

.

Definition. If X is a random variable having moment generating function
MX(z)<∞ for all z in an open neighborhood of 0, its cumulants {κn}n≥0
are the coefficients of the series

KX(z)=
∞∑
n=1

κn
zn

n! = logMX(z) (2.84)

for all z in some possibly smaller neighborhood of 0. The series in (2.84) is
called the cumulant generating function and the cumulants {κn}n≥0 can be
evaluated as

κn= dnK(t)
dtn

∣∣∣∣∣
t=0
.

The moments can be recovered in terms of cumulants and viceversa by
firstly simply noting that

mn= dnexp(KX(t))
dtn

∣∣∣∣∣
t=0

and κn= dn log(MX(t))
dtn

∣∣∣∣∣
t=0

and then using Faà di Bruno’s formula (see, e.g., Johnson, 2002) for higher
derivatives of composite functions, which, in terms of the partial exponential
Bell polynomials reads
dn

dxn
f(g(x))=

n∑
k=0

f (k)(g(x))Bn,k
(
g′(x),g′′(x), . . . ,g(n−k+1)(x)

)
, n∈N+,
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for functions f and g with a sufficient number of derivatives. Hence, a little
thought reveals that for n∈N+ we have

mn=Bn(κ1, . . . ,κn),

κn=L(m1, . . . ,mn).
Moreover, thanks to the properties of the polynomials involved, the following
well-known recursive relation holds

mn=κn+
n−1∑
i=1

n−1
i−1

κimn−i. (2.85)
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Chapter 3

Analysis and Modelling of
Temporal Variables at the Daily
Scale in a Large Range of
Rainfall Regimes Across
Europe

This chapter is based on Agnese et al. (2022)

Modelling the frequency of interarrival times and rainfall depths with
the poisson hurwitz-lerch zeta distribution, Fractal and Fractional 6(9)

and on Baiamonte et al. (2024)

Applying different methods to model dry and wet spells at daily scale
in a large range of rainfall regimes across europe, Advances in

Statistical Climatology, Meteorology and Oceanography, 10(1), 51–67.

In the first part of the previous chapter we have studied the HLZ family
of discrete distributions, the PSHZLD and the OIHLZD. Next, we have
delineated two approaches for modelling various rainfall temporal variables
that we denoted as direct method (DM) and indirect method (IM). Following
this partition, in this chapter we will first present a comparison of the fits of
the three previously mentioned discrete distributions to interarrival times
and rainfall depths using a real dataset. Secondly, using the same dataset,
we will apply the DM and the IM, focusing on how a comparison of the two
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procedures can shed light on some aspects of the data involved.
The available dataset is composed of various series of observations h

corresponding to daily rainfall records. To discriminate between rainy and
no-rainy days, the fixed rainfall threshold h∗ is chosen equal to 1 mm,
according to the conventional value established by the World Meteorological
Organisation. Using this, from any h we can derive the series of rainfall
amounts on the rainy days denoted by h∗, which, for brevity, shall usually
be referred to as the series of rainfall depths. As explained in Section 2.6,
from h we can additionally obtain the series of observations it, ws, ds, wch,
dch of rainfall temporal variables it, ws, ds, wch, dch, which shall also be
analysed. The next section gives a preliminary description of the data.

3.1 The Data

The dataset at our hands comprises six time series gathered across various
European latitudes, ranging from 38◦N to 58◦N, spanning locations from
Trapani and Floresta in Sicily to Stornoway in Northern Scotland. Fig
3.1.1 illustrates the geographical positions and altitudes of these six stations.
Each rain gauge station provides approximately 70 years of recorded data:
Ceva (1950-2016), Floresta (1951-2015), Oxford (1950-2017), Stornoway
(1950-2020), Torino (1950-2017), and Trapani (1950-2015), with only a
minimal amount of missing data. Given the significance of rainfall patterns
in determining the distribution of rainy and non-rainy days, the analyses
were not only conducted for the entire year Y but also for two different
additional subsets, S1 from April to September, and S2 from October to
March.

The analyzed stations exhibit distinct rainfall regimes, as depicted in
Fig. 3.1.2 by the average number of rainy days per month (panel a) and the
fraction of the yearly-average rainy days per month (panel b), which is a
standardization of the values in panel a. Trapani (TRA) and Floresta (FLO)
typify the Mediterranean climate, characterized by pronounced seasonality
in rainfall (see Fig. 3.1.2b) with most precipitation occurring in the S2
season. These stations differ significantly in their average annual rainfall:
TRA receives a low 420 mm, while FLO receives a high 1133 mm, which
is reflected in the disparate number of rainy days per month (Fig. 3.1.2a).
Torino (TOR) and Ceva (CEV) exhibit a mid-latitude sublitoranean climate,
with a high frequency of rain in the spring (Fig. 3.1.2b). CEV also shows a
secondary peak in autumn, primarily due to the Tyrrhenian Sea’s summer
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Figure 3.1.1: The six stations under consideration, along with their respective latitudes
and elevations above sea level (© QGIS 2023).

warming. Despite this, both stations have similar total annual rainfall
(829 mm for TOR and 836 mm for CEV) and similar numbers of rainy
days (Fig. 3.1.2a). Oxford (OXF) represents a Northern European station
with a relatively low average annual rainfall of 592 mm, evenly distributed
throughout the year. In contrast, Stornoway (STW), located in far north-
western Scotland, experiences very high rain frequency and a higher annual
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rainfall of 1072 mm due to the influence of wet fronts from the Atlantic
Ocean. Both UK stations display low seasonality compared to the other
stations (see Fig. 3.1.2b).

Figure 3.1.2: Time variability of: a) average number of rainy days in each month, and b)
fraction of yearly-average rainy days in each month. Dashed lines delimit the two seasons
S1 (April - September) and S2 (October-March).

For the stations TRA and FLO, the seasons S1 and S2 distinctly cor-
respond to periods of low and high frequency of rain events, respectively
(Fig. 3.1.2b). A similar pattern is observed for OXF and STW, although
the differences between the two seasons are less pronounced. Due to the
extensive length of the data records, the sample sizes remain substantial even
for the two seasonal datasets, as summarised in Table 3.1.1. The sample size
is below 500 only for dch in TRA for S1, likely due to the many extended
dry periods during the dry season.

It is noteworthy that the splitting of the two seasons of CEV and TOR
was done differently in a previous paper (Berro et al., 2019). However, in
this chapter the same splitting in two six-month seasons is used for the sake
of the homogeneity of the present analysis (Fig. 3.1.2a and 3.1.2b).

3.1.1 Preliminary Tests on Observed Records

Before attempting to proceed with either fitting the three discrete distri-
butions of interest or with the comparison of DM and IM, it is necessary
to verify if the underlying assumptions are met, or, at least, roughly met,
by the available data. That is, we shall check if the rainfall measurements
available approximately abide to the conditions of a renewal process and/or
of an alternating renewal process. Let us start with the former. In this case,
we have to inspect the independence of the interarrival times, which can
be done by classical tests on a it series. Given the daily frequency of the
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Table 3.1.1: Sample sizes of the time variables for the six stations and for the three periods:
Y, S1 (from April to September), and S2 (from October to March).

Station Period it ws–ds wch dch
CEV Y 4569 2530 2058 1102

S1 2335 1357 1159 528
S2 2203 1154 890 568

FLO Y 6495 2867 2048 1570
S1 1966 1053 858 481
S2 4520 1811 1188 1087

OXF Y 7933 3920 2559 1915
S1 3664 1883 1254 902
S2 4262 2034 1303 1012

STW Y 14227 4126 2202 2649
S1 6065 2216 1259 1337
S2 8145 1909 943 1312

TOR Y 5171 2726 2145 1289
S1 3023 1668 1277 726
S2 2147 1057 868 563

TRA Y 4064 2256 1755 970
S1 955 661 574 220
S2 3108 1594 1181 750

measurements, we anticipated the potential presence of only a lag-1 serial
correlation in it. Therefore, we decided to compute the sample Kendall,
Spearman and Pearson coefficients on the dataset composed by couples of
subsequent observations contained in a it series and then, for each coefficient,
to conduct a permutation test with null hypothesis its equality to zero. We
chose a permutation test to adjust for the presence of ties in the data. Table
3.1.2 provides the results. Since either only a weakly or absent correlation is
found, we should be able to safely proceed with the intended fittings and
with the DM. For the alternating renewal process assumption, we mainly
have to verify that the alternating dry spells and wet spells are independent
from each other. To achieve this, as above, we have computed the sample
Kendall, Spearman and Pearson coefficients and performed permutation
tests on the bivariate dataset {(wsi,dsi)}Nws

i=1 of successive dry spells and wet
spells built by suitably concatenating the series ws and ds.

As shown in Table 3.1.3, the measured sample associations are either
not significant or very low and significant, the latter result probably caused
by the substantial sample size. Again, we shall safely assume that rainfall
occurrence process is an alternating renewal process within the IM.
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Station Kendall Spearman Pearson
CEV (Y) 0.03 0.039* 0.03
CEV (S1) 0.06* 0.077* 0.021
CEV (S2) -0.004 -0.005 0.036
FLO (Y) 0.048* 0.058* 0.151*
FLO (S1) 0.044 0.057 0.036
FLO (S2) 0 0 0.03
OXF (Y) 0.043* 0.052* 0.046*
OXF (S1) 0.028 0.034 0.019
OXF (S2) 0.053* 0.063* 0.064*
STW (Y) 0.096* 0.106* 0.078*
STW (S1) 0.05* 0.057* 0.043*
STW (S2) 0.104* 0.113* 0.08*
TOR (Y) 0.018 0.022 0.059*
TOR (S1) 0.043* 0.054* 0.05*
TOR (S2) -0.014 -0.018 0.036
TRA (Y) 0.06* 0.077* 0.14*
TRA (S1) 0.019 0.027 0.034
TRA (S2) 0.016 0.02 0.06*

Table 3.1.2: Sample Kendall, Spearman and Pearson coefficients computed on the dataset
composed by couples of subsequent observations contained in a it series for all the stations
and subdivisions considered. The asterisk indicates significance at a 0.01 level in a permu-
tation test for the equality to zero of the statistic.

Now, recall that in the DM and IM we hinted at the possibility of
deriving the distribution of the volume of rainfall in a wet spell. In this
case, according to our assumptions, we should investigate the dependence
between the length of a wet spell and the rainfall depths contained therein.
To achieve this, firstly, from a series h and the associated series ws, a
bivariate dataset (ws,h) is built in the following way. Consider the first wet
spell observation ws1 in ws, of arbitrary length m∈N+, and let h1, . . . ,hm
be the associated rainfall depths observations. Then, the corresponding m
couples (ws1,h1),(ws1,h2), . . . ,(ws1,hm) form the first m elements of (ws,h).
Repeating this process for all the elements of ws provides (ws,h). Secondly,
as previously done, the sample Kendall, Spearman and Pearson coefficients
are computed on (ws,h) and for each of the three aforementioned test
statistics a permutation test is conducted with null hypothesis their equality
to zero. The values of the statistics are found in Table 3.1.4, where an
asterisk indicates the significance at a 0.01 level with respect to the previously
mentioned tests. An inspection of Table 3.1.4 reveals, unsurprisingly, the
presence of a significant dependence between the rainfall depths and the
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Station Kendall Spearman Pearson
CEV (Y) -0.014 -0.017 0.005
CEV (S1) -0.016 -0.02 -0.014
CEV (S2) -0.038 -0.048 -0.021
FLO (Y) -0.08* -0.1* -0.096*
FLO (S1) -0.054 -0.068 -0.066*
FLO (S2) -0.018 -0.022 -0.038
OXF (Y) -0.015 -0.019 -0.011
OXF (S1) -0.021 -0.026 -0.018
OXF (S2) -0.008 -0.01 0.026
STW (Y) -0.078* -0.097* -0.052*
STW (S1) -0.043* -0.053 -0.045
STW (S2) -0.09* -0.113* -0.029
TOR (Y) -0.016 -0.021 -0.007
TOR (S1) -0.049* -0.06 -0.069*
TOR (S2) -0.003 -0.005 -0.003
TRA (Y) -0.052* -0.065* -0.095*
TRA (S1) -0.061 -0.076 -0.096
TRA (S2) 0.003 0.004 -0.019

Table 3.1.3: Sample Kendall, Spearman and Pearson coefficients computed on the on
the bivariate dataset {(wsi,dsi)}Nws

i=1 of successive dry spells and wet spells for all the
stations and subdivisions considered. The asterisk indicates significance at a 0.01 level in a
permutation test for the equality to zero of the statistic.

corresponding wet spell for some stations. Therefore, the derivation of the
distribution of the volume of rainfall in a sequence of rainy days shall not be
discussed in the DM and IM and will not be treated in the thesis. A deeper
analysis of the association between the length of a wet spell and the rainfall
depths contained therein is left for future work.

3.2 Fitting of Interarrival Times and Rainfall Depths

As already mentioned in the beginning of this chapter, we will start this
analysis by comparing the fittings of the HLZD, the PSHLZ and the OIHLZD
on the available samples of it and h. Note that the PSHLZD has support
N and the rvs it and h naturally have support N+. To circumvent this,
we simply considered a shift of support labels, or, equivalently, the shifted
rvs it−1 and h−1. In all the scenarios, to estimate the parameters of the
three considered distributions we have used the respective ML estimations
procedures as explained in Sections 2.3.6, 2.4.3 and 2.5.2. To assess the
goodness of fit, we have employed a simulated χ2 goodness-of-fit test. When
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Station Kendall Spearman Pearson
CEV (Y) 0.156* 0.207* 0.195*
CEV (S1) 0.128* 0.168* 0.151*
CEV (S2) 0.167* 0.225* 0.206*
FLO (Y) 0.083* 0.114* 0.058*
FLO (S1) 0.098* 0.131* 0.071*
FLO (S2) 0.074* 0.102* 0.045*
OXF (Y) 0.08* 0.105* 0.054*
OXF (S1) 0.06* 0.079* 0.034
OXF (S2) 0.099* 0.13* 0.088*
STW (Y) 0.147* 0.201* 0.148*
STW (S1) 0.087* 0.117* 0.093*
STW (S2) 0.145* 0.201* 0.14*
TOR (Y) 0.14* 0.187* 0.146*
TOR (S1) 0.089* 0.12* 0.076*
TOR (S2) 0.216* 0.288* 0.253*
TRA (Y) 0.059* 0.078* 0.02
TRA (S1) 0.088* 0.109* 0.064
TRA (S2) 0.052* 0.068* 0.025

Table 3.1.4: Sample Kendall, Spearman and Pearson coefficients computed on the dataset
(ws,h) defined as in the end of Section 3.1.1. The asterisk indicates significance at a 0.01
level in a permutation test for the equality to zero of the statistic.

the distributions exhibit a long tail, it is known that the classical χ2 test
might be biased due to the presence of numerous small class sizes (with less
than 5 elements) and strong asymmetry. Therefore, we decided to proceed by
reconstructing the distribution of the χ2 statistic under the null hypothesis
via Monte Carlo simulation (see, for example, Hope, 1968). For what regards
the interarrival times, more detailed results of the goodness of fit tests shall
be actually presented in Section 3.3.5. To further inspect the differences
between the distributions, as classically done, we have analysed the fitting
errors by computing discrepancies between the empirical frequencies and
the fitted ones. Since many empirical frequencies are zero (in the tail), the
theoretical and empirical cdfs have been considered. The metrics employed
are the mean absolute error (MAE) and the mean relative absolute error
(MRAE). More precisely, given a sample x =(x1, . . . ,xn), we let MAE(x)=∑n
j=1

1
n |Fn(xj)−F (xj)| and MRAE(x) =∑n

j=1
1
n |Fn(xj)−F (xj)|/Fn(xj) with

Fn the empirical cdf and F the fitted cdf.
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3.2.1 Interarrival Times

Some statistical characteristics usually observed in it samples are the follow-
ing: very high variance and skewness, relatively high frequency associated
to the observation it= 1, monotonically decreasing frequencies with a slowly
decaying tail and a drop in the passage from the frequency at it=1 to the
one at it=2. An example of empirical frequencies computed from a given
sample it is shown in Figure 3.2.1. It clearly shows the dominance of the
frequencies corresponding to it=1 and it=2, which are particularly mean-
ingful if one is aiming to use the interarrival times as a proxy for the rainfall
occurrence. Due to the multitude of rather smaller values in the rightmost
part of the histogram, to perform comparisons and enhance visibility, a
log-log scale for all the plots showing fitting results has been adopted in
this section. In order to explore the flexibility of the PSHZLD, we have
compared the fitted PSHLZD with the fitted HLZD and the fitted PSHLZD
with the fitted OIHLZD. To summarise the results, we have selected 4 of the
33 available samples since they have been considered particularly meaningful
with respect to the whole dataset. The selected samples were STW (Y),
TRA (Y), TRA (S1) and TRA (S2). The decision to show here such a
relatively small partition of the dataset is justified by the fact that a deeper
analysis of the fittings of the HLZD shall be given later in Section 3.3.5.

Fig. 3.2.2 shows plots of the fitted PSHLZ pmf (solid line) and HLZ pmf
(dashed line) compared with the empirical frequencies (red dots) for the 4
selected samples. The fitting in both cases is very good. In particular, in
the illustrated case of TRA (S1), the PSHLZD succeeds in fitting the drop
from it=1 to it=2 whereas the HLZD fails. This seems to usually happen
in the drier periods, where this drop is more prominent.

Figure 3.2.3 presents the MAE and MRAE obtained by comparing the
fitted cdf’s of the PSHLZD (circle) and the HLZD (triangle) with the
empirical cdf’s computed from the samples it. Note that the MAE and the
MRAE are generally lower for the PSHLZD. Finally, we noticed that in
seemingly all cases, the fitted OIHLZD and PSHLZD have minimal differences
and are almost indistinguishable (see Figure 3.2.4 for an example), confirming
the great flexibility of the latter distribution.

To conclude the validation analysis, we compared sample means and
sample variances with the same theoretical moments of the HLZD and the
PSHLZD computed in Section 2.3 and 2.4 respectively. In Table 3.2.1,
we show the results for the 4 selected samples. In all cases, the fitted
distributions’ means agree with the sample ones. For the variances, the
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Figure 3.2.1: Histogram computed using the sample it from TRA (Y). The range is up to
133. The mode is it= 1 with relative frequency 0.44. The mean and the standard deviation
are 5.89 and 11.97 respectively.

same happens with a slightly better performance of the PSHLZD, with an
exception of TRA (S1). As already said, a more in depth discussion of the
fitting results of the HLZ distribution alone shall be given later in Section
3.4.

3.2.2 Rainfall Depths

We now summarize the fitting of the rainfall depths samples h∗ using both
the PSHLZD and the HLZD. Recall that given the numerous ties in the
data we have decided to treat h as a discrete random variable. In practice,
this means that prior to fitting we have taken the integer part of each
observation in a series h∗ and then performed the estimation on the resulting
discrete series. Consequently, as we continue, the rainfall depths, whenever
mentioned either in the form of h or as a series h∗, shall be tacitly understood
as the integer part of the original measurements.
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Figure 3.2.2: Log-log plots of the fitted HLZD pmf (green dashed line), the fitted PSHLZ
pmf (black solid line) and the empirical frequencies (red dots) for the 4 selected it samples
STW (Y), TRA (Y), TRA (S1) and TRA (S2).

We decided to omit any comparison with the OIHLZD since its perfor-
mance is analogous to the one showed for the interarrival times and therefore
did not add any significant insights. Fig. 3.2.5 shows a histogram computed
from a sample of rainfall depths whose shape appears similar to the one
previously shown from a sample it. Indeed, we can see the mode in h=1,
accompanied by a multitude of rather smaller values in the slowly decaying
tails. Similarly as before, this prompted us to employ in this section a log-log
scale for the plots reporting fitting results. Unlike in the previous section,
fitting results will be shown for all the stations and all the subsets, since the
fitting of the rainfall depths shall not be investigated further in the second
part of this chapter.

Observing the fitting results in Figure’s 3.2.6, 3.2.7 and 3.2.8 leads to the
following remarks. As with the interarrival times, the fitting appears to be
satisfactory, seemingly even better. Additionally, due to the absence of the
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Figure 3.2.3: Dot plots of MAE and MRAE taking as reference the fitted cdf of the PSHLZD
(black circle) and of the HLZD (red triangle) for all the samples it. The maximum MAE as
well as the mean MAE are given in the top left for both the fitting distributions.
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Figure 3.2.4: The fitted PSHLZ pmf (black solid line) is plotted together with the fitted
HLZ pmf (green dashed line) and the empirical frequencies (red dots) for the sample it of
FLO (S1) and FLO (S2).

prominent drop between the first and second frequencies which characterised
it data, a less marked difference between the performance of the two distri-
butions may be initially inferred. However, by inspecting Fig. 3.2.9, which
presents the MAE and the MRAE obtained by comparing the fitted cdf’s
of the PSHLZD (circle) and the HLZD (triangle) with the empirical cdf’s

104



3 – Analysis and Modelling of Temporal Variables at the Daily Scale in a Large Range of Rainfall Regimes Across Europe

Table 3.2.1: The sample means and the sample variances for the 4 selected samples are
given in the first column. The means and the variances of the fitted HLZD and of the fitted
PSHLZD are given in the second and in the third column respectively.

STW (Y)
Sample HLZ PSHLZ

Mean 1.822 1.826 1.822
Var 4.374 4.475 4.435

TRA (Y)
Sample HLZ PSHLZ

Mean 5.887 5.887 5.887
Var 143.31 125.36 159.14

TRA (S1)
Sample HLZ PSHLZ

Mean 13.039 13.039 13.039
Var 469.13 464.87 540.14

TRA (S2)
Sample HLZD PSHLZD

Mean 3.792 3.792 3.792
Var 26.7 27.6 27.29

computed from the corresponding h∗, one can see that even in this case the
PSHLZD provides an improvement. We end this section by stressing out
that the great fitting results showed by both the PSHLZ and the HLZD on
samples of h are a proof of the great flexibility enjoyed by both distribu-
tions. Indeed, the suitability of these distributions in modelling daily rainfall
depths is demonstrated even with the significantly varying rainfall patterns
across the stations examined. Importantly, the observed frequencies for h
are effectively replicated on the sole annual basis, suggesting that dividing
the datasets into sub-periods is not essential for accurately modelling the
probabilistic behaviour of h within any of the rainfall regimes studied.

3.3 DM and IM Results

We shall now proceed with the application and comparison of the DM and
IM on the available dataset. It must be noted that, only the HLZ family of
discrete distributions will be used in the following, even though the previous
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Figure 3.2.5: Histogram computed using the sample h∗ for TRA(Y). 111 is the maximum
registered depth. The mode is h=1 with relative frequency 0.22. The mean and the
standard deviation are 6.81 and 9.16 respectively.

sections hint to a superior fitting of the PSHZLD on some of the available
samples. However, the latter has been excluded firstly for a matter of
computational complexity, which is slightly increased by the additional effort
put into optimising for the added parameter. Secondly, the HLZ family is
a nested family and, unlike in the preceding sections where only the full
HLZD has been considered, we here shall also use the likelihood ratio as
a model selection tool, which rely on the underlying family being nested.
Recall that, since a significant dependence between the rainfall depths and
the corresponding wet spell has been detected, we will not discuss here the
derivation of the distribution of the volume of rainfall in a sequence of rainy
days. In the next subsection the methodology is explained more in detail
together with the inference procedures employed.
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Figure 3.2.6: Log-log plots of the fitted HLZ pmf (green dashed line), the fitted PSHLZ
pmf (black solid line) and the h empirical frequencies (red dots) for the subset Y for all the
stations.

3.3.1 Direct Method

The DM is structured in the following way. As explained above, it is reason-
able to suppose that it follows a 3-parameter HLZD. Given the estimated
pmf pit and cdf Fit of it, the relationships described in Section 2.6.1 and
the discussion therein let us derive the pmfs of ws, ds, wch and dch in the
following way. For k∈N+ we can write

pws(k)=(1−pit(1))[pit(1)]k−1, (3.1)

pds(k)= pit(k+1)
1−pit(1) , (3.2)

pwch(k)=
k−1∑
i=0

k−1
i

[pit(2)]i[pit(1)]k−1−i[1−Fit(2)], (3.3)
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Figure 3.2.7: Log-log plots of the fitted HLZ pmf (green dashed line), the fitted PSHLZ
pmf (black solid line) and the h empirical frequencies (red dots) for the subset S1 for all
the stations.

pdch(k)=
∑
π⊢m

l(π)!
r1! ·· ·rm!

∏
π′∈π

pit(π′ +1)[1−Fit(1)]l(π)−1pit(1). (3.4)

The estimation of the parameters (θ,s,a) in pit has already been carried out
in the first part of this chapter according to Section 2.3.6.

3.3.2 Indirect Method

In the IM, in order to explore the validity of the other distributions in the
HLZ family for ws and ds, in addition to the full 3-parameter HLZD we
tested another three members. For v∈{ws,ds} we have considered

1. The Geometric distribution (ID = 4 in Table 2.1), corresponding to
(2.19) with s=−1 and thus with functional form

pv(k;θ)= θ(1−θ)k−1, k∈N+ . (3.5)
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Figure 3.2.8: Log-log plots of the fitted HLZ pmf (green dashed line), the fitted PSHLZ
pmf (black solid line) and the h empirical frequencies (red dots) for the subset S2 for all
the stations.

2. The Polylog distribution (ID = 2 in Table 2.1), corresponding to (2.19)
with a=0 and thus with functional form

pv(k;θ,s)= θk−1

ks+1Lis+1(θ)
, k∈N+, (3.6)

where Lis(θ)=Φ(θ,s+1,1), k∈N+ .

3. The 2-parameter Logarithmic distribution (ID = 5 in Table 2.1), corre-
sponding to (2.19) with s=0 and thus with functional form

pv(k;θ,a)= θk−1

(k+a)Φ(θ,1,a+1) , k∈N+ . (3.7)

Then, given the estimated pws and pds, the relationships described in Section
2.6.1 and the discussion therein let us derive the pmfs of it, wch and dch in
the following way. For k∈N+ we can write
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Figure 3.2.9: Dot plots of MAE and MRAE taking as reference the cdf of the PSHLZD
(black circle) and of the HLZD (red triangle) for all the h samples. The maximum MAE as
well as the mean MAE are given in the top left for both the fitting distributions.

pit(k)=


E[ws]−1
E[ws] k=1,
pds(k−1)[1−pit(1)] k>1,

(3.8)

pwch(k)=
k∑
i=1
pi∗ws(k)[pds(1)]i−1[1−Fds(1)], (3.9)

pdch(k)=
k∑
i=1
pi∗ds(k)[pws(1)]i−1[1−Fws(1)]. (3.10)

The selection of a model between the three proposed above for pws and pds
and the related parameter estimation is described in the following section.

3.3.3 Inference

When selecting a model for ws and ds in the IM, the LLR test as detailed
in Section 2.2.6 has been employed within the following model selection
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procedure. Let the following reduced parameter spaces

Θlerch=(0,1)×(−∞,+∞)×(−1,∞),
Θpolylog =(0,1)×(−∞,+∞)×{0},
Θ2log =(0,1)×{0}×(−1,∞),
Θgeom=(0,1)×{−1}×{0},

corresponding respectively to the distributions with ID=1,2,5,4 in Table
2.1, and fix a series of observations y of ws or ds. Algorithm 1 can be used
to select a distribution between ID=1,2,5,4 in Table 2.1 as a statistical
model for the current data y.

Algorithm 1: LL Ratio Algorithm

Initialization

parameter.spaces←{Θlerch,Θpolylog,Θ2log,Θgeom}
LLR← [ ]
parameters← [ ]

for i←1 to 4 do
Θ0←parameter.spaces[i]
θ̂←argmaxθ∈Θ0 ℓn(θ,y)
parameters[i]← θ̂

LLR[i]← ℓn(θ̂,y)
end

Set best← lerch

if −2(LLR[2]−LLR[1])≤3.841 then
best←polylog

end

if −2(LLR[3]−LLR[1])≤3.841 and LLR[3]≥LLR[2] then
best←2log

end

if −2(LLR[4]−LLR[1])≤5.991 and
2(LLR[4]−max(LLR[2],LLR[3]))≥3.841 then

best←geom
end

return parameters[best], best
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The critical values appearing in the second part of Algorithm 1 are the
ones corresponding to the χ2 distribution at a 0.05 level with degrees of
freedom equal to the difference between the number of free parameters of the
alternative and the null models, as explained in Section 2.2.6. Moreover, to
assess the adequacy of the selected member of the Lerch family in reproducing
the observed frequencies, we have employed a simulated χ2 goodness-of-fit
test as described in the beginning of Section 3.2.

Before proceeding with the actual fitting results involved in the DM and
IM, in the next subsection some additional preliminary statistical analyses
involving the other temporal variables are performed and discussed.

3.3.4 Non-Parametric Analyses

The primary statistics for the considered rainfall time variables - it, ws, ds,
wch, and dch - are summarized in the box plots in Fig. 3.3.1. These plots
present all stations across the three periods Y, S1 and S2. The figure reveals
the varied statistical properties of the examined variables and underscores
the impact of seasonality on all locations.

It is noteworthy that the STW station exhibits the highest ws and wch
statistics, likely attributable to its high frequency of rainfall. These elevated
values are naturally offset by the lowest it, ds, and dch statistics across
all considered periods. For ws during the S1 period, most stations display
a relatively limited range of variability, except for STW and TRA, which
exhibit significantly different rainfall regimes.

An in-depth analysis of the relationship between spells and chains can be
pursued by observing Fig. 3.3.2. This figure plots the ratios of the observed
cumulative frequencies Fn,ws/Fn,wch (panels a and b) and Fn,ds/Fn,dch (panels
c and d) against the corresponding time variables for the six stations during
the two seasons, S1 (panels a and c) and S2 (panels b and d). These ratios
provide insights into the relative significance of the derived variables dch
and wch compared to ds and ws.

As expected, the ratios Fn,ws/Fn,wch and Fn,ds/Fn,dch are both greater than
one, with Fn,ds/Fn,dch ratios typically ranging from 1 to 3, and Fn,ws/Fn,wch
ratios between 1 and 1.7. In general, there is an observable trend from S1
to S2, where Fn,ws/Fn,wch increases and Fn,ds/Fn,dch decreases.

The ratios for the CEV and TOR stations remain relatively consistent
across both seasons, indicating limited seasonality. On the other hand,
STW, which experiences very frequent rainfall, is unique in having a higher
Fn,ws/Fn,wch ratio compared to Fn,ds/Fn,dch.
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Figure 3.3.1: Box plots of the time variables, it (a – c), ws(d – f), ds(g – i), wch (j – l)
and dch (m – o) for all six stations and for the three periods, Y (left column), S1 (central
column) and S2 (right column). The variables q1 and q3 identify the first and the third
quartiles, respectively.

It is particularly noteworthy that TRA shows very high Fn,ds/Fn,dch ratios
during the S1 period, reflecting the region’s significant aridity in western
Sicily during this time. Additionally, FLO exhibits substantial differences
in Fn,ws/Fn,wch between the two seasons, further underscoring the seasonal
variability in rainfall patterns.

Recall that a key difference between the DM and the IM, as introduced
in Section 2.7, lies in modelling the inter-event times as i.i.d. renewal times,
which results in a geometric distribution of ws in the DM. This is equivalent
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Figure 3.3.2: Ratios between observed cumulative frequencies Fn,ws/Fn,wch (panels a,b) and
Fn,ds/Fn,dch (panels c,d) for the six stations, and for S1 (panels a,c) and S2 (panels b,d) for
all the stations considered.

to making a simple hypothesis on the daily occurrence of rain: supposing
that the probability of a rainy day is a constant independent from the
weather of the previous days (see, for example, the classic Chatfield, 1966).
Formally speaking, this means that the distribution of the ws enjoys the
so called lack of memory property. Indeed, in the discrete setting, the only
distribution with this characteristic is the geometric distribution. More in
detail, we have that ws has a geometric distribution if and only if

P(ws>i+j|ws>i)=P(ws>j), i,j∈N. (3.11)

Hence, a preliminary analysis of the memory (or lack thereof) property
would provide a useful tool for recommending the use of the IM or the DM.
Let us consider a time series of observations of ws denoted by ws. Let k in
{min
x∈ws

, . . . ,max
x∈ws
−1} and denote with Sk the number of wet spells of length

at least k found in ws. A way of testing the memoryless property is to
study the behaviour of the ratios Sk+1

Sk
for all k∈{min

x∈ws
, . . . ,max

x∈ws
−1}. The
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corresponding theoretical value is

P(ws>k+1)
P(ws>k) =1−rws(k), (3.12)

where rws is the failure rate as given in (2.26). If ws∼HLZ(θ,a,s) as in
(2.19), recall that from Proposition 2.3.7 we have

rws(k)= θ

(a+k)s+1T (θ,s,a+k−1) , k∈N+ . (3.13)

Is we set s=−1 in the above expression, which corresponds to the Geom(1−
θ) in the family of HLZDs, we get rws(k)= θ for any k∈N+ and thus
P(X>k+1)
P(X>k) =1−θ for any k∈N+, which is constant as expected. For all the

other distributions in the HLZ family rws is a monotone decreasing function
of k from Proposition 2.3.7 when s>−1. Thus, the proposed procedure
consists in computing these ratios for all k∈{min

x∈ws
, . . . , k̄−1}, where k̄ <max

x∈ws
is such that the number of wet spells of length at least k̄ is still significant,
and checking if they approximately constant.

Hence, to assess the memoryless property of ws in our data, Fig. 3.3.3
displays the sequence of the ratio Sk+1

Sk
for all stations and periods. The series

are shown up to ws values with at least 10 observations. The results indicate
a roughly constant value for CEV and TOR (Fig. 3.3.3a), a slightly increasing
trend for TRA and FLO (Fig. 3.3.3b), and a pronounced increasing trend
for OXF (Fig. 3.3.3c) and STW (Fig. 3.3.3d). These patterns suggest that
a geometric distribution may not be suitable for modelling the ws records
of OXF and STW. The increasing variability in the Sk+1

Sk
ratios serves as an

indicator that the geometric distribution might not adequately capture the
characteristics of wet spells for these stations.

3.3.5 DM and IM Comparison

For the series of observations of the six rain gauges, the Lerch family as
defined in (2.19) was fitted to the data across three periods, that is the
entire year Y, and the two seasonal periods S1 and S2, following both the
DM and the IM. For the former, the fitting was already conducted for it in
the previous sections when considering the full HLZD and shall be further
discussed. In the latter, for both ws and ds, a model within the HLZ family
was selected by following the procedure in Algorithm 1. The parameters
estimated using MLE are presented in Table 3.3.1. It is crucial to emphasize
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Figure 3.3.3: For the three periods, Y, S1 and S2, plots of the Sk+1/Sk ratios versus ws in
a) for CEV and TOR, in b) for FLO and TRA, in c) for OXF and in d) for STW.

that for each station and period combination, the parameters listed in Table
3.3.1 align with the special cases of the Lerch family (as detailed in Table
2.1), according to the results of the model selection procedure mentioned
above.

In the DM framework, the 3-parameter Lerch distribution is selected for
all sites and periods for it. The θ parameter ranges between 0.86 and 0.97,
with higher values observed for the entire year and season S1 for TRA. This
does not come as a surprise since, as seen in Section 2.3.5, θ governs the
heaviness of the tail and we had previously observed that interarrival times
samples usually present a remarkable tail. The variation of θ across different
periods is minimal for OXF, STW, and, to a lesser extent, CEV, indicating
a low degree of seasonality compared to the other stations. As expected, the
a values are all negative (Table 3.3.1), reflecting the observed decrease in
frequency from it= 1 to it= 2. The s parameter is positive for all it fittings,
effectively replicating the fact that the mode consistently occurs at it=1.

When adapting the IM framework, the geometric distribution (with
s=0 and a=1) was selected in several instances (10 out of 18) to fit ws,
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Table 3.3.1: Parameters of the Lerch family of probability distributions fitted on series it
(DM), ws and ds (IM) for the six stations and for the three periods, Y, S1 and S2. Values
of 0 or 1 for the parameters s and a identify the special cases listed in Table 2.1.

Station Variable θ s a
Y S1 S2 Y S1 S2 Y S1 S2

CEV it 0.913 0.902 0.923 -0.558 -0.605 -0.524 -0.953 -0.954 -0.958
FLO it 0.934 0.942 0.858 0.005 -0.300 -0.262 -0.657 -0.833 -0.809
OXF it 0.902 0.906 0.896 0.069 -0.004 0.122 -0.384 -0.437 -0.342
STW it 0.867 0.864 0.861 0.348 0.186 0.539 -0.528 -0.489 -0.508
TOR it 0.919 0.871 0.940 -0.419 -0.607 -0.451 -0.891 -0.942 -0.953
TRA it 0.970 0.975 0.897 0.164 -0.256 -0.311 -0.364 -0.687 -0.771
CEV ws 0.446 0.419 0.476 -1 -1 -1 1 1 1
FLO ws 0.650 0.464 0.599 0 -1 0 3.084 1 1
OXF ws 0.558 0.486 0.600 -0.739 -1 -0.618 0 1 0
STW ws 0.843 0.696 0.853 0 -0.676 -0.415 0.921 0 0
TOR ws 0.473 0.583 0.508 -1 0 -1 1 1.143 1
TRA ws 0.553 0.308 0.486 0 -1 -1 1.896 1 1
CEV ds 0.913 0.901 0.922 -0.567 -0.613 -0.533 0 0 0
FLO ds 0.967 0.953 0.853 0.938 0.4 -0.338 2.889 1.399 0
OXF ds 0.890 0.880 0.880 -0.173 -0.457 -0.165 0 -0.548 0
STW ds 0.838 0.861 0.799 0 0 0 0 0 0
TOR ds 0.918 0.871 0.940 -0.448 -0.616 -0.459 0 0 0
TRA ds 0.989 0.980 0.892 1.042 0.14 -0.386 3.870 2.062 0

more frequently for the sub-seasons (8 out of 12) than for the entire year.
The CEV station uniquely had the geometric distribution chosen for all
three periods, whereas this distribution was never selected for STW. To
accurately model the probabilistic behaviour of ws, the OXF and STW
stations appear to require the polylog-series or the 2-parameter extended
log-series distribution (refer to Table 2.1). Interestingly, for TRA and FLO,
the geometric distribution is inappropriate for ws over the entire year but is
suitable when the dataset is divided into two sub-seasons.

Regarding the ds distribution in the IM framework, two or three pa-
rameters are consistently required, except for STW, where the logarithmic
distribution (s=1 and a=0) is selected for all three periods. The polylog-
series distribution is selected in 10 out of 18 cases, highlighting its suitability
for modelling the probability law of dry spells in various scenarios. Notably,
for CEV and TOR, the θ and s values in the polylog distribution for ds
closely match those in the Lerch distribution for it. Consequently, for these
stations, the additional parameter a in the Lerch distribution effectively
serves to accommodate the geometric distribution of ws.
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The evaluation of the goodness-of-fit for the selected distributions (for it
in the DM, and for ws and ds in the IM) is summarised in Fig. 3.3.4. For all
stations and periods (Y, S1, S2), the computed p-values are categorized into
four ranges: (0−0.01), (0.01−0.05), (0.05−0.1), and (0.1−1). The light
green (0.05−0.1) and dark green (0.1−1) ranges indicate the acceptance
range of the null hypothesis.

For a few of the 180 (6 stations ×3 periods ×5 variables ×2 methods)
Monte Carlo procedures (19/180), the presence of outliers (high values with
very low frequency) bore a strong hint to the necessity of a preliminary
frequency smoothing. The latter was performed by uniformly distributing
the frequency of the outlier over all values between the observed value and
the latest observed non-null frequency.

These cases are indicated by black dots in Fig. 3.3.4. Overall, the figure
indicates that the fitting of it is satisfactory across all cases for Y, with the
exception of FLO, where the p-value slightly exceeds 0.05. Likewise, the
results for ds are generally good, which is expected given the strong similarity
between it and ds modelling in the DM framework (refer to Proposition
2.6.2). In contrast, the fits for ws and wch are less satisfactory in several
instances, particularly for STW and TRA.

The data on the right side of Fig. 3.3.4 (i.e., IM) indicates a notable
reduction in the number of unsatisfactory fits (represented by red and orange
classes) when the IM is applied, especially for ws and wch. Furthermore,
analysing the seasonal datasets shows even greater improvement in accurately
identifying the probability law of the time variables.

Figures 3.3.5 and 3.3.6 illustrate the cumulative observed frequencies and
the corresponding fitted Lerch family cdfs for Y when applying the DM and
the IM, respectively. The comparison between the two methods confirms the
overall improvement achieved by the IM in cases that were not well-fitted
by the DM, such as ws and wch for STW (compare Fig. 3.3.5b and 3.3.5d
with Fig. 3.3.6a and 3.3.6c). This improvement is further supported by the
comparison of the p-value classifications (Fig. 3.3.4) for the same variables
when the IM is used instead of the DM. This result highlights the fact
that adopting the simpler model of a renewal process governed by i.i.d.
interarrival times may not always be a valid choice when aiming to also
derive the other temporal variables.

Since the previous results show that the primary distinction between
the two methods lies in their ability to model ws and wch, and to a lesser
extent dch, the plots in Fig. 3.3.7 illustrate the MAE for these variables as
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Figure 3.3.4: Summary of the results of the simulated χ2 test for both the direct (DM,
left-side figure) and the indirect (IM, right-side figure) methods. The variables inside the
large arrows are the ones fitted in the corresponding method, whereas the other variables
are deducted. The p-values (see legend) for all the stations and periods are reported. Black
dots indicate that smoothing of observed frequencies was applied to calculate χ2 ref.

modeled by the two methods for S1 (panels a, c, e) and S2 (panels b, d, f).
These results further underscore the superior performance of the IM in most
instances, as indicated by the high proportion of points situated below the
1:1 line (where differences are greater in the DM than in the IM).

Overall, the majority of differences cluster along the identity line, in-
dicating that both methods generally perform well. However, substantial
discrepancies are evident for STW, OXF, and FLO, which suggests that
in these cases, relaxing the standard renewal property in favour of the
alternating one is necessary for more accurate modelling.

The Lerch family distribution is also successful in modelling the probability
of extreme values for the time variables. The overall consistency of these
fittings is illustrated in Fig. 3.3.8, where the empirical 99th percentiles (Q0.99)
are compared with the estimated percentiles for all stations and periods,
applying both the DM (Fig. 3.3.8a) and the IM (Fig. 3.3.8b). In Fig. 3.3.8a,
the points generally align closely with the line of perfect agreement, with
a few exceptions likely attributable to limited sample sizes, such as those
seen at the Sicilian stations during season S1. Only a slight improvement is
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Figure 3.3.5: Observed cumulative frequencies (dots) and fitted cdfs (lines) for the six
stations according to the direct method (DM) and for the period Y. The variables on the
x-axis are in logarithmic scale.

noticeable when using the IM. These findings imply that the discrepancies
observed with the DM in certain cases do not significantly affect the results
for the extremes, but rather impact the accuracy for the more frequent data
points.
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Figure 3.3.6: Observed cumulative frequencies (dots) and fitted cdfs (lines) for the six
stations according to the indirect method (IM) and for the period Y. The variables on the
x-axis are in logarithmic scale.

3.4 Discussion

As already mentioned, the application of the Lerch distribution to the
selected six stations builds on previous studies conducted for stations in
Sicily and Piedmont (Agnese et al., 2014; Berro et al., 2019). The adequacy
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Figure 3.3.7: Scatterplots of the MAE with the DM (x-axis) against the MAE with the IM
(y-axis) for ws(a,b), wch (c, d), and dch(e,f) for the six stations.

of this distribution in fitting daily rainfall inter-event times it is confirmed
even when considering data recorded at OXF and STW, despite the markedly
different rainfall patterns of these latter stations compared to those previously
analysed. Notably, as was also previously noted for the rainfall depths, the
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Figure 3.3.8: Comparison between empirical and theoretical quantile Q0.99, calculated
according to the DM (a) and the IM (b) for all stations, periods, and time variables bundled
together.

observed frequencies for it are well reproduced at the annual scale, indicating
that splitting the datasets into sub-periods is not strictly necessary to
accurately model the probabilistic law of it in any of the rainfall regimes
under consideration.

The scientific literature on the statistical inference of rainfall interarrival
times remains relatively sparse, so further evidence of the suitability of the
Lerch family to reproduce it distributions across a wide range of rainfall
regimes is promising for future applications of this methodology. This
consistency across diverse climatic conditions underscores the robustness
and versatility of the Lerch distribution in modelling rainfall patterns.

However, the results obtained for ws and ds using the DM indicate that
a good fit for it does not necessarily ensure an accurate reproduction of the
frequencies of these derived quantities. Specifically, the geometric distri-
bution often falls short in adequately describing wet spells. The enhanced
performance of the IM, which utilises distributions that relax the memoryless
property, suggests the presence of an underlying inner structure in multiday
rainfall events. This structure indicates that the probability of rain is not
constant within the event itself.

Typically, it is assumed that the internal structure observed in sub-daily
(e.g., 10-minute) rainfall records diminishes at daily aggregation levels (see,
e.g., Ridolfi et al., 2011). However, the results reported here challenge this
assumption for some of the investigated sites, suggesting that the internal
dynamics of rainfall events may persist even at daily time scales. This finding
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underscores the necessity of employing more flexible modelling approaches,
such as the IM, to accurately capture these complexities.

The need to utilise a more complex distribution than the geometric to
accurately reproduce the probabilistic structure of ws has been emphasised
in the literature, particularly for long spells. This was highlighted by Berger
and Goossens (1983) for rainfall data in Belgium and by Deni et al. (2010) in
Malaysia. Our findings confirm the inadequacy of the geometric distribution
for long wet spells (greater than 10 days) that occur with relatively high
frequency, as evidenced by the poor performance of the DM for STW.

It is important to emphasise that the unsatisfactory fitting of a geometric
distribution does not necessarily indicate the presence of memory in the
rainfall series. For instance, the results observed for the stations of TRA and
FLO suggest other reasons for the geometric distribution’s poor performance
in modelling ws as derived from it. The geometric distribution appears to be
a suitable choice when the data are analysed separately for the two seasons.
This implies that the complex structure of the ws distribution observed
over the entire year may not be due to an actual relaxation of the renewal
property but rather to a mixing of ws samples from two distinct seasons.

However, the geometric distribution seems to perform poorly on STW
regardless of seasonality, which is actually quite limited for this station. The
STW station seems to represent a case where the memoryless property is
violated, as also confirmed by the inspection of the Sk+1

Sk
ratios.

Splitting the entire dataset into sub-periods seems to improve the per-
formance of fittings for both the DM and the IM methods. This result
is particularly relevant for potential applications in ecohydrology models
(e.g., D’Odorico, Ridolfi, Porporato, and Rodriguez-Iturbe, D’Odorico et al.;
Petrie and Brunsell, 2012) and stochastic weather generators (for instance,
Paek et al., 2023). In these fields, accurately representing the climatic
component of weather variables (Semenov et al., 1998) requires not only
reproducing the overall probabilistic structure of rainfall but also providing
detailed information on a seasonal or even sub-seasonal (i.e., monthly) scale.

Studies in regions with climates that do not have distinct monsoon
seasons have also highlighted the importance of focusing on specific seasons,
such as the dry summer or wet winter periods (Caloiero and Coscarelli,
2020; Paton, 2022; Raymond et al., 2016). For example, Hui Wan and
Barrow (2005) demonstrated the need to account for seasonality to accurately
reproduce the duration of ws in Canada using a Markov chain method. This
evidence underscores the value of seasonal analysis in improving the precision
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and applicability of rainfall modelling for various operational and research
purposes.

Another consequence of the geometric distribution’s inadequacy in de-
scribing wet periods is the need to account for the daily structure of rainfall
when modelling processes such as the seasonal dynamics of soil moisture
and vegetation. For instance, Ratan and Venugopal (2013) assessed tropical
areas using satellite rainfall data and found that wet spells typically lasted
one day in dry regions, whereas durations of 2-4 days were more common in
humid areas. Conversely, dry spells tended to last one day in humid regions
and 3-4 days in dry regions. These findings emphasise the importance of
considering detailed rainfall patterns in models to accurately capture the
environmental processes across different climatic conditions.

In some instances, the results obtained for the IM suggest that using the
classical geometric distribution for ws and the polylog series for ds provides
adequate modelling of the observed frequencies. However, these distributions
do not offer significant advantages over the 3-parameter Lerch distribution.
Both DM and IM require a similar number of fitting parameters, but IM
incurs a higher computational cost due to the need for two independent
fittings (for ws and ds) as opposed to a single fitting for it.

An interesting case is STW, where the geometric distribution is never
chosen for ws and a 2-parameter distribution is consistently required. Con-
versely, a 1-parameter distribution is sufficient for ds at this site. This
scenario suggests that a reliable fit for both quantities can be achieved
without increasing the total number of parameters, compared to using the
3-parameter Lerch distribution. This emphasises the flexibility and efficiency
of the IM approach in providing accurate fits while managing computational
demands effectively.

Finally, it is worth mentioning that the models proposed in this chapter are
local, and thus spatial dependency in parameters may need to be considered
when applying these models to multiple stations located in close proximity.

3.5 Conclusions

In this chapter, an analysis was conducted on daily rainfall data spanning a
wide range of rainfall regimes across Europe (latitudes 38◦−58◦N) to model
the frequency distribution of several key rainfall time variables. Two different
methods were employed to investigate the validity of the simpler assumption
of the rainfall occurrence process as a renewal process only governed by i.i.d.
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interarrival times, which implies a geometric distribution of wet spells. The
first method, referred to as the direct method (DM), assumed a geometric
distribution of wet spells. The second method, the indirect method (IM),
relaxed this assumption by modelling wet spells and dry spells separately,
thereby allowing for the possibility of varying rainfall probabilities within
the rainfall clusters.

In general, the comparison between the DM and IM methods indicates that
the Lerch distribution can be effectively applied to model both interarrival
times and dry spells across a wide range of rainfall regimes. However, it
may be necessary to conduct a preliminary analysis of the memoryless
property (e.g., by examining the Sk+1

Sk
ratios) to evaluate the reliability of wet

spells derived from interarrival times modelled using the DM with the Lerch
distribution. If signs of memory are present, the IM method is recommended,
as it is better suited to a broader range of conditions, though it may require
a larger number of fitting parameters.

The analysis was expanded to incorporate two additional time variables,
closely linked to wet and dry spells, known as wet and dry chains. These
variables extend the concept of wet and dry spells to sequences that are
interrupted by a single non-rainy or rainy day, respectively, representing
two measures that could be valuable for practical hydrological applications.
The findings for these two chains generally align with the results obtained
for the spells, though they also reveal additional challenges in probabilistic
modelling, particularly at locations where the sample size may be a limiting
factor.

The influence of seasonality on the results was also examined by dividing
the data into two 6-month sub-periods. This division generally enhanced
the performance of both the DM and IM methods, underscoring that in
most locations, the DM applied to seasonal data remains a viable and
straightforward approach. The findings of this study could prove useful in
simulating scenarios of drought and flood events, given that probabilistic
functions, like those utilised in this research, are fundamental to stochastic
climate modelling.

Future research aimed at investigating the neighbouring location effects
on parameter values could be developed. In other words, spatial dependency
may need to be taken into account if dealing with a dense network of stations.
Furthermore, as mentioned in the beginning of Section 3.3, we have left out
the modelling of the volume of rainfall in a wet spell as we encountered a
somehow impactful dependence between the rainfall depths and the length
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of the wet spells. In both cases, it could be of great interest to provide a
way to model dependence. The concept of copulas is a classical tool in the
hydrological context for achieving this. As already thoroughly explained
in the introduction, if, for instance, we aim to be consistent with the fully
discrete description of the rainfall occurrence process we have opted for, we
shall face the well known fact that copulas lose some of their charm when
dealing with discrete margins. Most notably, they are not unique anymore.
This is what prompted us to explore, both empirically and theoretically,
alternative possibilities, with the broader aim of finding tools for the discrete
case which are, at least conceptually, analogous to copulas. The results of
this line of our research is contained in the next chapter.

127



128



Chapter 4

Copula-like Models for
Bivariate Discrete Random
Vectors

This chapter is based on Kojadinovic and Martini (2024)

Kojadinovic, I. and T. Martini (2024), Copula-like inference for discrete
bivariate distributions with rectangular supports, Electronic Journal
of Statistics 18 (1), 2571–2619.

For ease of explanation and notation, following Geenens (2020), we will
focus on bivariate random vectors in this chapter. However, as shall be made
clear in the future works section of Chapter 7, an extension of the concepts
described from Section 4.2 onwards seems entirely possible and is part of
a current project of us. In the following, with copula we will refer to the
classical definition (see, e.g., Durante and Sempi, 2015, Definition 1.3.1),
which, in the bivariate setting of interest reads

Definition 4.0.1. A bivariate copula is a function C : [0,1]× [0,1]→ [0,1]
that satisfies the following properties:

1. For every u,v∈ [0,1],

C(u,0)=C(0,v)=0 and C(u,1)=u, C(1,v)=v.

2. For every u1,u2,v1,v2∈ [0,1] such that u1≤u2 and v1≤v2,

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥0.
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That is, C is the joint distribution function of a bivariate random vector on
[0,1]2 with uniform margins.

Copulas have become ubiquitous statistical tools for describing, analysing
and modelling dependence between random variables thanks to the well
known theorem of Sklar (1959), which we report here in the bivariate case.

Theorem 4.0.2. Let F be a joint distribution function of a bivariate random
vector (X,Y ) with marginal distribution functions FX and FY . Then there
exists a copula C such that for all x,y∈R,

F (x,y)=C(FX(x),FY (y)). (4.1)

If FX and FY are continuous, then C is unique. Otherwise, C is uniquely
determined on ran(FX)×ran(FY ).

Furthermore, if C is a copula and FX and FY are distribution functions,
then the function F defined for x,y∈R by

F (x,y)=C(FX(x),FY (y)) (4.2)

is a joint distribution function with marginal distribution functions FX and
FY .

As we continue, with the continuous case (resp. the discrete case) we shall
refer to (X,Y ) having continuous (resp. discrete) margins. The popularity
of copulas follows from a natural interpretation of Sklar’s theorem: when C
is unique, that is, in the continuous case, it is intuitive to see it in the role
of the object which "glues" the margins together in order to construct their
joint distribution. In this familiar context, through the Probability Integral
Transform (PIT), U =FX(X) and V =FY (Y ) have uniform distributions on
[0,1], and the copula C is their joint distribution. Clearly, one can apply
any increasing transformation to X and/or Y and the PIT will give the
same result. This is the intuition behind the fact that copulas are invariant
under increasing transformations of the margins (see, for instance, Hofert
et al., 2018, Theorem 2.4.7). Additionally, it is known that some of the
most used dependence concepts are functions of the copula alone in the
continuous case (see, e.g., the classic Nelsen, 2006). These properties cement
the interpretation and practical use of copulas as ‘margin-free’ embodiments
of dependence in the continuous case. In the case X and/or Y discrete,
ran(FX) and/or ran(FY ) are simply countable subsets of [0,1]. It is then clear
that the distributions of U =FX(X) and/or V =FY (Y ) cannot be uniform
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on [0,1]. Thus, their joint distribution cannot be a copula as per Definition
4.0.1. It is actually a subcopula, that is, a function which satisfies the main
structural properties of copulas but whose support is only a strict subset of
[0,1] containing 0 and 1 (Durante and Sempi, 2015, Definition 2.2.1). Only
such a function is uniquely inferrable in the discrete case, according to Sklar’s
theorem. Any subcopula can be extended into a copula (Durante and Sempi,
2015, Lemma 2.3.4): the gaps in [0,1]\(RanFX×RanFY ) can be filled in a
way preserving the properties of copulas, by, informally speaking, suitably
spreading the probability mass of the subcopula on each hyper-rectangle
of its grid domain; however there are uncountably infinite many ways of
doing so and C in (4.1) remains not identifiable. Furthermore, if one aims
to construct measures of dependence based on a particular extension, the
choice of the latter will clearly influence the result. The standard extension
(also known as bilinear extension or checkerboard copula) has been deemed
the most natural in the finite discrete case, as described for example in
Genest and Nešlehová (2007). However, as noted in the previous reference,
quantities based on such an extension still depend on the margins.

An enlightening example of the consequences of the non-uniqueness of
the copula in the discrete case is the following simple one (Neslehova, 2004,
Section 5.1).

Example 4.0.3. Suppose X∼Bern(1−qx) and Y ∼Bern(1−qy), where the
probabilities qx=FX(0) and qy =FY (0) lie in (0,1), and X and Y are possibly
dependent. According to Theorem 4.0.2 of Sklar, a copula C associated to
FX,Y is only unique on the range ran(FX)×ran(FY )={0,qx,1}×{0,qy,1}.
However, since the values of C are given by simple constraints along the
sides of [0,1] (the uniform margins constraints), the underlying copula is
uniquely determined in a single point of the interior of the unit square and
Sklar’s representation reduces down to a single identity

C(qx,qy)=FX,Y (0,0). (4.3)

Indeed, to recollect the joint bivariate Bernoulli distribution FXY , given
the margins and such a copula C, it is sufficient to only use C(qx,qy) by

131



computing

P(X=0,Y =0)=FX,Y (0,0)=C(FX(0),FY (0))=C(qx,qy),
P(X=0,Y =1)=FX,Y (0,1)−FX,Y (0,0)=

=C(F (0),FY (1))−C(F (0),FY (0))= qx−C(qx,qy),
P(X=1,Y =0)=FX,Y (1,0)−FX,Y (0,0)=

=C(F (1),FY (0))−C(F (0),FY (0))= qy−C(qx,qy),
P(X=1,Y =1)=1−C(qx,qy)−(qx−C(qx,qy))−(q−C(qx,qy))

=1−qx−qy+C(qx,qy).

Consequently, on one hand, there exist numerous copulas which lead to
one and the same joint distribution, all of which pass through the point
(qx,qy,FX,Y (0,0))∈ (0,1)3. For instance, in the case of independence of X
and Y where we must have C(qx,qy)= qxqy, while the independence copula
naturally satisfies the requirement, many other do so as can be seen in the
appendix of Geenens (2020). Any conclusions drawn from such a classical
copula-based bivariate Bernoulli model would be highly questionable, as the
central element C may interchangeably represent independence or dependence
of significantly different strengths and characteristics, yet still conform to
C(qx,qy)= qxqy. On the other hand, C(qx,qy) depends crucially on the
marginal distributions through the point (qx,qy)=(FX(0),FY (0)), breaking
down the margin free appeal of copulas.

We refer the reader to Genest and Nešlehová (2007) and Faugeras (2017)
for a detailed investigation of what could happen if one insists in using the
tools of continuous copulas in the case of discrete (or even mixed) margins,
especially regarding the statistical modelling aspects. Most importantly, they
discuss how the usual inferential procedures used in copula modelling may
break down in the discrete case, since they are built upon the uniqueness of
the underlying copula. In the same references, some strategies to deal with
the discrete scenario are explored. The developments contained in Geenens
(2020) are a refreshing addition to those tools, accompanied by the novel
peculiarity of rejuvenating historical ideas found in the vast literature on
contingency tables.

In the upcoming section we try to summarise some of the main ideas on
which our results presented in the rest of the chapter build upon. They
were initially developed in Geenens (2020), which we closely follow for this
introductory part.
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4.1 Equivalence Classes of Dependence and Copulas

The first step taken by Geenens (2020) for providing a sound framework
where the ideas of copulas can smoothly carry out to the discrete case is
an ingenious definition of equivalence classes of dependence, starting from
the continuous case. Before proceeding, we shall additionally clarify that
the subject of the upcoming discussion will not be generalised or expanded
in this thesis, but conceptually forms the backbone of our results and
hence we deemed of interest to present it. Let (X,Y ) be a continuous
vector with distribution FXY , and for simplicity assume that X and Y are
supported on [0,1]. Indeed, without loss of generality, one can consider that
we observe X and Y on the inverse logit scale. Furthermore, suppose that
FXY admits a density fXY and marginal densities fX and fY on the unit
square. Now let F be the set of all bivariate probability densities on [0,1],
and S the set of all differentiable strictly increasing functions from [0,1]
to [0,1]. S is a group under function composition (denoted ◦), as is the
cartesian product S×S under element-wise composition (denoted again by
◦, as its use shall be clear by the context), i.e. for (ϕ1,ψ1),(ϕ2,ψ2)∈S×S,
(ϕ1,ψ1)◦(ϕ2,ψ2)=(ϕ1◦ϕ2,ψ1◦ψ2).

For any (ϕ,ψ)∈S×S, define gϕ,ψ :F→F as

gϕ,ψ(f)(u,v)= f(ϕ−1(u),ψ−1(v))
ϕ′(ϕ−1(u))ψ′(ψ−1(v)) , (u,v)∈J .

Then it is possible to show that gϕ,ψ is a group action of (S×S,◦) on F .
This defines orbits for any f ∈F , denoted

[f ]={f∗∈F :∃(ϕ,ψ)∈S×S such that f∗ =gϕ,ψ(f)}.

These orbits induce an equivalence relation defined as f1∼f2 whenever
[f1]= [f2], for any f1,f2∈F . The quotient space C=F/(S×S,◦) is the
set of all equivalence classes. Note that the denominator just provides a
normalization of the resulting function so that it remains a probability
density.

Hence, the class [fXY ] is made up of all bivariate probability densities
obtainable through what we could call ’marginal distortions’ of fXY . As the
most natural interpretation, what persists through the marginal distortions
should precisely be the dependence structure of the random vector. Geenens
(2020) proclaims that the elements of C should be regarded as the most
faithful to a ’true copula’, because ’they genuinely are the links (copulae
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in Latin) which cement marginals inside bivariate densities’. However, to
avoid confusion with other classically established definitions of copulas, he
suggests that [f ] should instead be named the ’nucleus’ of a distribution f .

Then, it is clear that to retrieve the traditional definition of a continuous
copula from this framework the group action that needs to applied is gFX ,FY

.
See that

gFX ,FY
(f)(u,v)= fXY (F−1

X (u),F−1
Y (v))

fX(F−1
X (u))fY (F−1

Y (v))
, u,v∈ [0,1]

is the density c of a copula for continuous random variables, as can be
derived from (4.1). Furthermore, note that, albeit providing an universally
understood tool for achieving this, the PIT is unnecessary for defining the
nucleus, which contains all the dependence structure of a random vector.

Viewing the effect of gϕ,ψ as a mere reassignment of probability mass, this
construction can thus be adapted mutatis mutandis to the discrete scenario,
as detailed below. Before proceeding, let us underline that the upcoming
developments are restricted to the finitely supported case. A suggestion for
an extension to the infinite countable case is proposed in (Geenens, 2020,
Section 8). However, a detailed treatment of such a yet unexplored scenario
is out of the scope of this thesis. Nevertheless, it is clear that it could be
subject of future investigations (see Section 7.2 of Chapter 7).

Let (X,Y ) be a discrete random vector where X (resp. Y ) can take r
(resp. s) distinct values for some strictly positive integers r and s. As the
framework we expose depends only on the values of the probability mass
function (pmf) of (X,Y ), without loss of generality, we shall consider, for
notational convenience only, that (X,Y ) takes its values in Ir,s=[r]× [s],
where [r]={1, . . . ,r} and [s]={1, . . . ,s}. Denote by p the pmf of (X,Y ). It
is immediate that p can be identified with a r×s matrix whose elements are
pij =P(X= i,Y = j) for (i,j)∈ Ir,s. Denote p[1] =(p[1]

1 ,p
[1]
2 , . . . ,p

[1]
r ) and p[2] =

(p[2]
1 ,p

[2]
2 , . . . ,p

[2]
s ) the marginal distributions of p. That is, p[1]

i =∑s
j=1pij =

P(X=xi) for i in [r] (resp. p[2]
j =∑r

i=1pij =P(Y =yj) for j in [s]). It will be
assumed throughout that p[1]

i >0 and p
[2]
j >0 ∀i,j; i.e., no row or column of

p is identically null. Furthermore we let supp(p)={(i,j)∈ Ir,s :pij>0} and
when supp(p)= Ir,s we say that p has a rectangular support. The elements
of Ir,s\supp(p) are known as the structural zeroes of p and they play an
important role in the dependence structure of (X,Y ), as shall become clearer
later.

The matrix form of p is commonly seen in the vast and historical literature
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on contingency tables. Therein, the odds ratio matrix defined as the (r−
1)×(s−1) matrix ω(p) whose elements are

ω(p)ij = p11pij
p1jpi1

, (i,j)∈ ([r]\{1})×([s]\{1}), (4.4)

is classically considered to encode the dependence between X and Y ; see
Agresti (2013, Section 2.4), Kateri (2014, p 43), Rudas (2018, p 123) or
Geenens (2023, Section 4).

Remark 4.1.1. Clearly, when p has some structural zeroes, undefined cases
of 0

0 may arise in (4.4). As done in Geenens (2020), with a slight lack of
rigor, we consider two odds ratios matrices to be equal when all of their well
defined entries are equal. □

Note that ω(p) is margin-free in a certain sense, that is, unaffected by
monotone increasing transformation of the margins of p in the form of
multiplication of constants. To see this, simply consider two positive real
vectors c=(c1, . . . ,cr) and d=(d1, . . . ,ds) and consider a diagonal matrix D
whose entries are d (resp. a diagonal matrix C whose entries are c). Then,
let

p∗ = C pD

∥C pD∥1
,

which corresponds to multiplying component per component the i-th row of
p by ci for i∈ [r] (resp. the j-th column of p by dj for j∈ [s]) and normalising
with the elementwise 1-norm ∥·∥1 of the resulting matrix. Then for any
(i,j) in Ir,s we have that

ω(p∗)ij = p11c1d1pijdicj
p1jd1cjpi1dic1

= p11pij
p1jpi1

=ω(p)ij.

In an entirely similar way as what has been done in the continuous case,
we now build the corresponding equivalence classes of dependence in the
present finite discrete scenario. For a positive integer m, define Dm×m as
the set of all diagonal m×m matrices whose diagonal entries are positive.
Dm×m is a group under matrix multiplication. For any positive integers
r and s, Dr×r×Ds×s is a group under element-wise matrix multiplication.
Furthermore, for now let Pr×s be the set of bivariate pmfs on Ir,s.

Then for any ϕ∈Dr×r and any ψ∈Ds×s, we define the function gϕ,ψ :
Pr×s→Pr×s as

gϕ,ψ(p)= ϕpψ

∥ϕpψ∥1
. (4.5)

135



Similar as above, the matrices ϕ and ψ respectively multiply the rows and
columns of p, distorting the margins. The corresponding orbit of p is given
by

[p]={p∗∈PR×S :∃(ϕ,ψ)∈Dr×r×Ds×s such that p∗ =gϕ,ψ(p)}.

The equivalence relation and classes are defined analogously, with p∼p∗ if
and only if [p]= [p∗]. Further, define a limit point of [p] as an element of
PR×S which can be written as

(∏∞
k=1 Φk) p (∏∞

k=1 Ψk)
∥(∏∞

k=1 Φk) p (∏∞
k=1 Ψk)∥1

(4.6)

for some sequences of matrices {Φk}k≥1∈Dr×r and {Ψk}k≥1∈Ds×s. Let ¯[p]
be the closure of [p], that is, the union of [p] and its limit points. The role of
the latter shall eventually be clear in connection with the structural zeroes
of p.

Having removed the marginal effects, we can again regard the orbits [p] as
equivalence classes of dependence. Indeed, fix any ϕ∈Dr×r and any ψ∈Ds×s.
For any two p,p∗∈PR×S, we have that p∼p∗ implies that ω(p)=ω(p∗), as
all odds ratios are invariant under marginal distortions induced by gϕ,ψ as
shown previously. The same holds even in the presence of any undefined
elements in the odds ratio matrix, as gΦ,Ψ leaves the zeros of p unaffected.
Consequently, it is natural to again call [p] the nucleus of the pmf p. If all
entries of ω(p) are defined and positive, that is in the case of rectangular
support of p, then ω(p) =ω(p∗) implies [p] = [p∗]. However, one may find two
p1,p2∈PR×S with ω(p1)=ω(p2) but [p1] /=[p2] when supp(p1) /=supp(p2),
that is, when p1 and p2 show a different pattern of structural zeros. This is
a strong hint to the preponderant role of structural zeros on the dependence
structure. Clearly, the fact that some values of X and Y are not allowed
simultaneously (that is, any pij =0) can be understood as a strong form of
interaction. Moreover, under our assumption of positive marginals of p, any
pij =0 automatically prevents independence of (X,Y ). To see this, simply
note that pij =0 cannot equate p[1]

i p
[2]
j . In such circumstances, we can infer

the presence of a regional dependence effect analogous to the continuous
counterpart (Holland and Wang, 1987).

Having built the equivalence classes, a representative of dependence can
be selected as the pmf u in [p] having uniform margins, in the spirit of
proposing a candidate which is as margin free as possible. It is then natural
to provide the following definition.
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Definition 4.1.2. A bivariate r×s discrete copula is a bivariate dis-
crete distribution of a vector (U,V ) supported on {r}×{s}, where {r}={

1
r+1 ,

2
r+1 , . . . ,

r
r+1

}
and {s}=

{
1
s+1 ,

2
s+1 , . . . ,

s
s+1

}
, whose marginal distributions

are discrete uniform on {r} and {s}. The associated copula pmf is thus a
bivariate discrete pmf on {r}×{s}, such that for all i∈{s}, ∑s

j=1uij = 1
r ,

and for all j∈{s}, ∑r
i=1uij = 1

s , where uij =P(U = i,V = j). □

Remark 4.1.3. The latter is not new and the given definition of discrete
copula parallels definitions which can be found for example in Kolesarova
et al. (2006) and Perrone et al. (2019). These two references are part of the
literature on discrete copulas which has been discussed in the introduction.
However, as said there, discrete copulas have been mainly applied in the
continuous case. Additionally, as shall become even more clear in the
remaining part of the chapter, our developments only concern the copula
pmf. That is why further connections to this literature shall not be explored
in this thesis, and, for now, we simply borrow the first part of Definition
4.1.2, leaving such investigations for possible future work.

□

Before proceeding further, we revisit Example 4.0.3 in light of the new
concepts we have just introduced, following Example 1 of Geenens (2024).

Example 4.1.4. Recall the setup of Example 4.0.3 and additionally consider
the corresponding bivariate pmf p, defined on {0,1}2 for consistency with the
previous example. It can be described by the following (2×2) contingency
table

x\y 0 1
0 p00 p01 p

[1]
0

1 p10 p11 p
[1]
1

p
[2]
0 p

[2]
1 1

,

which follows the notation introduced above. Referring to Example 4.0.3,
we actually have p[1]

0 = qx (resp. p[2]
0 = qy) and p[1]

1 = 1−qx (resp. p[2]
1 = 1−qy).

However, for the sake of generality of this example, the notation for the
marginals shall be left as in the table above.

As ∑(i,j)∈{0,1}2 pij =1, supposing the margins are unknown, there are ini-
tially three free parameters for p. Once the marginal values p[1]

1 and p[2]
1 are

fixed, only one free parameter is left: it should be the one describing the
dependence inside p, as it is the only value needed to recover the joint pmf
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when its margins are fixed. If the dependence parameter is to be ‘margin-free’,
it must be (any one-to-one function of) the odds-ratio

ω(p)= p00p11

p10p01
,

according to our discussion above. Thus, it seems reasonable to identify the
dependence structure to the value of ω(p) in this case. As previously shown,
Sklar’s representation here reduces down to a single identity

p00 =C(1−p[1]
1 ,1−p

[2]
1 ). (4.7)

As computed in Example 4.0.3, for given p
[1]
1 and p[2]

1 , this value is, indeed,
enough to identify by substitution the other values p01,p10 and p11 - hence,
the whole pmf p. The odds ratio ω(p) can then be rewritten as

ωC(p[1]
1 ,p

[2]
1 )

= C(1−p[1]
1 ,1−p

[2]
1 )(C(1−p[1]

1 ,1−p
[2]
1 )+p10 +p01−1)

(1−p[1]
1 −C(1−p[1]

1 ,1−p
[2]
1 ))(1−p[2]

1 −C(1−p[1]
1 ,1−p

[2]
1 ))

. (4.8)

For a given copula C, this is a continuous function of (p[1]
1 ,p

[2]
1 )∈ (0,1)2.

In fact, the only copula C guaranteeing ωC(p[1]
1 ,p

[2]
1 ) to be constant in p

[1]
1

and p[2]
1 is the Plackett copula, which was precisely designed to achieve that

(Plackett, 1965). Thus, it is now even more evident that we may easily
construct two bivariate Bernoulli distributions using the same copula C, but
showing very different dependence structures for different pairs of marginal
parameters (p[1]

1 ,p
[2]
1 ). Once again, it is evident that equating copulas with

dependence structures in this context is not reasonable.
Furthermore, we can directly write (4.7) and (4.8) in terms of the unique

subcopula H of p as well, by setting

p00 =H(1−p[1]
1 ,1−p

[2]
1 )

and the odds ratio ω(p) as

ωH(1−p[1]
1 ,1−p

[2]
1 )

= H(1−p[1]
1 ,1−p

[2]
1 )(H(1−p[1]

1 ,1−p
[2]
1 )+p10 +p01−1)

(1−p[1]
1 −H(1−p[1]

1 ,1−p
[2]
1 ))(1−p[2]

1 −H(1−p[1]
1 ,1−p

[2]
1 ))

. (4.9)
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A subtle yet significant distinction between (4.8) and (4.9), which justifies
the different notation used, is that, unlike C, H is not defined elsewhere in the
interior of [0,1]2 than at (1−p[1]

1 ,1−p
[2]
1 ). Therefore, a notion of ‘varying the

marginal parameters while maintaining the same subcopula’ would be clearly
unfounded - changing the margins would, by definition, require considering a
completely different subcopula. In fact, both H and C are margin-dependent
to the exact same extent, but, as beautifully said in (Geenens, 2024, Example
1), "the ‘blanket’ nature of copulas, which cover the whole [0,1]2 and always
have uniform margins, may give the dangerously comfortable feeling that it
is not the case for C".

To represent the dependence structure of p in a margin-free way, and
therefore imitate the role of copulas in continuous settings, we aim to compute
the bivariate Bernoulli distribution with the same odds-ratio as p (that is,
belonging to [p]), but with "uninformative" uniform margins, as advocated in
the framework exposed before this example. It is a simple algebraic exercise
to show that, for any given ω>0,

u\v 0 1
0 1

2
ω

1+
√
ω

1
2

1
1+

√
ω

1
2

1 1
2

1
1+

√
ω

1
2

ω
1+

√
ω

1
2

1
2

1
2 1

is such a distribution, and it is unique. This is what could be called
the Bernoulli copula pmf, as seen in (Geenens, 2020, Section 5), where
more details can be found. Although evidently not a ‘copula’ according to the
classical meaning, this Bernoulli copula pmf enjoys all the pleasant properties
which make copulas successful in continuous cases. For example, computing
its Pearson correlation coefficient would amount to computing a discrete
margin free analogue of Spearman’s rho (see the end of Section 4.4).

Consider now a pmf p and the associated equivalence class of dependence
[p]. Natural questions arise regarding existence and especially uniqueness
of a copula pmf u∈ [p], according to the broader aim of providing a copula-
like framework. Moreover, when these two conditions hold, the actual
computation of u has an equal interest. We briefly delineate the ideas
contained in Geenens (2020) relative to this issue, as more details will be given
in the upcoming main sections of this chapter. Following its line of thought,
we start by the computation of u. It is clear that a proposed tool must only
entail transformations of the type seen in (4.5) or (4.6). With this in mind,
Geenens (2020) has cleverly suggested that the iterative proportional fitting
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procedure (IPFP) fills the role in practice. This procedure takes the form of
an algorithm (actually of several equivalent algorithms) designed to adjust
the elements of an input matrix so that it satisfies specified row and column
sums. When the input matrix is the representation of a pmf and the target
rows and columns sums are selected as uniform, the connection is clear. Since
its introduction by Kruithof (1937) for the calculation of telephone traffic,
the IPFP turned out to play a major role in a surprisingly large number
of different scientific contexts (see, e.g., Idel, 2016, for a comprehensive
review). The adjustment is obtained by alternatively normalising the rows
and columns of the starting pmf p in matrix form so that at each step of
algorithm at least one of the required marginal constraints is satisfied. A little
thought reveals that these operations corresponds to alternatively left and
right multiplying p by diagonal matrices, keeping the odds ratios constant
and making clear that each element of the iteration will belong to [p], exactly
as in (4.6). The limit of these iterations, when it exists, will correspond to the
copula pmf u associated to p. It is now clear that the question of existence
and uniqueness of u its intimately connected with the convergence of the
IPFP. The key concept is that in such a circumstance, the IPFP actually
converges to the I-projection of p (in the sense of Csiszár, 1975) on a Fréchet
class of pmfs with uniform margins (see Proposition 4.2.5). That is the
reason why we are willing to say that, ultimately, I-projections on a Fréchet
class of pmfs can be thought as the underlying central ingredient of Geenens
(2020)’s proposals. Indeed, as shall be shown, they are the cornerstone
which paves the way to provide a Sklar like decomposition for bivariate
discrete finitely supported distributions. Conditions for their existence and
uniqueness, extensively studied in the literature, can be directly translated
into existence and uniqueness conditions for copula pmfs and they are deeply
related to the structural zeroes of the input pmf p. This will become clearer
in Sections 4.2 and 4.3.

Given this framework, we are interested in its exploitation to set forth
models for bivariate discrete random vectors in the spirit of copula modelling
for continuous random vectors. In other words, we will not delve further
into the concept of equivalence classes of dependence, but we shall explore
the statistical modelling consequences of the interesting ideas that it has
conveyed. We are then considering a typical statistical setup, where the
pmf p of (X,Y ) is not known, and instead, we have n (not necessarily
independent) samples (X1,Y1), . . . ,(Xn,Yn) of (X,Y ) available for inference
on p. Traditional methods for modelling p when r and s are not excessively
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4 – Copula-like Models for Bivariate Discrete Random Vectors

large include log-linear models (see, e.g., Agresti, 2013; Kateri, 2014; Rudas,
2018) and association models (see, e.g., Goodman, 1985; Kateri, 2014). In
this chapter, we will investigate a different category of (semi-parametric or
parametric) models based on the possibility of decomposing the unknown
pmf p into its two univariate margins and a bivariate pmf with uniform
margins, namely the copula pmf we have discussed above. Indeed, another
key interpretation of Geenens (2020) is that of establishing a strong case for
such a decomposition.

A first contribution of this chapter, which holds independent significance,
is the formulation of a result concerning the differentiability of an I-projection
on a Fréchet class with respect to the input pmf. This result is essential
for examining the asymptotics of the inference procedures proposed in the
statistical portion of this chapter.

A second contribution, building upon the framework of Geenens (2020)
delineated above, is the statement of a corollary based on known properties
of I-projections. This corollary establishes that, under specific conditions
on the bivariate pmf p, the latter can be decomposed into its two univariate
margins and a bivariate pmf with uniform margins, that is the copula pmf
u we have mentioned before. Analogous to the modelling of continuous
multivariate distributions using copulas (see, e.g., Hofert et al., 2018, and
the references therein), which utilises a well-known theorem of Sklar (1959),
the resulting decomposition suggests first modelling the margins and the
copula pmf separately, and subsequently combining the resulting estimates
using an appropriate I-projection to obtain a parametric or semi-parametric
estimate of p.

Exploiting the aforementioned decomposition of bivariate pmfs, a third
contribution of this chapter is the investigation of nonparametric and para-
metric estimation procedures as well as goodness-of-fit tests for the underlying
copula pmf. It is important to note that these analyses are conducted under
the assumption of strict positivity of the initial unknown pmf p. Indeed,
I-projections may not always exist, and to ensure the existence of the afore-
mentioned copula-like decomposition of p, we will additionally assume in
the statistical section of this chapter that pij>0 for all (i,j)∈ Ir,s. That
is, that p has rectangular support. Interestingly, this assumption can be
considered the discrete analog of the assumption of strict positivity (within
the interior of the unit square) of the copula density, which is frequently
made when modelling multivariate continuous distributions using copulas.
It should be noted that, as will be discussed in more detail in our concluding
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remarks, the assumption of rectangular support for p could be replaced with
alternative conditions provided certain practical challenges are addressed.
Fortunately, many applications appear to be compatible with the assumption
of rectangular support.

The remaining part of this chapter is structured as follows. In the
following section, after a review of the main properties of I-projections and
the IPFP, we present differentiability results for I-projections on Fréchet
classes. Next, given these recalled facts, we are able to shed light on the
question of existence and uniqueness of a copula pmf u. In Section 4.4,
we outline conditions under which a copula-like decomposition of bivariate
pmfs based on I-projections on Fréchet classes exists. The next section is
dedicated to the nonparametric and parametric estimation of copula pmfs
and provides related asymptotic results as well as finite-sample findings
based on simulations. Goodness-of-fit tests for copula pmfs are subsequently
examined, both theoretically and empirically. A data example is provided
in Section 4.7, followed by concluding remarks in the final section. For an
easier reading, all proofs are relegated to a series of appendices.

4.2 I-Projections on Fréchet Classes and the IPFP

After introducing additional notation to lighten the upcoming discussions,
we recollect the concept of I-projection as defined by Csiszár (1975) and
discuss its relationship with the IPFP when the I-projection is performed
on a Fréchet class. We conclude this section by presenting differentiability
results for I-projections on Fréchet classes, which may hold independent
interest.

4.2.1 Notation

Let Rr×s denote the set of all r×s real matrices. It’s important to dis-
tinguish between Rr×s and Rrs, where the latter represents the set of all
rs-dimensional real vectors. For a matrix x∈Rr×s, the element in row
i∈ [r]={1, . . . ,r} and column j∈ [s]={1, . . . ,s} will be denoted as xij. Ad-
ditionally, for the row and column sums of x, we use the conventional
notation

xi+ =
s∑
j=1

xij, i∈ [r], and x+j =
r∑
i=1
xij, j∈ [s],
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respectively. Moreover, we define the set Γ as

Γ={x∈Rr×s :xij≥0,xi+>0,x+j>0 for all (i,j)∈ Ir,s
and

∑
(i,j)∈Ir,s

xij =1}. (4.10)

In this context, Γ represents the set of all bivariate probability mass
functions (pmfs) on Ir,s whose univariate margins are strictly positive. As
mentioned in the introduction, the developments that follow rely solely on r,
s, and pmf values. Thus, focusing on pmfs on Ir,s is done without loss of
generality. Indeed, any pmf of interest, defined on the Cartesian product of
two sets of reals with cardinalities r and s, respectively, can be “relocated”
onto Ir,s.

As we proceed, to differentiate bivariate pmfs from other real matrices,
we will consistently use lowercase letters for the former and uppercase letters
for the latter. Additionally, given a bivariate pmf x in Γ, its first and second
univariate margins will be denoted by x[1] and x[2], respectively. According
to our notation, we have

x
[1]
i =xi+, i∈ [r], and x

[2]
j =x+j, j∈ [s].

Next, let a and b be fixed univariate pmfs on [r] and [s], respectively, such
that ai>0 for all i∈ [r] and bj>0 for all j∈ [s]. We define

Γa,· ={x∈Γ :x[1] =a} (resp. Γ·,b={x∈Γ :x[2] = b}) (4.11)
as the subset of Γ in (4.10) containing bivariate pmfs whose first (resp.
second) margin is a (resp. b). Consequently,

Γa,b={x∈Γ :x[1] =a and x[2] = b}=Γa,·∩Γ·,b (4.12)
is the Fréchet class of all bivariate pmfs whose first margin is a and second
margin is b.

4.2.2 I-Projections on Fréchet Classes

To introduce the concept of I-projection as defined by Csiszár (1975), we first
need to define the information divergence, also known as the Kullback-Leibler
divergence or relative entropy, for a bivariate pmf y∈Γ with respect to a
bivariate pmf x∈Γ. This is given by

D(y|x)=


∑

(i,j)∈Ir,s

yij log yij
xij

if supp(y)⊂ supp(x),

∞ otherwise,
(4.13)
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where, for any x∈Γ, supp(x) =(i,j)∈ Ir,s :xij>0, with the conventions that
0log0=0 and 0log 0

0 =0.
The next result directly follows from Theorem 2.1 of Csiszár (1975) and

the remark after Theorem 2.2 in the same reference.

Proposition 4.2.1 (Existence of I-projections). Let x∈Γ and let S be a
closed convex subset of Γ. Suppose furthermore that there exists a pmf y∈S
such that supp(y)⊂ supp(x). Then, there exists a unique y∗∈S such that
y∗ = arginfy∈SD(y|x). Moreover, we have that supp(y)⊂ supp(y∗) for every
y∈S such that supp(y)⊂ supp(x).

The bivariate pmf y∗ mentioned in the above proposition is commonly
referred to as the I-projection of the initial bivariate pmf x onto S.

As explained in Section 4.1, the approach proposed by Geenens (2020), on
which our chapter hinges upon, relies on I-projections. Let a and b be fixed
univariate pmfs on [r] and [s], respectively, such that ai>0 for all i∈ [r] and
bj>0 for all j∈ [s]. Let Γa,b, as defined in (4.12), be the Fréchet class of all
bivariate pmfs whose first margin is a and second margin is b. Note that
Γa,b is a closed and convex subset of Γ. Moving forward, we shall denote the
I-projection of a pmf x∈Γ onto Γa,b, if it exists, as:

Ia,b(x)=arginf
y∈Γa,b

D(y|x). (4.14)

The following proposition, which, for example, follows directly from
Corollary 3.3 in Csiszár (1975), provides a more explicit form for the I-
projection of x∈Γ onto the Fréchet classes Γa,b when it contains a pmf whose
support is equal to that of x.

Proposition 4.2.2. Let x∈Γ. If there exists y∈Γa,b such that supp(y)=
supp(x), then there exists two diagonal matrices D1∈Rr×r and D2∈Rs×s

such that Ia,b(x)=y∗ =D1xD2 and supp(y∗)=supp(x). In this case, fol-
lowing Pretzel (1980), x and y∗ are said to be diagonally equivalent.

As can be seen from Propositions 4.2.1 and 4.2.2, the primary practical
challenge before attempting to project a pmf x∈Γ onto Γa,b is to test for the
existence of a bivariate pmf y∈Γa,b such that supp(y)⊂ supp(x). Necessary
and sufficient conditions for this have been recently restated in Theorem 1
of Brossard and Leuridan (2018), accompanied by a useful characterisation
which shall be used later. These conditions appear to date back to Corollary
3 in Bacharach (1965). Furthermore, a well detailed description of them can
also be found in Theorems 2 and 3 of Rothblum and Schneider (1989). Let
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x∈Γ be a bivariate pmf on Ir,s and let Px be the corresponding probability
measure on Ir,s. Define

Nx={A×B :A⊂ [r],B⊂ [s],Px(A×B)=0} (4.15)

to be the set of rectangular subsets of Ir,s on which Px is null (or, equivalently,
with a slight abuse of notation, x is null). Furthermore, let Pa (resp. Pb)
be the probability measures on [r] (resp. [s]) corresponding to the target
univariate pmf a (resp. b). With this notation, we can state the following.

Proposition 4.2.3 (Testing for the existence of I-projections). Then, there
exists y∈Γa,b such that supp(y)⊂ supp(x) if and only if

Pa(A)≤Pb([s]\B) for all R×C ∈Nx. (4.16)

and there exists y∈Γa,b such that supp(y)=supp(x) if and only equalities
in (4.16) happen only for A×B such that Px([r]\A× [s]\B)=0.

Remark 4.2.4. A detailed discussion of Proposition 4.2.2 and providing
its proof would require delving deeply in the literature on the so-called
matrix patterns, to which some of the references cited just above belong to.
Indeed, according to, for instance, the definition given in (Brualdi, 2006, p
3), when employing the tools of matrix analysis supp(x) should be called the
pattern of x. Such a literature investigates the existence and computation
of matrices with given patterns and adhering to specific constraints. For
example, given marginal sums. In this case, the problem is known as matrix
scaling and the IPFP has been used both as a computational tool and as a
way to prove the existence of such a scaling (see, e.g., Sinkhorn, 1974). The
connections with our setup are then clear. Since such an investigation is out
of scope of this thesis, we refer the reader to Appendix A of Idel (2016) for
a nice review and the references therein for a deeper investigation (such as
Brualdi, 2006). □

4.2.3 The Iterative Proportional Fitting Procedure

In practice, to perform an I-projection on Γa,b, one can employ the IPFP.
Also known as Sinkhorn’s algorithm or matrix scaling, the IPFP aims to
adjust the elements of a matrix so that it satisfies specified row and column
sums. For a detailed overview of the procedure, its variants, and its diverse
applications, the reader is referred to Pukelsheim (2014), Idel (2016), and
Brossard and Leuridan (2018).
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In principle, the IPFP can be applied to any input matrix in Rr×s with
nonnegative elements and strictly positive row and column sums. Since this
chapter has a probabilistic focus, the IPFP will be described specifically
for input matrices x∈Γ that can be interpreted as bivariate pmfs. In this
context, the goal of the procedure is to adjust an input bivariate pmf x∈Γ
so that it has a as its first margin and b as its second margin.

The IPFP with target margins a and b consists of applying repeatedly two
transformations. The first one corresponds to the map Ra from Γ in (4.10)
to Γa,· in (4.11) defined by

Ra(x)=


a1x11
x1+

. . . a1x1s

x1+... ...
arxr1
xr+

. . . arxrs

xr+

 , x∈Γ, (4.17)

while the second one corresponds to the map Cb from Γ to Γ·,b in (4.11)
defined by

Cb(x)=


b1x11
x+1

. . . bsx1s

x+s... ...
b1xr1
x+1

. . . bsxrs

x+s

 , x∈Γ. (4.18)

Given an input matrix x∈Γ, the first map Ra(x) rescales the rows of x so
that its first univariate margin equals a. Similarly, the second map Cb(x)
rescales the columns of x so that its second univariate margin equals b.

Let N ∈N. Using the above defined maps, the (2N+1)th step of the
IPFP with target margins a and b can then be expressed as

I2N+1,a,b(x)=Ra◦(Cb◦Ra)(N)(x), x∈Γ, (4.19)

while the 2Nth step, N ≥1, can be expressed as

I2N,a,b(x)=(Cb◦Ra)(N)(x), x∈Γ, (4.20)

where the superscript (N) denotes composition N times and composition 0
times is taken to be the identity. We will say that the IPFP converges for
a starting bivariate pmf x∈Γ if the sequence {IN,a,b(x)}N≥1 converges and
we then denote the resulting adjusted pmf (which is in Γa,b as shall become
clearer below) by

Ia,b(x)= lim
N→∞

IN,a,b(x). (4.21)

When working in practice with the IPFP, if it converges for the bivariate
pmf x, for some user-defined ε>0, limN→∞IN,a,b(x) is approximated by
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IN,a,b(x), where N (which depends on x) is an integer such that

∥IN,a,b(x)−IN−1,a,b(x)∥1,1≤ ε, (4.22)

where ∥x∥1,1 =∑
(i,j)∈Ir,s

|xij|. Results on the number of iterations required for
the previous condition to be satisfied are discussed for instance in Kalantari
et al. (2008), Pukelsheim (2014) and Chakrabarty and Khanna (2021).

The next proposition, which, for instance, immediately follows from
Pukelsheim (2014, Theorem 3) and Brossard and Leuridan (2018, Theorems 2
and 3), provides the fundamental relationship between I-projections on
Fréchet classes and the IPFP.

Proposition 4.2.5. (Link between I-projections on Fréchet classes and the
IPFP) Let x∈Γ. The sequence {IN,a,b(x)}N≥1 converges if and only if there
exists y∈Γa,b such that supp(y)⊂ supp(x) and, if limN→∞IN,a,b(x) exists,
it is equal to Ia,b(x) in (4.14).

In other words, the IPFP of a bivariate pmf x converges (to the I-
projection of x on the corresponding Fréchet class) if and only if the I-
projection of x on the corresponding Fréchet class exists.

4.2.4 Differentiability Results for I-Projections on Fréchet Classes

Theorem 3.3 in Gietl and Reffel (2017) implies a form of continuity of
an I-projection on a Fréchet class when it exists (see Lemma 4.A.2 in
Appendix 4.A for a precise statement). To examine the asymptotics of the
statistical inference procedures proposed later in this chapter, we will also
need an I-projection on a Fréchet class, when it exists, to be differentiable in
a related sense, as will become evident in Section 4.5. This differentiability
property has not been thoroughly investigated in the literature, although it
can be connected to the work Jiménez-Gamero et al. (2011) as explained in
Remark 4.2.7 below.

The aim of this section is to present a differentiability result, roughly
speaking, concerning certain strictly positive submatrices of the input matrix.
To make the statement precise, we first need to introduce additional notation.

For any S⊂ Ir,s, S /=∅, let vecS be the map from Rr×s to R|S| which, given
a matrix y∈Rr×s, returns a column-major vectorization of y ignoring the
elements yij such that (i,j) /∈S. With some abuse of notation, we can write

vecS(y)=(yij)(i,j)∈S, y∈Rr×s . (4.23)
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Let vec−1
S be the map from R|S| to Rr×s which, given a vector v in [0,1]|S|

expressed (with some abuse of notation) as (vij)(i,j)∈S, returns a matrix in
Rr×s whose element at position (i,j)∈S is equal to vij and whose element at
position (i,j) /∈S is left unspecified. Then, for any two matrices y,y′∈Rr×s,
write y S=y′ if yij =y′

ij for all (i,j)∈S. Furthermore, recall the definitions of
Γ in (4.10) and Γa,b in (4.12), and, for any A,B⊂T ⊂ Ir,s, A,B /=∅, let

ΓT ={y∈Γ : supp(y)=T}, (4.24)
ΛB,T ={w∈ (0,1)|B| : there exists y∈ΓT s.t. vec−1

B (w) B=y}, (4.25)
Γa,b,T ={y∈Γa,b : supp(y)=T}, (4.26)

Λa,b,A,T ={z∈ (0,1)|A| : there exists y∈Γa,b,T s.t. vec−1
A (z) A=y}. (4.27)

Finally, for any function G from Rk×Rm to Rl differentiable at (u,v)∈
Rk×Rm, we shall use the notation

∂1G(u,v)=


∂G1(w,v)
∂w1

∣∣∣∣
w=u

. . . ∂G1(w,v)
∂wk

∣∣∣∣
w=u... ...

∂Gl(w,v)
∂w1

∣∣∣∣
w=u

. . . ∂Gl(w,v)
∂wk

∣∣∣∣
w=u


and

∂2G(u,v)=


∂G1(u,w)
∂w1

∣∣∣∣
w=v

. . . ∂G1(u,w)
∂wm

∣∣∣∣
w=v... ...

∂Gl(u,w)
∂w1

∣∣∣∣
w=v

. . . ∂Gl(u,w)
∂wm

∣∣∣∣
w=v

 .

The following proposition, proven in Appendix 4.A, is notationally complex
but relies on a straightforward concept: a bivariate pmf with support T can
be expressed in terms of |B|= |T |−1 elements and a pmf with support T and
univariate margins a and b can be expressed in terms of |A|< |B| elements.
Consequently, the I-projection of a pmf in ΓT on Γa,b,T can be regarded as a
map from an open subset of (0,1)|B| to (0,1)|A|. This perspective allows us to
regard the I-projection as a map related to an unconstrained optimization
problem and, eventually, to apply the implicit function theorem (see, e.g.,
Fitzpatrick, 2009, Theorem 17.6, p 450).

Proposition 4.2.6. Let T ⊂ Ir,s, |T |>1, such that Γa,b,T in (4.26) is nonempty,
and assume that there exists a nonempty subset A⊊T such that:
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1. for any y∈Γa,b,T , the elements yij, (i,j)∈T \A, can be recovered from
the elements yij, (i,j)∈A, using the r+s constraints yi+ =ai, i∈ [r],
and y+j = bj, j∈ [s],

2. the set Λa,b,A,T in (4.27) is an open subset of R|A|.
Let B be any subset of T such that |B|= |T |−1 and let d be the one-to-one
map from ΛB,T in (4.25) to ΓT in (4.24) which, given w∈ΛB,T , returns
the unique y∈ΓT obtained by recovering the only unspecified element of
vec−1

B (w)∈ΓT using the constraint ∑(i,j)∈T yij =1. Then, the map vecA◦
Ia,b◦d from ΛB,T to Λa,b,A,T , where Ia,b is defined in (4.14), is differentiable
at any vecB(x), x∈ΓT , with Jacobian matrix at vecB(x) equal to

−[∂1∂1H(vecA(Ia,b(x))∥vecB(x))]−1∂2∂1H(vecA(Ia,b(x))∥vecB(x)).

In the above centered display, H is the map from Λa,b,A,T ×ΛB,T to [0,∞)
defined by

H(z∥w)=D(c(z)||d(w)), z∈Λa,b,A,T ,w∈ΛB,T , (4.28)

where D is defined in (4.13) and c is the one-to-one map from Λa,b,A,T

in (4.27) to Γa,b,T in (4.26) which, given z∈Λa,b,A,T , returns the unique
y∈Γa,b,T obtained by recovering the unspecified elements of vec−1

A (z)∈Γa,b,T
using the r+s constraints yi+ =ai, i∈ [r] and y+j = bj, j∈ [s].
Remark 4.2.7. Following the suggestions of a Referee when revising Ko-
jadinovic and Martini (2024), we explored the connections of the statistical
results to be stated in Section 4.5 with minimum divergence estimation (see
Remark 4.5.4 below for more details). After exploring the related literature,
we realised that Lemma 1 in Jiménez-Gamero et al. (2011) is connected
with Proposition 4.2.6 above. Upon some reflection, one can however see
that the aforementioned lemma cannot be used to obtain a differentiability
result for an I-projection on a Fréchet class. Furthermore, its proof seems
incomplete as the assumptions considered in Jiménez-Gamero et al. (2011)
do not seem to guarantee a key matrix invertibility required to apply the
implicit function theorem (see (17.17) in Fitzpatrick, 2009, Theorem 17.6, p
450). This will be further explored in the next chapter. □

4.3 Existence and Uniqueness of the Copula Pmf

Having reviewed I-projections and the IPFP, while also providing their
relationship, we are ready to restate Geenens (2020)’s Theorem 6.1 regarding
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the existence and uniqueness of a copula pmf u associated to a pmf p, after
properly defining u. Additionally, we shall report and expand its interesting
discussion about the role of the structural zeroes of p in this regard. Let u[1]

(resp. u[2]) be the univariate pmf of the uniform distribution on [r] (resp. [s])
and let Γunif = Γu[1],u[2] be the Fréchet class of all bivariate pmfs on Ir,s whose
univariate margins are u[1] and u[2], respectively. The I-projection of a pmf
x∈Γ on Γunif, if it exists, will be denoted by

U(x)=Iu[1],u[2](x), (4.29)

where Iu[1],u[2] is defined as in (4.14) with a=u[1] and b=u[2]. Hence, given
p a bivariate pmf on Ir,s with strictly positive margins, if it exists, the
associated copula pmf u is defined by

u=U(p). (4.30)

In other words, u is the I-projection of p on the Fréchet class of all bivariate
pmfs on Ir,s whose univariate margins are u[1] and u[2].

Remark 4.3.1. As done in Geenens (2020, Definition 6.1), recall that in
Section 4.1 we initially defined copula pmfs as bivariate pmfs on {(i/(r+
1),j/(s+1)) : (i,j)∈ Ir,s}⊂ [0,1]2, by analogy with bivariate copulas which
are defined on [0,1]2. However, from expression (4.30) onwards, we have
chosen to define them as bivariate pmfs on Ir,s, for simplicity and notational
convenience, as already explained in the previous sections. Indeed, we stress
out again that the developments contained in this chapter do not depend on
the values taken by the underlying bivariate random vector, which take the
role of mere labels, but solely on the pmf values. □

The next result relies on combining Propositions 4.2.1, 4.2.2 and 4.2.3. It
is proven in Appendix 4.B.

Theorem 4.3.2 (Theorem 6.1 in Geenens (2020)). Let p be a bivariate pmf
on Ir,s with strictly positive margins and consider Np as defined in (4.15).

(a) Suppose that, for all (A×B)∈Np,
|A|
r

+ |B|
s
<1. Then, u exists unique

with supp(u)=supp(p).

(b) Suppose that, for all (A×B)∈Np,

|A|
r

+ |B|
s
≤1,
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with
∣∣∣Â∣∣∣
r

+
∣∣∣B̂∣∣∣
s

=1 for some (Â×B̂)∈Np.

(i) If, for all (Ã×B̃)∈Np such that
∣∣∣Ã∣∣∣
r

+
∣∣∣B̃∣∣∣
s

=1, we have that

([r]\ Ã× [s]\B̃)∈Np,

then u exists unique with supp(u)=supp(p).

(ii) If there exists (Ã×B̃)∈Np such that
∣∣∣Ã∣∣∣
r

+
∣∣∣B̃∣∣∣
s

=1 and

([r]\ Ã× [s]\B̃) /∈Np,

then u exists unique with supp(u) strictly contained in supp(p).

(c) Suppose that there exists (Ã×B̃)∈Np such that
∣∣∣Ã∣∣∣
r

+
∣∣∣B̃∣∣∣
s
>1. Then, u

does not exist.

From the latter theorem, it is now clear how the structural zeros of p
determine the fate of u. Case (a) represents the straightforward scenario,
encompassing all pmfs on Ir,s without structural zeros, and even some with
structural zeros as long as these zeros are not too prominent in the sense
given by the theorem.

Case (b) is more critical. In scenario (b)(i), according to the vast literature
briefly mentioned in Remark 4.2.4, it is possible to reorganise the matrix
representation of p into a block-diagonal form through permutations of its
rows and columns. Each sub-block of non-zero elements in p satisfies the
strict inequalities in Proposition 4.2.3 and can be adjusted independently
when modifying the margins with the IPFP. Basically, this allows u to be
still expressed in the form (4.5). Conversely, in scenario (b)(ii), the matrix
form of p cannot be reorganized into a block-diagonal form. To satisfy the
uniform margins constraints, new zeros must be introduced, making u a
limit point of [p] in the sense of (4.6). From statement 2 (c) in Theorem 1
of Brossard and Leuridan (2018), we can say that the support of u is in the
complement in supp(p) of the union of all the rectangular subsets Ac×Bc

over all non-empty subsets A×B in Ir,s such that, pardoning the abuse of
notation, p is null on them and p[1](A)=p[2]([s]\B). Simply put, the new
zeros are added on ⋃

(A×B)∈Np

([r]\A× [s]\B),
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where
Np={(A×B)∈Np :p[1](A)=p[2]([s]\B)}.

Abiding by Remark 4.1.1, it holds that ω(u)=ω(p), making u the unique
copula pmf of p once again.

Finally, case (c) highlights the absence of a copula pmf when the structural
zeros form a substantial portion of p. Since these zeros cannot be converted
into positive values by the IPFP and are fixed, there are insufficient degrees
of freedom to adjust the margins effectively. In this scenario, the dependency
between X and Y is heavily influenced by the structural zeros, rendering an
approach based on odds ratios essentially ineffective.

These observations allow us to assert the following.

Corollary 4.3.3 (Existence and uniqueness of the copula pmf). A bivariate
pmf p possesses a unique copula pmf u if and only if there exists a pmf v
with uniform margins such that supp(v)⊂ supp(p). Equivalently, the same
happens if and only if |A|

r + |B|
s ≤1 for all (A×B)∈Np. By definition, the

copula pmf u satisfies ω(u)=ω(p) and supp(u)⊂ supp(p). If, additionally,
we have that supp(v)=supp(p), then supp(u)=supp(p).

4.4 Copula-Like Decomposition of Bivariate Pmfs

We shall now state a copula-like decomposition for a bivariate pmf on Ir,s and
strictly positive univariate margins, using the results given in the previous
sections. The next proposition, proven in Appendix 4.C, will play, in the
next sections, a role analog to Sklar’s theorem when modelling continuous
multivariate distributions using copulas.

Proposition 4.4.1 (Copula-like decomposition of bivariate pmfs). Let p be
a bivariate pmf on Ir,s with strictly positive univariate margins p[1] and p[2].
Then, the following two statements are equivalent:

1. There exists a bivariate pmf v on Ir,s with uniform margins such that
supp(v)=supp(p).

2. There exists a unique bivariate pmf u on Ir,s with uniform margins such
that

p=Ip[1],p[2](u). (4.31)
Furthermore, the unique bivariate pmf u on Ir,s with uniform margins
in (4.31) is given by u=U(p), where U is defined in (4.29).
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Example 4.4.2. In the setting of the previous proposition, let us illustrate
the fact that, if Assertion 1 does not hold, then (4.31) does not hold. Assume
that p is the pmf on I3,3 represented by the matrix

p=


1
7

1
7

1
71

7 0 1
71

7 0 1
7

 .
With u[1] =u[2] the uniform pmf on I3, note that (4.16) is satisfied for x=p,
a=u[1] and b=u[2] with equality holding for A={2,3} and B={2} and such
that Px([r]\A× [s]\B)=Px({1}×{1,3})= 2

7 /=0. Therefore, according to
Proposition 4.2.3, there exists v∈Γunif with supp(v)⊂ supp(p), but there
does not exist any v∈Γunif such that supp(v) = supp(p). Hence, from Propo-
sition 4.2.1, we know that u=U(p) exists. From Proposition 4.2.5, we can
compute u by using the IPFP via (4.19) and (4.20). It can be verified that,
for any N ∈N (that is, after a row scaling step of the IPFP),

Ru[1] ◦(Cu[2] ◦Ru[1])(2N)(p)= 1
3


1

3(N+1)
1+3N

3(N+1)
1

3(N+1)
1
2 0 1

21
2 0 1

2

 ,
where Ru[1] and Cu[2] are defined as in (4.17) and (4.18), respectively, with
a= b=u[1] =u[2], and that, for any N >0 (that is, after a column scaling
step of the IPFP),

(Cu[2] ◦Ru[1])(2N)(p)= 1
3


1

1+3N 1 1
1+3N

3N
2(1+3N) 0 3N

2(1+3N)
3N

2(1+3N) 0 3N
2(1+3N)

 .
Letting N tend to ∞ for both sequences, we obtain

u=U(p)=


0 1

3 0
1
6 0 1

61
6 0 1

6


and we see that supp(u)⊊ supp(p). Furthermore, Ip[1],p[2](u) does not exist as
a consequence of Proposition 4.2.3 since (4.16) with x=u, a=p[1] and b=p[2]

is contradicted for A={1} and B={1,3}. Thus, the decomposition in (4.31)
does not hold.

Akin to Sklar’s theorem, we see that in (4.31) the copula pmf u of p and
the marginal pmfs p[1] and p[2] are “glued together” via an I-projection (on
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Γp[1],p[2]) to obtain the bivariate pmf p. As already said in Section 4.1, and
now formalised as a consequence of Proposition 4.2.2 or Corollary 4.3.3, u
and p share the same odds ratio matrix. We want to further stress out that,
as can actually be verified, again from Proposition 4.2.2, that any bivariate
pmf y∈Γa,b such that supp(y)=supp(u) (assuming that it exists) obtained
by an I-projection of u on Γa,b would keep the odds ratio matrix constant.
The same happens if supp(y) is strictly contained in supp(u), admitting a
slight lack of rigor by following Remark 4.1.1. As thoroughly explained in
Geenens (2020), and, as already mentioned in Section 4.1, the unique copula
pmf u of p is simply a natural (yet arbitrarily chosen) representative of the
equivalence class of all bivariate pmfs with the same odds ratio matrix. That
is, according to the vast literature on contingency tables, with the same
dependence structure.

In the continuous context, it is known that a continuous bivariate dis-
tribution can be summarised in terms of dependence by a moment of the
underlying copula (such as Spearman’s rho or Kendall’s tau – see, e.g.,
Hofert et al., 2018, Chapter 2 and the references therein). Similarly, when
the decomposition in (4.31) holds, a bivariate pmf p could be summarized
by a moment of its copula pmf u. In the spirit of Spearman’s rho, aGeenens
(2020) proposed Pearson’s linear correlation cor(U,V ) when (U,V ) has pmf
u as a possible summary of u. Geenens (2020, Section 6.6) suggested naming
this quantity Yule’s coefficient, due to its analogy with Yule’s colligation
coefficient (Yule, 1912) for 2 by 2 contingency tables. More specifically, let
Υ be the map from Γunif to [−1,1] defined, for any v∈Γunif, by

Υ(v)=3
√√√√(r−1)(s−1)

(r+1)(s+1)

 4
(r−1)(s−1)

∑
(i,j)∈Ir,s

(i−1)(j−1)vij−1
 . (4.32)

Yule’s coefficient of p (or u) as proposed by Geenens (2020) is then simply
ρ=cor(U,V )=Υ◦U(p)=Υ(u). (4.33)

Recall that p is the pmf of (X,Y ). Note that ρ does not coincide with
cor(X,Y ) in general.

Various other moments of u could be considered. As possible alterna-
tives to ρ, we shall additionally use coefficients based on Goodman’s and
Kruskal’s gamma (Goodman and Kruskal, 1954) and Kendall’s tau b (see,
e.g., Kendall and Gibbons, 1990) of (U,V ) when (U,V ) has pmf u. The
following proposition, proven in Appendix 4.C, presents the expressions of
Goodman’s and Kruskal’s gamma and Kendall’s tau b for bivariate pmfs on
Ir,s with uniform margins.
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Proposition 4.4.3. For any pmf v∈Γunif, Goodman’s and Kruskal’s gamma
of v can be expressed as

G(v)= 2κ(v)−1+1/r+1/s−∥v∥2
2

1−1/r−1/s+∥v∥2
2

, (4.34)

and Kendall’s tau b of v can be expressed as

T (v)=
√
rs{2κ(v)−1+1/r+1/s−∥v∥2

2}√
(r−1)(s−1)

, (4.35)

where

κ(v)=2
∑

i∈{2,...,r}
j∈{1,...,s−1}

∑
i′∈{1,...,i−1}
j′∈{j+1,...,s}

vijvi′j′.

By analogy with Yule’s coefficient in (4.33), we define the gamma coeffi-
cient of p (or u) and the tau coefficient of p (or u) to be

γ=G◦U(p)=G(u) and τ =T ◦U(p)=T (u), (4.36)

respectively, where the maps G and T are defined in (4.34) and (4.35),
respectively. It is important to keep in mind that these coefficients coincide
with Goodman’s and Kruskal’s gamma and Kendall’s tau b of p only when p
has uniform margins. It is easy to verify that all three coefficients ρ, γ and τ
are equal to 1 (resp. −1) when r= s and the copula pmf u is a diagonal (resp.
anti-diagonal) matrix. As explained in Geenens (2020, Sections 5 and 6),
in this case, u corresponds to the upper (resp. lower) Fréchet bound for a
square copula pmf.

4.5 Estimation of Copula Pmfs

Let us return to the setting considered previously at the end of Section 4.1,
with the additional assumption of strict positivity of p. We are interested
in modelling the bivariate pmf p of a discrete random vector (X,Y ) with
(rectangular) support Ir,s, that is, supp(p)= Ir,s. To achieve this, we have
at our disposal n (not necessarily independent) copies (X1,Y1), . . . , (Xn,Yn)
of (X,Y ). Note that there exists a trivial bivariate pmf with uniform
margins with support equal to Ir,s: it is the independence copula pmf π
defined by πij =1/(rs), (i,j)∈ Ir,s. We can therefore immediately apply
Proposition 4.4.1 to obtain the decomposition of p given in (4.31).
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Equation (4.31) suggests proceeding in three steps to form a parametric
or semi-parametric estimate of p, by analogy with estimation procedures
classically employed in the context of copula modelling for continuous random
variables (see, e.g., Hofert et al., 2018, Chapter 4 and the references therein).
For instance, to obtain a parametric estimate of p, one could proceed as
follows:

1. Estimate the univariate margins p[1] and p[2] of p parametrically; let
p[1,α[n]] and p[2,β[n]] be the resulting estimates.

2. Estimate the copula pmf u parametrically; let u[θ[n]] be the resulting
estimate.

3. Form a parametric estimate of p in (4.31) via an I-projection as

p[α[n],β[n],θ[n]] =I
p[1,α[n]],p[2,β[n]](u[θ[n]]).

Remark 4.5.1. Using the notation of Section 4.2.3 and given x∈Γ with
supp(x) = Ir,s, Theorem 6.2 of Gietl and Reffel (2017) implies that the IPFP
of x depends continuously on x and on the underlying target marginal pmfs
a and b. Given this, under a natural assumption of strict positivity of the
parametric model for u (see Section 4.5.2 below), Proposition 4.2.5 and the
continuous mapping theorem imply that p[α[n],β[n],θ[n]] =I

p[1,α[n]],p[2,β[n]](u[θ[n]])
is a consistent estimator of p if p[1,α[n]], p[2,β[n]] and u[θ[n]] are consistent
estimators of p[1], p[2] and u, respectively. □

The first estimation step above can be carried out using classical ap-
proaches in statistics. The focus of this section is on addressing the second
step. However, as the parametric estimation of u will turn out to be strongly
related to a natural nonparametric estimator of u, we first define and explore
the latter. For the rest of this chapter, all convergences are as n→∞ unless
otherwise stated.

4.5.1 Nonparametric Estimation

A straightforward approach to obtaining a nonparametric estimator of u
is to use the plugin principle. Given that a natural estimator of p is p̂[n],
defined as

p̂
[n]
ij = 1

n

n∑
k=1

1(Xk = i,Yk = j), (i,j)∈ Ir,s, (4.37)
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a meaningful estimator of u would simply be U(p̂[n]), where U is defined
in (4.29). However, upon closer inspection, this estimator may not always
exist when n is small. Indeed, the fact that supp(p) = Ir,s does not necessarily
imply that supp(p̂[n])= Ir,s for all n. Furthermore, there is no guarantee
that there exists a bivariate pmf v[n] on Ir,s with uniform margins such that
supp(v[n])⊂ supp(p̂[n]), which is necessary to ensure that U(p̂[n]) exists. To
address this issue, we consider a smoothed version of p̂[n] in (4.37). Although
many solutions could be considered for the smoothed version of p̂[n](see, e.g.,
Simonoff, 1995), we opt for one of the simplest approaches and consider the
estimator p[n] of p defined by

p
[n]
ij = 1

n+1


n∑
k=1

1(Xk = i,Yk = j)+qij

 , (i,j)∈ Ir,s, (4.38)

where q is a pmf on Ir,s with supp(q) = Ir,s. This can be equivalently rewritten
in terms of p̂[n] in (4.37) and q as

p[n] = n

n+1 p̂
[n] + 1

n+1q. (4.39)

In our numerical experiments, we considered two possibilities for q: the inde-
pendence copula pmf π and another natural candidate, the pmf p̂[n,1]p̂[n,2],⊤

which has copula pmf π and the same margins as p̂[n] in (4.37). Note that
the latter choice is only meaningful when both p̂[n,1] and p̂[n,2] are strictly
positive; if this is not the case, a practitioner could decide to reduce the
cardinalities r or s of the marginal supports. In our simulations, both choices
for q yielded very similar results when applicable. For simplicity, we will
take q equal to π as we proceed.

The estimator of u that we consider is then

u[n] =U(p[n]) (4.40)

and, by analogy with classical copula modelling, could be called the empirical
copula pmf.

Denote convergence in probability with the arrow P→. The consistency
of u[n] can be immediately deduced from the consistency of p̂[n] in (4.37),
the continuity of the I-projection of a strictly positive bivariate pmf on
a Fréchet class (see Lemma 4.A.2 in Appendix 4.A) and the continuous
mapping theorem.

Proposition 4.5.2 (Consistency of u[n]). Assume that p̂[n] P→p in Rr×s,
where p̂[n] is defined in (4.37). Then, u[n] P→u in Rr×s.
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The next proposition, proven in Appendix 4.D, gives the limiting distribu-
tion of

√
n(u[n]−u) in Rr×s. It is mostly a consequence of Proposition 4.2.6

and the delta method (see, e.g., van der Vaart, 1998, Theorem 3.1).

Proposition 4.5.3 (Limiting distribution of
√
n(u[n]−u)). Assume that√

n(p̂[n]−p)⇝Zp in Rr×s, where p̂[n] is defined in (4.37), the arrow ⇝
denotes weak convergence and Zp is a random element of Rr×s. Then

√
n(u[n]−u)=U ′

p(
√
n(p̂[n]−p))+oP (1),

where

• U ′
p is the map from Rr×s to Rr×s defined by

U ′
p(h)=vec−1(Ju,pvec(h)), h∈Rr×s,

• vec is the operator defined as in (4.23) with S= Ir,s,

• Ju,p is the rs×rs matrix given by

Ju,p=−KL−1
u MpN, (4.41)

• K is the rs×(r−1)(s−1) matrix given by

Q 0 . . . 0
0 Q ... 0
... ... . . . ...
0 0 . . . Q
−Q −Q ... −Q


where Q=



1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1
−1 −1 . . . −1


∈Rr×(r−1),

• Lu is the (r−1)(s−1)×(r−1)(s−1) matrix whose element at row
k+(r−1)(l−1), (k,l)∈ Ir−1,s−1, and column i+(r−1)(j−1), (i,j)∈
Ir−1,s−1, is given by

1(i=k,j= l)
ukl

+ 1(j= l)
url

+ 1(i=k)
uks

+ 1
urs

, (4.42)

• Mp is the (r−1)(s−1)×(rs−1) matrix whose element at row k+(r−
1)(l−1), (k,l)∈ Ir−1,s−1, and column i+r(j−1), (i,j)∈ Irs\{(i,j)}, is
given by

−1(i=k,j= l)
pkl

+ 1(i= r,j= l)
prl

+ 1(i=k,j= s)
pks

+ 1
prs

, (4.43)
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• and N is the (rs−1)×rs matrix given by
1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ...
0 0 . . . 1 0

 .

Consequently, √
n(u[n]−u)⇝U ′

p(Zp) in Rr×s .

Moreover, when (X1,Y1), . . . ,(Xn,Yn) are independent copies of (X,Y ), vec(Zp)
is a rs-dimensional centered normal random vector with covariance matrix
Σp=diag(vec(p))−vec(p)vec(p)⊤ and vec(U ′

p(Zp)) is a rs-dimensional cen-
tered normal random vector with covariance matrix Ju,pΣpJ

⊤
u,p.

Remark 4.5.4. From (4.14) and (4.29), the empirical copula pmf u[n] defined
in (4.40) can be rewritten more explicitly as

u[n] =arginf
v∈Γunif

D(v∥p[n]). (4.44)

As noted by a Referee when revising Kojadinovic and Martini (2024), the
estimator mentioned above is a minimum divergence estimator (see, e.g.,
Read and Cressie, 1988; Morales et al., 1995; Basu et al., 2011). Such
estimators have been explored for families of divergences (such as power-
divergences in Read and Cressie (1988) and ϕ-divergences in Morales et al.
(1995)) which include the Kullback–Leibler divergence as a particular case.
When based on the Kullback–Leibler divergence, and using our notation,
these estimators can be expressed as

v[n] =arginf
v∈Π0

D(v∥p[n]), (4.45)

where Π0 is a subset of interest of Γ in (4.10). The strong similarity be-
tween (4.44) and (4.45) insinuates that asymptotic results for u[n] should
follow from asymptotic results for v[n] upon taking Π0 =Γunif. However,
an inspection of the appendices of, for instance, Read and Cressie (1988)
reveals that asymptotic results for v[n] are typically obtained under the
null hypothesis that p∈Π0 (which is fully meaningful given the focus on
goodness-of-fit testing in the aforementioned reference ). In other words,
upon taking Π0 equal to Γunif, typical asymptotic results for minimum diver-
gence estimators would allow us to obtain the asymptotics of u[n] under the
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assumption that p∈Γunif. This would obviously not be of much interest since
the approach studied in this chapter implicitly assumes that the unknown
bivariate pmf p does not generally have uniform margins. Nevertheless, the
connection with minimum divergence estimators indicates that the results
stated in Proposition 4.5.3 should be a special case of asymptotic results
for minimum divergence estimators under the alternative hypothesis that
p /∈Π0, i.e., under misspecification. After a literature review, we found only
one reference addressing this issue: it is the work of Jiménez-Gamero et al.
(2011). Specifically, in principle, Theorem 1 in the aforementioned refer-
ence could serve as an important building block for an alternative proof of
Proposition 4.5.3 above. However, its proof seems incomplete as its relies
on a lemma whose proof appears incomplete as already mentioned in Re-
mark 4.2.7. The completion of this proof is one of the reasons behind the
developments contained in our submitted paper Geenens et al. (2024) and
shall be illustrated in Chapter 5. □

Recall the definitions of the moments ρ, γ and τ of p (or u) considered at
the end of Section 4.4 in (4.33) and (4.36). Natural estimators of the latter
then simply follow from the plugin principle and are

ρ[n] =Υ(u[n]), γ[n] =G(u[n]) and τ [n] =T (u[n]), (4.46)

respectively, where u[n] is defined in (4.40) and the maps Υ, G and T are
defined in (4.32), (4.34) and (4.35), respectively.

As we continue, for an arbitrary map η : Γ→R, we define its gradient η̇
to be the usual gradient written with respect to the standard column-major
vectorization of its r×s matrix argument, that is,

η̇=
(
∂η

∂x11
, . . . ,

∂η

∂xr1
, . . . ,

∂η

∂x1s
, . . . ,

∂η

∂xrs

)
.

The following result is then an immediate corollary of Propositions 4.5.2
and 4.5.3, the continuous mapping theorem and the delta method.

Corollary 4.5.5 (Asymptotics of moment estimators). If p̂[n] P→p in Rr×s,
where p̂[n] is defined in (4.37), then ρ[n] P→ρ, γ[n] P→γ and τ [n] P→ τ in R. If,
additionally,

√
n(p̂[n]−p) converges weakly in Rr×s, then
√
n(ρ[n]−ρ)=Υ̇(u)⊤Ju,p

√
nvec(p̂[n]−p)+oP (1),

√
n(γ[n]−γ)= Ġ(u)⊤Ju,p

√
nvec(p̂[n]−p))+oP (1),

√
n(τ [n]−τ)= Ṫ (u)⊤Ju,p

√
nvec(p̂[n]−p))+oP (1),
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where Ju,p is defined in (4.41). Consequently, when (X1,Y1), . . . , (Xn,Yn)
are independent copies of (X,Y ), the sequences

√
n(ρ[n]−ρ),

√
n(γ[n]−γ)

and
√
n(τ [n]−τ)) are asymptotically centered normal with variances

Υ̇(u)⊤Ju,pΣpJ
⊤
u,pΥ̇(u),

Ġ(u)⊤Ju,pΣpJ
⊤
u,pĠ(u),

Ṫ (u)⊤Ju,pΣpJ
⊤
u,pṪ (u),

respectively, where Σp=diag(vec(p))−vec(p)vec(p)⊤.

4.5.2 Parametric Estimation

Let
J ={u[θ] : θ∈Θ} (4.47)

be a bivariate parametric family of copula pmfs on Ir,s, where Θ is an open
subset of Rm for some strictly positive integer m. Because the assumption
supp(p) = Ir,s implies that supp(u) = Ir,s, the family J is naturally assumed
to satisfy the following: for any θ∈Θ, u[θ]

ij >0 for all (i,j)∈ Ir,s. In this
section, we assume that the unknown copula pmf u in (4.31) belongs to J ,
that is, there exists θ0∈Θ such that u=u[θ0], and our aim is to address the
estimation of θ0.

Before considering two estimation approaches, note that several examples
of parametric copula pmfs can be found in Section 7 of Geenens (2020). As-
suming a rectangular support for p (and thus u), it is particularly meaningful
to follow one of the suggestions therein and construct the family J from
a parametric family {Cθ : θ∈Θ} of classical bivariate copulas with strictly
positive densities on (0,1)2 such that, for any θ∈Θ and (i,j)∈ Ir,s,

u
[θ]
ij =Cθ

(
i

r
,
j

s

)
−Cθ

(
i

r
,
j−1
s

)
−Cθ

(
i−1
r
,
j

s

)
+Cθ

(
i−1
r
,
j−1
s

)
. (4.48)

Clearly, this way of proceeding is fully meaningful only if the resulting family
J in (4.47) is identifiable, that is, u[θ] /=u[θ′] whenever θ /= θ′. To verify that
a family J is identifiable, it thus suffices to check that, for any θ /= θ′, there
exists (i,j)∈ Ir,s such that u[θ]

ij /=u
[θ′]
ij . Note that the quantity u[θ]

ij in (4.48) is
actually the Cθ-volume of the rectangle ((i−1)/r,i/r]×((j−1)/s,j/s] (see,
e.g., Hofert et al., 2018, Section 2.1). Non-identifiability thus occurs when a
change in θ leaves the Cθ-volumes of all the rectangles ((i−1)/r,i/r]×((j−
1)/s,j/s], (i,j)∈ Ir,s, unchanged. Since the construction in (4.48) is based on
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classical copula families (which are identifiable), arguably, non-identifiability
of the resulting family J in (4.47) should be the exception rather than the
rule in particular as r and s get larger. For a parametric copula family
where Cθ has an explicit expression, identifiability of the family J can be
checked analytically by replacing Cθ by its expression in (4.48). This is
done for example in Geenens (2020, Section 7.1) for the Farlie–Gumbel–
Morgenstern family. For parametric copula families for which Cθ is not
explicitly available (such as elliptical copula families), identifiability could
be checked numerically.

Method-of-moments Estimation

We shall assume in this subsection that J is a one-parameter family, that is,
m= 1. Given J , let gρ, gγ and gτ be the functions defined, for any θ∈Θ, by

gρ(θ)=Υ(u[θ]), gγ(θ)=G(u[θ]) and gτ (θ)=T (u[θ]), (4.49)

where the maps Υ, G and T are defined in (4.32), (4.34) and (4.35), re-
spectively. Method-of-moments estimators based on Yule’s coefficient, the
gamma coefficient or the tau coefficient can be used if the functions gρ,
gγ and gτ are one-to-one. In that case, corresponding estimators of θ0 are
simply given by

θ[n]
ρ =g−1

ρ (ρ[n]), θ[n]
γ =g−1

γ (γ[n]) and θ[n]
τ =g−1

τ (τ [n]) (4.50)

where ρ[n], γ[n] and τ [n] are the estimators of ρ, γ and τ , respectively, defined
in (4.46).

The following result is then an immediate consequence of Corollary 4.5.5,
the continuous mapping theorem and the delta method.

Corollary 4.5.6 (Asymptotics of method-of-moments estimators). Assume
that the functions gρ, gγ and gτ in (4.49) are one-to-one and that g−1

ρ , g−1
γ

and g−1
τ are continuously differentiable at ρ0 =Υ(u[θ0]), γ0 =G(u[θ0]) and

τ0 =T (u[θ0]). If p̂[n] P→p in Rr×s, then θ[n]
ρ

P→ θ0, θ[n]
γ

P→ θ0 and θ[n]
τ

P→ θ0 in R.
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If, additionally,
√
n(p̂[n]−p) converges weakly in Rr×s, then

√
n(θ[n]

ρ −θ0)= Υ̇(u)⊤Ju,p
√
nvec(p̂[n]−p)

g′
ρ(θ0)

+oP (1),

√
n(θ[n]

γ −θ0)= Ġ(u)⊤Ju,p
√
nvec(p̂[n]−p)

g′
γ(θ0)

+oP (1),

√
n(θ[n]

τ −θ0)= Ṫ (u)⊤Ju,p
√
nvec(p̂[n]−p)

g′
τ (θ0)

+oP (1),

where Ju,p is defined in (4.41).

Maximum Pseudo-likelihood Estimation

In this subsection, we assume that J in (4.47) is a multi-parameter family,
meaning m≥1, with Θ an open subset of Rm. Recall that we are working
under the assumption that there exists θ0∈Θ such that u=u[θ0], and our
goal is to estimate the unknown parameter vector θ0. It is crucial to note
that we do not have at our disposal observed counts from the bivariate pmf
u=u[θ0]. Instead, we only have access to the observed counts np̂[n] from p,
where p̂[n] is defined in (4.37). To perform maximum likelihood estimation,
we would thus additionally need to postulate marginal parametric models for
p[1] and p[2] and obtain an estimate of θ0 as a by-product of the estimation
of all the parameters of a model for p (see Remark 4.5.8 below). Rather the
following such a complex approach, it is conceptually simpler to consider
minimum divergence estimators of the form θ̌[n] =arginfθ∈ΘD(u[θ]∥u[n]) or

θ[n] =arginf
θ∈Θ

D(u[n]∥u[θ])=argsup
θ∈Θ

∑
(i,j)∈Ir,s

u
[n]
ij logu[θ]

ij , (4.51)

where D is the Kullback–Leibler divergence defined in (4.13). Notice that
if the numbers in nu[n] were counts obtained from a random sample from
u=u[θ0],

L̄[n](θ)=n
∑

(i,j)∈Ir,s

u
[n]
ij logu[θ]

ij , θ∈Θ, (4.52)

would be the log-likelihood of the model. As the numbers in nu[n] are only
a proxy to observed counts from u[θ0], the estimator in (4.51), which can be
rewritten as

θ[n] =(θ[n]
1 , . . . ,θ[n]

m )=argsup
θ∈Θ

L̄[n](θ)=argsup
θ∈Θ

1
n
L̄[n](θ), (4.53)

163



is a maximum pseudo-likelihood estimator of θ0. The aim of this section is
to derive its consistency and its asymptotic normality.

Remark 4.5.7. (Connection to minimum divergence estimators in multino-
mial models). Let F ={p[δ] : δ∈∆} be a parametric family of bivariate pmfs,
where ∆ is a open subset of Rd for some strictly positive integer d. Assume
additionally that (X1,Y1), . . . ,(Xn,Yn) is a random sample from p (which
implies that nvec(p̂[n]) is a multinomial random vector with parameters n
and vec(p), where p̂[n] is defined in (4.37) and vec is the operator defined
as in (4.23) with S= Ir,s) and that there exists a δ0∈∆ such that p=p[δ0].
From (4.51), we see that the maximum pseudo-likelihood estimator in (4.53)
bears a strong resemblance with the estimator δ[n] =arginfδ∈∆D(p[n]∥p[δ]).
The latter belongs to the classes of minimum divergence estimators of δ0
studied for instance in Read and Cressie (1988), Morales et al. (1995) or
Basu et al. (2011). Because the numbers in nu[n] are not observed counts
from u[θ0], the consistency and the asymptotic normality of (4.53) cannot
unfortunately be directly deduced from the asymptotic results stated in the
aforementioned references. □

Remark 4.5.8. (Connection to maximum likelihood estimators). LetM1 =
{p[1,α] :α∈A} (resp. M2 ={p[2,β] :β∈B}) be a univariate parametric family
of pmfs on [r] (resp. [s]), where A (resp. B) is an open subset of Rm1

(resp. Rm2) for some strictly positive integer m1 (resp. m2). The families
M1 and M2 are further naturally assumed to satisfy the following: for any
(α,β)∈A×B, p[1,α]

i >0 for all i∈ [r] and p[2,β]
j >0 for all j∈ [s]. Having (4.31)

in mind, one can combine the previous marginal parametric assumptions
with (4.47) to form a parametric model for p as

P={p[α,β,θ] =Ip[1,α],p[2,β](u[θ]) : (α,β,θ)∈A×B×Θ}. (4.54)

Under the assumption that there exists (α0,β0,θ0)∈ (A,B,Θ) such that
p=p[α0,β0,θ0], the estimation of θ0 is then a by-product of estimating the
entire parameter vector (α0,β0,θ0). When (X1,Y1), . . . ,(Xn,Yn) is a random
sample from p, this could be obtained by maximising the log-likelihood of
the model in (4.54), which can be written as

L[n](α,β,θ)=n
∑

(i,j)∈Ir,s

p̂
[n]
ij logp[α,β,θ]

ij =n
∑

(i,j)∈Ir,s

p̂
[n]
ij logIp[1,α],p[2,β](u[θ])ij,

where p̂n is defined in (4.37). Practically, this optimisation is expected to be
computationally intensive as it would typically require numerous executions
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of the IPFP. Moreover, similar to the indirect estimation of the parameter
vector of a classical parametric copula by maximum likelihood estimation
(see, e.g., Hofert et al., 2018, Chapter 4 and the references therein), the
resulting estimate of θ0 may be influenced by potential misspecification of
the univariate families M1 and M2. A less computationally demanding
“two-stage” approach involves first estimating α0 (resp. β0) by α[n] (resp. β[n])
from the first (resp. second) component sample X1, . . . ,Xn (resp. Y1, . . . ,Yn)
and then maximising the following log-pseudo-likelihood:

L̃[n](θ)=n
∑

(i,j)∈Ir,s

p̂
[n]
ij logp[α[n],β[n],θ]

ij

=n
∑

(i,j)∈Ir,s

p̂
[n]
ij logI

p[1,α[n]],p[2,β[n]](u[θ])ij.

From a computational standpoint, the maximisation of L̃[n] is expected to be
significantly more expensive than that of L̄[n] in (4.52) because the former
typically requires numerous executions of the IPFP. Additionally, as before,
the resulting estimate of θ0 may be influenced by potential misspecification
of the univariate families M1 and M2. This further supports the argument
for maximising L̄[n] in (4.52), which, in essence, is analogous to the log-
pseudo-likelihood of Genest et al. (1995) in the current discrete context.
□

The following result, proven in Appendix 4.E using Theorem 5.7 of van
der Vaart (1998), provides conditions under which the estimator θ[n] in (4.53)
is consistent.

Proposition 4.5.9 (Consistency of the maximum pseudo-likelihood estima-
tor). Assume that the family J is identifiable and that there exists λ∈ (0,1)
such that, for any θ∈Θ and (i,j)∈ Ir,s, u[θ]

ij ≥λ. Then, if p̂[n] P→p in Rr×s,
where p̂[n] is defined in (4.37), θ[n] P→ θ0 in Rm.

Remark 4.5.10. The requirement that there exists λ∈ (0,1) such that, for
any θ∈Θ and (i,j)∈ Ir,s, u[θ]

ij ≥λ might seem overly restrictive. For instance,
it can be shown that this condition will not be satisfied by families J in (4.47)
constructed via (4.48) when Cθ is a Gumbel–Hougaard copula (see, e.g.,
Hofert et al., 2018, Chapter 2 and the references therein) if the parameter
space Θ is taken as (1,∞). However, it will be met if the parameter space is
restricted to (1,M) for any fixed large real M . □
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To state conditions under which the estimator θ[n] in (4.53) is asymptoti-
cally normal, we need to introduce additional notation. For any θ∈Θ and
(i,j)∈ Ir,s, let ℓ[θ]

ij =logu[θ]
ij , let

u̇
[θ]
ij,k =

∂u
[θ]
ij

∂θk
, k∈ Im={1, . . . ,m}, u̇

[θ]
ij =

(
u̇

[θ]
ij,1, . . . , u̇

[θ]
ij,m

)
, (4.55)

and let

ü
[θ]
ij,kl =

∂2u
[θ]
ij

∂θk∂θl
, k,l∈ Im, ü

[θ]
ij =


ü

[θ]
ij,11 . . . ü

[θ]
ij,1m... ...

ü
[θ]
ij,m1 . . . ü

[θ]
ij,mm

 . (4.56)

Similarly, for any θ∈Θ and (i,j)∈ Ir,s, let

ℓ̇
[θ]
ij,k =

∂ logu[θ]
ij

∂θk
=
u̇

[θ]
ij,k

u
[θ]
ij

, k∈ Im, ℓ̇
[θ]
ij =

(
ℓ̇

[θ]
ij,1, . . . , ℓ̇

[θ]
ij,m

)
=
u̇

[θ]
ij

u
[θ]
ij

, (4.57)

let

ℓ̈
[θ]
ij,kl =

∂2ℓ
[θ]
ij

∂θk∂θl
=
ü

[θ]
ij,kl

u
[θ]
ij

−
u̇

[θ]
ij,ku̇

[θ]
ij,l

(u[θ]
ij )2

, k,l∈ Im, (4.58)

and let

ℓ̈
[θ]
ij =


ℓ̈

[θ]
ij,11 . . . ℓ̈

[θ]
ij,1m... ...

ℓ̈
[θ]
ij,m1 . . . ℓ̈

[θ]
ij,mm

=
ü

[θ]
ij

u
[θ]
ij

−
u̇

[θ]
ij u̇

[θ],⊤
ij

(u[θ]
ij )2

, (4.59)

where u̇[θ]
ij and ü

[θ]
ij are defined in (4.55) and (4.56), respectively. Using the

fact that ∑(i,j)∈Ir,s
u

[θ]
ij = 1 implies that ∑(i,j)∈Ir,s

u̇
[θ]
ij,k = 0 and ∑(i,j)∈Ir,s

ü
[θ]
ij,kl = 0

for all k,l∈ Im, we obtain from (4.57) and (4.58) that∑
(i,j)∈Ir,s

u
[θ]
ij ℓ̇

[θ]
ij,k =0 for all k∈ Im,

and that ∑
(i,j)∈Ir,s

u
[θ]
ij ℓ̈

[θ]
ij,kl =−

∑
(i,j)∈Ir,s

u
[θ]
ij ℓ̇

[θ]
ij,kℓ̇

[θ]
ij,l for all k,l∈ Im.

Using the notation defined in (4.57) and (4.59), the previous two centered
displays can be rewritten as the vector identity Eθ(ℓ̇[θ]

(U,V )) = 0 and the matrix
identity

Eθ(ℓ̈[θ]
(U,V ))=−Eθ(ℓ̇[θ]

(U,V )ℓ̇
[θ],⊤
(U,V )), (4.60)
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respectively, where (U,V ) has pmf u[θ] and Eθ denotes the expectation with
respect to u[θ]. In other words, in the discrete setting under consideration,
unsurprisingly, we recover the classical identities that occur under regularity
conditions in the context of classical maximum likelihood estimation (see,
e.g., van der Vaart, 1998, Section 5.5, p 63).

The following result is proven in Appendix 4.E along the lines of the proof
of Theorem 5.21 in van der Vaart (1998).

Proposition 4.5.11 (Asymptotic normality of the maximum pseudo-likeli-
hood estimator). Assume that θ[n] P→ θ0 in Rm and, furthermore, that, for
any (i,j)∈ Ir,s, θ→ ℓ

[θ]
ij is twice differentiable at any θ∈Θ and that the matrix

Eθ0(ℓ̈
[θ0]
(U,V )), where (U,V ) has pmf u[θ0], is invertible. Then, if

√
n(p̂[n]−p)

converges weakly in Rr×s, we have that
√
n(θ[n]−θ0)={Eθ0(ℓ̇

[θ0]
(U,V )ℓ̇

[θ0],⊤
(U,V ))}

−1ℓ̇[θ0]Ju,p
√
nvec(p̂[n]−p)+oP (1),

where ℓ̇[θ0] is the m×rs matrix whose column i+r(j−1), (i,j)∈ Ir,s, ℓ̇[θ0]
ij is

defined as in (4.57) with θ= θ0 and Ju,p is defined in (4.41). Consequently,
when (X1,Y1), . . . ,(Xn,Yn) are independent copies of (X,Y ), the sequence√
n(θ[n]−θ0) is asymptotically centered normal with covariance matrix

{Eθ0(ℓ̇
[θ0]
(U,V )ℓ̇

[θ0],⊤
(U,V ))}

−1ℓ̇[θ0]Ju,pΣpJ
⊤
u,pℓ̇

[θ0],⊤[{Eθ0(ℓ̇
[θ0]
(U,V )ℓ̇

[θ0],⊤
(U,V ))}

−1]⊤,

where Σp=diag(vec(p))−vec(p)vec(p)⊤.

Remark 4.5.12. The conditions on the hypothesized family J in (4.47)
stated in the previous proposition are inspired by some of the least restrictive
ones in the literature (see, e.g., van der Vaart, 1998, Chapter 5). Therefore,
we anticipate that they will hold for many families J . □

4.5.3 Monte Carlo Experiments

The asymptotic results stated in Corollary 4.5.6 and Proposition 4.5.11 do
not offer any insights on the finite-sample behaviour of the three method-of-
moments estimators in (4.50) and the maximum pseudo-likelihood estimator
in (4.53). To provide a comparison of these four estimators, we carried
out Monte Carlo simulations under the assumption that the parametric
family J in (4.47) is constructed from a one-parameter family of classical
copulas as in (4.48). For (r,s)∈{(3,3),(3,10),(10,10)}, the bias and the
mean squared error (MSE) of the three method-of-moments estimators and
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Table 4.5.1: For (r,s)∈{(3,3),(3,10),(10,10)}, bias and mean squared error (MSE) of
the three method-of-moment estimators in (4.50) and the maximum pseudo-likelihood
(PL) estimator in (4.53) estimated from 1000 random samples of size n∈{100,500,1000}
generated, as explained in Section 4.5.3, from pmfs whose copula pmf is of the form (4.48)
with Cθ the Clayton copula with a Kendall’s tau of 0.33. The column ‘m’ gives the marginal
scenario. The column ‘U ’ reports the number of times the IPFP did not numerically
converge in 1000 steps. The column ‘ni’ report the number of numerical issues related to
fitting.

Bias MSE

(r,s) m n U ni ρ γ τ PL ρ γ τ PL
(3,3) 1 100 0 0 0.02 0.01 0.02 0.02 0.11 0.10 0.10 0.10

500 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
1000 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

2 100 0 0 0.03 0.02 0.03 0.03 0.14 0.13 0.14 0.15
500 0 0 0.00 -0.00 0.00 0.00 0.02 0.02 0.02 0.03

1000 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

3 100 0 0 0.06 0.05 0.06 0.06 0.19 0.19 0.19 0.18
500 0 0 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

1000 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

(3,10) 1 100 0 0 0.03 0.01 0.03 0.03 0.09 0.09 0.09 0.08
500 0 0 -0.00 -0.00 -0.00 0.00 0.02 0.02 0.02 0.01

1000 0 0 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

2 100 0 0 -0.07 -0.09 -0.07 -0.08 0.16 0.16 0.16 0.20
500 0 0 -0.00 -0.01 -0.01 -0.01 0.03 0.03 0.03 0.03

1000 0 0 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02

3 100 0 1 -0.58 -0.58 -0.58 -0.64 0.45 0.45 0.45 0.52
500 0 0 -0.25 -0.26 -0.25 -0.28 0.23 0.23 0.23 0.27

1000 0 0 -0.08 -0.09 -0.09 -0.10 0.16 0.17 0.17 0.18

(10,10) 1 100 0 0 0.02 0.00 0.02 0.02 0.09 0.08 0.09 0.07
500 0 0 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

1000 0 0 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

2 100 0 0 -0.14 -0.17 -0.15 -0.15 0.14 0.14 0.14 0.17
500 0 0 -0.03 -0.03 -0.03 -0.03 0.03 0.03 0.03 0.04

1000 0 0 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.02

3 100 0 0 -0.85 -0.82 -0.81 -0.81 0.74 0.70 0.70 0.67
500 0 0 -0.69 -0.66 -0.65 -0.68 0.52 0.49 0.49 0.51

1000 0 0 -0.57 -0.55 -0.54 -0.60 0.39 0.38 0.37 0.44

the maximum pseudo-likelihood estimator were estimated from 1000 random
samples of size n∈{100,500,1000} generated from a pmf with copula pmf of
the form (4.48) with Cθ either the Clayton or the Gumbel–Hougaard copula
with a Kendall’s tau in {0.33,0.66}, or the Frank copula with a Kendall’s tau
in {−0.5,0,0.5} (see, e.g., Hofert et al., 2018, Chapter 2 for the definitions
of these copula families and the definition of Kendall’s tau). For each of the
above seven copula pmfs, three marginal pmf scenarios were considered:

1. (1/r,...,1/r) (resp. (1/s,...,1/s)) as values of the first (resp. second)
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Table 4.5.2: For (r,s)∈{(3,3),(3,10),(10,10)}, bias and mean squared error (MSE) of
the three method-of-moment estimators in (4.50) and the maximum pseudo-likelihood
(PL) estimator in (4.53) estimated from 1000 random samples of size n∈{100,500,1000}
generated, as explained in Section 4.5.3, from p.m.f.s whose copula pmf is of the form (4.48)
with Cθ the Clayton copula with a Kendall’s tau of 0.66. The column ‘m’ indicates
the marginal scenario. The column ‘U ’ presents the number of times the IPFP did not
numerically converge in 1000 steps. The column ‘ni’ reports the number of numerical issues
related to fitting.

Bias MSE

(r,s) m n U ni ρ γ τ PL ρ γ τ PL
(3,3) 1 100 0 0 0.09 0.02 0.10 0.09 0.79 0.75 0.83 0.76

500 0 0 0.01 -0.00 0.01 0.01 0.13 0.14 0.14 0.13
1000 0 0 0.01 0.00 0.01 0.01 0.07 0.07 0.07 0.07

2 100 0 0 0.09 -0.01 0.09 0.09 0.77 0.65 0.79 0.76
500 0 0 -0.00 -0.02 0.00 -0.00 0.14 0.14 0.14 0.14

1000 0 0 -0.00 -0.01 -0.00 0.00 0.07 0.07 0.07 0.07

3 100 0 0 0.05 -0.03 0.06 0.05 0.77 0.74 0.81 0.72
500 0 0 0.02 0.01 0.01 0.02 0.13 0.14 0.13 0.13

1000 0 0 0.00 -0.00 0.00 0.00 0.08 0.09 0.08 0.08

(3,10) 1 100 0 0 0.02 -0.05 0.04 0.03 0.59 0.59 0.63 0.53
500 0 0 0.01 -0.01 0.01 0.01 0.09 0.10 0.10 0.09

1000 0 0 -0.00 -0.01 -0.00 -0.00 0.05 0.05 0.05 0.04

2 100 0 0 -0.48 -0.52 -0.43 -0.65 0.96 0.97 0.94 1.34
500 0 0 -0.04 -0.05 -0.03 -0.06 0.11 0.11 0.11 0.13

1000 0 0 -0.02 -0.03 -0.02 -0.03 0.05 0.05 0.05 0.06

3 100 0 0 -2.63 -2.59 -2.55 -2.82 7.28 7.11 6.92 8.40
500 0 0 -1.39 -1.34 -1.30 -1.54 2.93 2.86 2.74 3.50

1000 0 0 -0.73 -0.70 -0.67 -0.84 1.35 1.36 1.29 1.54

(10,10) 1 100 19 0 -0.14 -0.22 -0.10 -0.09 0.39 0.40 0.39 0.30
500 0 0 -0.02 -0.03 -0.01 -0.01 0.07 0.07 0.06 0.05

1000 0 0 0.01 -0.00 0.01 0.01 0.04 0.03 0.03 0.03

2 100 5 0 -0.54 -0.56 -0.44 -0.54 0.79 0.77 0.71 1.05
500 18 0 -0.04 -0.05 -0.02 -0.01 0.06 0.06 0.06 0.08

1000 2 0 -0.02 -0.02 -0.01 -0.00 0.03 0.03 0.03 0.04

3 100 0 0 -3.30 -3.11 -3.09 -3.24 11.03 9.88 9.75 10.76
500 0 0 -2.30 -2.03 -1.97 -2.01 5.95 4.80 4.64 4.96

1000 0 0 -1.68 -1.46 -1.39 -1.36 3.47 2.74 2.60 2.63

marginal pmf,

2. (1, . . . ,r)/(r(r+1)/2) (resp. (1, . . . ,s)/(s(s+1)/2)) as values of the first
(resp. second) marginal pmf,

3. the values of the pmf of the binomial distribution with parameters
r−1 and 1/2 (resp. s−1 and 1/2) as values of the first (resp. second)
marginal pmf

For the second and third marginal scenarios, the resulting pmfs of the
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form (4.31) were computed using the IPFP. For each generated sample from
one of the 21 data generating pmfs, we first computed the nonparametric
estimate p[n] in (4.39), then, using the IPFP, the corresponding empirical
copula pmf u[n] in (4.40) and, finally, the four estimates of θ0 using (4.50)
and (4.53). All the computations were carried out using the R statistical
environment (R Core Team, 2024) and its packages mipfp (Barthélemy and
Suesse, 2018) and copula (Hofert et al., 2022). In particular, the IPFP
was computed using the function Ipfp() of the package mipfp with its
default parameter values (at most 1000 iterations and ε in (4.22) equal to
10−10), the inverses of the (one-to-one) functions gρ, gγ and gτ in (4.49) were
computed by numerical root finding using the uniroot() function while the
maximization of the log-pseudo-likelihood in (4.52) was carried out using
the optim() function with θ[n]

γ in (4.50) as starting value.

The results when the data-generating pmf is based on the copula pmf
in (4.48) with Cθ as a Clayton copula are presented in Tables 4.5.1 and 4.5.2.
Note that the column labeled ‘U ’ indicates, for each data-generating scenario,
the number of times the IPFP did not numerically converge within 1000
steps, as per the criterion in (4.22). The subsequent column, ‘ni’, reports
the number of numerical issues encountered during fitting (either related to
numerical root finding for the method-of-moments estimators or numerical
optimization for the maximum pseudo-likelihood). An examination of all
the fitting simulation results revealed that the overall number of numerical
issues was minimal. These issues primarily concerned the Clayton model
with the strongest dependence (see Table 4.5.2) when r= s= 10. This can be
attributed to the higher likelihood of zero counts in the bivariate contingency
tables derived from the generated samples in this scenario. Regarding
estimation precision, it is reassuring to observe that for each data-generating
scenario, an increase in n leads to a decrease in the absolute value of the bias
and the Mean Squared Error (MSE). Unsurprisingly, the poorest results are
observed for the third marginal scenario, as it leads to the largest number
of very small probabilities for some cells of the data-generating pmf For
instance, there are notable large negative biases when r or s are equal to 10,
as the smallest marginal probability is approximately 0.002, often resulting
in zero counts in several cells of the contingency tables derived from the
generated samples. In essence, the very non-uniform margins in this scenario
obscure certain features of u, making the dependence appear significantly
weaker on average than it actually is.
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From a numerical standpoint, it is also worth noting that for such data-
generating scenarios, without the smoothing considered in (4.38), the IPFP
would converge significantly less frequently within 1000 steps.

The results when the data generating pmf is based on the copula pmf (4.48)
with Cθ a Gumbel–Hougaard or a Frank copula are not qualitatively different
and are not reported. In terms of MSE, the experiments did not reveal a
uniformly better estimator.

4.6 Goodness-Of-Fit Testing

Recall the definition of the parametric family of copula pmfs J in (4.47).
The three method-of-moments estimators in (4.50) and the maximum pseudo-
likelihood estimator in (4.53) were both theoretically and empirically exam-
ined in Sections 4.5.2 and 4.5.3 under the hypothesis

H0 :u∈J , that is, there exists θ0∈Θ such that u=u[θ0]. (4.61)

Clearly, parameter estimates obtained for a given family J will be meaningful
only if H0 actually holds. The goal of goodness-of-fit testing is formally
evaluate this hypothesis. To derive goodness-of-fit tests, we consider, as
is commonly done in the literature, approaches based on comparing a
nonparametric estimator of u with a parametric one under H0.

In the remainder of this section, we first define a relevant class of chi-
square statistics and provide their asymptotic null distributions. Next,
we empirically investigare the finite-sample performance of the resulting
asymptotic goodness-of-fit tests. Finally, we propose a semi-parametric
bootstrap procedure as an alternative method for computing p-values.

4.6.1 Asymptotic Chi-Square-Type Goodness-Of-Fit Tests

One approach to test H0 :u∈J versus H1 :u /∈J consists of constructing
test statistics as norms of the goodness-of-fit process

√
n(u[n]−u[θ̂[n]]), (4.62)

where u[n] is defined in (4.40) and θ̂[n] is an estimator of θ0 computed underH0.
As is typical in the goodness-of-fit testing literature, the process in (4.62)
compares a nonparametric estimator of u which is consistent whether H0 is
true or not, with a parametric estimator that is only consistent under H0.
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The rationale behind this construction is that any norm of (4.62) should be
typically smaller under H0 than it is under H1.

The following result, proven in Appendix 4.F, describes the asymptotic
null behavior of the goodness-of-fit process in (4.62).

Proposition 4.6.1. Assume that H0 in (4.61) holds and that

1.
√
n(p̂[n]−p) converges weakly in Rr×s, where p̂[n] is defined in (4.37),

2. the map from Θ⊂Rm to Rr×s defined by θ→u[θ] is differentiable at θ0
and let u̇[θ0] be the rs×m matrix whose row i+r(j−1), (i,j)∈ Ir,s, is
u̇

[θ]
ij in (4.55),

3. there exists a m×rs matrix V [θ0]
u,p such that

√
n(θ̂[n]−θ0)=V [θ0]

u,p

√
nvec(p̂[n]−p)+oP (1),

where vec is the operator defined as in (4.23) with S= Ir,s.

Then,
√
nvec(u[n]−u[θ̂[n]])=(Ju,p− u̇[θ0]V [θ0]

u,p )
√
nvec(p̂[n]−p)+oP (1),

where Ju,p is defined in (4.41).

Note that Corollary 4.5.6 and Proposition 4.5.11 give conditions under
which the third assumption in the previous proposition holds for the three
method-of-moments estimators in (4.50) and the maximum pseudo-likelihood
estimator in (4.53), respectively.

One natural test statistic that can be constructed from the goodness-of-fit
process in (4.62) is the chi-square statistic

S[n] =n
∑

(i,j)∈Ir,s

(u[n]
ij −u

[θ̂[n]]
ij )2

u
[θ̂[n]]
ij

. (4.63)

As is well-known in the statistical literature, a widely accepted rule of thumb
to protect the level of a classical chi-square test is to regroup low observed
counts such that eventually all observed counts are above 5 (see, e.g., van
der Vaart, 1998, Chapter 17). To perform similar groupings in our context,
we consider the following generalization of S[n] in (4.63):

S
[n]
G =n∥diag(Gvec(u[θ̂[n]]))−1/2Gvec(u[n]−u[θ̂[n]])∥2

2, (4.64)
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where G is a chosen “grouping matrix”, that is, a q×rs matrix with q∈
{1, . . . ,rs} whose elements are in {0,1} with exactly rs of them equal to 1
and a unique 1 per column. Some thought reveals that, in (4.64), each row
of G sums one or more copula pmf values. Clearly, S[n]

G coincides with S[n]

in (4.63) when G is the rs×rs identity matrix.
The following result, proven in Appendix 4.F, provides the asymptotic

null distribution of S[n]
G in (4.64) when computed from a random sample.

Proposition 4.6.2. Under the conditions of Proposition 4.6.1, when (X1,Y1),
. . . , (Xn,Yn) are independent copies of (X,Y ), S[n]

G ⇝LG in R, where LG
is distributed as ∑q

k=1λkZ
2
k for i.i.d. N(0,1)-distributed random variables

Z1, . . . ,Zq and λ1, . . . ,λq the eigenvalues of

Σ[θ0]
G,u,p=diag(Gvec(u[θ0]))−1/2G(Ju,p− u̇[θ0]V [θ0]

u,p )
×Σp(Ju,p− u̇[θ0]V [θ0]

u,p )⊤G⊤diag(Gvec(u[θ0]))−1/2, (4.65)

with Ju,p defined in (4.41) and Σp=diag(vec(p))−vec(p)vec(p)⊤. Further-
more, provided that (θ,u′,p′)→Σ[θ]

G,u′,p′ is continuous at (θ0,u,p), we have
that Σ[θ̂[n]]

G,u[n],p[n]
P→Σ[θ0]

G,u,p in Rq×q, where p[n] is defined in (4.38).

Note that the eigenvalues λ1, . . . ,λq of Σ[θ0]
G,u,p are not in general equal to

0 or 1 so that LG does not have a chi-square distribution in general. The
previous proposition however suggests that a goodness-of-fit test based on
S

[n]
G in (4.64) could be carried out in practice as follows:

1. For the hypothesized parametric family of copula pmfs J in (4.47),
estimate θ0 by θ̂[n], where θ̂[n] is one the three method-of-moments esti-
mators in (4.50) or the maximum pseudo-likelihood estimator in (4.53),
and compute S[n]

G in (4.64).

2. Compute the eigenvalues λ̂1, . . . ,λ̂q of Σ[θ̂[n]]
G,u[n],p[n] which estimate the

eigenvalues λ1, . . . ,λq of Σ[θ0]
G,u,p in (4.65).

3. For some large integer M , compute S[n],l
G =∑q

k=1 λ̂kZ
2
kl, l∈{1, . . . ,M},

for i.i.d. N(0,1)-distributed random variables Zkl, k∈{1, . . . ,q}, l∈
{1, . . . ,M}, and estimate the p-value of the test as

1
M

M∑
l=1

1(S[n],l
G ≥S[n]

G ).
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As a proof of concept, we shall focus on the case when θ̂[n] is θ[n]
ρ in (4.50),

the estimator of θ0 based on the inversion of Yule’s coefficient. From
Corollary 4.5.6, we then know that, in this case,

V [θ0]
u,p = 1

g′
ρ(θ0)

Υ̇(u)⊤Ju,p.

Standard calculations show that

Υ̇(u)= 12√
(r+1)(s+1)(r−1)(s−1)

(
(i−1)(j−1)

)
(i,j)∈Ir,s

and that

g′
ρ(θ0)= 12√

(r+1)(s+1)(r−1)(s−1)
∑

(i,j)∈Ir,s

(i−1)(j−1)u̇[θ0]
ij .

The previous formulas can be used to derive the expression of the covariance
matrix Σ[θ0]

G,u,p in (4.65) in terms of u̇[θ0]. When the hypothesised family J
in (4.47) is defined from a parametric copula family as in (4.48), u̇[θ0] can
be obtained by differentiating (4.48). This involves standard calculations
for parametric copula families with explicit expressions for Cθ. Additionally,
this differentiation can also be performed for implicit copula families, such
as the normal or the t copula, using the expressions provided in Kojadinovic
and Yan (2011).

4.6.2 Monte Carlo Experiments

To evaluate the finite-sample performance of the asymptotic chi-square
goodness-of-fit tests described in the previous section, we consider data-
generating scenarios similar to those in Section 4.5.3. Table 4.6.1 (respec-
tively, Table 4.6.2 and Table 4.6.3) presents rejection percentages of the
test based on S[n] in (4.63) and Yule’s coefficient, computed from 1000 ran-
dom samples of size n∈{100,500,1000} generated from pmfs whose copula
pmf is of the form (4.48) with Cθ being the Clayton (respectively, Gumbel-
Hougaard, Frank) copula with a Kendall’s tau in {0.33,0.66} and whose
margins align with the marginal scenarios listed in Section 4.5.3.

In all tables, the columns ‘Cl’ (respectively, ‘GH’, ‘F’) report rejection per-
centages when J in H0 in (4.61) is constructed from a Clayton (respectively,
Gumbel-Hougaard, Frank) copula. The integer in parentheses next to each
rejection percentage represents the number of numerical issues (either related
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Table 4.6.1: For (r,s)∈{(3,3),(3,5),(5,5)}, rejection percentages of the goodness-of-fit test
based on S[n] in (4.63) and Yule’s coefficient calculated from 1000 random samples of size
n∈{100,500,1000} generated, as explained in Section 4.6.2, from pmfs whose copula pmf is
of the form (4.48) with Cθ the Clayton copula with a Kendall’s tau in {0.33,0.66}. The
column ‘m’ gives the marginal scenario. The integer between parentheses is the number of
numerical issues encountered out of 1000 executions.

τ = 0.33 τ = 0.66

r s m n Cl GH F Cl GH F
3 3 1 100 3.6 (0) 30.5 (0) 11 (0) 1.7 (0) 21.4 (0) 7.1 (0)

500 4.9 (0) 93.8 (0) 59.3 (0) 2.9 (0) 97.7 (0) 78.7 (0)
1000 5.7 (0) 100 (0) 89.8 (0) 3.3 (0) 100 (0) 99 (0)

2 100 3.4 (0) 17.5 (0) 9.4 (0) 0.5 (0) 13.9 (0) 3.5 (0)
500 3.5 (0) 85.6 (0) 46.7 (0) 2.8 (0) 96 (0) 69.9 (0)

1000 4 (0) 99.7 (0) 77.4 (0) 3.8 (0) 99.9 (0) 97.7 (0)

3 100 2.3 (0) 21.1 (0) 8.9 (0) 0.8 (0) 15.7 (0) 5.2 (0)
500 4.8 (0) 90.7 (0) 52.1 (0) 1.7 (0) 96.4 (0) 69.6 (0)

1000 5.7 (0) 99.7 (0) 87 (0) 2.8 (0) 100 (0) 97.4 (0)

3 5 1 100 1.9 (0) 18.2 (0) 8.4 (0) 1.3 (0) 7.6 (0) 0.3 (0)
500 5.4 (0) 98.1 (0) 69.7 (0) 3.3 (0) 94.5 (0) 80.1 (0)

1000 4.5 (0) 100 (0) 96.4 (0) 2.8 (0) 99.8 (0) 99.5 (0)

2 100 0.4 (0) 6.8 (0) 2 (0) 0.8 (0) 1.8 (0) 0 (0)
500 4 (0) 87.1 (0) 50.2 (0) 3 (0) 89.4 (0) 32.3 (0)

1000 5.1 (0) 99.8 (0) 85.2 (0) 3.9 (0) 99.1 (0) 90.3 (0)

3 100 0.3 (0) 1.9 (0) 0.3 (0) 0.2 (0) 0.1 (0) 0.1 (0)
500 2.1 (0) 65.5 (0) 25.5 (0) 2.8 (0) 64.2 (0) 10.5 (0)

1000 3.8 (0) 97.3 (0) 67.4 (0) 3.7 (0) 93.5 (0) 72.6 (0)

5 5 1 100 0.4 (0) 7.5 (0) 1 (0) 1.2 (2) 8.1 (2) 0.5 (1)
500 4.1 (0) 98.7 (0) 78 (0) 2.5 (0) 88.2 (0) 56.9 (0)

1000 5.2 (0) 100 (0) 99.3 (0) 3.9 (0) 98.9 (0) 91.2 (0)

2 100 0.1 (0) 0.8 (0) 0.2 (0) 0.5 (0) 4.2 (0) 0.1 (1)
500 4.1 (0) 88 (0) 46.3 (0) 3.8 (0) 94.7 (0) 48.5 (0)

1000 4.5 (0) 99.6 (0) 87.7 (0) 5.5 (0) 99.5 (0) 89.2 (0)

3 100 0 (0) 0 (0) 0 (0) 0.2 (0) 0 (0) 0 (0)
500 0.3 (0) 29.1 (0) 3.9 (0) 0.6 (0) 38.3 (0) 6.7 (0)

1000 0.8 (0) 77.5 (0) 26.1 (0) 3.5 (0) 83.6 (0) 68.1 (0)

to the convergence of the IPFP, numerical root finding, or the necessary
eigenvalue decomposition) out of 1000 executions.

An inspection of the tables reveals that such numerical issues were very
rare. In terms of rejection percentages, the tests were never excessively
liberal and tended to be conservative in scenarios where the probability of

175



Table 4.6.2: For (r,s)∈{(3,3),(3,5),(5,5)}, rejection percentages of the goodness-of-fit test
based on S[n] in (4.63) and Yule’s coefficient computed from 1000 random samples of size
n∈{100,500,1000} generated, as explained in Section 4.6.2, from pmfs whose copula pmf is
of the form (4.48) with Cθ the Gumbel–Hougaard copula with a Kendall’s tau in {0.33,0.66}.
The column ‘m’ gives the marginal scenario. The integer between parentheses reports the
number of numerical issues encountered out of 1000 executions.

τ = 0.33 τ = 0.66

r s m n Cl GH F Cl GH F
3 3 1 100 25.3 (0) 3.3 (0) 6.7 (0) 30.5 (0) 0.6 (0) 2.9 (0)

500 92.7 (0) 5 (0) 19.9 (0) 98.8 (0) 3.1 (0) 17.7 (0)
1000 99.9 (0) 4.1 (0) 36.9 (0) 100 (0) 3.1 (0) 38.7 (0)

2 100 20.8 (0) 3.1 (0) 5.6 (0) 20.8 (0) 0.8 (0) 3 (0)
500 88.1 (0) 4.5 (0) 15.6 (0) 96.8 (0) 2.4 (0) 10.9 (0)

1000 99.7 (0) 4.2 (0) 27.2 (0) 100 (0) 4.2 (0) 33.2 (0)

3 100 20 (0) 2.6 (0) 4.7 (0) 23.1 (0) 0.8 (0) 1.6 (0)
500 90.8 (0) 4.2 (0) 15.8 (0) 98.2 (0) 1.4 (0) 10.8 (0)

1000 99.3 (0) 4.3 (0) 35.9 (0) 100 (0) 3.7 (0) 28 (0)

3 5 1 100 21.1 (0) 2 (0) 2.5 (0) 30.3 (0) 0.1 (0) 0.1 (0)
500 97.4 (0) 5.4 (0) 24.5 (0) 99.7 (0) 2.1 (0) 19.6 (0)

1000 99.9 (0) 5.8 (0) 52.1 (0) 100 (0) 2 (0) 50.3 (0)

2 100 12.2 (0) 0.6 (0) 1.5 (0) 16.8 (0) 0 (0) 0.2 (0)
500 87.9 (0) 5.4 (0) 12.5 (0) 98.2 (0) 1.1 (0) 9.6 (0)

1000 99.7 (0) 4.8 (0) 33.6 (0) 100 (0) 2.5 (0) 28.7 (0)

3 100 3.5 (0) 0.3 (0) 0.1 (0) 2.3 (0) 0 (0) 0 (0)
500 68.6 (0) 1.7 (0) 9.7 (0) 91.6 (0) 1 (0) 1.5 (0)

1000 96.2 (0) 3.6 (0) 21.6 (0) 99.8 (0) 0.7 (0) 15.7 (0)

5 5 1 100 10.1 (0) 0.1 (0) 0.2 (0) 36 (0) 0.1 (0) 0.3 (0)
500 99.2 (0) 4.3 (0) 30.5 (0) 99.3 (0) 0.7 (0) 32.7 (0)

1000 100 (0) 4.3 (0) 67.7 (0) 100 (0) 2.6 (0) 83.5 (0)

2 100 3.2 (0) 0 (0) 0.1 (0) 15.8 (0) 0 (0) 0.1 (0)
500 89.6 (0) 3.6 (0) 12.1 (0) 98.2 (0) 1.2 (0) 15.1 (0)

1000 100 (0) 5.6 (0) 39.6 (0) 100 (0) 2.3 (0) 63.7 (0)

3 100 0.2 (1) 0 (0) 0 (0) 0.2 (0) 0 (0) 0 (0)
500 37.2 (0) 0.4 (0) 1.1 (0) 86.6 (0) 0.3 (0) 2.2 (0)

1000 82.3 (0) 1.3 (0) 8.8 (0) 99.4 (0) 1.8 (0) 19.9 (0)

zero counts in the contingency tables of the generated samples was high.
Correspondingly, the tests generally demonstrated good power when they
were not overly conservative.

The lowest empirical levels and powers in Tables 4.6.1, 4.6.2 and 4.6.3
are frequently observed for the third marginal scenario. For example, for
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Table 4.6.3: For (r,s)∈{(3,3),(3,5),(5,5)}, rejection percentages of the goodness-of-fit test
based on S[n] in (4.63) and Yule’s coefficient computed from 1000 random samples of size
n∈{100,500,1000} generated, as explained in Section 4.6.2, from pmfs whose copula pmf
is of the form (4.48) with Cθ the Frank copula with a Kendall’s tau in {0.33,0.66}. The
column ‘m’ gives the marginal scenario. The integer between parentheses reports the
number of numerical issues encountered out of 1000 executions.

τ = 0.33 τ = 0.66

r s m n Cl GH F Cl GH F
3 3 1 100 15.1 (0) 6.5 (0) 2.4 (0) 14.3 (0) 2.4 (0) 2.3 (0)

500 61.7 (0) 22.4 (0) 4.7 (0) 78.1 (0) 12.4 (0) 2.3 (0)
1000 90.9 (0) 40 (0) 4.9 (0) 98.5 (0) 32.9 (0) 3.4 (0)

2 100 10.4 (0) 2.9 (0) 1.9 (0) 9.2 (0) 1.2 (0) 1.7 (0)
500 52.6 (0) 15.5 (0) 5.1 (0) 67.7 (0) 8.4 (0) 2.4 (0)

1000 87.2 (0) 32.8 (0) 5.2 (0) 97.9 (0) 24.3 (0) 2.9 (0)

3 100 9.4 (0) 3.8 (0) 1.9 (0) 8.4 (0) 1 (0) 0.6 (0)
500 56 (0) 18.7 (0) 5.6 (0) 71.3 (0) 7.2 (0) 1.6 (0)

1000 88.1 (0) 35.4 (0) 2.7 (0) 97.8 (0) 20.6 (0) 2.2 (0)

3 5 1 100 11.7 (0) 3.4 (0) 1.5 (0) 20.8 (0) 1.1 (0) 0 (0)
500 77.9 (0) 28.3 (0) 3.9 (0) 96.9 (0) 28.9 (0) 1.8 (0)

1000 98.1 (0) 58.4 (0) 4.3 (0) 99.9 (0) 62.9 (0) 2.3 (0)

2 100 5.9 (0) 1.3 (0) 1 (0) 13.1 (0) 0 (0) 0.1 (0)
500 55.2 (0) 16.2 (0) 4.3 (0) 81 (0) 12.6 (0) 0.9 (0)

1000 88 (0) 39.5 (0) 4.1 (0) 99.2 (0) 46.8 (0) 2.9 (0)

3 100 2 (0) 0.7 (0) 0.1 (0) 1.8 (0) 0 (0) 0 (0)
500 35.9 (0) 10 (0) 1.7 (0) 70.4 (0) 11.3 (0) 1.8 (0)

1000 76.7 (0) 30.8 (0) 4 (0) 95.9 (0) 30 (0) 2.2 (0)

5 5 1 100 3.5 (0) 0.4 (0) 0.3 (0) 20.8 (0) 0.3 (0) 0 (0)
500 83.4 (0) 35 (0) 4.5 (0) 99.6 (0) 39.2 (0) 1.6 (0)

1000 99.4 (0) 75.4 (0) 5.4 (0) 100 (0) 85.9 (0) 1.6 (0)

2 100 1.9 (0) 0.1 (0) 0 (0) 10.5 (0) 0.1 (0) 0 (0)
500 53.6 (0) 15.9 (0) 3.6 (0) 98 (0) 19 (0) 1.1 (0)

1000 89.8 (0) 48.3 (0) 3.8 (0) 100 (0) 74.5 (0) 3 (0)

3 100 0 (1) 0 (0) 0 (0) 0.4 (0) 0 (0) 0 (0)
500 13.2 (0) 2.3 (0) 0.2 (0) 74.5 (0) 3 (0) 1 (0)

1000 36.8 (0) 8.8 (0) 0.2 (0) 99.6 (0) 26.3 (0) 1.7 (0)

that marginal scenario, Cθ the Clayton copula with a Kendall’s tau of
0.66, (r,s) = (5,5) and n= 500, a realization of the empirical copula pmf u[n]
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in (4.40) multiplied by n and rounded to the nearest integer is:



80 16 3 0 0
18 53 21 9 0
2 18 40 27 12
0 9 19 47 26
0 3 17 17 62

 .

Note that, as already mentioned in Section 4.5.2, it could be interpreted as
observed counts from the unknown copula pmf u. The low counts in the
lower-left and upper right-corners might be the cause of the conservative
behavior of the goodness-of-fit tests based on S[n] in (4.63). For that reason,
in the next experiment, we focused on the (r,s)=(5,5) case and the third
marginal scenario, and considered groupings according to the following
matrix:



1 2 2
1 2 2

3 3
4 4
4 4

 (4.66)

where elements with the same integer are to be regrouped and from which
we can form the 25 by 25 grouping matrix G to be used in the statistic S[n]

G

in (4.64). Notice that the resulting groupings may not always guarantee that
all aggregated counts are above 5. This will certainly not be true in general
for n=100. The rejection percentages of the goodness-of-fit test based
on S

[n]
G and Yule’s coefficient are presented in Table 4.6.4. A comparison

with the horizontal blocks of Tables 4.6.1, 4.6.2 and 4.6.3 corresponding to
(r,s)=(5,5) and the third marginal scenario shows a clear improvement of
the empirical levels and an increase of the powers when n≥500.

In a last experiment, we focused on the (r,s)=(10,10) case and second
marginal scenario listed in Section 4.5.3, and decided to form the grouping
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Table 4.6.4: For (r,s) = (5,5), rejection percentages of the goodness-of-fit test based on S[n]
G

in (4.64) and Yule’s coefficient with G formed according to (4.66) computed from 1000
random samples of size n∈{100,500,1000} generated from a pmf whose copula pmf is of the
form (4.48) with Cθ the Clayton (Cl), Gumbel–Hougaard (GH) or Frank copula (F) with a
Kendall’s tau in {0.33,0.66} and whose margins are binomial with parameters 4 and 0.5.

Cθ = Cl Cθ = GH Cθ = F

τ n Cl GH F Cl GH F Cl GH F
0.33 100 0.1 2.3 0.3 1.1 0.1 0.2 0.8 0.6 0.1

500 3.2 70.4 28.5 65.4 4.0 18.0 37.8 22.0 3.9
1000 4.7 97.0 67.1 93.4 4.6 34.6 63.5 44.9 4.9

0.66 100 0.2 18.1 2.7 1.6 0.3 0.1 1.6 0.9 0.0
500 3.5 100.0 95.0 86.2 2.2 27.8 83.8 53.2 2.6

1000 4.7 100.0 100.0 98.8 4.2 77.9 99.6 84.7 4.4

matrix G according to the following matrix:

1 1 1 2 2 2 2 3 3 3
1 1 1 2 2 2 2 3 3 3
1 1 1 2 2 2 2 3 3 3
4 4 4 5 5 5
4 4 4 5 5 5
4 4 4 5 5 5
4 4 4 5 5 5
6 6 6 7 7 7 7 8 8 8
6 6 6 7 7 7 7 8 8 8
6 6 6 7 7 7 7 8 8 8



. (4.67)

The rejection percentages are reported in Table 4.6.5 for n∈{500,1000,2000,4000}.
The results seem to confirm that the goodness-of-fit tests based on S

[n]
G

in (4.64) can be well-behaved in many scenarios provided groupings are
performed to avoid “very low counts” in the matrix nu[n].

4.6.3 Chi-Square Tests Based on a Semi-Parametric Bootstrap

When (X1,Y1), . . . ,(Xn,Yn) is a random sample, the goodness-of-fit tests
based S[n]

G in (4.64) can also be carried out using an appropriate adaptation
of the so-called parametric bootstrap (see, e.g., Stute et al., 1993; Genest
and Rémillard, 2008). Specifically, in our case, the latter could be called
a semi-parametric bootstrap. The testing procedure that we propose is as
follows:
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Table 4.6.5: For (r,s)=(10,10), rejection percentages of the goodness-of-fit test based on
S

[n]
G in (4.64) and Yule’s coefficient with G formed according to (4.67) computed from 1000

random samples of size n∈{500,1000,2000} generated from a pmf whose copula pmf is
of the form (4.48) with Cθ the Clayton (Cl), Gumbel–Hougaard (GH) or Frank copula
(F) with a Kendall’s tau in {0.33,0.66} and whose margins are as in the second marginal
scenario of Section 4.5.3.

Cθ = Cl Cθ = GH Cθ = F

τ n Cl GH F Cl GH F Cl GH F
0.33 500 6.2 65.6 28.0 73.4 7.5 15.6 39.8 11.1 8.5

1000 5.8 97.8 62.4 98.7 7.3 26.2 68.6 19.4 6.0
2000 4.1 100.0 94.1 100.0 6.8 45.6 95.6 42.1 5.2

0.66 500 2.6 90.9 49.6 93.8 2.5 18.5 56.2 5.3 2.8
1000 4.4 99.9 97.6 100.0 3.7 40.5 97.0 24.1 3.7
2000 4.1 100.0 100.0 100.0 4.2 76.9 100.0 64.4 3.8

1. For the hypothesized parametric family of copula pmfs J in (4.47),
estimate θ0 by θ̂[n], where θ̂[n] is one the three method-of-moments esti-
mators in (4.50) or the maximum pseudo-likelihood estimator in (4.53),
and compute S[n]

G in (4.64).

2. Let p[n,1] and p[n,2] denote the margins of p[n] in (4.38), and, using (4.14)
with a=p[n,1] and b=p[n,2], form p[n,θ̂[n]] =Ip[n,1],p[n,2](u[θ̂[n]]), which is a
consistent semi-parametric estimate of the pmf of (X,Y ) under H0
in (4.61).

3. For some large integer M , repeat the following steps for l∈{1, . . . ,M}:

(a) Generate a random sample (X(l)
1 ,Y

(l)
1 ), . . . ,(X(l)

n ,Y
(l)
n ) from p[n,θ̂[n]].

(b) From the generated sample, compute the version p[n],l of p[n] in (4.38),
the version u[n],l =U(p[n],l) of u[n], where U is defined in (4.29), and
the version θ̂[n],l of θ̂[n].

(c) Form an approximate realization under H0 of S[n]
G in (4.64) as

S
[n],l
G =n∥diag(Gvec(u[θ̂[n],l]))−1/2Gvec(u[n],l−u[θ̂[n],l])∥2

2.

4. Finally, estimate the p-value of the test as

1
M

M∑
l=1

1(S[n],l
G ≥S[n]

G ).

Remark 4.6.3. From a theoretical perspective, to attempt to show the
null asymptotic validity of the proposed procedure, one could try to start
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from the work of Genest and Rémillard (2008). From an empirical perspec-
tive, studying its finite-sample behavior is unfortunately substantially more
computationally costly than studying the finite-sample performance of the
asymptotic test described in Section 4.6.1. □

4.7 Data Example

We provide a brief demonstration of the proposed methodology using a
bivariate data set previously analyzed in Goodman (1979). The discrete
random variables involved are X, which represents the occupational status
of a British male subject, and Y , which represents the occupational status
of the subject’s father. Both variables can take on r= s= 8 distinct ordered
values, represented by the first eight integers. The reasoning for considering
these values as ordered is not explained in Goodman (1979), and the latter
refers the reader to Miller (1960) for further details, among others. It appears
that there are no reasons to assume that any values within Ir,s cannot be
realizations of (X,Y ). Hence, it is reasonable to assume that the unknown
pmf p of (X,Y ) is supported on Ir,s, implying that the decomposition in (4.31)
is valid. The random vector (X,Y ) was observed for n= 3498 subjects. The
resulting bivariate contingency table can be obtained in R by executing
data(occupationalStatus), and is shown below for convenience:



50 19 26 8 7 11 6 2
16 40 34 18 11 20 8 3
12 35 65 66 35 88 23 21
11 20 58 110 40 183 64 32
2 8 12 23 25 46 28 12
12 28 102 162 90 554 230 177
0 6 19 40 21 158 143 71
0 3 14 32 15 126 91 106


. (4.68)

To estimate the unknown copula pmf u=U(p) of (X,Y ), we first computed
p[n] in (4.39) from the above contingency table and then the empirical copula
pmf u[n] using (4.40). The latter is represented in Figure 4.7.1 under the form
of a ballon plot created using the R package ggpubr (Kassambara, 2023).
To complement Figure 4.7.1, we also provide the matrix nu[n] rounded to
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Figure 4.7.1: Ballon plot of the empirical copula pmf u[n] computed using (4.39) and (4.40)
from the contingency table given in (4.68).

the nearest integer,

253 70 58 14 21 8 8 4
88 160 82 35 36 17 12 7
38 80 90 74 66 42 20 26
28 37 65 99 61 71 44 32
16 46 42 64 118 55 60 37
13 22 48 62 58 91 68 76
0 15 28 47 42 80 130 94
0 8 24 43 34 73 95 160


, (4.69)

which, as already mentioned, could be interpreted as observed counts from
the unknown copula pmf u. Estimates of Yule’s coefficient ρ in (4.33) as well
as the gamma coefficient γ and the tau coefficient τ in (4.36) can be computed
using (4.46) and are ρ[n]≃0.63, γ[n]≃0.56 and τ [n]≃0.5, respectively. The
latter seems to indicate a moderately strong dependence between X and Y .

We now proceed to the parametric modelling of u. Initially, we fitted
eight one-parameter families J in (4.47) constructed using (4.48), where Cθ
is either a Clayton, Gumbel–Hougaard, Frank, Plackett, survival Clayton,
survival Gumbel–Hougaard, or survival Joe copula (refer to, e.g., Hofert
et al., 2018, Section 2.5 for the definition of a survival copula). Estimates
obtained via the method of moments and maximum pseudo-likelihood are
presented in Table 4.7.1. The last column of this table also includes the
scaled maximised negative log-pseudo-likelihood −L̄[n](θ[n])/n, where L̄ is
defined in (4.52). These results suggest that the model based on a survival
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Table 4.7.1: Estimates of the parameter θ for families J in (4.47) constructed via (4.48),
where Cθ is either a Clayton (Cl), Gumbel–Hougaard (GH), Frank (F), Plackett (P), survival
Clayton (sCl), survival Gumbel–Hougaard (sGH) or survival Joe (sJ) copula. The first
three columns give the three method-of-moment estimates defined in (4.50). The fourth
and fifth colums report the maximum pseudo-likelihood estimate in (4.53) and the value of
−L̄[n](θ[n])/n, respectively, where L̄ is defined in (4.52).

Cθ θ
[n]
ρ θ

[n]
γ θ

[n]
τ θ[n] −L̄[n](θ[n])/n

Cl 1.712 1.724 1.722 1.548 3.906
GH 1.865 1.861 1.863 1.789 3.940
J 2.591 2.596 2.592 2.070 3.998
F 4.886 4.945 4.968 5.001 3.914
P 9.147 8.915 8.961 8.717 3.909
sCl 1.712 1.724 1.722 1.208 3.987
sGH 1.865 1.861 1.863 1.861 3.896
sJ 2.591 2.596 2.592 2.393 3.909

Table 4.7.2: Results of the goodness-of-fit tests based on S[n]
G in (4.64) and Yule’s coefficient

with G formed such that the four values in the lower-left and upper-right corners of the
copula p.m.f.s are grouped. The hypothesized family J in (4.61) is constructed via (4.48),
where Cθ is either a Clayton (Cl), Gumbel–Hougaard (GH), Frank (F), Plackett (P), survival
Clayton (sCl), survival Gumbel–Hougaard (sGH) or survival Joe (sJ) copula. The first row
gives the values of S[n]

G . The second (resp. third) row reports the p-values obtained via the
asymptotic procedure (resp. semi-parametric bootstrap) described in Section 4.6.1 (resp.
Section 4.6.3) with M =104.

Cl GH J F P sCl sGH sJ
S

[n]
G 260.4 523.1 1374.9 279.9 245.4 1200.2 156.4 303.0

Asymptotic 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000
Semi-p. boot. 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000

Gumbel–Hougaard copula provides the best fit. This observation might not
be unexpected since survival Gumbel–Hougaard copulas exhibit lower-tail
dependence, and an examination of Figure 4.7.1 and the “observed counts”
in (4.69) appears to indicate such “lower-tail” dependence in the upper left
corner.

To further evaluate the fit of the previously mentioned eight models, we
conducted goodness-of-fit tests based on S[n]

G in (4.64) and Yule’s coefficient,
with G structured so that, following (4.69), the four values in the lower-
left and upper-right corners of the copula pmfs are grouped. Table 4.7.2
reports the p-values, calculated using both the asymptotic method from
Section 4.6.1 and the semi-parametric bootstrap approach from Section 4.6.3
with M = 104. As shown, all models are rejected at the 2% significance level,
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but the model based on the survival Gumbel–Hougaard copula family is
the least rejected. A close examination of Figure 4.7.1 and (4.69) suggests
asymmetry with respect to the diagonal in the unknown copula pmf u. This
implies that models incorporating suitable non-exchangeable generalisations
of the survival Gumbel–Hougaard copula family could offer a better fit. This
will be explored in future research.

4.8 Concluding Remarks

Inspired by the seminal work of Geenens (2020), we explored a copula-
like modelling approach for discrete bivariate distributions hinging upon
I-projections on Fréchet classes and the IPFP. The proposed methodology
find its roots in the copula-like decomposition of bivariate pmfs stated in
Proposition 4.4.1. We focused on discrete bivariate distributions with rect-
angular supports, proposing both nonparametric and parametric estimation
procedures, along with goodness-of-fit tests for the underlying copula pmf
Asymptotic results were provided based on a differentiability result for I-
projections on Fréchet classes, which may be of independent interest. Monte
Carlo experiments were conducted to study the finite-sample performance of
some inference procedures, and the methodology was illustrated with a data
example. A discussion of the resulting future works is postponed to Chapter
7. Therein, among various theoretical extensions, a possible application to
rainfall data shall also be proposed.

Throughout this chapter we have mentioned in numerous remarks the
important connections of our work with the theory of ϕ-divergence esti-
mators, which are based on the concept of ϕ-projections. The latter are a
generalisation of the I-projections that proved to be a fundamental building
block of the results in this chapter. It is then natural to investigate the
extension of our differentiability result in Section 4.2.4 to this larger class of
projections and explore its applications when studying the asymptotics of
ϕ-divergence estimators. The next chapter is mainly theoretical and deals
with this line of our research.
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Appendix

4.A Proof of Proposition 4.2.6

Proof of Proposition 4.2.6. The proof is based on the implicit function
theorem (see, e.g., Fitzpatrick, 2009, Theorem 17.6, p 450). Before applying
this result, we need to define the underlying function and verify a certain
number of related assumptions.

Since it is assumed that Γa,b,T /=∅, from Proposition 4.2.2, for any x∈ΓT ,
Ia,b(x) =y∗

x= arginfy∈Γa,b
D(y∥x) with supp(y∗

x) =T . It follows that, for any
x∈ΓT , Ia,b(x)=arginfy∈Γa,b,T

D(y∥x) and thus

vecA(Ia,b(x))= arginf
z∈Λa,b,A,T

H(z∥vecB(x)), (4.70)

where H is defined in (4.28) and Λa,b,A,T in (4.27) is, by assumption, an open
subset of R|A|. Notice that, from (4.13), for any (z,w)∈Λa,b,A,T ×ΛB,T ,

H(z∥w)=
∑

(i,j)∈T
c(z)ij log c(z)ij

d(w)ij
(4.71)

and ΛB,T in (4.25) is an open subset of R|B| under the considered assumptions
on B. Next, let F :Λa,b,A,T ×ΛB,T→R|A| be defined by

F (z,w)=∂1H(z∥w), z∈Λa,b,A,T ⊂ (0,1)|A|,w∈ΛB,T ⊂ (0,1)|B|.

From (4.71), F is differentiable at any (z,w)∈Λa,b,A,T ×ΛB,T . Furthermore,
from the definition of F , (4.70) and first-order necessary optimality condi-
tions, we have that

F (vecA(Ia,b(x)),vecB(x))=0R|A|, for all x∈ΓT . (4.72)

Finally, to be able to apply the implicit function theorem, we shall verify
that

det[∂1F (vecA(Ia,b(x)),vecB(x))] /=0, for all x∈ΓT . (4.73)
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Consider the set ΛT,T ⊂ (0,1)|T | defined in (4.25) with B=T and let D̃ be the
map from ΛT,T ×ΛT,T to [0,∞) defined by D̃(s∥s′) =D(vec−1

T (s)∥vec−1
T (s′)),

s,s′∈ΛT,T . Then, from (4.13), for any s,s′∈ΛT,T ,

D̃(s∥s′)=
|T |∑
i=1
si log si

s′
i

.

Lemma 4.A.1 below then implies that, for any r∈ΛT,T , D̃(·∥r) is strongly
convex with constant 1 on ΛT,T in the sense of Nesterov (2004, Section 2.1.3).
From Theorem 2.1.9 in the previous reference, the latter is equivalent to the
fact that, for any r∈ΛT,T , s,s′∈ΛT,T and t∈ [0,1],

tD̃(s∥r)+(1− t)D̃(s′∥r)≥ D̃(ts+(1− t)s′∥r)+ t(1− t)1
2∥s−s

′∥2
2. (4.74)

From (4.28), we further have that, for any z∈Λa,b,A,T and w∈ΛB,T ,

H(z∥w)=D(c(z)||d(w))= D̃(vecT ◦c(z)||vecT ◦d(w)).

Fix w∈ΛB,T , z,z′∈Λa,b,A,T and t∈ [0,1]. Using the fact that, by definition,
vecT ◦c is a linear map and (4.74), we obtain

tH(z∥w)+(1− t)H(z′∥w)−H(tz+(1− t)z′∥w)
=tD̃(vecT ◦c(z)∥vecT ◦d(w))+(1− t)D̃(vecT ◦c(z′)∥vecT ◦d(w))
−D̃(vecT ◦c(tz+(1− t)z′)∥vecT ◦d(w))

=tD̃(vecT ◦c(z)∥vecT ◦d(w))+(1− t)D̃(vecT ◦c(z′)∥vecT ◦d(w))
−D̃(tvecT ◦c(z)+(1− t)vecT ◦c(z′)∥vecT ◦d(w))

≥t(1− t)1
2∥vecT ◦c(z′)−vecT ◦c(z)∥2

2≥ t(1− t)
1
2∥z

′−z∥2
2.

Hence, by Theorem 2.1.9 in Nesterov (2004), for any w∈ΛB,T , H(·∥w) is
strongly convex with constant 1 on Λa,b,A,T . From Theorem 2.1.11 in the
same reference, the latter is equivalent to the fact that, for any w∈ΛB,T

and z∈Λa,b,A,T , ∂1∂1H(z∥w)−I|A|×|A| is positive semi-definite, where I|A|×|A|
is the |A|×|A| identity matrix. This implies that, for any w∈ΛB,T and
z∈Λa,b,A,T , ∂1∂1H(z∥w) is positive definite. Using the definition of F ,
the latter is equivalent to the fact that, for any w∈ΛB,T and z∈Λa,b,A,T ,
∂1F (z∥w) is positive definite, which implies (4.73).

Fix x∈ΓT . We can now apply the implicit function theorem (see, e.g.,
Fitzpatrick, 2009, Theorem 17.6, p 450) to conclude that there exists a
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scalar r>0 and a differentiable function G :Br(x)→ (0,1)|A|, where Br(x)
is an open ball of radius r centered at vecB(x), such that, whenever ∥z−
vecA(Ia,b(x))∥2<r, ∥w−vecB(x)∥2<r and F (z,w) = 0, then G(w) = z. The
latter and (4.72) imply that, for any x′∈ΓT such that ∥vecA(Ia,b(x′))−
vecA(Ia,b(x))∥2<r and ∥vecB(x′)−vecB(x)∥2<r, we have G(vecB(x′))=
vecA(Ia,b(x′)). From the continuity of Ia,b stated in Lemma 4.A.2 below, we
thus obtain that G(vecB(x′))=vecA(Ia,b(x′)) for x′ in a neighborhood of x,
or, equivalently, that G(w)=vecA◦Ia,b◦d(w) for w in a neighborhood of
vecB(x).

Another consequence of the implicit function theorem is that

∂1F (G(w),w)JG(w)+∂2F (G(w),w))=0R|A|×|B| for all w∈Br(x),

where JG(w) is the Jacobian matrix of G evaluated at w. From (4.73), the
previous centered display implies that

JG(w)=−[∂1F (G(w),w)]−1∂2F (G(w),w))

for all w in a neighborhood of vecB(x).

Lemma 4.A.1. For k∈N, let ∆k ={u∈ (0,1)k :∑k
i=1ui=1}. Furthermore,

for any u,v∈ (0,1)k, let

D̄(v∥u)=
k∑
i=1
vi log vi

ui
.

Then, for any u∈∆k, the function D̄(·∥u) is strongly convex with constant 1
on ∆k in the sense of Nesterov (2004, Section 2.1.3).

Proof. Fix u∈∆k. According to Nesterov (2004, Definition 2.1.2, p 63), we
need to prove that, for any v,w∈∆k,

D̄(w∥u)≥ D̄(v∥u)+∂1D̄(v∥u)T (w−v)+ 1
2∥w−v∥

2
2.

Note that, for any v∈ (0,1)k, ∂1D̄(v∥u)=(log(v1/u1)+1, . . . , log(vk/uk)+1)
and thus that, for any v,w∈∆k,

∂1D̄(v∥u)T (w−v)=
k∑
i=1

(log(vi/ui)+1)(wi−vi)=
k∑
i=1
wi log(vi/ui)−D̄(v∥u)

=
k∑
i=1
wi log

(
wivi
uiwi

)
−D̄(v∥u)= D̄(w∥u)−D̄(w∥v)−D̄(v∥u).

187



Hence,

D̄(w∥u)= D̄(v∥u)+∂1D̄(v∥u)T (w−v)+D̄(w∥v)

≥ D̄(v∥u)+∂1D̄(v∥u)T (w−v)+ 1
2∥w−v∥

2
1,

as a consequence of Pinsker’s inequality (see, e.g., Tsybakov, 2008, Lemma
2.5, p 88) and the fact that the total variation dinstance coincides with the
L1 dinstance in the considered finite setting. The proof is complete since
∥·∥1≥∥·∥2.

Lemma 4.A.2. For any T ⊂ Ir,s, T /=∅, such that there exists y∈Γa,b with
supp(y)⊂T , the function Ia,b : ΓT→Γa,b is continuous.

Proof. The result is a direct consequence of Theorem 3.3 (iii) in Gietl and
Reffel (2017).

4.B Proof of Theorem 4.3.2

Proof of Theorem 4.3.2. By the definition of u in (4.30), it is necessary
to check the conditions for existence and uniqueness of a I-projection on
a Frechèt class of pmfs with fixed margins, given generally in Proposition
4.2.1, along with the particular case depicted in Proposition 4.2.2. Then,
recall that conditions equivalent to the latter ones are given in Proposition
4.2.3. The result follows by carefully rewriting the conditions of Proposition
4.2.3 after noting that, with the notation of the same proposition, for any
A⊂ [r] (resp. B⊂ [s]) we have Pu[1](A)= |A|

r (resp. Pu[2](B)= |B|
s ).

4.C Proofs of Propositions 4.4.1 and 4.4.3

Proof of Proposition 4.4.1. We first prove that Assertion 1 implies As-
sertion 2. Since there exists v∈Γunif such that supp(v)=supp(p), from
Proposition 4.2.1, the I-projection of p on Γunif exists and is unique, that
is, u=U(p) exists and is unique. Furthermore, from Proposition 4.2.2,
u is diagonally equivalent to p. Since there exists q∈Γp[1],p[2] such that
supp(q)=supp(u) (take q=p), p′ =Ip[1],p[2](u) exists and is unique, and p′

is diagonally equivalent to u. Since, by transitivity via u, p′ is diagonally
equivalent to p, and since p′ and p have the same margins, we can conclude
from Property 1 of Pretzel (1980) (see also Brossard and Leuridan, 2018,
Lemma 27) that p′ =p.
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We shall now prove that Assertion 2 implies Assertion 1. Since u=U(p) =
arginfy∈ΓunifD(y∥p), we have that supp(u)⊂ supp(p) by the definition of
D in (4.13). Similarly, p=Ip[1],p[2](u)=arginfy∈Γ

p[1],p[2]
D(y∥u) which implies

that supp(p)⊂ supp(u). Assertion 1 thus holds since u∈Γunif and supp(u) =
supp(p).

Proof of Proposition 4.4.3. Let (U,V ) have pmf v∈Γunif. Then, Good-
man’s and Kruskal’s gamma (Goodman and Kruskal, 1954) and Kendall’s
tau b (see, e.g., Kendall and Gibbons, 1990) of (U,V ) are respectively defined
by

G(v)= κ(v)−δ(v)
κ(v)+δ(v) and T (v)= κ(v)−δ(v)√

P(U /=U ′)P(V /=V ′)
,

where (U ′,V ′) is an independent copy of (U,V ) and

κ(v)=P{(U−U ′)(V −V ′)>0} and δ(v)=P{(U−U ′)(V −V ′)<0}.

For κ(v), we have that

κ(v)=
∑

(i,j)∈Ir,s

∑
(i′,j′)∈Ir,s

1{(i− i′)(j−j′)>0}P(U = i,U ′ = i′,V = j,V ′ = j′)

=2
∑

i∈{1,...,r−1}
j∈{1,...,s−1}

∑
i′∈{i+1,...,r}
j′∈{j+1,...,s}

vijvi′j′.

For δ(v), we can use the fact that δ(v) = P{(U−U ′)(V −V ′) /= 0}−κ(v) and
the fact that P{(U−U ′)(V −V ′) /=0} can be expressed as∑

(i,j)∈Ir,s

∑
(i′,j′)∈Ir,s

1{(i− i′)(j−j′) /=0}P(U = i,U ′ = i′,V = j,V ′ = j′)

=
∑

(i,j)∈Ir,s

∑
(i′,j′)∈Ir,s

1(i /= i′)1(j /= j′)vijvi′j′ =
∑

(i,j)∈Ir,s

vij
r∑

i′=1
i′ /=i

s∑
j′=1
j′ /=j

vi′j′

=
∑

(i,j)∈Ir,s

vij
r∑

i′=1
i′ /=i

(1
r
−vi′j

)
=

∑
(i,j)∈Ir,s

vij

r−1
r
−

r∑
i′=1
i′ /=i

vi′j


=

∑
(i,j)∈Ir,s

vij

(
r−1
r
− 1
s

+vij

)
=1− 1

r
− 1
s

+
∑

(i,j)∈Ir,s

v2
ij.
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To obtain the expression T (v), it remains to obtain the expressions of
P(U /=U ′) and P(V /=V ′). We have

P(U /=U ′)=
r∑

i,i′=1
1(i /= i′)P(U = i,U ′ = i′)= 1

r2

r∑
i=1

r∑
i′=1
i′ /=i

1= r−1
r

and, similarly, P(V /=V ′)=(s−1)/s.

4.D Proof of Proposition 4.5.3

Proof of Proposition 4.5.3. We only prove the first claim as the other
claims are immediate consequences of well-known results. We shall first
apply Proposition 4.2.6 with a=u[1], b=u[2], T = Ir,s, A= Ir−1×Is−1 and
B= Ir,s\{(r,s)}. Note that, with some abuse of notation, the map d from
ΛB,T in (4.25) to ΓT in (4.24) mentioned in its statement can be defined, for
any w∈ΛB,T , by

d(w11,w21, . . . ,wr−2,s,wr−1,s)=


w11 . . . w1s

... ...
wr1 . . . 1−∑(i,j)∈Bwij

 (4.75)

and that, with some abuse of notation, the map c from Λa,b,A,T in (4.27) to
Γa,b,T in (4.26) can be defined, for any z∈Λa,b,A,T , by

c(z11,z21, . . . ,zr−1,1, . . . ,z1,s−1,z2,s−1, . . . ,zr−1,s−1)

=


z11 . . . z1,s−1 1/r−∑s−1

j=1z1j
... ... ...

zr−1,1 . . . zr−1,s−1 1/r−∑s−1
j=1zr−1,j

1/s−∑r−1
i=1 zi1 . . . 1/s−∑r−1

i=1 zi,s−1 1/r+1/s−1+∑
(i,j)∈Azij

 .
(4.76)

Recall the definition of U in (4.29) and let u=U(p). Proposition 4.2.6 then
implies that the map vecA◦U ◦d is differentiable at vecB(p) with Jacobian
matrix at vecB(p) equal to −L−1

u Mp, where
Lu=∂1∂1H(vecA(u)∥vecB(p)) and Mp=∂2∂1H(vecA(u)∥vecB(p)),

the map H is defined in (4.28) and, as we shall see below, the first (resp.
second) matrix only depends on u (resp. p). With some abuse of notation,
let us denote the (r−1)(s−1) components of ∂1H(vecA(u)∥vecB(p)) by

(H ′
11,H

′
21, . . . ,H

′
r−1,1, . . . ,H

′
1,s−1,H

′
2,s−1, . . . ,H

′
r−1,s−1).
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Standard calculations give

H ′
kl =log

(
ckl(u)
dkl(p)

)
− log

(
crl(u)
drl(p)

)
− log

(
cks(u)
dks(p)

)
+log

(
crs(u)
drs(p)

)
, (k,l)∈A,

where dkl and ckl are the component maps of the maps d and c defined
in (4.75) and (4.76), respectively. Additional differentiation then leads to
the expressions of the elements of the matrices Lu and Mp given in (4.42)
and (4.43), respectively.

Next, from the assumption that
√
n(p̂[n]−p)⇝Zp in Rr×s and since

√
n(p[n]− p̂[n]) P→0 in Rr×s, (4.77)

where p[n] is defined in (4.38), we immediately obtain that
√
n(vecB(p[n])−

vecB(p))⇝vecB(Zp) in R|B|, which, combined with the delta method (see,
e.g., van der Vaart, 1998, Theorem 3.1) for the map vecA◦U ◦d and, again, (4.77),
implies that
√
n(vecA◦U ◦d◦vecB(p[n])−vecA◦U ◦d◦vecB(p))

+L−1
u Mp

√
n(vecB(p̂[n])−vecB(p)) P→0 in R|A| .

Since, for the considered choices of T and B, for any y∈ΓT , d◦vecB(y) =y,
the latter is equivalent to

√
nvecA(u[n]−u)+L−1

u Mp

√
nvecB(p̂[n]−p) P→0 in R|A| .

Notice from (4.76) that, for any z∈Λa,b,A,T , c(z)=vec−1(Kz)+C, where
C is a constant r×s matrix. Hence, for any y,y′∈Γa,b,T , KvecA(y−y′)=
vec(y−y′) and, by the continuous mapping theorem, we obtain that

√
nvec(u[n]−u)+KL−1

u Mp

√
nvecB(p̂[n]−p) P→0 in Rrs .

The desired result finally follows from the fact that Nvec(y)=vecB(y),
y∈Rr×s.

4.E Proofs of the results of Section 4.5.2

Proof of Proposition 4.5.9. To prove the consistency of θ[n] , we shall
use Theorem 5.7 in van der Vaart (1998). For any θ∈Θ, let ℓ[θ]

ij =logu[θ]
ij ,

(i,j)∈ Ir,s, and let

M [n](θ)= L̄[n](θ)
n

=
∑

(i,j)∈Ir,s

u
[n]
ij ℓ

[θ]
ij and M(θ)=

∑
(i,j)∈Ir,s

uijℓ
[θ]
ij . (4.78)
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From the definition of θ[n] in (4.53), we have that M [n](θ[n]) =supθ∈ΘM
[n](θ),

which implies that M [n](θ[n])≥M [n](θ0). Furthermore, from the triangle
inequality,

sup
θ∈Θ
|M [n](θ)−M(θ)|≤ sup

θ∈Θ

∑
(i,j)∈Ir,s

|ℓ[θ]
ij (u[n]

ij −uij)|

=sup
θ∈Θ

∑
(i,j)∈Ir,s

|ℓ[θ]
ij ||u

[n]
ij −uij|

≤ | logλ|
∑

(i,j)∈Ir,s

|u[n]
ij −uij|

P→0 in R

by Proposition 4.5.2 and the continuous mapping theorem. Moreover, from
the identifiability of the family J and Lemma 5.35 of van der Vaart (1998),
we have that θ0 is the unique maximizer of M . The latter implies that, for
every ε>0, supθ∈Θ:∥θ−θ0∥2>εM(θ)<M(θ0). The consistency of θ[n] finally
follows from Theorem 5.7 in van der Vaart (1998).

Proof of Proposition 4.5.11. We proceed along the lines of the proof of
Theorem 5.21 in van der Vaart (1998). First, for any θ∈Θ, let

Ψ[n]
k (θ)= ∂M [n]

∂θk
(θ), k∈ Im,

where M [n] is defined in (4.78), and

Ψ[n](θ)=
(
Ψ[n]

1 (θ), . . . ,Ψ[n]
m (θ)

)
=

∑
(i,j)∈Ir,s

u
[n]
ij ℓ̇

[θ]
ij ,

where ℓ̇[θ]
ij is defined in (4.57). Since Θ is assumed to be open, the estimator

θ[n] in (4.53) is a zero of Ψ[n]. Also, let

Ψ(θ)=Eθ0(ℓ̇
[θ]
(U,V ))=

∑
(i,j)∈Ir,s

uij ℓ̇
[θ]
ij , (4.79)

where (U,V ) has pmf u and ℓ̇[θ]
ij is defined in (4.57). Then, from the discussion

preceding the statement of Proposition 4.5.11, we have that θ0 is a zero of
Ψ.

Since, for any (i,j)∈ Ir,s, θ→ ℓ
[θ]
ij is twice differentiable at any θ∈Θ, by

the mean value theorem (see, e.g., Fitzpatrick, 2009, Theorem 15.29, p
408), there exists η>0 and a positive matrix q∈Rr×s such that, whenever
∥θ−θ0∥2<η, for any (i,j)∈ Ir,s,

∥ℓ̇[θ]
ij − ℓ̇

[θ0]
ij ∥2≤ qij∥θ−θ0∥2. (4.80)
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Furthermore, from the triangle inequality and the inequality of Cauchy-
Schwarz, we have

∆[n] =
∥∥∥∥∥∥

∑
(i,j)∈Ir,s

ℓ̇
[θ[n]]
ij

√
n(u[n]

ij −uij)−
∑

(i,j)∈Ir,s

ℓ̇
[θ0]
ij

√
n(u[n]

ij −uij)
∥∥∥∥∥∥

2

2

≤
 ∑

(i,j)∈Ir,s

∥ℓ̇[θ[n]]
ij − ℓ̇[θ0]

ij ∥2×|
√
n(u[n]

ij −uij)|


2

≤A[n]×B[n],

(4.81)

where
A[n] =

∑
(i,j)∈Ir,s

∥ℓ̇[θ[n]]
ij − ℓ̇[θ0]

ij ∥2
2 and B[n] =

∑
(i,j)∈Ir,s

|
√
n(u[n]

ij −uij)|2. (4.82)

To show that ∆[n] P→0, let us first prove that A[n] P→0. Fix ε>0. Then,
P(A[n]>ε)≤ I [n] +J [n], where

I [n] =P
 ∑

(i,j)∈Ir,s

∥ℓ̇[θ[n]]
ij − ℓ̇[θ0]

ij ∥2
2>ε,∥θ[n]−θ0∥2<η

 ,
J [n] =P

(
∥θ[n]−θ0∥2≥η

)
.

The fact that that J [n] converges to zero is a consequence of the consistency
of θ[n] and the continuous mapping theorem. For I [n], using (4.80), we obtain

I [n]≤P
∥θ[n]−θ0∥2

2
∑

(i,j)∈Ir,s

q2
ij>ε,∥θ[n]−θ0∥2<η


≤P

∥θ[n]−θ0∥2
2

∑
(i,j)∈Ir,s

q2
ij>ε

→0,

again as a consequence of the consistency of θ[n]. Hence, A[n] P→0.
Let us next verify that ∆[n] in (4.81) converges in probability to zero.

From Proposition 4.5.3, we know that the weak convergence of
√
n(p̂[n]−p)

in Rr×s implies the weak convergence of
√
n(u[n]−u) in Rr×s. Hence, from

the continuous mapping theorem, B[n] in (4.82) is bounded in probability,
which implies that ∆[n] in (4.81) converges to zero in probability.

Moreover, since Ψ[n](θ[n])=0 and Ψ(θ0)=0, we have that∑
(i,j)∈Ir,s

ℓ̇
[θ[n]]
ij

√
n(u[n]

ij −uij)=−
∑

(i,j)∈Ir,s

ℓ̇
[θ[n]]
ij

√
nuij

=
∑

(i,j)∈Ir,s

√
n(ℓ̇[θ0]

ij − ℓ̇
[θ[n]]
ij )uij.

(4.83)
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Since, for any (i,j)∈ Ir,s, θ→ ℓ
[θ]
ij is twice differentiable at any θ∈Θ, the

map Ψ in (4.79) is differentiable at its zero θ0 with Jacobian matrix at θ0
given by ∑

(i,j)∈Ir,s

uij ℓ̈
[θ0]
ij =Eθ0(ℓ̈

[θ0]
(U,V )),

where ℓ̈[θ]
ij is defined in (4.59). We then obtain from the delta method (see,

e.g., van der Vaart, 1998, Theorem 3.1) that

√
n

 ∑
(i,j)∈Ir,s

ℓ̇
[θ[n]]
ij uij−

∑
(i,j)∈Ir,s

ℓ̇
[θ0]
ij uij

=Eθ0(ℓ̈
[θ0]
(U,V ))

√
n(θ[n]−θ0)+oP (1).

Combining the latter display with (4.83) and the fact that ∆[n] in (4.81)
converges to zero in probability, we obtain that

Eθ0(ℓ̈
[θ0]
(U,V ))

√
n(θ[n]−θ0)=−

∑
(i,j)∈Ir,s

ℓ̇
[θ0]
ij

√
n(u[n]

ij −uij)+oP (1).

The continuous mapping theorem, (4.60) and Proposition 4.5.3 finally imply
that
√
n(θ[n]−θ0)=−{Eθ0(ℓ̈

[θ0]
(U,V ))}

−1 ∑
(i,j)∈Ir,s

ℓ̇
[θ0]
ij

√
n(u[n]

ij −uij)+oP (1),

={Eθ0(ℓ̇
[θ0]
(U,V )ℓ̇

[θ0],⊤
(U,V ))}

−1ℓ̇[θ0]√nvec(u[n]−u)+oP (1),

={Eθ0(ℓ̇
[θ0]
(U,V )ℓ̇

[θ0],⊤
(U,V ))}

−1ℓ̇[θ0]Ju,p
√
nvec(p̂[n]−p)+oP (1).

4.F Proofs of the results of Section 4.6

Proof of Proposition 4.6.1. Under H0 in (4.61), we can decompose the
goodness-of-fit process as

√
n(u[n]−u[θ̂[n]])=

√
n(u[n]−u)−

√
n(u[θ̂[n]]−u).

From the delta method (see, e.g., van der Vaart, 1998, Theorem 3.1), we
then obtain that, under H0,
√
nvec(u[θ̂[n]]−u)=

√
nvec(u[θ̂[n]]−u[θ0])= u̇[θ0]√n(θ̂[n]−θ0)+oP (1).
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From the assumptions, it follows that, under H0,
√
nvec(u[n]−u[θ̂[n]]) has

the same limiting distribution as
√
nvec(u[n]−u)− u̇[θ0]V [θ0]

u,p

√
nvec(p̂[n]−p).

Finally, from Proposition 4.5.3, we obtain that
√
nvec(u[n]−u[θ̂[n]])=Ju,p

√
nvec(p̂[n]−p)− u̇[θ0]V [θ0]

u,p

√
nvec(p̂[n]−p)+oP (1).

Proof of Proposition 4.6.2. From Proposition 4.6.1, the continuous map-
ping theorem and the fact that u[θ̂[n]] P→u[θ0] in Rr×s, we obtain that

diag(Gvec(u[θ̂[n]]))−1/2√nGvec(u[n]−u[θ̂[n]])
=diag(Gvec(u[θ0]))−1/2G(Ju,p− u̇[θ0]V [θ0]

u,p )
√
nvec(p̂[n]−p)+oP (1).

Consequently, when (X1,Y1), . . . , (Xn,Yn) are independent copies of (X,Y ),
the sequence

diag(Gvec(u[θ̂[n]]))−1/2√nGvec(u[n]−u[θ̂[n]])

is asymptotically centered normal with covariance matrix given by (4.65).
The first claim is finally a consequence of Lemma 17.1 in van der Vaart
(1998). The second claim immediately follows from the continuous mapping
theorem.
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Chapter 5

On the Differentiability of
ϕ-projections in the Discrete
Finite Case

This chapter is based on the pre-print Geenens et al. (2024)

Geenens, G., I. Kojadinovic, and T. Martini (2024). On the differentia-
bility of ϕ-projections in the discrete finite case, https://arxiv.org/
abs/2407.05997,

submitted to the Annals of the Institute of Statistical Mathematics.

5.1 Introduction

The concept of a I-projection due to Csiszár (see, e.g., Csiszár, 1975; Csiszár
and Shields, 2004) played a crucial role in the developments of the previous
chapter. Actually, as known, it has applications in many areas of probability
and statistics. Informally, given a probability distribution q0 of interest and
a set M of probability distributions, it consists of finding an element of M,
if it exists, that is the “closest” to q0 in the sense of the Kullback–Leibler (or
information) divergence. A well-known class of alternatives to the Kullback–
Leibler divergence (containing the latter) are the so-called ϕ-divergences
(see, e.g., Ali and Silvey, 1966; Csiszár, 1967; Liese and Vajda, 1987; Csiszár
and Shields, 2004, and the references therein) and ϕ-projections are merely
the analogs of I-projections based on ϕ-divergences.

Recall that, in the considered discrete finite setting, in the previous chapter
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we obtained a first differentiability result for I-projections on Fréchet classes
of bivariate probability arrays by exploiting, among other things, continuity
results for ϕ-projections on convex sets obtained by Gietl and Reffel (2013,
2017).

Using the latter as a starting point, focusing on (probability) measures
on finite spaces, the primary goal of this chapter is to establish conditions
under which ϕ-projections are continuously differentiable with respect to the
input distribution. From a statistical inference perspective, such findings
enable the immediate determination of the consistency and the asymptotic
distribution of a ϕ-projection estimator (also known as the minimum ϕ-di-
vergence estimator in the context of parametric inference). Consider that
qn is a consistent estimator of a target probability vector q0, which can be
uniquely ϕ-projected onto a set M of probability vectors of interest. Then,
under conditions ensuring the continuity of ϕ-projections, the consistency of
the ϕ-projection of qn ontoM follows directly from the continuous mapping
theorem. Additionally, under conditions guaranteeing the continuous dif-
ferentiability of ϕ-projections, the limiting distribution of a properly scaled
version of the ϕ-projection of qn onto M can be derived using the delta
method.

When the set M of probability vectors to which one aims to ϕ-project is
not necessarily convex, related findings (though not differentiability results
per se) were presented by Jiménez-Gamero et al. (2011, Section 2). WhenM
is a set of probability vectors derived from a given parametric distribution and
q0 is assumed to belong toM, the aforementioned results encompass the well-
known asymptotic properties of minimum ϕ-divergence estimators (see, e.g.,
Read and Cressie, 1988; Morales et al., 1995; Basu et al., 2011, and references
therein). As the results of Jiménez-Gamero et al. (2011) were actually
obtained regardless of whether q0 belongs to M (thus also considering
potential model misspecification), they pave the way for developing various
inference procedures related to goodness-of-fit testing and model selection,
as discussed in Sections 3 and 4 of Jiménez-Gamero et al. (2011) (see also
references therein).

The specific objective of this work is to attempt to unify and extend
the previous results. Building on the approaches of Gietl and Reffel (2013,
2017), we consider finite measures on finite spaces, not just probability
measures on finite spaces. With a slight strengthening of the main condition
from Jiménez-Gamero et al. (2011) and a crucial additional assumption
missing from that reference (see Remark 5.3.8 in Section 5.3.2), we first
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present a general result on the differentiability of ϕ-projections. Under an
additional assumption of convexity of the set M, we demonstrate that the
aforementioned conditions are implied by simpler ones that are particularly
easy to verify. For instance, we find that for many common choices of
ϕ-divergences, ϕ-projections are automatically continuously differentiable
when M is a subset defined by linear equalities. Our proofs draw on results
from Gietl and Reffel (2017) and Rüschendorf (1987), as well as on the
fact that ϕ-divergences constructed from strongly convex functions ϕ (in a
specific sense) are strongly convex in their first argument.

This chapter is structured as follows. In the first section, we define ϕ-di-
vergences for finite measures on finite spaces, recall their main properties
as stated in Gietl and Reffel (2017), provide conditions under which they
are strongly convex in their first argument, and define ϕ-projections. Sub-
sequently, we present conditions under which ϕ-projections are continuous
and continuously differentiable, and demonstrate that these can be replaced
by considerably simpler conditions when the set M onto which one wishes
to ϕ-project is convex. Finally, we illustrate how the derived results can be
utilised to determine the asymptotics of minimum ϕ-divergence estimators
when projecting onto parametric sets of probability vectors, sets of probabil-
ity vectors generated from distributions with specific moments fixed, and
Fréchet classes of bivariate probability arrays. The latter example concerns
essentially the same result that was given in Section 4.2.4 of the previous
chapter. Nevertheless, as shall be explained, it sheds more light on the
different technique employed therein and eventually opens up the path to
an useful alternative point of view. For a smoother reading, all the proofs
are found in a series of appendices.

5.2 Preliminaries on ϕ-divergences and ϕ-projections

5.2.1 Notation

Let m∈N+ be fixed and let X ={x1, . . . ,xm} be a set of interest. We will
examine ϕ-divergences and ϕ-projections for finite measures on (X ,2X ).
Obviously, any finite measure µ on (X ,2X ) is discrete and can be represented
by a collection of m point masses since

µ(A)=
∑
xi∈A

µ({xi}), A⊂{x1, . . . ,xm}.

199



As will become evident in the following subsections, the forthcoming de-
velopments depend only on m= |X | and the values that finite measures
on X take on subsets of X , that is, on the singletons {x1}, . . . , {xm}.
Therefore, in the remainder of this chapter, a finite measure µ on X
will be simply represented by a vector s∈ [0,∞)m defined by si=µ({xi}),
i∈{1, . . . ,m}. We will use the letters s,t for denoting such point mass vec-
tors in the case of general finite measures, and reserve the letters p,q for
point mass vectors of probability measures, that is, whose components sum
up to one – these will be simply referred to as probability vectors in the
rest of this chapter. We define the support of any vector s∈ [0,∞)m as
supp(s)={i∈{1, . . . ,m} : si>0}. Finally, for any set S⊂ [0,∞)m and any
I ⊂{1, . . . ,m}, SI ={s∈S : supp(s)⊂I}. For example, given t∈ [0,∞)m,
[0,∞)msupp(t) denotes the set {s∈ [0,∞)m : supp(s)⊂ supp(t)}, which is the
set of nonnegative vectors whose support is included in that of t.

5.2.2 ϕ-divergences, for Finite Measures on Finite Spaces

Let ϕ : [0,∞)→R be a convex function that is continuous at 0. Then, let
f : [0,∞)2→R∪{∞} be the function defined by

f(v,w)=



wϕ
( v
w

)
if v∈ [0,∞), w∈ (0,∞),

v lim
x→∞

ϕ(x)
x

if v∈ [0,∞), w=0,

0 if v=0, w=0.

(5.1)

Note that, by Proposition A.24 of Liese and Vajda (1987), limx→∞ϕ(x)/x
exists in R∪{∞} and that, by Proposition A.35 in the same reference, the
function f is lower semicontinuous on [0,∞)2. Following Gietl and Reffel
(2017, Section 2), it can be confirmed that, for any fixed v≥0, f(v,·) is
continuous.

We next state a trivial lemma which shows that, for any M ∈ (0,∞), the
restriction of f to [0,M ]2 can be immediately recovered from its restriction
to [0,1]2.
Lemma 5.2.1. Let M ∈ (0,∞). Then, for any v,w∈ [0,M ]2, f(v,w)=
Mf(v/M,w/M).

The following additional condition on ϕ is commonly found in the litera-
ture.
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Condition 5.2.2 (Strict convexity of ϕ). The function ϕ is strictly convex.

It is simple to show that, for any fixed w>0, f(·,w) is strictly convex if
and only if Condition 5.2.2 holds.

Definition 5.2.3 (ϕ-divergence). For any s,t∈ [0,∞)m, the ϕ-divergence
of s relative to t is defined by

Dϕ(s | t)=
m∑
i=1
f(si,ti). (5.2)

It can verified from (5.1) that, if supp(s)⊂ supp(t), Dϕ(s | t)<∞. Note
that since s and t are not necessarily probability vectors, Dϕ(s | t) may be
negative (take for instance ϕ(x)=x log(x), x∈ (0,∞), ϕ(0)=0 and si≤ ti,
i∈{1, . . . ,m}, with at least one si<ti). Moreover, the following properties
(see Gietl and Reffel, 2017, Theorem 2.1) hold as a consequence of the
properties of the function f in (5.1) discussed above.

Proposition 5.2.4. The following assertions hold:

(i) The function Dϕ is lower semicontinuous on [0,∞)m× [0,∞)m.

(ii) For fixed s∈ [0,∞)m, Dϕ(s | ·) is continuous on [0,∞)m.

(iii) For fixed t∈ [0,∞)m, t /= 0Rm, Dϕ(· | t) is strictly convex on [0,∞)msupp(t)
if and only if Condition 5.2.2 holds.

We additionally state an immediate corollary of Lemma 5.2.1 which shows
that, for any M ∈ (0,∞), the restriction of Dϕ to [0,M ]m× [0,M ]m can be
immediately recovered from its restriction to [0,1]m× [0,1]m.

Lemma 5.2.5. Let M ∈ (0,∞). Then, for any s,t∈ [0,M ]m, Dϕ(s | t)=
MDϕ(s/M | t/M).

5.2.3 Existence of ϕ-projections on Compact Subsets

Definition 5.2.6 (ϕ-projection). Let t∈ [0,∞)m and let M⊂ [0,∞)m, M /=
∅. A ϕ-projection of t on M, if it exists, is an element s∗∈M satisfying

Dϕ(s∗ | t)= inf
s∈M

Dϕ(s | t).

The next result (see Gietl and Reffel, 2017, Lemma 3.1 (i)) shows that
ϕ-projections exist as soon as the setM on which one wishes to ϕ-project is
compact.
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Proposition 5.2.7 (Existence of ϕ-projection). Let t∈ [0,∞)m and let M
be a nonempty compact subset of [0,∞)m. Then, there exists a ϕ-projection
of t on M.

We end this subsection by noting that, if one wishes to ϕ-project only on
compact sets of nonnegative vectors, without loss of generality, it suffices to
study ϕ-projections of vectors of [0,1]m on compact subsets of [0,1]m. We
briefly explain why. Let t∈ [0,∞)m and letM be a nonempty compact subset
of [0,∞)m. Hence, there exists M ∈ (0,∞) such t∈ [0,M ]m andM⊂ [0,M ]m.
Let t′ = t/M ∈ [0,1]m and let M′ ={s/M : s∈M}⊂ [0,1]m. Clearly, M′ is
also compact. Moreover,

arginf
s′∈M′

Dϕ(s′ | t′)= 1
M

arginf
s∈M

Dϕ(s/M | t′)= 1
M

arginf
s∈M

Dϕ(s | t),

where the second equality holds from Lemma 5.2.5. Hence, as we shall only
be interested in ϕ-projecting on compact sets of nonnegative vectors, without
loss of generality, we shall only consider vectors in [0,1]m in the remainder
of this work.

5.2.4 Unicity of ϕ-projections on Compact and Convex Sets

Another condition on ϕ commonly appearing in the literature is the following.

Condition 5.2.8. The function ϕ satisfies limx→∞
ϕ(x)
x =∞.

As a direct corollary of Lemma 3.1 of Gietl and Reffel (2017) (with a
slight modification of statement (ii) coming from its proof), we have:

Proposition 5.2.9 (Unicity of ϕ-projection). Let t∈ [0,1]m and M be a
nonempty closed and convex subset of [0,1]m. Then, under Condition 5.2.2:

(i) If M⊂ [0,1]msupp(t), the ϕ-projection of t on M is unique.

(ii) IfM∩ [0,1]msupp(t) /=∅ and Condition 5.2.8 holds, the ϕ-projection of t on
M is unique and coincides with the ϕ-projection of t onM∩ [0,1]msupp(t).

In the previous proposition, Condition 5.2.2 is crucial, as the next example
shows (see Example 3.2 of Gietl and Reffel, 2017).

Example 5.2.10. If ϕ is convex but not strictly convex, unicity of ϕ-
projections on compact and convex sets may not be guaranteed. Indeed,
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consider ϕ defined by ϕ(x)= |x−1| for x in [0,∞). The corresponding ϕ-
divergence is commonly known as the total variation, since for any s,t in
[0,1]m we have

Dϕ(s | t)=
m∑
i=1
|si− ti|.

Let t=(1,1)∈ [0,1]2 and let the convex and compact set M be defined by

M={s∈ [0,1]2 : s1 +s2 =1}.

For all s∈M, we have

Dϕ(s | t)= |s1− t1|+ |s2− t2|= t1−s1 + t2−s2 =1.

Hence all elements of M are ϕ-projections of t on M.

5.2.5 ϕ-divergences Strongly Convex in Their First Argument

We conclude this section by presenting conditions under which ϕ-divergences
are strongly convex in their first argument. Let Y be a convex subset of Rd

(d∈N+) and recall that a function H from Y to R is strongly convex if and
only if there exists a constant κH ∈ (0,∞) such that, for any x,y∈Y and
α∈ [0,1],

H(αx+(1−α)y)≤αH(x)+(1−α)H(y)− κH2 α(1−α)∥x−y∥2
2.

When H is twice continuously differentiable on Y̊, the interior of Y, it is
known (see, e.g., Nesterov, 2004, Theorem 2.1.11) that H is strongly convex
on Y if and only if, for any x∈Y̊, H(x)−κHId is positive semi-definite,
where H(x) is the Hessian matrix of H at x and Id is the d×d identity
matrix. We will utilise this equivalent characterisation in Section 5.3.3.

The following condition on ϕ will be essential in the subsequent develop-
ments.

Condition 5.2.11 (Strong convexity of ϕ). For any w∈ (0,∞), the restric-
tion of ϕ to [0,1/w] is strongly convex.

Note that many functions ϕ involved in the definition of classical ϕ-di-
vergences satisfy this condition. The equivalent characterization of strong
convexity mentioned above allows for the straightforward verification of
Condition 5.2.11 for those functions ϕ satisfying:
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Table 5.2.1: The function ϕ of several classical ϕ-divergences satisfying Conditions 5.2.11
and 5.2.12 and the associated strong convexity constant.

Divergence ϕ(x) κϕ(w)

Kullback–Leibler x logx w

Pearson’s χ2 (x−1)2 2

Squared Hellinger 2(1−
√
x) w

3
2

2

Reverse relative entropy − logx w2

Vincze–Le Cam (x−1)2

x+1 8
( 1

w +1
)−3

Jensen–Shannon (x+1)log 2
x+1 +x logx w2

w+1

Neyman’s χ2 1
x−1 2w3

α-divergence 4
(

1−x
1+α

2
)

1−α2 ,α<3,α /=±1 w
3−α

2

Condition 5.2.12 (Differentiability of ϕ). The function ϕ is twice continu-
ously differentiable on (0,∞).

Indeed, Condition 5.2.11 is then equivalent to ϕ′′(x)≥κϕ(w) for all x∈
(0,1/w), where κϕ(w) is the strong convexity constant of the restriction
of ϕ to [0,1/w]. Note that Melbourne (2020) considered ϕ-divergences
constructed from such functions ϕ, but did not investigate their strong
convexity in their first argument. Table 5.2.1 shows the function ϕ and
the associated strong convexity constant for several classical ϕ-divergences
satisfying Condition 5.2.12.

The following result is proven in Section 5.A.

Proposition 5.2.13. Under Condition 5.2.11, the function Dϕ(· | t) is
strongly convex on [0,1]msupp(t) for all t∈ [0,1]m, t /=0Rm.

We end this subsection with the statement of a short lemma, proven in
Section 5.A, that we shall use in Section 5.3.3.

Lemma 5.2.14. Condition 5.2.11 implies Condition 5.2.2.
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5.3 On the Continuous Differentiability of ϕ-projections

5.3.1 Framework

Let t0∈ [0,1]m be the nonnegative vector to be ϕ-projected on a nonempty
subsetM of [0,1]m. Since we are interested in stating differentiability results
at t0, it is natural impose that t0∈ (0,1)m. The goal of this section is to
present conditions under which the function

S∗(t)=arginf
s∈M

Dϕ(s | t) (5.3)

is well-defined over an open neighborhood N (t0)⊂ (0,1)m of t0 and continu-
ously differentiable at t0.

As we continue, we shall assume that the set M is constructed as follows.

Condition 5.3.1 (Construction of M). There exists a bounded subset Θ
of Rk for some strictly positive integer k≤m with Θ̊ /=∅ and a continuous
injective function S from Θ̄ to [0,1]m that is twice continuously differentiable
on Θ̊ such that M=S(Θ̄) and S(Θ̊)⊂ (0,1)m.

Remark 5.3.2. Assuming Θ is bounded in Condition 5.3.1 is not restrictive,
as an unbounded parameter space can always be reparametrised using a
suitable bijection into a bounded subset of Rk. Additionally, we do not
define Θ as a closed set as we find it more explicit to write Θ̄ when necessary.
Assuming S injective is particularly natural in a statistical framework as it
ensures the identifiability of the “parametric” model S(Θ̄)={S(θ) : θ∈ Θ̄}.
Furthermore, note that Condition 5.3.1 implies that M=S(Θ̄) is compact
(since Θ̄ is compact and S is continuous) and nonempty (because Θ̊ /=∅).
Hence, by Proposition 5.2.7, for any t∈ [0,1]m, a ϕ-projection of t on M
exists (but may not be unique). Finally, the assumption that S(Θ̊)⊂ (0,1)m
is necessary, on the one hand, so that, for any t∈ (0,1)m, the function
Dϕ(S(·) | t) is twice continuously differentiable on Θ̊, and, on the other hand,
to guarantee that M∩(0,1)m /=∅ (which are both needed to obtain the
desired differentiability results as we shall see in the next subsections). □

The previous setting is very general. To see this, consider for a moment
that the vectors of interest in [0,1]m are probability vectors. Then, for
some k<m, M=S(Θ̄) could represent a parametric family of probability
vectors. For example, the first application in Section 5.4 considers the
class of probability vectors obtained from the binomial distributions with
parameters m−1 and θ∈ Θ̄= [0,1]. Upon reflection, it becomes clear that
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most families of discrete distributions with finite support could indeed be
considered. Note, however, thatM is typically not convex in such parametric
situations. As shall be illustrated in the second and third application in
Section 5.4, Condition 5.3.1 can also be tailored to scenarios in which one
wishes to ϕ-project on a set M of probability vectors defined by linear
equalities, a common situation in applications implying the convexity of M.
In such convex cases, the key conditions necessary for the differentiability
of ϕ-projections are substantially simpler and automatically verified for a
rather large class of ϕ-divergences. This will be established in Section 5.3.3.
Before that, Section 5.3.2 will first state general conditions under which S∗

in (5.3) is well-defined and continuously differentiable at t0. In what follows,
Conditions 5.2.2, 5.2.12 and 5.3.1 will always be assumed to hold.

5.3.2 The General Case of M Compact

We will first examine the differentiability of the function S∗ in (5.3) at
t0∈ (0,1)m without assuming that the set M=S(Θ̄) is convex. More in
detail, we consider the following (nested) conditions.
Condition 5.3.3 (ϕ-projections in a neighborhood of t0 I). There exists
an open neighborhood N (t0)⊂ (0,1)m of t0 such that, for any t∈N (t0), the
ϕ-projection s∗ of t on M=S(Θ̄) (exists and) is unique.
Condition 5.3.4 (ϕ-projections in a neighborhood of t0 II). Condition 5.3.3
holds and, for any t∈N (t0), the unique ϕ-projection s∗ =S∗(t) satisfies
s∗ =S(θ∗) for some (unique) θ∗∈ Θ̊.

Clearly, Condition 5.3.4 is a strengthening of Condition 5.3.3, as it requires
θ∗ to belong to the interior of Θ. Also, when restricted to probability vectors,
Condition 5.3.4 is a slight strengthening of Assumption 3 of Jiménez-Gamero
et al. (2011) which is recovered by setting N (t0) ={t0}. The cited reference
notes that this type of condition is common in the literature (see, e.g., White,
1982; Lindsay, 1994; Broniatowski and Keziou, 2009).

We shall first determine additional conditions under which the function
ϑ∗ :N (t0)→ Θ̄ defined by

ϑ∗(t)=arginf
θ∈Θ̄

Dϕ(S(θ) | t) (5.4)

is continuously differentiable at t0. Note that, under Condition 5.3.4, (5.4)
can be equivalently expressed as

ϑ∗(t)=arginf
θ∈Θ̊

Dϕ(S(θ) | t), t∈N (t0), (5.5)
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implying that it is then a function from N (t0) to Θ̊. As S∗ in (5.3) can be
expressed as

S∗(t)=S(ϑ∗(t)), t∈N (t0), (5.6)
we see that conditions under which S∗ is continuously differentiable at t0 will
follow from conditions under which ϑ∗ in (5.5) is continuously differentiable
at t0.

The following continuity result is proven in Section 5.B.
Proposition 5.3.5 (Continuity of ϑ∗ at t0). Under Condition 5.3.3, the
function ϑ∗ in (5.4) is continuous at t0.

The next corollary is an immediate consequence of the previous proposi-
tion, the continuity of S on Θ̄ and (5.6).
Corollary 5.3.6 (Continuity of S∗ at t0). Under Condition 5.3.3, the
function S∗ in (5.3) is continuous at t0.

As shall be verified in the proof of Lemma 5.3.9 (given in Section 5.B),
the differentiability assumptions made on ϕ and S from Section 5.3 onwards
imply that, for any t∈ (0,1)m, the function Dϕ(S(·) | t) is twice continuously
differentiable on Θ̊. The continuous differentiability of the function ϑ∗

in (5.4) will be shown under Condition 5.3.4 and the following additional
condition.
Condition 5.3.7 (Invertibility condition). Under Condition 5.3.4, the k×k
matrix whose elements are

∂2Dϕ(S(θ) | t0)
∂θi∂θj

∣∣∣∣
θ=ϑ∗(t0)

, i,j∈{1, . . . ,k},

is positive definite.

Note that the matrix appearing in the previous condition is well-defined
as, under Condition 5.3.4, (5.5) implies that ϑ∗(t0)∈ Θ̊.
Remark 5.3.8. The matrix defined in Condition 5.3.7 corresponds to the
matrix given in Eq. (3) of Jiménez-Gamero et al. (2011). In that reference,
it is claimed that, when restricted to probability vectors, Condition 5.3.4
with N (t0) ={t0} (which corresponds to their Assumption 3) implies Condi-
tion 5.3.7. However, Condition 5.3.4 with N (t0) ={t0} is equivalent to saying
that the function Dϕ(S(·) | t0) has a unique minimum at θ0 =ϑ∗(t0)∈ Θ̊ which,
from second order necessary optimality conditions, only implies the positive
semi-definiteness of the matrix in Condition 5.3.7.
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We provide here a simple counterexample, illustrating that Condition 5.3.7
cannot be dispensed with. Let ϕ(x)=(x−1)4, x∈ [0,∞). The function ϕ is
strictly convex on its domain and twice continuously differentiable on (0,∞).
We restrict our attention to probability vectors. Let q0 =(1/3,1/3,1/3) be
the element to be ϕ-projected on the subset of probability vectorsM=S(Θ̄)
where Θ=(0,1/2) and S(θ)=(θ,θ,1−2θ), θ∈ Θ̄. The function S is clearly
twice continuously differentiable on Θ̊ = Θ. Let h be the function from Θ̄ to
R defined by

h(θ)=Dϕ(S(θ) | q0), θ∈ Θ̄.
It is then easy to verify that

h(θ)= 1
3(3θ−1)4 + 1

3(3θ−1)4 + 1
3(3(1−2θ)−1)4, θ∈ Θ̄,

and that h attains its unique minimum at θ0 = 1/3∈ Θ̊. Standard calculations
show that

h′′(θ)=36(3θ−1)2 +36(3θ−1)2 +144[3(1−2θ)−1]2, θ∈ Θ̊,

and that h′′(θ0)=h′′(ϑ∗(q0))=0. □

Before stating one of the main results of this work, let us show how to
express the matrix defined in Condition 5.3.7 under the elegant form given in
Eq. (3) of Jiménez-Gamero et al. (2011). To achieve that, further definitions
are needed to be able to properly deal with the differentiability of matrix-
valued functions. Let a,b,c,d∈N+. For any function g :U→Rb×c, where U
is an open subset of Ra, we shall denote by gi,j, i∈{1, . . . ,b}, j∈{1, . . . ,c},
its bc component functions. Furthermore, we shall say that g is r-times
continuously differentiable on U , r≥1, if, for any i∈{1, . . . ,b}, j∈{1, . . . ,c},
the r-order partial derivatives of gi,j exist and are continuous on U . Next,
consider the (column-major) vectorization operator which maps any function
g :Ra→Rb×c to its vectorized version g :Ra→Rbc whose bc components
functions g1, . . . ,gbc are defined by gi+(j−1)b=gi,j, (i,j)∈{1, . . . ,b}×{1, . . . ,c}.
For any continuously differentiable function g :U→Rb×c, where U is an
open subset of Ra, we then define its Jacobian matrix at y∈U ⊂Ra as the
Jacobian matrix J [g](y) of the vectorized version g of g at y. In other words,

J [g](y)=J [g](y)=


∂g1(x)
∂x1

∣∣∣∣
x=y

. . . ∂g1(x)
∂xa

∣∣∣∣
x=y... ...

∂gbc(x)
∂x1

∣∣∣∣
x=y

. . . ∂gbc(x)
∂xa

∣∣∣∣
x=y

 , y∈U ⊂Ra .
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Note that J [g] =J [g] is a function from U to Rbc×a. If g is twice continuously
differentiable on U , then, for any y∈U , we define J2[g](y) to be the Jaco-
bian of the function J [g] at y, that is, J2[g](y)=J [J [g]](y), y∈U . A little
reflection reveals that, given the previous definitions, it makes no difference
in terms of Jacobian whether a given function is regarded as taking its
values in Rb×1, R1×b or Rb. Similarly, we adhere to the common convention
that vectors, when appearing in matrix expressions, are treated as 1-column
matrices.

The following lemma, proven in Section 5.B, can be used to obtain an
explicit expression of the matrix appearing in Condition 5.3.7.

Lemma 5.3.9. For any t∈ (0,1)m and θ∈ Θ̊, we have that

J2[Dϕ(S(·) | t)](θ)=

J [S](θ)⊤diag
( 1
t1
ϕ′′
(S1(θ)

t1

)
, . . . ,

1
tm
ϕ′′
(Sm(θ)

tm

))
J [S](θ)

+
Ik⊗

(
ϕ′
(S1(θ)

t1

)
, . . . ,ϕ′

(Sm(θ)
tm

))⊤J2[S](θ), (5.7)

where S1, . . . ,Sm are the m component functions of S and the symbol ⊗
denotes the Kronecker product.

We are now ready to state one of our main results. Its proof is given in
Section 5.B.

Theorem 5.3.1 (Differentiability of ϑ∗ at t0). Under Conditions 5.3.4 and
5.3.7, ϑ∗ in (5.5) is continuously differentiable at t0 =(t0,1, . . . ,t0,m)∈ (0,1)m
with Jacobian matrix at t0 given by

J [ϑ∗](t0)=J2[Dϕ(S(·) | t0)](ϑ∗(t0))−1J [S](ϑ∗(t0))⊤∆(t0), (5.8)

where the matrix-valued function J2[Dϕ(S(·) | t0)] is as in (5.7) with t= t0
and

∆(t0)=diag
S1(ϑ∗(t0))

t20,1
ϕ′′
(S1(ϑ∗(t0))

t0,1

)
, . . .

. . . ,
Sm(ϑ∗(t0))

t20,m
ϕ′′
(Sm(ϑ∗(t0))

t0,m

) . (5.9)

The following corollary is a direct consequence of (5.6), Theorem 5.3.1
and the chain rule.
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Corollary 5.3.10 (Differentiability of S∗ at t0). Assume that Conditions 5.3.4
and 5.3.7 hold. Then, the function S∗ in (5.3) is continuously differentiable
at t0∈ (0,1)m with Jacobian matrix at t0 given by

J [S∗](t0)=J [S](ϑ∗(t0))J [ϑ∗](t0), (5.10)

where J [ϑ∗](t0) is given in (5.8).

Remark 5.3.11. When t0 is known, one can attempt to verify the conditions
of Theorem 5.3.1 or Corollary 5.3.10 analytically, or at least empirically. For
Condition 5.3.4, one could choose a few vectors t in a “neighborhood” of t0
and attempt to verify (at least numerically) that the function Dϕ(S(·) | t) has
a unique minimum on Θ̊⊂Rk. When k∈{1,2} in particular, the preceding
verification could be graphical (see Section 5.4.1). As to Condition 5.3.7, one
could simply compute the matrix J2[Dϕ(S(·) | t0)](ϑ∗(t0)) and attempt to
invert it. In a statistical context, t0 is typically unknown, though. Naturally,
one can simply replace t0 by a consistent estimator tn in the previous
strategies. However, when the set M is convex, there is typically no need
for such approximate checks as Conditions 5.3.4 and 5.3.7 are automatically
verified for a rather large class of ϕ-divergences and many situations of
practical interest, as exposed in Section 5.3.3. □

Remark 5.3.12. Under Conditions 5.3.4 and 5.3.7, Theorem 5.3.1 and
Corollary 5.3.10 imply that the functions J [ϑ∗] and J [S∗] are continuous
at t0. In statistical applications, given a consistent estimator tn of (the
unknown) t0, we thus immediately obtain from the continuous mapping
theorem that J [ϑ∗](t0) (resp. J [S∗](t0)) is consistently estimated by J [ϑ∗](tn)
(resp. J [S∗](tn)). □

We conclude this subsection by stating two simple conditions which imply
Condition 5.3.4 when combined with Condition 5.3.3.

Condition 5.3.13 (Interior). The function S in Condition 5.3.1 satisfies
S(Θ̊)=M∩(0,1)m.

Condition 5.3.14 (Same support). For any t∈ (0,1)m, all ϕ-projections
of t on M=S(Θ̄) belong to (0,1)m.

Condition 5.3.13 is satisfied in many applications (see Section 5.4) while
the verification of Condition 5.3.14 is discussed in the forthcoming subsection.
The proof of the next result is given in Section 5.B.

Lemma 5.3.15. Conditions 5.3.3, 5.3.13 and 5.3.14 imply Condition 5.3.4.
210



5 – On the Differentiability of ϕ-projections in the Discrete Finite Case

5.3.3 The Case of M Convex

Recall that Conditions 5.2.2, 5.2.12 and 5.3.1 are assumed to hold. Below,
using results of Gietl and Reffel (2017), we first demonstrate (see Section 5.C)
that Condition 5.3.3 is automatically satisfied under an additional assumption
of convexity of the setM on which we wish to ϕ-project the vector t0∈ (0,1)m.

Proposition 5.3.16. Assume that M=S(Θ̄)⊂ [0,1]m is convex. Then, for
any t∈ (0,1)m, the ϕ-projection s∗ of t on M=S(Θ̄) (exists and) is unique,
which implies that Condition 5.3.3 holds.

Since Condition 5.3.3 holds when M is convex, from Lemma 5.3.15, it
suffices to verify Conditions 5.3.13 and 5.3.14 to obtain Condition 5.3.4.

Remark 5.3.17. Restricting attention to probability vectors, Condition 5.3.14
holds for the Kullback–Leibler divergence (that is, for I-projections) since
M=S(Θ̄) contains probability vectors in (0,1)m by construction, as S(Θ̊)⊂
M∩(0,1)m and S(Θ̊) /=∅ by Condition 5.3.1. Indeed, when one wishes to
I-project a probability vector q0 on a closed convex subset containing at least
one probability vector with the same support as q0, it is known from Csiszár
(1975, Theorem 2.1, Theorem 2.2 and Corollary 3.3) that the support of the
unique I-projection will be equal to that of q0. □

Let us now turn to Condition 5.3.7, the other key condition in Theo-
rem 5.3.1. To verify it when t0 is unknown (see Remark 5.3.11), one could
rely on more general conditions that imply Condition 5.3.7. One such
condition is as follows.

Condition 5.3.18 (Strong convexity of Dϕ(S(·) | t)). The set Θ̄ is convex
and, for any t∈ (0,1)m, the function Dϕ(S(·) | t) from Θ̄ to R is strongly
convex.

The next proposition is proven in Section 5.C.

Proposition 5.3.19. Condition 5.3.18 implies that, for any t∈ (0,1)m and
θ∈ Θ̊, the k×k matrix J2[Dϕ(S(·) | t)](θ) is positive definite, and thus that
Condition 5.3.7 holds.

We have (from Proposition 5.2.13 and Table 5.2.1) that, for many ϕ-diver-
gences and any t∈ (0,1)m, the function Dϕ(· | t) is strongly convex on [0,1]m.
Thus, Proposition 5.3.19 suggests to consider conditions on S and Θ under
which Condition 5.3.18 holds. A simple such condition is as follows.
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Condition 5.3.20 (S is affine). The set Θ̄ is convex and the function S
from Θ̄ to [0,1]m is affine, that is, there exists an m×k matrix A and γ∈Rm

such that S(θ)=Aθ+γ, θ∈ Θ̄.

The following lemma is proven in Section 5.C.

Lemma 5.3.21 (Strong convexity ofDϕ(S(·) | t)). Conditions 5.2.11 and 5.3.20
imply that Condition 5.3.18 holds.

Note that, from Lemma 5.2.14, Condition 5.2.11 can be viewed as a
strengthening of Condition 5.2.2. The previous derivations lead to the
following result, proven in Section 5.C.

Corollary 5.3.22 (Differentiability of ϑ∗ and S∗ at t0). Assume that
M=S(Θ̄) is convex and that Conditions 5.2.11, 5.3.13, 5.3.14 and 5.3.20
hold. Then, the function ϑ∗ in (5.5) is continuously differentiable at t0 =
(t0,1, . . . ,t0,m)∈ (0,1)m with Jacobian matrix at t0 given by

J [ϑ∗](t0)=
[
A⊤diag

( 1
t0,1

ϕ′′
(S1(ϑ∗(t0))

t0,1

)
, . . .

. . . ,
1
t0,m

ϕ′′
(Sm(ϑ∗(t0))

t0,m

))
A

]−1
A⊤∆(t0), (5.11)

where ∆(t0) is defined in (5.9), and the function S∗ in (5.3) is continuously
differentiable at t0 with Jacobian matrix at t0 given by J [S∗](t0) =AJ [ϑ∗](t0).

Figure 5.3.1 summarises the various implications of conditions leading to
Corollary 5.3.22. The only condition in that result that may not be easily
verifiable is Condition 5.3.14. Its verification would obviously be immediate
if t0 was known and its ϕ-projection on M could be computed. However,
as discussed in Remark 5.3.11, this is usually not the case in a statistical
context. From Remark 5.3.17, though, we know that Condition 5.3.14 is
automatically verified for the Kullback–Leibler divergence when we restrict
attention to probability vectors. Using results of Rüschendorf (1987), we can
prove (see Section 5.C) that this may also be the case for other ϕ-divergences
provided that Condition 5.3.20 holds and Θ is defined by linear inequalities.

Proposition 5.3.23. Assume that Condition 5.3.20 holds, limx→0+ϕ′(x)=
−∞, Θ⊂Rk is defined by linear inequalities and M=S(Θ̄)⊂ [0,1]m is a
convex subset of probability vectors. Then, for any probability vector q∈
(0,1)m, the (unique) ϕ-projection p∗ of q on M=S(Θ̄) belongs to (0,1)m.
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Condition 5.3.14
(same support)

Condition 5.3.4
(uniqueness of ϕ-projection)

Condition 5.3.13
(interior condition)

Theorem 5.3.1
(differentiability)

Condition 5.3.18
(strong convexity of Dϕ(S(·) | t))

Condition 5.3.7
(invertibility condition)

Condition 5.2.11
(strong convexity of ϕ)

Condition 5.3.20
(S affine)

Figure 5.3.1: Diagram summarizing the various implications of conditions for differentiability
when the set M of interest is convex.

Remark 5.3.24. For the ϕ-divergences listed in Table 5.2.1, limx→0+ϕ′(x) =
−∞ holds for the Kullback–Leibler divergence, the squared Hellinger diver-
gence, the reverse relative entropy, the Jensen–Shannon divergence, Ney-
man’s χ2 divergence and α-divergences with α<1.

□

The previous proposition leads to the following corollary, of importance
for a large class of applications. It is proven in Section 5.C.

Corollary 5.3.25. Assume that Conditions 5.2.11, 5.3.13 and 5.3.20 hold,
limx→0+ϕ′(x)=−∞, Θ is defined by linear inequalities and M=S(Θ̄)⊂
[0,1]m is a convex subset of probability vectors. Then, for any probability
vector q∈ (0,1)m, the function ϑ∗ in (5.5) is continuously differentiable at q
with Jacobian matrix at q given by (5.11) with t0 = q, and the function S∗

in (5.3) is continuously differentiable at q with Jacobian matrix at q given
by J [S∗](q)=AJ [ϑ∗](q).

5.3.4 The Case of M Defined By Linear Equalities

Many applications involve ϕ-projections on sets defined by linear equalities
(see Sections 5.4.2 and 5.4.3). The proposition below, which states that in
such cases Conditions 5.3.1, 5.3.13 and 5.3.20 are automatically verified, is
therefore of great interest. It is proven in Section 5.C.
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Proposition 5.3.26. Assume that the set M is defined by linear equal-
ities, that is, that there exist d∈N+, α=(α1, . . . ,αd)∈Rd and d functions
f1,f2, . . . ,fd on {1, . . . ,m} such that

M=
s∈ [0,1]m :

m∑
i=1
sifj(i)=αj,j∈{1, . . . ,d}

 .
Moreover, suppose that M∩(0,1)m is nonempty and M is not reduced to a
singleton. Then Conditions 5.3.1, 5.3.13 and 5.3.20 hold.

Note that the previous result does not directly provide the expression of
the function S in Condition 5.3.1 which is necessary to compute the Jacobians
in Corollaries 5.3.22 and 5.3.25. It merely guarantees that, whenever M is
defined by linear equalities, the framework for studying the differentiability of
ϕ-projections set up in Section 5.3.1 applies with S affine and Condition 5.3.13
additionally satisfied.

5.4 Applications To Minimum ϕ-Divergence Estima-
tors

This section illustrates the application of the results of Section 5.3 to the
derivation of the limiting distributions of properly scaled ϕ-projection esti-
mators in three different situations. To indicate that the element of (0,1)m
to be ϕ-projected is a probability vector, it will be denoted by q0. In all three
applications, after defining the function S in Condition 5.3.1 and verifying
the conditions of Corollary 5.3.10, Corollary 5.3.22 or Corollary 5.3.25, we
shall compute the Jacobian matrix of the function S∗ in (5.3) at q0, that
is, in the notation of Section 5.3, J [S∗](q0). Given an estimator qn of q0,
S∗(qn) is the ϕ-projection and/or minimum ϕ-divergence estimator of q0
(that is, the estimator of S∗(q0)) and, if

√
n(qn−q0) converges weakly as n

tends to infinity, it follows immediately with the delta method (see, e.g., van
der Vaart, 1998, Theorem 3.1) that

√
n(S∗(qn)−S∗(q0))=J [S∗](q0)

√
n(qn−q0)+oP(1). (5.12)

For illustration purposes, we shall specifically consider a random vari-
able X taking its values in a set X ={x1, . . . ,xm} of interest such that
P({X=xi}) = q0,i, i∈{1, . . . ,m}, and we shall assume that we have at hand
n independent copies X1, . . . ,Xn of X. A natural estimator of q0 is then the
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probability vector qn whose components are

qn,i=
1
n

n∑
j=1

1(Xj =xi), i∈{1, . . . ,m},

where 1 denotes the indicator function. The multivariate central limit the-
orem establishes that, as n tends to infinity,

√
n(qn−q0) converges weakly

to an m-dimensional centered normal distribution with covariance matrix
Σq0 =diag(q0)−q0q

⊤
0 . As a result, we obtain from (5.12) that, as n tends to

infinity,
√
n(S∗(qn)−S∗(q0)) converges weakly to an m-dimensional centered

normal distribution with covariance matrix Σ=J [S∗](q0)Σq0J [S∗](q0)⊤. To
empirically verify the correctness of the asymptotic covariance matrix Σ,
in all three applications, we shall finally compare it with Σn,N , the sam-
ple covariance matrix computed from N =5000 independent replicates of√
nS∗(qn) for n=5000.
The first application below is prototypical of the use of minimum ϕ-di-

vergence estimators for parametric inference: it is about ϕ-projecting a
probability vector q0 on the set M of probability vectors generated from
binomial distributions whose first parameter is fixed to m−1. As the set
M is not convex in this case, we will have to rely on the general results
of Section 5.3.2, and on Corollary 5.3.10 in particular. In the second and
third scenarios, the setM is defined by linear equalities (and is thus convex)
which allows using the results of Sections 5.3.3 and 5.3.4. Specifically, in
the second (resp. third) application, M is the set of probability vectors
generated from distributions with certain moments fixed (resp. the Fréchet
class of all bivariate probability arrays with given univariate margins).

5.4.1 ϕ-projection on the Set of Binomial Probability Vectors

We first consider a parametric inference scenario in which one wishes to
ϕ-project a probability vector q0∈ (0,1)m of interest on a given parametric
model. As an example, for m>1, we consider the set of probability vectors
generated from binomial distributions whose first parameter is fixed to m−1.
Specifically, for any ℓ∈N0 and i∈{0, . . . ,ℓ}, let

pℓ,i(θ)=
ℓ
i

θi(1−θ)ℓ−i, θ∈ [0,1],

and let M={(pm−1,0(θ), . . . ,pm−1,m−1(θ)) : θ∈ [0,1]}. The set Θ in Condi-
tion 5.3.1 is thus [0,1] and the ith component function Si, i∈{1, . . . ,m}, of
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Figure 5.4.1: For Pearson’s χ2 divergence (left), the squared Hellinger divergence (middle)
and the Kullback–Leibler divergence (right), graphs of the functions Dϕ(S(·) | t) for 10
vectors t∈ (0,1)3 of the form t= q0 +(z1, . . . ,zm), where (z1, . . . ,zm) is drawn from the m-
dimensional centered normal distribution with covariance matrix 0.012Im. In each plot,
the vertical dashed line marks the value θ0 at which the function Dϕ(S(·) | q0) reaches its
minimum and the top insert contains the (strictly positive) value of J2[Dϕ(S(·) | q0)](θ0).

the function S is pm−1,i−1. Furthermore, for any ℓ∈N0, i∈{0, . . . ,ℓ} and
θ∈ (0,1),

p′
ℓ,i(θ)=

ℓ
i

[1(i>0)iθi−1(1−θ)ℓ−i−1(i<ℓ)θi(ℓ− i)(1−θ)ℓ−i−1
]

=ℓ [1(i≥1)pℓ−1,i−1(θ)−1(i≤ ℓ−1)pℓ−1,i(θ)] ,

and

p′′
ℓ,i(θ)= ℓ

[
1(i≥1)p′

ℓ−1,i−1(θ)−1(i≤ ℓ−1)p′
ℓ−1,i(θ)

]
.

From the above, we obtain that, for any θ∈ (0,1),

J [S](θ)=(p′
m−1,0(θ), . . . ,p′

m−1,m−1(θ))

and
J2[S](θ)=(p′′

m−1,0(θ), . . . ,p′′
m−1,m−1(θ)).

As an illustration, we take m=3 and q0 =(0.1,0.2,0.7) /∈M=S(Θ̄). As
ϕ-divergence, we consider Pearson’s χ2 divergence, the squared Hellinger
divergence and the Kullback–Leibler divergence (see Table 5.2.1). To be able
to apply Corollary 5.3.10 and compute J [S∗](q0) given in (5.10) (to eventually
compute Σ=J [S∗](q0)Σq0J [S∗](q0)⊤), we need to verify Conditions 5.3.4
and 5.3.7. We proceed as suggested in Remark 5.3.11. To empirically verify
Condition 5.3.4, we plot the function Dϕ(S(·) | t) for 10 vectors t∈ (0,1)3 in
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a “neighborhood” of q0. Specifically, we consider vectors t of the form t=
q0 +(z1, . . . ,zm), where (z1, . . . ,zm) is drawn from the m-dimensional centered
normal distribution with covariance matrix 0.012Im. Figure 5.4.1 reveals
that Condition 5.3.4 seems to hold for all three divergences. In all three cases,
the value θ0 at which Dϕ(S(·) | q0) reaches its minimum is found numerically
using the optim() function of the R statistical environment (R Core Team,
2024) and its rounded value is reported in the lower left corner of each
plot. The rounded value of J2[Dϕ(S(·) | q0)](θ0) is also provided in each
plot of Figure 5.4.1 and confirms that Condition 5.3.7 is likely to hold as
well. For all three ϕ-divergences, the asymptotic covariance matrix Σ of√
n(S∗(qn)−S∗(q0)) and its approximation Σn,N show very good agreement.

We print their rounded versions below for Pearson’s χ2 divergence:

Σ=


0.010 0.049 −0.059
0.049 0.246 −0.295
−0.059 −0.295 0.353

 , Σn,N =


0.010 0.049 −0.059
0.049 0.248 −0.297
−0.059 −0.297 0.356

 .

5.4.2 ϕ-projection on the Set Of Probability Vectors Generated
from Distributions with Certain Moments Fixed

Let X be a random variable whose support is X ={x1,x2, . . . ,xm} with x1<
·· ·<xm and let q0∈ (0,1)m be defined by q0,i=P({X=xi}), i∈{1, . . . ,m}.
Assume that the aim is to ϕ-project q0 on the set M of probability vectors
obtained from distributions on X whose r<m−1 first raw (non-centered)
moments are fixed to some known values µ1, . . . ,µr, that is,

M=
p∈ [0,1]m :

m∑
i=1
pi=1,

m∑
i=1
xjipi=µj,j∈{1, . . . ,r}

 . (5.13)

For the previous problem to be well-defined, it is further necessary to assume
that M is nonempty. Note that the above setting is strongly related to the
so-called moment problem. In the current finite discrete setting, Tagliani
(2000, 2001) proposed to address it using the maximum entropy principle
(Jaynes, 1957). It appears that his approach is a particular case of the
considered ϕ-projection approach when Dϕ in (5.2) is the Kullback–Leibler
divergence and q0 is the uniform distribution on X .

The set M in (5.13) is clearly convex. To illustrate the usefulness of
the differentiability results stated in Section 5.3.3, we shall further assume
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that M∩(0,1)m is nonempty. Since M is defined by linear equalities,
Proposition 5.3.26 guarantees that Conditions 5.3.1 and 5.3.13 hold for
some set Θ and some affine function S to be determined. Moreover, let
µ= (1,µ1, . . . ,µr)∈Rr+1 and, for any ℓ∈{1, . . . ,m}, let Uℓ be the ℓ×m matrix
whose ith row is (xi−1

1 , . . . ,xi−1
m ), i∈{1, . . . ,ℓ}. With the above notation,

M={p∈ [0,1]m :Ur+1p=µ}. Next, take an element p of M and denote
by θ1, . . . ,θm−r−1 the corresponding raw (non-centered) moments of order
r+1, . . . ,m−1, respectively. Then,

Ump=(µ,θ),

where θ=(θ1, . . . ,θm−r−1)∈Rm−r−1 and

(µ,θ)=(1,µ1, . . . ,µr,θ1, . . . ,θm−r−1)∈Rm .

Since Um is a Vandermonde matrix with xi /=xj for i,j∈{1, . . . ,m}, i /= j, it
is invertible (see, e.g., Golub and Loan, 2013, p 203) and we have

p=U−1
m (µ,θ)

confirming that any p.m.f. on X is perfectly defined by its m−1 raw moments.
As a consequence, any p∈M can be parametrised by a vector θ∈Rm−r−1

(of raw moments) in

Θ=
{
θ∈Rm−r−1 : 0Rm≤U−1

m (µ,θ)≤1Rm

}
and the function S from Θ=Θ̄ to [0,1]m such that M=S(Θ̄) is given by

S(θ)=U−1
m (µ,θ), θ∈ Θ̄.

Some thought reveals that S(Θ̊)=M∩(0,1)m, that is, Condition 5.3.13
holds as expected.

Let Vm (resp. Wm) be the m×(r+1) (resp. m×(m−r−1)) matrix
obtained from U−1

m by keeping its first r+1 (resp. last m−r−1) columns.
Then, note that Θ and S can be equivalently expressed as

Θ=
{
θ∈Rm−r−1 :−Vmµ≤Wmθ≤1Rm−Vmµ

}
(5.14)

and
S(θ)=Wmθ+Vmµ, θ∈ Θ̄, (5.15)

respectively. From the previous expressions, we have that Θ̄ is convex, S is
affine (that is, Condition 5.3.20 holds) and the Jacobian matrix of S at any
θ∈ Θ̊ is constant and equal to Wm.
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Figure 5.4.2: Lines representing the linear inequalities appearing in the definition of Θ
in (5.14). The symbol ‘⋆’ represents the point (8.896,24.8704)∈ Θ̊ corresponding to the
probability vector of the binomial distribution with parameters m−1 and 0.4. For the
squared Hellinger divergence, the vector θ0 at which Dϕ(S(·) | q0) reaches its minimum is
represented by the symbol ‘o’. The small oblique cloud of points around ‘o’ consists of
realizations of the value θn at which the function Dϕ(S(·) | qn) reaches its minimum.

As an illustration, we takem= 5, X ={0, . . . ,m−1}, r= 2 and µ= (1,1.6,3.52).
The linear inequalities appearing in the definition of Θ in (5.14) are then
represented in Figure 5.4.2. Note that M=S(Θ̄) is nonempty as S(Θ̊)
contains the probability vector of the binomial distribution with parameters
m−1 and 0.4 (whose raw moments of order 1, 2, 3 and 4 are 1.6, 3.52, 8.896
and 24.8704, respectively). This also implies that (8.896,24.8704)∈ Θ̊. The
latter point is represented by the symbol ‘⋆’ in Figure 5.4.2. For q0, we take
(0.35,0.3,0.15,0.1,0.1). Note that q0 does not belong toM as the correspond-
ing raw moments of order 1, 2, 3 and 4 are 1.3, 3.4, 10.6 and 36.4, respectively.
As in the previous application, as ϕ-divergence, we consider Pearson’s χ2

divergence, the squared Hellinger divergence and the Kullback–Leibler di-
vergence. In all three cases, we use the constrOptim() function of the R
statistical environment to find the vector θ0 at which Dϕ(S(·) | q0) reaches
its minimum. For Pearson’s χ2 divergence (resp. the squared Hellinger
divergence, the Kullback–Leibler divergence), after rounding to two decimal
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places, we obtain (9.18,26.84) (resp. (9.01,25.84), (9.07,26.19)). For the
squared Hellinger divergence, θ0 is represented by the symbol ‘o’ in Fig-
ure 5.4.2. Additional calculations show that, in all three cases, S(θ0)∈ (0,1)m,
which implies that Condition 5.3.14 holds. Note that, from Table 5.2.1,
Condition 5.2.11 holds for all three divergences under consideration and that,
from (5.14) and (5.15), Condition 5.3.20 holds as well. Proposition 5.3.23
and Remark 5.3.24 then imply that Condition 5.3.14 automatically holds for
the Kullback–Leibler and the squared Hellinger divergences. For Pearson’s
χ2 divergence, however, the additional calculations mentioned above cannot
be dispensed with.

For the χ2 divergence (resp. the Kullback–Leibler divergence and the
squared Hellinger divergence), we can apply Corollary 5.3.22 (resp. Corol-
lary 5.3.25) and compute J [S∗](q0) as given therein as well as Σ =J [S∗](q0)Σq0J [S∗](q0)⊤.
Again, for all three ϕ-divergences, the asymptotic covariance matrix Σ of√
n(S∗(qn)−S∗(q0)) and its approximation Σn,N showed very good agree-

ment. We print their rounded versions below for the squared Hellinger
divergence:

Σ=



0.021 −0.058 0.048 −0.005 −0.005
−0.058 0.168 −0.154 0.037 0.007
0.048 −0.154 0.176 −0.080 0.011
−0.005 0.037 −0.080 0.070 −0.022
−0.005 0.007 0.011 −0.022 0.009


,

Σn,N =



0.021 −0.059 0.048 −0.006 −0.005
−0.059 0.169 −0.156 0.039 0.007
0.048 −0.156 0.179 −0.083 0.011
−0.006 0.039 −0.083 0.072 −0.022
−0.005 0.007 0.011 −0.022 0.009


.

5.4.3 ϕ-projection on a Fréchet Class of Bivariate Probability
Arrays

In this last application we essentially generalise the setting of the previous
chapter, albeit with a slightly different notation which is more congenial
to the present framework. Let r,s∈N+. The initial form of the probability

220



5 – On the Differentiability of ϕ-projections in the Discrete Finite Case

vector to be ϕ-projected is a r×s matrix q0. We further assume that all
its elements are strictly positive, that is, q0∈ (0,1)r×s. Let a∈ (0,1)r and
b∈ (0,1)s be two fixed probability vectors. This last illustration is about ϕ-
projecting the bivariate probability array q0 on the Fréchet classM⊂ [0,1]r×s
of bivariate probability arrays with univariate margins a and b, which, after
the strong suggestion in Geenens (2020), we have used as the main building
block of the models presented in the previous chapter. The slight differences
of the latter with the approach here delineated will be discussed in Remark
5.4.1. Furthermore, it is a problem which arises in many areas of probability
and statistics (see, e.g., Csiszár, 1975; Little and Wu, 1991; Vajda and van
der Meulen, 2005). To be able to exploit the results of Section 5.3.3, we will
need to consider a vectorised version of this problem.

Let us first define the set M in the spirit of Condition 5.3.1. Let

Θ=
θ∈ [0,1](r−1)×(s−1) :

r−1∑
i=1

θij≤ bj,j∈{1, . . . ,s−1},

s−1∑
j=1

θij≤aj,i∈{1, . . . ,r−1}
.

Note that Θ is closed and convex. Some thought reveals that the function S
from Θ to [0,1]r×s defined by

S(θ)=



θ11 . . . θ1,s−1 a1−
∑s−1
j=1θ1j

... ... ...
θr−1,1 . . . θr−1,s−1 ar−1−

∑s−1
j=1θr−1,j

b1−
∑r−1
i=1 θi1 . . . bs−1−

∑r−1
i=1 θi,s−1 ar+bs−1+∑r−1

i=1
∑s−1
j=1θij


then generates the Fréchet class M⊂ [0,1]r×s of bivariate probability arrays
with univariate margins a and b, that is, M=S(Θ̄). Furthermore, some
thought reveals that S(Θ̊)=M∩(0,1)r×s and M is not empty as S(Θ̊)
contains the bivariate probability array ab⊤. Finally, M is compact (since
S is continuous and Θ̄ is compact) and convex.

For c,d∈N+, let vecc,d be the vectorization operator, which, given a
matrix in Rc×d, returns its column-major vectorization in Rcd and let vec−1

c,d

denote the inverse operator. Next, let Θ=vecr−1,s−1(Θ) and let S be the
function from Θ to [0,1]rs defined by

S(θ)=vecr,s◦S ◦vec−1
r−1,s−1(θ), θ∈Θ.
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Some thought then reveals that

S(θ)=Aθ+S(0R(r−1)(s−1)), θ∈Θ,

where A is the rs×(r−1)(s−1) matrix given by

Q 0 . . . 0
0 Q ... 0
... ... . . . ...
0 0 . . . Q

−Q −Q ... −Q


with Q=



1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1
−1 −1 . . . −1


∈Rr×(r−1) .

Hence, Condition 5.3.1 holds with m= rs and k=(r−1)(s−1), and the
resulting set M=S(Θ̄) is simply vecr,s(M). Since S(Θ̊)=M∩(0,1)r×s,
Condition 5.3.13 is also satisfied. Finally, Condition 5.3.20 holds as well
since Θ=Θ̄ is convex and S is affine. We shall thus be able to apply
Corollary 5.3.22 provided Conditions 5.2.11 and 5.3.14 hold. Alternatively,
since Θ is defined by linear inequalities, we could also rely on Corollary 5.3.25
provided Condition 5.2.11 and limx→0+ϕ′(x)=−∞ hold.

Let us now ϕ-project q0 on M or, equivalently, q0 =vecr,s(q0) on M. As
an example, we take r= s=3, a=(0.2,0.3,0.5), b=(0.5,0.25,0.25) and

q0 =


0.04 0.11 0.13
0.10 0.07 0.08
0.14 0.12 0.21

 .

To simplify computations, we shall only use the Kullback–Leibler divergence
here, as the I-projection of a bivariate probability array on a Fréchet class
can be conveniently carried out in practice using the iterative proportional
fitting procedure (IPFP), also known as Sinkhorn’s algorithm or matrix
scaling in the literature (see, e.g., Pukelsheim, 2014; Idel, 2016; Brossard
and Leuridan, 2018). Specifically, we use the function Ipfp() of the R
package mipfp (Barthélemy and Suesse, 2018). The I-projection of q0 on
M, rounded to two decimal places, is found to be

p0 =


0.06 0.08 0.06
0.18 0.07 0.06
0.27 0.10 0.13

 ,
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so that the vector θ0 (rounded to two decimal places) at which Dϕ(S(·) | q0)
reaches its minimum on Θ̊ is (0.06,0.18,0.08,0.07). Since Condition 5.2.11
and limx→0+ϕ′(x)=−∞ hold for the Kullback–Leibler divergence (see Ta-
ble 5.2.1), we can directly apply Corollary 5.3.25 and compute J [S∗](q0) as
well as the asymptotic covariance matrix Σ=J [S∗](q0)Σq0J [S∗](q0)⊤. The
rounded version of the latter as well as of its approximation Σn,N are:

Σ=



0.041 −0.013 −0.028 −0.026 0.009 0.017 −0.014 0.004 0.011
−0.013 0.059 −0.047 0.009 −0.037 0.028 0.003 −0.023 0.019
−0.028 −0.047 0.075 0.017 0.028 −0.045 0.011 0.019 −0.030
−0.026 0.009 0.017 0.034 −0.011 −0.023 −0.007 0.002 0.006
0.009 −0.037 0.028 −0.011 0.039 −0.028 0.002 −0.002 0.001
0.017 0.028 −0.045 −0.023 −0.028 0.051 0.005 0.001 −0.006
−0.014 0.003 0.011 −0.007 0.002 0.005 0.022 −0.005 −0.017
0.004 −0.023 0.019 0.002 −0.002 0.001 −0.005 0.025 −0.020
0.011 0.019 −0.030 0.006 0.001 −0.006 −0.017 −0.020 0.036



,

Σn,N =



0.040 −0.013 −0.027 −0.025 0.009 0.016 −0.015 0.004 0.011
−0.013 0.059 −0.046 0.010 −0.037 0.027 0.003 −0.022 0.019
−0.027 −0.046 0.073 0.016 0.028 −0.043 0.012 0.018 −0.030
−0.025 0.010 0.016 0.033 −0.011 −0.022 −0.007 0.001 0.006
0.009 −0.037 0.028 −0.011 0.039 −0.028 0.002 −0.002 0.000
0.016 0.027 −0.043 −0.022 −0.028 0.050 0.006 0.001 −0.006
−0.015 0.003 0.012 −0.007 0.002 0.006 0.022 −0.005 −0.017
0.004 −0.022 0.018 0.001 −0.002 0.001 −0.005 0.024 −0.019
0.011 0.019 −0.030 0.006 0.000 −0.006 −0.017 −0.019 0.036



,

showing again very good agreement.

Remark 5.4.1. Let us briefly explain the slight difference that exists between
the above application of Corollary 5.3.22 to I-projections on Fréchet classes
and what we have presented in the last chapter. Essentially, instead of
obtaining differentiability results for the function S∗ in (5.3) at q0, in Section
4.2.4 of Chapter 4 we have provided differentiability results for the function

(q1, . . . ,qrs−1)→S∗
q1, . . . ,qrs−1,1−

rs−1∑
i=1

qi


at q0. By the chain rule, the Jacobian of the latter function at q0 is simply
J [S∗](q0)R, where J [S∗](q0) is given in Corollary 5.3.22 and R is the rs×
(rs−1) matrix obtained by adding a row of -1’s below the identity matrix
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Irs−1. In other words, in Section 4.2.4 of Chapter 4 we have somehow
bypassed the parametrisation aspect individuated by the definition of Θ
and the continuous injection S, as instead done in this chapter, and we
have proceeded in a more direct way. However, the results of the previous
chapter acted as the starting point for the developments we have presented
here. Furthermore, the use of the vectorisation operator as a tool to employ
the results of this chapter for the problem of the Frechèt class of pmfs,
which is naturally usually stated using matrices, is particularly enlightening
when aiming to generalise the methodology delineated in Chapter 4 to the
multivariate case, as shall be explained in the future work section of this
thesis. □

This chapter concludes the treatment of the line of our research that
started by the development of copula-like models for finite discrete bivariate
random vectors, of which some results prompted us to study the general-
isations presented here. Clearly, the latter investigations have not been
conducted in a context that directly connects with the hydrological under-
pinnings of this thesis, which, for instance, initially led us to consider the
problem of copulas in the case of discrete margins. In the following chapter
we shall briefly return to a hydrological motivation behind the study of
another theoretical and applicable tool.

224



Appendix

5.A Proofs of the results of Section 5.2

Proof of Proposition 5.2.13. First, notice that the set [0,1]msupp(t) is in-
deed convex since any convex combination of elements of [0,1]msupp(t) is in
[0,1]m and has support included in supp(t). Next, recall the definition of
f in (5.1) and let us first show that Condition 5.2.11 implies that, for any
w∈ (0,∞), f(·,w) is strongly convex on [0,1]. Fix w∈ (0,∞) and let κϕ(w)
be the strong convexity constant of the restriction of ϕ to [0,1/w]. Then, for
any v,v′∈ [0,1] and α∈ [0,1],

f(αv+(1−α)v′,w)=wϕ

(
α
v

w
+(1−α)v

′

w

)

≤wαϕ
( v
w

)
+w(1−α)ϕ

(
v′

w

)
−wκϕ(w)

2 α(1−α)
∣∣∣∣∣ vw− v

′

w

∣∣∣∣∣
2

=αf(v,w)+(1−α)f(v′,w)− κϕ(w)
2w α(1−α)|v−v′|2.

Hence, for any w∈ (0,∞), f(·,w) is strongly convex on [0,1] with strong
convexity constant κϕ(w)/w.

Now, let t∈ [0,1]m, t /= 0Rm, and notice that, for any s∈ [0,1]msupp(t), all the
summands in the expression of Dϕ(s | t) in (5.2) corresponding to the ti’s
that are not strictly positive are zero because of the definition of f in (5.1).
As a consequence, without loss of generality, we can assume that t∈ (0,1]m.
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Hence, for any t∈ (0,1]m, s,s′∈ [0,1]m and α∈ [0,1],

Dϕ(αs+(1−α)s′ | t)=
m∑
i=1
f(αsi+(1−α)s′

i,ti)

≤α
m∑
i=1
f(si,ti)+(1−α)

m∑
i=1
f(s′

i,ti)−α(1−α)
m∑
i=1

κϕ(ti)
2ti
|si−s′

i|2

≤αDϕ(s | t)+(1−α)Dϕ(s′ | t)−α(1−α)∥s−s′∥2
2 min
i∈{1,...,m}

κϕ(ti)
2ti

.

Hence, for any t∈ (0,1]m, the function Dϕ(· | t) is strongly convex on [0,1]m
with strong convexity constant mini∈{1,...,m}κϕ(ti)/ti.

Proof of Lemma 5.2.14. Let x,y in [0,∞) such that x /=y. Notice that
any w≤1/max{x,y} is such that x and y are in [0,1/w]. Fix one such w
and let κϕ(w) be the strong convexity constant of the restriction of ϕ to
[0,1/w]. Then, for any α∈ (0,1),

ϕ(αx+(1−α)y)≤αϕ(x)+(1−α)ϕ(y)− 1
2κϕ(w)α(1−α)|x−y|2

<αϕ(x)+(1−α)ϕ(y),

since 1
2κϕ(w)α(1−α)|x−y|2>0. As x,y are arbitrary in [0,∞), this estab-

lishes the strict convexity of ϕ.

5.B Proofs of the results of Section 5.3.2

Proof of Proposition 5.3.5. The proof is an adaption of the proof of
Theorem 3.3 (iii) in Gietl and Reffel (2017). Let (tn) be a sequence in [0,1]m
such that limn→∞ tn= t0. For n large enough, θn=ϑ∗(tn) is well-defined
via (5.4) and sn=S(θn) is the ϕ-projection of tn onM=S(Θ̄). Since Θ̄ is a
compact subset of Rk, by the Bolzano–Weierstrass theorem, the sequence
(θn) in Θ̄ has a convergent subsequence which converges to an element of Θ̄.
Let (θηn) be such a subsequence and let limn→∞θηn = θ∗∗. By continuity of
S, we immediately obtain that limn→∞S(θηn) =S(θ∗∗). Then, using the fact
that every subsequence of (tn) converges to t0 and the lower semicontinuity
of Dϕ (see Proposition 5.2.4 (i)), we obtain that, for any θ∈ Θ̄,

Dϕ(S(θ∗∗) | t0)=Dϕ( lim
n→∞S(θηn) | lim

n→∞tn)=Dϕ( lim
n→∞S(θηn) | lim

n→∞tηn)
≤ liminf

n→∞ Dϕ(S(θηn) | tηn)≤ liminf
n→∞ Dϕ(S(θ) | tηn),
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where we have used the fact that, for n large enough, Dϕ(S(θηn) | tηn)≤
Dϕ(S(θ) | tηn) since θηn =ϑ∗(tηn). Finally, using the continuity of Dϕ with
respect to its second argument (see Proposition 5.2.4 (ii)), we obtain

liminf
n→∞ Dϕ(S(θ) | tηn)= lim

n→∞Dϕ(S(θ) | tηn)=Dϕ(S(θ) | t0).

In other words, we have shown that, for any θ∈ Θ̄, Dϕ(S(θ∗∗) | t0)≤Dϕ(S(θ) |
t0), which, since S(ϑ∗(t0)) is the unique ϕ-projection of t0 on M=S(Θ̄) by
Condition 5.3.3, implies that S(θ∗∗) =S(ϑ∗(t0)), and, by the injectivity of S,
that θ∗∗ =ϑ∗(t0). Hence, limn→∞θηn =limn→∞ϑ

∗(tηn)=ϑ∗(t0). Reasoning
by contraposition, this implies that ϑ∗ is continuous at t0.

Proof of Lemma 5.3.9. Let us first state a formula that we will need later
in the proof. Having in mind the definitions given above Lemma 5.3.9,
let g :U→Rb×c and h :U→Rc×d, where U is an open subset of Ra, be
continuously differentiable on U . Then, the product function gh given by
(gh)(x)=g(x)h(x), x∈U , is well-defined and, using for instance Theorem
T4.3 in Table IV of Brewer (1978), we have

J [gh](x)=
(
h(x)⊤⊗Ib

)
J [g](x)+(Id⊗g(x))J [h](x), x∈U. (5.16)

We shall now proceed with the proof. From (5.1) and (5.2), for any
t∈ (0,1)m and any s∈ [0,1]m,

Dϕ(s | t)=
m∑
i=1
tiϕ

(
si
ti

)
,

implying that, under Condition 5.2.12, for any t∈ (0,1)m, Dϕ(· | t) is twice
continuously differentiable on (0,1)m. Then, since S is assumed to be twice
continuously differentiable on Θ̊ and S(Θ̊)⊂ (0,1)m by Condition 5.3.1, for
any t∈ (0,1)m, Dϕ(S(·) | t) is twice continuously differentiable on Θ̊. Next,
fix t∈ (0,1)m and consider the function from (0,1)m to Rm defined by

Φ′
t(s)=J [Dϕ(· | t)](s)=

(
ϕ′
(
s1

t1

)
, . . . ,ϕ′

(
sm
tm

))
, s∈ (0,1)m.

Then, by the chain rule, for any θ∈ Θ̊,

J [Dϕ(S(·) | t)](θ)=J [Dϕ(· | t)](S(θ))J [S](θ)=Φ′
t(S(θ))⊤J [S](θ).

Note in passing that

J [Φ′
t](s)=J2[Dϕ(· | t)](s)=diag

( 1
t1
ϕ′′
(
s1

t1

)
, . . . ,

1
tm
ϕ′′
(
sm
tm

))
, s∈ (0,1)m.

227



Finally, from (5.16) and the chain rule, for any θ∈ Θ̊,

J2[Dϕ(S(·) | t)](θ)=J
[
J [Dϕ(S(·) | t)]

]
(θ)=J

[
Φ′
t(S(·))⊤J [S]

]
(θ)

=
(
J [S](θ)⊤⊗I1

)
J [Φ′

t(S(·))](θ)+
(
Ik⊗Φ′

t(S(θ))⊤
)
J2[S](θ)

=J [S](θ)⊤J [Φ′
t](S(θ))J [S](θ)+

(
Ik⊗Φ′

t(S(θ))⊤
)
J2[S](θ)

=J [S](θ)⊤diag
( 1
t1
ϕ′′
(S1(θ)

t1

)
, . . . ,

1
tm
ϕ′′
(Sm(θ)

tm

))
J [S](θ)

+
Ik⊗

(
ϕ′
(S1(θ)

t1

)
, . . . ,ϕ′

(Sm(θ)
tm

))⊤J2[S](θ).

Proof of Theorem 5.3.1. As verified in the proof of Lemma 5.3.9, under
the conditions considered from Section 5.3 onwards, we have that, for any
t∈ (0,1)m, the function Dϕ(S(·) | t) is twice continuously differentiable on
Θ̊. Next, let F be the function from (0,1)m×Θ̊ to Rk defined by F (t,θ)=
J [Dϕ(S(·) | t)](θ), t∈ (0,1)m, θ∈ Θ̊. From the chain rule, we have that, for
any t∈ (0,1)m and θ∈ Θ̊,

F (t,θ)=J [Dϕ(· | t)](S(θ))J [S](θ)=
(
ϕ′
(S1(θ)

t1

)
, . . . ,ϕ′

(Sm(θ)
tm

))⊤
J [S](θ),

(5.17)
implying that F is continuously differentiable on the open subset (0,1)m×Θ̊
of Rm+k.

From Condition 5.3.4, for any t∈N (t0), the function Dϕ(S(·) | t) from
Θ̊ to R reaches its unique minimum at ϑ∗(t)∈ Θ̊, where the function ϑ∗ is
defined in (5.5). First order necessary optimality conditions then imply that

J [Dϕ(S(·) | t)](ϑ∗(t))=F (t,ϑ∗(t))=0Rk for all t∈N (t0). (5.18)

Since F (t0,ϑ∗(t0))=0Rk by (5.18) and

J2[Dϕ(S(·) | t0)](ϑ∗(t0))=J [F (t0, ·)](ϑ∗(t0))

is invertible by Condition 5.3.7, we can apply the implicit function theorem
(see, e.g., Fitzpatrick, 2009, Theorem 17.6, p 450) to obtain that there
exists r∈ (0,∞), an open ball B⊂ (0,1)m of radius r centered at t0 and a
continuously differentiable function g :B→Rk such that

F (t,g(t))=0Rk for all t∈B,
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and, whenever ∥t− t0∥<r, ∥θ−ϑ∗(t0)∥<r and F (t,θ)=0, then θ=g(t).
Moreover,

J [F (·,g(t)](t)+J [F (t,·)](g(t))J [g](t)=0Rk for all t∈B.
Now, under Condition 5.3.4, Proposition 5.3.5 states that the function ϑ∗

in (5.5) is continuous at t0. Hence, there exists an open neighborhood
B′⊂B of t0 such that, for any t∈B′, ∥ϑ∗(t)−ϑ∗(t0)∥<r. Besides, by (5.18),
F (t,ϑ∗(t))=0Rk for all t∈B′∩N (t0). Therefore, by the implicit function
theorem, for any t∈B′∩N (t0), ϑ∗(t)=g(t) and thus ϑ∗ is continuously
differentiable at t0 with Jacobian matrix at t0 given by

J [ϑ∗](t0)=−J [F (t0,·)](ϑ∗(t0))−1J [F (·,ϑ∗(t0)](t0).
Consider the continuously differentiable function from (0,1)m to Rm defined
by

Ψ′(t)=
(
ϕ′
(S1(ϑ∗(t0))

t1

)
, . . . ,ϕ′

(Sm(ϑ∗(t0))
tm

))
, t∈ (0,1)m,

and note that J [Ψ′](t0) is equal to −∆(t0), where ∆(t0) is given in (5.9).
The expression in (5.8) finally follows from the fact that J [F (t0, ·)](ϑ∗(t0)) =
J2[Dϕ(S(·) | t0)](ϑ∗(t0)) and the fact that, by (5.16) and (5.17),
J [F (·,ϑ∗(t0)](t0)=J

[
Ψ′(·)⊤J [S](ϑ∗(t0))

]
(t0)=

(
J [S](ϑ∗(t0))⊤⊗I1

)
J [Ψ′](t0).

Proof of Lemma 5.3.15. From Conditions 5.3.3 and 5.3.14, there exists
an open neighborhood N (t0)⊂ (0,1)m of t0 such that, for any t∈N (t0), the ϕ-
projection s∗ of t onM exists, is unique and belongs to (0,1)m. Furthermore,
Condition 5.3.1 implies that the function S is a bijection between Θ̄ andM.
Under Condition 5.3.13, we immediately obtain that it is also a bijection
between Θ̊ andM∩(0,1)m. Hence, for any t∈N (t0), the unique ϕ-projection
s∗ =S∗(t)∈M∩(0,1)m satisfies s∗ =S(θ∗) for some (unique) θ∗∈ Θ̊.

5.C Proofs of the results of Section 5.3.3

Proof of Proposition 5.3.16. First recall that, by continuity of S and
compactness of Θ̄, M=S(Θ̄) is a compact subset of [0,1]m. Note also
that, for any t∈ (0,1)m, [0,1]msupp(t) =[0,1]m. Then, by Proposition 5.2.7 and,
since Condition 5.2.2 holds, by Proposition 5.2.9 (i), for any t∈ (0,1)m, the
ϕ-projection s∗ of t on M=S(Θ̄) exists and is unique (which implies that
Condition 5.3.3 holds).
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Proof of Proposition 5.3.19. Fix t∈ (0,1)m. As already verified in the
proof of Lemma 5.3.9, the function Dϕ(S(·) | t) is twice continuously differ-
entiable on Θ̊. From Theorem 2.1.11 in Nesterov (2004), we have that the
strong convexity of the function Dϕ(S(·) | t) from Θ̄ to R is equivalent to the
fact that, for any θ∈ Θ̊, J2[Dϕ(S(·) | t)](θ)−κ(t)Ik is positive semi-definite,
where κ(t) is the strong convexity constant of the function Dϕ(S(·) | t). This
then immediately implies that, for any t∈ (0,1)m and θ∈ Θ̊, J2[Dϕ(S(·) | t)](θ)
is positive definite. Since, under Condition 5.3.4, ϑ∗ can be expressed as
in (5.5), we immediately obtain J2[Dϕ(S(·) | t0)](ϑ∗(t0)) is positive definite,
that is, that Condition 5.3.7 holds.

Proof of Lemma 5.3.21. From Condition 5.3.20, for any θ,θ′∈ Θ̄ and α∈
[0,1],

S(αθ+(1−α)θ′)=A(αθ+(1−α)θ′)+γ=αS(θ)+(1−α)S(θ′).

Next, since Condition 5.2.11 holds, from Proposition 5.2.13, for any θ,θ′∈ Θ̄,
t∈ (0,1)m and α∈ [0,1],

Dϕ(S(αθ+(1−α)θ′) | t)=Dϕ(αS(θ)+(1−α)S(θ′) | t)

≤αDϕ(S(θ) | t)+(1−α)Dϕ(S(θ′) | t)−
κDϕ(·|t)

2 α(1−α)∥S(θ)−S(θ′)∥2
2

=αDϕ(S(θ) | t)+(1−α)Dϕ(S(θ′) | t)−
κDϕ(·|t)

2 α(1−α)∥A(θ−θ′)∥2
2

≤αDϕ(S(θ) | t)+(1−α)Dϕ(S(θ′) | t)−
κDϕ(·|t)

2 α(1−α)c∥θ−θ′∥2
2,

where κDϕ(·|t) is the strong convexity constant of the function Dϕ(· | t) and c
is a constant that depends on A such that, for any x∈Rk, ∥Ax∥2

2≥ c∥x∥2
2.

To prove that, for any t∈ (0,1)m, the function Dϕ(S(·) | t) from Θ̄ to R is
strongly convex, it remains to show that the constant c can be chosen strictly
positive. Let Sk−1 ={x∈Rk :∥x∥2 =1} be the unit sphere in Rk and let
c=minx∈Sk−1 ∥Ax∥2

2. Then c≥0 and, as expected, for any x∈Rk,

∥Ax∥2
2 =∥x∥2

2

∥∥∥∥∥A x

∥x∥2

∥∥∥∥∥
2

2
≥ c∥x∥2

2.

To prove that c>0, we proceed by contradiction. Assume that c=0. Then,
there would exist x∈Sk−1 such that Ax= 0. Since S is assumed to be affine
and injective, x→Ax is a linear injective function and Ax=0 implies that
x=0Rk . This is a contradiction since 0Rk /∈Sk−1. Hence, for any t∈ (0,1)m,
the function Dϕ(S(·) | t) from Θ to R is strongly convex.
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Proof of Corollary 5.3.22. To show the result, it suffices to verify that the
conditions of Theorem 5.3.1 and Corollary 5.3.10, namely Conditions 5.3.4
and 5.3.7, are satisfied. From Proposition 5.3.16, we know that Condi-
tion 5.3.3 holds. Lemma 5.3.15 then implies that Condition 5.3.4 holds since
Conditions 5.3.13 and 5.3.14 are assumed to be satisfied. From Lemma 5.3.21,
we have that Conditions 5.2.11 and 5.3.20 imply Condition 5.3.18, which
implies Condition 5.3.7 by Proposition 5.3.19.

Proof of Proposition 5.3.23. Recall that the fact that, for any proba-
bility vector q∈ (0,1)m, the ϕ-projection p∗ of q on M=S(Θ̄) exists and
is unique follows from Proposition 5.3.16. Note also that the function S
defined in Condition 5.3.1 is a bijection between Θ̄ and M=S(Θ̄). When
it is affine (that is, under Condition 5.3.20), an expression of its inverse is
given by Lemma 5.C.1 below. Specifically, we then have that

S−1(p)=(A⊤A)−1A⊤(p−γ), p∈M.

This implies that the set M can be equivalently expressed as

M=
p∈ [0,1]m :

m∑
i=1
pi=1,(A⊤A)−1A⊤(p−γ)∈ Θ̄

 ,
and, since Θ is defined by linear inequalities, that M is defined by linear
inequalities. Some thought then reveals that there exists a d∈N+, α1, . . . ,αd∈
R and d functions g1,g2, . . . ,gd from {1, . . . ,m} to R such that

M=
p∈ [0,1]m :

m∑
i=1
pi=1,

m∑
i=1
pigj(i)≥αj,j∈{1, . . . ,d}

 .
Setting fj(i)=gj(i)−αj for i∈{1, . . . ,m} and j∈{1, . . . ,d}, it is easy to
verify that M can be equivalently rewritten as

M=
p∈ [0,1]m :

m∑
i=1
pi=1,

m∑
i=1
pifj(i)≥0,j∈{1, . . . ,d}

 .
Theorem 2 (c) of Rüschendorf (1987) and the remark following it then imply
that, for any probability vector q∈ (0,1)m, there exist c=(c0, . . . ,cd)∈Rd+1

such that, for any i∈{1, . . . ,m},

p∗
i = qiϕ

′−1
c0 +

d∑
j=1

cjfj(i)
 ,
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where p∗ =S∗(q) is the ϕ-projection of q on M. If limx→0+ϕ′(x)=−∞,
ϕ′−1(x)>0 for all x∈ (0,∞) and the previous centered display immediately
implies that S∗(q)∈ (0,1)m whenever q∈ (0,1)m.

The following lemma is necessary for proving Proposition 5.3.23.

Lemma 5.C.1. Under Condition 5.3.20, the inverse S−1 of S : Θ̄→M can
be expressed as

S−1(s)=(A⊤A)−1A⊤(s−γ), s∈M. (5.19)

Proof. Since A is of full rank because of the injectivity of S, we know, for
instance from Ben-Israel and Greville (2003, Theorem 5, p 48), that A⊤A
is invertible. Moreover, for instance from expression (6.13) in Trefethen
and Bau III (1997), we have that the orthogonal projection of x∈Rm on
Im(A)={y∈Rm :y=Az,z∈Rk} can be computed as A(A⊤A)−1A⊤x. This
implies that

A(A⊤A)−1A⊤y=y, for all y∈ Im(A). (5.20)

We shall use these facts to prove that (5.19) provides an expression of the
inverse of the function S : Θ̄→M. Let θ∈ Θ̄. From the invertibility of A⊤A,
we have that

S−1(S(θ))=S−1(Aθ+γ)=(A⊤A)−1A⊤Aθ= θ.

Next, let s∈M. Then, using (5.20),

S(S−1(s))=S((A⊤A)−1A⊤(s−γ))=A(A⊤A)−1A⊤(s−γ)+γ=(s−γ)+γ= s,

since s−γ belongs to Im(A).

Proof of Corollary 5.3.25. To show the result, we shall check that the
conditions of Corollary 5.3.22 are satisfied. It thus just remains to verify
Condition 5.3.14. The latter follows from Proposition 5.3.23 since attention
is restricted to probability vectors.

Proof of Proposition 5.3.26. The fact that M is defined by linear con-
straints is equivalent to the existence of a d×m matrix B such that
M={s∈ [0,1]m :Bs=α}. Because M is convex and not reduced to a sin-
gleton, it contains an infinity of elements. Since M∩(0,1)m is nonempty,
we can choose s0∈M∩(0,1)m. Then, for any s∈M, s−s0∈ker(B), where
ker(B)={x∈Rm :Bx=0Rd}. Since ker(B) /={0Rm}, there exists a strictly
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positive integer k<m and δ1, . . . ,δk∈Rm that form a basis of ker(B). Let
A be the matrix whose column vectors are δ1, . . . ,δk and let

Θ=
{
θ∈Rk : 0Rm≤ s0 +Aθ≤1Rm

}
. (5.21)

Since, for any s∈M (resp.M∩(0,1)m), s−s0∈ker(B), there exists a unique
θ∈Rk such that s−s0 =Aθ and, as s= s0 +Aθ belongs to [0,1]m (resp.
(0,1)m), θ necessarily belongs to Θ̄ (resp. Θ̊). In other words,

∀s∈M (resp. M∩(0,1)m), there exists a unique θ∈ Θ̄ (resp. Θ̊)
s.t. s= s0 +Aθ. (5.22)

To complete the proof, we shall show that Conditions 5.3.1, 5.3.13
and 5.3.20 are satisfied for Θ in (5.21) and the function S defined by
S(θ)=Aθ+s0, θ∈ Θ̄. Condition 5.3.20 clearly holds since Θ̄ is convex and
S has the right form with γ= s0. Let us next verify that Condition 5.3.1
is satisfied. Note that Θ is clearly bounded. Furthermore, from (5.21),
the fact that s0∈M∩(0,1)m is equivalent to 0Rm <s0 +A0Rk <1Rm implies
that 0Rk ∈ Θ̊ and thus that Θ̊ /=∅. The fact that S is a bijection between Θ̄
and M follows, on one hand, from the fact that, for any θ∈ Θ̄, S(θ)∈M
(since B(Aθ+s0) =BAθ+Bs0 = 0Rd +α) and, on the other hand, from (5.22)
(since, for any s∈M, there exists a unique θ∈ Θ̄ such that S(θ)= s). In a
similar way, Condition 5.3.13 is a consequence of the fact that, for any θ∈ Θ̊,
S(θ)∈M∩(0,1)m and (5.22).
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Chapter 6

First Passage Time Density
Approximation

This chapter is based on Di Nardo et al. (2023)

Di Nardo, E., G. D’Onofrio, and T. Martini (2023), Approximating
the first passage time density from data using generalised Laguerre
polynomials, Communications in Nonlinear Science and Numerical
Simulation 118, 106991,

and on Di Nardo et al. (2024)

Di Nardo, E., G. D’Onofrio, and T. Martini (2024), Orthogonal gamma-
based expansion for the cir’s first passage time distribution, Applied
Mathematics and Computation 480, 128911.

In the context of stochastic modelling of hydrological processes, one may
consider a stochastic process representing the concentration of a tracer or
the presence of water particles in a hydrological system. Then, it could be of
interest to investigate the first time at which a particle, or a set of particles,
first reaches a certain threshold after being introduced into the system. This
threshold could represent various hydrological events, such as the arrival of
water at a river outlet, the appearance of a contaminant at a monitoring
well, or the time when the water table reaches a critical level. For example,
Stechmann and Neelin (2014) recalls that in models for precipitation and
column vapour, precipitation events commence when water vapor attains
a specific threshold value and conclude when it drops to a slightly lower
threshold, as supported by recent observational and modelling studies. In
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addition to the previously mentioned hydrological applications, this same
problem also arises in a wide array of fields, including finance, engineering,
computational neuroscience, mathematical biology, and reliability theory
(see Redner (2001) for a thorough exposition). The dynamics of a noisy
system in these contexts are often modelled by a stochastic process {Y (t)}t≥0
evolving in the presence of a threshold S(t) for t≥0. The mathematical
study of the FPT problem consists in finding the probability density function
(pdf) g[S(t),t|yτ ,τ ]= d

dtP(T <t) of the random variable (rv) T , defined by

T =
inft≥τ{Y (t)>S(t)}, Y (τ)=yτ <S(τ),

inft≥τ{Y (t)<S(t)}, Y (τ)=yτ >S(τ),

representing the time it takes for the process {Y (t)}t≥0 to cross the threshold
S(t) for the first time. As we continue, the pdf of interest g[S(t),t|yτ ,τ ]
will be denoted by g for notational convenience. Despite the problem’s
classical nature and its seemingly straightforward formulation, a closed-form
solution exists only in very limited cases, dependent on the characteristics
of both {Y (t)}t≥0 and S(t). Various strategies have been developed to
tackle this problem, as comprehensively reviewed in Ricciardi et al. (1999).
For instance, Doob’s representation formula (Doob, 1949) has been used,
or, as another example, Siegert’s equation (Siegert, 1951). It consists in
a partial differential equation involving either the moments of T or its
Laplace transform. Albeit rarely, closed-form expressions can emerge (see,
e.g., Buonocore et al., 2015). Asymptotic expressions of g can be studied
using the Volterra integral equations (Giorno et al., 1990; Nobile et al.,
1985), Laplace transform techniques (Martin et al., 2019) or Large Deviation
estimates (Baldi et al., 2020; D’Onofrio et al., 2018). However, since in
general the latter techniques may not work, in practice numerical evaluations
of g can come in handy. For instance, g can be approximated by exploiting
the fact that it is the solution of a non-singular second kind Volterra integral
equation (Buonocore et al., 1987; Ricciardi et al., 1984; Giorno et al., 1989;
Gutiérrez-Jáimez et al., 1995; Di Nardo et al., 2001) or by using a Sturm-
Liouville series expansion with (Linetsky, 2004; Alili et al., 2005; Kent, 1980).
It is clear that all these techniques rely on the knowledge of the nature of the
stochastic process {Y (t)}t≥0. More precisely, they exploit the availability of
some computable objects regarding {Y (t)}t≥0. In this context, as already
mentioned in the introduction, by starting from the FPT problem with
constant boundary S(t)≡S>0 for the CIR process, which is notoriously
tricky, the authors of Di Nardo and D’Onofrio (2021) introduced a series
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expansion of g as a tool to approximate it. In the particular case of the
CIR, the feasibillity of the expansion was based on novel way to compute
the cumulants of T . Then, more precisely, the FPT pdf has been expanded
in series of generalised Laguerre polynomials, involving moments computed
from cumulants and weighted by a gamma pdf. The idea of approximating
a pdf by truncating a suitable series expansion is not new. Indeed, such an
expansion when Hermite polynomials are used instead of the Laguerre, and a
normal pdf instead of the gamma, is known as Gram-Charlier type-A series.
We refer the reader to Provost and Ha (2016) and Asmussen et al. (2019) for
two interesting papers where the more general methodology of approximating
a pdf based on the knowledge of its moments is introduced, using the product
of a weight function, usually called parent or reference distribution, and a
family of associated orthogonal polynomials. Nevertheless, Section 6.1 of
this chapter will provide the necessary preliminaries on this subject.

Before proceeding, we would like to discuss an issue, that, as far as our
knowledge goes, is seldom treated in the literature. That is, this type of
approximation is not guaranteed to be always positive. Two main approaches
can be found scattered in the literature. The first one involves finding
constrained regions on the values of the moments (or cumulants) such that
the resulting approximation will provide a non-negative pdf, and, due to
the complexity of this approach, it is applied when the approximation is
built with a low truncation order. For instance, this technique was used
when approximating the FPT pdf of an Ornstein-Uhlenbeck process in
Smith (1991). Similarly, some restrictions on the first four moments that
guarantee the non-negativity of the approximated density are discussed
in Lung (1998). More recently, in the case of a normal reference density
and for arbitrary even order, the valid region of cumulants has been found
numerically through a semi-definite algorithm by Lin and Zhang (2022).
It must be noted that, with the low truncation order employed in these
references, the approximated density may fail to be close to the desired
one, especially for objective densities that are not sufficiently close to the
reference density. A second way of tackling this issue consists in replacing
values of a suitable positive function to the negative ones assumed by the
approximated pdf. For instance, Wilson and Wragg (1973) suggests a second-
degree polynomial as an interpolating function for pdfs with support (0,∞),
when the negativity happens in a right-handed neighborhood of the origin.
In this thesis, this second approach is developed along a different direction
and for the first time within the FPT framework, as shall be seen in Section
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6.4.5. We mention that, as will become clearer in Section 6.4.4, this issue can
also be tackled by producing a correct approximation of the FPT cumulative
distribution function (cdf).

The issues highlighted thus far are not the sole concerns related to the
application of this approximation. Additional factors, such as the selection
of gamma pdf parameters and the series truncation order, may also influence
the approximation’s accuracy. These topics, which are only briefly mentioned
in Provost and Ha (2016), are explored comprehensively in this chapter. For
instance, the critical importance of the coefficient of variation in determining
the gamma pdf parameters is discussed, and the truncation order is managed
through suitable stopping criteria.

The efficiency of the proposed approximation will be tested on two diffusion
processes: the geometric brownian motion and the First passage time, also
known as Cox-Ingersoll-Ross (CIR). While the former has been selected for
its mathematical tractability, which leads to the possibility of computing a
closed form of the FPT pdf with almost all the techniques mentioned in the
beginning, the latter was considered precisely because its FPT problem is
historically difficult to address and in such a context our tool finds its most
useful application.

Having a reliable approximation of the FPT pdf which can be conve-
niently corrected to a bonafide pdf opens up the path to three interesting
applications.

The first one is the proposal of an acceptance-rejection-like method that
hinges upon the particular form of the series expansion. This approach
enables the generation of FPT data even when its distribution is unknown.
Although acceptance-rejection methods have previously been employed in
the FPT context, as seen in Herrmann and Zucca (2019) and Mijatović
et al. (2015), they have not been applied to the CIR process. The novelty of
our proposed approximation strategy lies in its innovative exploitation of a
series representation of the unknown density. This method is particularly
advantageous given the lack of exact simulation techniques for CIR sample
paths. Existing methods, which rely on discretization or transition densities,
incur substantial computational costs when the fixed time step is small.

The second one exploits an additional benefit of the Laguerre-Gamma
series representation. Indeed, it enables the generation of density esti-
mates derived from sample moments. In situations where the FPT mo-
ments/cumulants are unknown, this method can be used to construct an
estimator of the FPT pdf from a sample of FPT data. This technique is
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known in the literature. More in general, when dealing with a series expan-
sion with respect to an arbitrary family of orthogonal polynomials, these
estimators are referred to in the literature as orthogonal series estimators.
The Laguerre-Gamma series itself can be highly competitive compared to
traditional density estimators like the kernel density estimator (KDE) or
the histogram when the distribution generating the data is supported on
(0,∞), as noted by Hall (1980).

Finally, in the third application, we will set forth an example of how
the Laguerre-Gamma series expansion could be used to perform parameter
estimation of the underlying diffusion through an approximated maximum
likelihood, in the case where a sample of FPT data is available, and, unlike
in the previous scenario, the moments are known.

This chapter is organized as follows.
In Section 6.1 we describe in general a procedure for obtaining approxi-

mations of unknown pdfs by truncating series representations with respect
to a family of orthogonal polynomials and a known reference density. The
choice of the latter is then treated in the context of the FPT problem.

Next, in Section 6.2, after briefly recalling the framework in which we
shall give our proposals, we provide the theoretical results fundamental for
applying the procedure outlined in the previous section to a FPT density g
and FPT cdf G, such as a study of the order of convergence.

Given the framework set up in Section 6.1 and 6.2, in Section 6.3 we
define the approximant function, we delineate some of its properties and we
introduce the issues discussed above.

Section 6.4 is then written with the aim of providing ways to solve these
issues. More in general, it provides elucidations on how to actually compute
the given approximant. For instance, corrections for positivity, an iterative
algorithm and related stopping criteria are introduced. The method for
approximating the cdf is developed as well. We stress that this approach,
new in the FPT context, has some numerical advantages and allows an easier
approximation of quantiles.

In Section 6.5 we recall the FPT problem for the GBM and the CIR
process resuming the known results useful for carrying out the proposed
approximation.

Numerical examples are given in Section 6.6 for both the GBM and the
CIR process aiming to discuss the strengths and weaknesses of the proposed
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approach. We set three different choices of the CIR process (resp. GBM)
parameters and boundaries that corresponds to different forms and statistical
properties of the FPT pdf and cdf.

The last section presents the three applications introduced above. Con-
cluding remarks then end the chapter.

6.1 Moment Based Probability Density Function Ex-
pansions

Let X be a real valued absolutely continuous rv and let g be its density.
Suppose g is not available in a closed form, but the moments µj (or cumulants
κj) of X are known. We denote the support of g by supp(g)={x∈R :
g(x)>0}. Furthermore, suppose that additional information on g, such
as knowledge of the support or of some dispersion measures, is available
such that it is possible to identify a well known "reference" distribution f
resembling g. It is clear that we must have supp(f)⊂ supp(g). For example,
knowing that g is supported on the real line and that g is symmetric would
suggest us to select f as the normal pdf. Let ν be a measure having density
f and consider the weighted Hilbert space L2

ν defined as

L2
ν =

{
h :R→R |

(∫
h2 dν

)1/2
=
(∫ ∞

−∞
h2(x)f(x)dx

)1/2
<∞

}

and equipped with the usual inner product <h,l>ν=
∫
hl dν and the corre-

sponding norm ||h||2ν =<h,h>ν for h,l∈L2
ν .

To have a tractable form of g, as it has been proposed in a variety of
contexts in the literature, one could exploit a series expansion of g based on
the moments (or cumulants) of X and on a set of polynomials {Pk}k≥0, with
P0 =1, which is orthonormal with respect to some measure having density
f . That is

<Pn,Pm>ν= δmn, m,n∈N .

If for all j∈N the moments ∫supp(f)x
jf(x)dx of f are finite, classical results

(see, e.g., Szegő, 1975, Section 2.2) shows the existence of the desired family
{Pk}k≥0, which can then be computed with the classical Gram-Smidth
orthogonalization procedure. That is why, in the rest of this chapter, when
discussing a reference density whose moments are known to be finite we will
often refer to its associated family of orthonormal polynomials. The aim is
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being able to meaningfully write
g

f
=

∞∑
k=0

ak(µ1, . . . ,µk)Pk, (6.1)

where ak(µ1, . . . ,µk) are coefficients depending on the first k moments. Series
representations of this type are also known as generalised Fourier series.
Let m∈N. Equation (6.1) remains a formal writing until a definition of
the convergence as m goes to infinity of the partial sums ∑m

j=1ajPj to g
f is

precisely given. Usually, as shall become clearer in the forthcoming discussion,
conditions on g, f and {Pk}k≥0 are found such that the convergence in L2

ν is
guaranteed. Indeed, a common assumption is that the orthonormal sequence
{Pk}k≥0 is complete in L2

ν , that is (see, e.g., Sansone, 1991).

Definition 6.1.1. The orthonormal sequence {Pj}j≥0 is said complete in
L2
ν if any of the following equivalent conditions hold:

1. for all k≥0, if g∈L2
ν and <g,Pk>ν=0 then g=0;

2. h=∑
j≥0<f,Pk>ν Pk, ∀h∈L2

ν (SeriesRepresentation);

3. ||h||2 =∑
k≥0 |<h,Pk>ν |2, ∀h∈L2

ν (Parseval Identity).

In other words, the sequence {Pj}j≥0 is complete if it forms an orthonormal
basis of L2

ν. Thus, if {Pk}k≥0 is proven to be complete and assuming
furthermore that g

f ∈L
2
ν , from 2. in Definition 6.1.1, we have that

g

f
=
∑
k≥0

<f,Pk>ν Pk =
∑
k≥0

<f,Pk>ν Pk =
∑
k≥0

∫ ∞

−∞

g(x)
f(x)Pk(x)f(x)dxPk

=
∑
k≥0

E[Pk(X)]Pk =1+
∑
k≥1

E[Pk(X)]Pk =1+
∑
k≥1

 k∑
i=0
bi,kE[X i]

Pk
=1+

∑
k≥1

 k∑
i=0
bi,kµi

Pk
where bi,k for i∈{1, . . . ,k} are the coefficients of Pk. Thus, by setting
ak(µ1, . . . ,µk)=E[Pk(X)] we recover the desired expression (6.1). Note that
the latter, without additional assumptions, holds only as a serie represen-
tation in L2

ν in the following sense: we have ||∑n
k=0E[Pk(X)]Pk− g

f ||
2 goes

to zero as n tends to infinity. From now on, we will assume that {Pk}k≥0
is complete and that g

f ∈L
2
ν and, for simplicity of notation, we will write

ak =E[Pk(X)]. Before proceeding, we stress out that pointwise and uniform
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convergence of ∑n
k=0akPk to g

f are usually harder to prove and must be
investigated case by case, especially in the case of an unbounded supp(g),
such as supp(g) = (0,∞) in our forthcoming application to the FPT problem.

After having obtained a series expansion of g
f , an approximation of g is

readily computed by truncating the series to an order n. That is, we define
our approximant ĝn of g as

ĝn(x)=f(x)(1+
n∑
k=1

akPk(x)), x∈ supp(g), (6.2)

recalling that

ak =E[Pk(X)]=
 k∑
i=0
bi,kµi

 . (6.3)

Throughout this chapter, n in ĝn shall be referred to as the truncation
order or approximation order. Usually, it is possible to rearrange the above
expression by putting together elements multiplying the same power of x to
obtain

ĝn(x)=f(x) (1+pn(x)), (6.4)

where

pn=
n∑
k=1

Akx
k, (6.5)

for some other coefficients Ak to be determined. In the following proposition
we collect some well known and useful properties of the approximant ĝn.
Recall that µk =E[Xk] for k≥0, where µ0 =1.

Proposition 6.1.2. Let any n>0 and let Xf be the rv having density f .
We have that

1.
∫

supp(g)
ĝn(x)dx=1;

2.
∫

supp(g)
xj ĝn(x)dx=µj, j∈{0, . . . ,n};

3. let j∈{1, . . . ,n}. If E[Xk
f ] =µk for k∈{1, . . . ,j}, then ak = 0 in (6.3) for

k∈{1, . . . ,j}.
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Proof. All the three statements follow from the orthonormality of the se-
quence {Pk}k≥0. To prove 1., simply observe that∫

supp(g)
ĝn(x)dx=

∫
supp(g)

f(x)dx+
∫

supp(g)
f(x)

n∑
k=1

akPk(x)dx

=1+
n∑
k=1

ak
∫

supp(g)
f(x)Pk(x)dx

=1+
n∑
k=1

ak<1,Pk>ν

=1+
n∑
k=1

ak<P0,Pk>ν=1.

Now let us consider point 2. We shall proceed by induction. For j=0 the
the statement has been proven in 1. above. Suppose the statement holds for
j=n−1 and let us then prove it for n. For the remainder of the proof, let
bi,k for i∈{1, . . . ,k} be the coefficients of Pk. We have that∫

supp(g)
Pn(x)ĝn(x)dx=

∫
supp(g)

Pn(x)f(x)dx+
∫

supp(g)
f(x)

n∑
k=1

akPn(x)Pk(x)dx

=<1,Pn>ν +
n∑
k=1

ak<Pn,Pk>ν

=<P0,Pn>ν +an

=an=
n∑
i=0
bi,nµi.

Hence, since by the induction hypothesis∫
supp(g)

Pn(x)ĝn(x)dx=
n∑
i=0
bi,n

∫
supp(g)

xiĝn(x)

=
n−1∑
i=0

bi,nµi+bn,n
∫

supp(g)
xnĝn(x),

the statement follows. Finally, note that under the assumption of statement
3. for k∈{1, . . . ,j} we have

ak =E[Pk(X)]=
k∑
i=1
bi,kE[X i]

=
k∑
i=1
biE[X i

f ]=Eν [Pk(Xf)]=<1,Pk>ν

=<P0,Pk>ν=0,
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where Eν denotes the expected value with respect to ν.

Unfortunately, ĝn is not guaranteed to be a bonafide pdf since it could be
negative. This problem, along with the choice of the order n of approximation,
will be more thoroughly discussed in Sections 6.4.2 and 6.4.5, when applying
the above density approximation to the FPT problem. The next subsection
is devoted to the choice of the reference density f for our problem.

6.1.1 Choice of a Reference Density

To be able to employ the method described in Section 6.1, a first step to be
taken is the choice of a reference density f . In this context we can rely on
the fact that the FPT density g is supported on (0,∞). Some well known
probability densities whose domain is (0,∞) are

1. the log-normal pdf f̃µ,σ with parameters µ and σ;

2. the inverse Gaussian pdf f̄µ,λ with parameters µ and λ;

3. the gamma pdf fα,β with parameters α and β.

To be able to obtain the desired approximation, it is crucial to investigate
the associated sequence of orthonormal polynomials. For the log-normal pdf
f̃µ,σ, the associated sequence {Pk}k≥0 seems not to be classically known. It
has been computed for µ= 0 and σ= 1 in Ernst et al. (2012) and for arbitrary
µ and σ in Asmussen et al. (2019) and Zheng et al. (2012). However, {Pk}k≥0
is not a complete sequence (see, e.g., Asmussen et al., 2019, Proposition
1.1). The latter result is deeply connected to the fact that the log-normal
distribution is not determined by its moments (Heyde, 1963). Therefore,
ĝn might converge to a density different from g, but sharing the same
moments as g (this result is well known, see for example (Ernst et al., 2012,
Proposition 4.1) for a non trivial example of a family of densities for which
the convergence fails).

As will be explained in Section 6.5.2, it is known that the GBM FPT rv has
an inverse Gaussian distribution. Therefore, as a proof of concept, one could
choose the inverse Gaussian pdf f̄µ,λ as a reference density in the GBM case.
However, Nishii (1996) shows that a standard method of differentiating the
density f̄µ,λ does not lead to an orthogonal polynomial system {Pk}k≥0. At
the same time, when using the Gram–Schmidt orthogonalisation procedure,
the resulting polynomials are not easy to work with (see also Goffard and
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6 – First Passage Time Density Approximation

Laub, 2020). In Hassairi and Zarai (2004) the authors propose another
procedure which hinges upon the so-called bi-orthogonality property, but
they do not discuss whether this construction leads to a basis. Therefore,
with the aim of providing a simple and practical method, we decided not to
opt for the inverse Gaussian pdf f̄µ,λ as a reference density.

As we continue, we consider the gamma density fα,β defined as

fα,β(t)=β(βt)α e−βt

Γ(α+1) , t>0, (6.6)

with scale parameter α+1>0 and shape parameter β>0. The gamma pdf
fα,β for β=1 has already been suggested in Wilson and Wragg (1973) as
reference density to approximate a pdf over (0,∞). All moments of the
gamma distribution are finite and its moment generating function uniquely
determines the distribution. In the case of fα,1, the associated orthonormal
sequence is the generalised Laguerre polynomial sequence {Q(α)

k }k≥0 defined
for α>−1 by

Q
(α)
0 (t)=1 and Q

(α)
k (t)=(−1)k

(Γ(α+1+k)
k!Γ(α+1)

)− 1
2

L
(α)
k (t), t∈ [0,∞),

(6.7)
where

L
(α)
0 (t)=1 and L

(α)
k (t)=

k∑
i=0

k+α

k− i

(−t)i
i! , t∈ [0,∞). (6.8)

A summary of their properties which are used in this chapter is given in
Section 6.A of the appendix. It is well known that this polynomial sequence
is complete (classical results can be found, for instance, in Sansone, 1991).
To be able to exploit the additional parameter β, we consider the general
gamma density fα,β for α>−1 and β>0. With a slight abuse of notation,
we let L2

fα,β
be

L2
fα,β

=
{
h :R→R |

(∫ ∞

−∞
h2(x)fα,β(x)dx

)1/2
<∞

}
(6.9)

and the associated inner product will hence be denoted by <h,l>fα,β
for

h,l in L2
fα,β

. In this case, the associated family of orthogonal polynomials is
{L(α,β)

k }k≥0, defined for α>−1 and β>0 as

L
(α,β)
k (t)=L

(α)
k (βt), t>0, (6.10)
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and the orthonormal polynomials are {Q(α,β)
k }k≥0, defined for α>−1 and

β>0 as
Q

(α,β)
k (t)=Q

(α)
k (βt), t>0. (6.11)

At the best of our knowledge, the latter seems to not have been thoroughly
investigated in the literature. However, an application similar to ours can
be found in Oakley (1990) where they are referred to as extended Laguerre
polynomials. It is clear that when β=1 they reduce to the generalised
Laguerre polynomials. In the upcoming proposition we collect some of their
properties (two of which have already been mentioned above) which will be
fundamental in the following. They are almost a direct consequence of the
properties of {Q(α)

k }k≥0 and {L(α)
k }k≥0.

Proposition 6.1.3. Consider {L(α,β)
k }k≥0 and {Q(α,β)

k }k≥0. We have that

1. <L(α,β)
n ,L(α,β)

m >fα,β
= Γ(α+1+n)

n!Γ(α+1) if m=n and zero otherwise, with m,n∈
N;

2. <Q(α,β)
n ,Q(α,β)

m >fα,β
= δmn, m,n∈N;

3. the set {Q(α,β)
k }k≥0 is complete in L2

fα,β
.

Proof. Consider the operator B :L2
fα,β
→L2

fα,1 defined as

B(h)=h 1
β
, with h 1

β
(t)=h(t/β), t>0.

Furthermore, note that

B(h)=0 if and only if h=0. (6.12)

Then, as for any t>0 we have fα,1(t)= 1
βfα,β( tβ ), by using the change of

variable x→ x
β it can be shown that for all h and l in L2

fα,β
we have

<h,l>fα,β
=<B(h),B(l)>fα,1 . (6.13)

Then, 1. and 2. follow by applying (6.13) and the well known properties
of the generalised Laguerre polynomials in (6.7) and (6.8) (see Section 6.A
in the appendix). Statement 3. is proven by using (6.12), (6.13) and the
completeness of {Q(α)

k }k≥0 to obtain 1. in Definition 6.1.1.

For the reasons detailed in the preceding paragraphs, in the following we
consider the gamma pdf as reference density. In the next subsection, we
elaborate further on this and we provide the desired approximation for a
FPT pdf g and cdf G of a one dimensional diffusion process.
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6.2 The FPT Pdf and Cdf Series Representations

Before proceeding, we specify the setting in which the upcoming results shall
be given. Consider a one dimensional diffusion process {Y (t)}t≥0 whose
state space is any type of interval I of the real line, with endpoints l≤ r.
We also allow the possibilities l=−∞ and/or r=+∞. In the following, we
shall naturally deal only with regular diffusion processes. More precisely, let
τ ≥0 and suppose Y (τ)=y, y∈ I. Define

Tz =
inft≥τ{Y (t)>z}, Y (τ)=y<z

inft≥τ{Y (t)<z}, Y (τ)=y>z
(6.14)

where z is in the interior of I. The rv Tz describes the first time the process
attains the value z. We call the process regular if

P(Tz<∞|Y (0)=y)>0

whenever l <y,z <r. A regular process is such that starting from any point
in the interior of I, the process can reach any other point in the interior of I
with positive probability. The FPT rv with respect to a constant boundary
S we are considering is defined as an instance of (6.14) with τ =0, that is

T =
inft≥0{Yt>S}, if y0<S,

inft≥0{Yt<S}, if y0>S,
(6.15)

where y0 =Y (0) is the so called starting position. We are interested in
applying the contents of Sections 6.1 and 6.1.1 to provide a series expansion
for the FPT cdf and pdf, whose definitions we respectively recall as

G(S,t|y0)=P(T ≤ t|Y0 =y0), t∈ [0,∞),

and
g(S,t|y0)= dP(T ≤ t|Y0 =y0)

dt
, t∈ [0,∞).

In the remainder of this chapter, unless explicitly specified otherwise, for
ease of notation, we will refer to the latter two always with simply G and g
and as functions of t only, since we will consider fixed S, y0 and the eventual
parameters of the underlying diffusion {Y (t)}t≥0. Note that, by definition,
g(0)=0. We shall now state some further definitions, in order to provide
a condition which will come in handy later. Let t≥0. For all 0<τ <t and
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x,y∈ I we define the transition cdf and transition pdf of {Y (t)}t≥0 to be,
respectively

F (x,t|y,τ)=P(Y (t)<x|Y (τ)=y) (6.16)
and

f(x,t|y,τ)= ∂

∂x
F (x,t|y,τ) . (6.17)

Condition 6.2.1. The diffusion {(Yt)}t≥0 admits a stationary distribution.
That is, there exist a pdf Ψ such that

lim
t→∞

f(x,t|y0,t0)=Ψ(x) (6.18)

independently of the time and the initial conditions.
The latter is used in the following proposition where we collect two useful

implications.
Proposition 6.2.2. Assume Condition 6.2.1 holds for {Y (t)}t≥0. Then we
have that

1. the FPT pdf g is unimodal,

2. the FPT pdf g has exponential long-time behavior with parameter the
inverse mean FPT, that is

g(t)≈ 1
E(T )e

− t
E(T ) , as t→∞,

Proof. The proof of 1. can be found in Rosler (1980). For 2. see, for instance,
Nobile et al. (1985).

Recall that we consider the gamma pdf fα,β in the following form

fα,β(t)=β(βt)α e−βt

Γ(α+1) , t>0, (6.19)

with scale parameter α+1>0 and shape parameter β>0. The following
simple proposition provides the integral condition that g must satisfy in order
to have the desired series representation of the type described in Section 6.1.
Proposition 6.2.3. Let a(α,β)

k =E[Q(α,β)
k (T )] for k≥0 with Q

(α,β)
k as in

(6.11). We have the following series representation
g

fα,β
=
∑
k≥0

a
(α,β)
k Q

(α,β)
k , (6.20)

if and only if ∫ ∞

0
t−αeβtg(t)2 dt<∞.
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Proof. From 3. in Proposition 6.1.3, we have that {Q(α,β)
k }k≥0 form an

orthonormal basis of L2
fα,β

. Thus, to obtain (6.21) it suffices to show that
g
fα,β
∈L2

fα,β
. Then the result follows from (6.9).

Remark 6.2.4. A starting point of a detailed study of the pointwise con-
vergence of the series representation in (6.21) could be, for instance, the
note by Hille (1926). A similar approach has been taken in Theorem 2 of
Di Nardo and D’Onofrio (2021). However, such an investigation is out of
scope for this thesis. □

Additionally assuming Condition 6.2.1, the next result provides simple
sufficient conditions on α, β and on the FPT pdf g so that g admits the
series expansion (6.21).

Proposition 6.2.5. Assume Condition 6.2.1. Suppose β<2/E[T ] and
g(t)=o

(
tδ
)

with δ> α
2 . Then g

fα,β
∈L2

fα,β
and we have

g

fα,β
=
∑
k≥0

a
(α,β)
k Q

(α,β)
k , (6.21)

where a(α,β)
k =E[Q(α,β)

k (T )] for k≥0 with Q(α,β)
k as in (6.11).

Proof. From Proposition 6.2.3, it suffices to show∫ ∞

0
t−αeβtg(t)2 dt=

∫ 1

0
t−αeβtg(t)2 dt+

∫ ∞

1
t−αeβtg(t)2 dt= I1 +I2<∞.

Since Condition 6.2.1 holds, from 2. in Proposition 6.2.2 we have that the
FPT pdf g has exponential long-time behaviour with parameter the inverse
mean FPT, i.e.

g(t)≈ 1
E(T )e

− t
E(T ) , as t→∞.

Hence, it is necessary and sufficient to have β− 2
E[T ] <0 for I2 to be finite.

Under the assumption g(t)=o
(
tδ
)

with δ> α
2 , we see that the integrand in

I1 is bounded and we get the desired result.

Some algebra allows us to rewrite expression (6.21) as
g

fα,β
=
∑
k≥0
B(α,β)
k L

(α,β)
k , (6.22)
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with coefficients B(α,β)
0 =1 and

B(α,β)
k =Γ(α+1)(−1)ka(α,β)

k

(Γ(α+1)Γ(α+1+k)
k!

)−1/2
= (6.23)

= Γ(α+1)k!
Γ(α+1+k)E[L(α,β)

k (T )]=1+
k∑
j=1

k
j

(−β)jE[T j]
(α+j)j

, (6.24)

depending on the moments of T as expected. For j∈N, with (α+j)j we
denote the falling (or descending) factorial, which for α∈R is defined as
(α+j)j = Γ(α+j+1)

Γ(α+1) . The coefficients {B(α,β)
k }k≥0 satisfy the following useful

recurrence relation.
Proposition 6.2.6. For all k≥1 we have

B(α,β)
k =

k∑
j=1

k
j

(−1)j+1B(α,β)
k−j + (−β)kE[T k]

(α+k)k
. (6.25)

Proof. By plugging (6.24) into B(α,β)
k−j for j=1, . . . ,k we get

k∑
j=0

k
j

(−1)jB(α,β)
k−j =B(α,β)

k +
k∑
j=1

k
j

(−1)j
[
1+

k−j∑
i=1

k−j
i

(−β)iE[T i]
(α+ i)i

]
.

(6.26)
Moreover, by expanding the inner sum in the rhs of (6.26) and grouping
with respect to the j-th moment E[T j] we have
k∑
j=1

k
j

(−1)j
[k−j∑
i=1

k−j
i

(−β)iE[T i]
(α+ i)i

]
=
k−1∑
j=1

(−β)jE[T j]
(α+j)j

[k−j∑
i=1

(−1)i
k
i

k− i
j

].
Since

k−j∑
i=1

(−1)i
k
i

k− i
j

=
k
j

k−j∑
i=1

k−j
i

(−1)i=−
k
j


and ∑k

j=0
(
k
j

)
(−1)j =0 which gives ∑k

j=1
(
k
j

)
(−1)j =−1, from (6.26) we get

k∑
j=0

k
j

(−1)jB(α,β)
k−j =B(α,β)

k −1−
k−1∑
j=1

k
j

(−β)jE[T j]
(α+j)j

. (6.27)

Plugging (6.24) into B(α,β)
k after some algebraic manipulation, we get

(−β)kE[T k]
(α+k)k

=
k∑
j=0

k
j

(−1)jB(α,β)
k−j , (6.28)

from which (6.25) follows.
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Using (6.22), a series representation of the FPT cdf G is given in the
following statement. Consider Φ(a,b,z)= 1F1(a;b;z), the confluent hyperge-
ometric function of the first kind, and define Φ(−β)(a,b, ·) as z→Φ(a,b,−βz)
for z∈ [0,∞).

Proposition 6.2.7. Suppose g
fα,β
∈L2

fα,β
. Then the FPT cdf G has the

following series representation

G=hα,β
∑
k≥0

Γ(α+k+1)
k! B(α,β)

k Φ(β)(α+k+1,α+2,·), (6.29)

where hα,β is defined as t→ (βt)α+1

Γ(α+1) .

Proof. Note that G(t)=
∫ t

0

g(x)
fα,β(x)fα,β(x)dx, with t∈ (0,∞). For n∈N, let

now pn(t)=∑n
k=0B

(α,β)
k L

(α,β)
k (t) and

Gn(t)=
∫ t

0
fα,β(x)pn(x)dx, t∈ (0,∞).

Then, it is easily shown that

lim
n→∞∥G−Gn∥2

fα,β
=0.

Indeed, we have that

∥G−Gn∥2
fα,β

=
∫ ∞

0

[∫ t

0

g(x)
fα,β(x)fα,β(x)dx−

∫ t

0
fα,β(x)pn(x)dx

]2
fα,β(t)dt=

=
∫ ∞

0

[∫ t

0

(
g(x)
fα,β(x)−pn(x)

)
fα,β(x)dx

]2
fα,β(t)dt≤

≤
∥∥∥∥∥ g

fα,β
−pn

∥∥∥∥∥
fα,β

∫ ∞

0
fα,β(t)dt=

∥∥∥∥∥ g

fα,β
−pn

∥∥∥∥∥
fα,β

,

which goes to zero as n goes to infinity by the assumption of g
fα,β
∈L2

fα,β
.

Hence, by making use of the formula (Wolfram Research, Inc., 2024)
∫ t

0
ταe−τL

(α)
k (τ)dτ = tα+1Γ(α+k+1)

k!
Φ(α+k+1;α+2;−t)

Γ(α+2) ,

to simplify Gn, we obtain that G has the desired L2
fα,β

series representation.
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6.3 The FPT Approximation

As explained in Section 6.1, an approximation of the FPT pdf g can be then
recovered from (6.21) by using a truncation of the series (6.21) up to an
order n∈N. Then, let the latter be fixed. We define our approximant ĝn as

ĝn(t)= β(βt)αe−βt

Γ(α+1)
n∑
k=0

a
(α,β)
k Q

(α,β)
k (t), t>0, (6.30)

or, equivalently from (6.22), as

ĝn(t)= β(βt)αe−βt

Γ(α+1)
n∑
k=0
B(α,β)
k L

(α,β)
k (t), t>0. (6.31)

From the classical Parseval identity in 2. in Definition 6.1.1, the L2
fα,β

-error
in replacing g with its approximation ĝn given in (6.30) is∥∥∥∥∥g− ĝnfα,β

∥∥∥∥∥
α,β

=
 ∑
k≥n+1

(
a

(α,β)
k

)2
1/2

(6.32)

where ∥ ∥α,β denotes the norm in L2
fα,β

. Thus the error may be estimated
by calculating the rate of decrease of a(α,β)

k when k→∞. In this regard,
under suitable assumptions on g, we have the following proposition, whose
proof relies on classical results (see, e.g., Shohat 1935, or, for a more recent
treatment, Gottlieb and Orszag 1977).
Theorem 6.3.1. Assume Condition 6.2.1 and that the FPT pdf g∈C2[0,+∞).
If

β<
2

E[T ] and g(t)=o(tδ) for t→0, with δ> α

2 +1,

then in (6.32) a(α,β)
k =E[Q(α,β)

k (T )]=O(k−1) as k→∞.

Proof. Observe that a(α,β)
k =E[Q(α,β)

k (T )] =E[Q(α)
k (βT )] gives, after a suitable

change of variables,

a
(α,β)
k = 1

β

∫ ∞

0
Q

(α)
k (t) g̃α,β(t)tαe−tdt where g̃α,β(t)= g(t/β)

tαe−t . (6.33)

As the generalised Laguerre polynomials {L(α)
k } are eigenfunctions of a

Sturm-Liouville problem (see, for instance, Sansone, 1991) with associated
eigenvalues λk =k

d
dt
(
tα+1e−ty′

)
+ktαe−ty=0 with y=y(t), k≥1
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the same happens for the linearly transformed polynomials {Q(α)
k } in (6.7).

Therefore in (6.33), replace

Q
(α)
k (t)tαe−t with − 1

k

d
dt
(
tα+1e−ty′

)
.

Integrating by parts the integral in (6.33) and neglecting the constants, the
rhs of (6.33) reads

a
(α,β)
k ≈ 1

k

∫ ∞

0
tα+1e−t d

dt [Q
(α)
k (t)] d

dt [g̃α,β(t)]dt. (6.34)

Indeed we have

lim
t→0

g̃α,β(t)tα+1e−t d
dt [Q

(α)
k (t)]=0 and lim

t→∞
g̃α,β(t)tα+1e−t d

dt [Q
(α)
k (t)]=0.

(6.35)
The first limit in (6.35) results by the hypothesis g(t)=o(tδ) for t→0. The
second limit in (6.35) follows by taking into account that, since Condition
6.2.1 holds, from 2. in Proposition 6.2.2, we have that g is approximately
exponential for t→∞, with parameter E[T ]−1. Integrating by parts the
integral in (6.34) and neglecting the constants, the rhs of (6.34) reads

a
(α,β)
k ≈−1

k

∫ ∞

0
Q

(α)
k (t) d

dt

(
tα+1e−t d

dt [g̃α,β(t)]
)

dt, (6.36)

where similar considerations done for (6.35) apply for recovering

lim
t→0

tα+1e−tQ
(α)
k (t) d

dt [g̃α,β(t)]=0 and lim
t→∞

tα+1e−tQ
(α)
k (t) d

dt [g̃α,β(t)]=0.

Now, in (6.36) set

h(t)= 1
w(t)

d
dt

(
tα+1e−t d

dt [g̃α,β(t)]
)

with w(t)= tαe−t.

Applying the Cauchy-Schwarz inequality to the rhs of (6.36), we get∣∣∣∣∫ ∞

0

√
w(t)Q(α)

k (t)h(t)
√
w(t)dt

∣∣∣∣2≤(∫ ∞

0
w(t)[Q(α)

k (t)]2 dt
)(∫ ∞

0
[h(t)]2w(t)dt

)
which is finite and not depending on the order k, if the same is true for
both integrals on the lhs. Observe that the first integral corresponds to the
orthonormality condition of the family {Q(α)

k }k≥0 and so it is finite and not
depending on k. The second integral does not depend on k and is finite if
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the integrand is smooth and the limits for t→0 and t→∞ are finite. Note
that

h(t)√
w(t)

=
(α+1− t) d

dt [g̃α,β(t)]+ t d2

dt2 [g̃α,β(t)]
t−α/2et/2

.

Thus for t→∞ and β<2/E[T ] we have

lim
t→∞

h(t)√
w(t)

= lim
t→∞

ez[1−(βE[t])−1]

zα/2ez/2
+ lim
t→∞

ez[1−(βE[t])−1]

zα/2−1ez/2
=0

using again that g(t)=O(e−t/(βE[T ])). Instead for t→0 the limit reduces to

lim
t→0

h(t)√
w(t)

= lim
t→0

et/2tδ−α/2−1 +lim
t→0

et/2tδ−α=0

if δ>1+α/2.

The request of the existence of the second derivative in Theorem 6.3.1 is
a reasonable assumption for our application in 6.5.1, as shall become clearer
therein. Combining the coefficients of Lαk (βt) with the same power of t,
expression (6.31) can be rearranged as follows

ĝn(t)=fα,β(t)pn(t), t≥0, (6.37)

where

pn(t)=
n∑
k=0

hn,k
(−βt)k
k! with hn,k =

n∑
j=k
B(α,β)
j

α+j

j−k

, (6.38)

B(α,β)
0 =1 and α+j

j−k

=
 1, j=k,

(α+j)(α+j−1)···(α+k+1)
(j−k)! , j >k.

(6.39)

Recall that from 1. in Proposition 6.1.2 we have∫ ∞

0
ĝn(t)dt=1 (6.40)

for all n≥0, and that from 2. in the same proposition the first n moments of
ĝn are the same of T . Unfortunately, as already said in the beginning of this
chapter and in the end of Section 6.1, ĝn is not guaranteed to be a pdf since
negative values can occur. Indeed, the values assumed by the polynomial
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pn in (6.37) are not necessarily non-negative. Before dealing with this issue
more in detail in Section 6.4.5, we provide a simple preliminary result which
might be helpful. Indeed, pn may hold non-negative values on the for high
values of t and in a right-handed neighbourhood of the origin, depending on
the sign of some coefficients in (6.38). These conditions are established in
the following proposition.
Proposition 6.3.1. Suppose pn(t)>0 for all t>0. Then (−1)nhn,n≥0 and
hn,0≥0. Conversely, if hn,0>0 and (−1)nhn,n>0, there exist t1>0 and
t2>0 such that pn(t)>0 in (0,t1)∪(t2,+∞), with t1 and t2 not necessarily
distinct or finite.
Proof. From (6.38) we have

pn(0)=hn,0 and pn(t)∼ (−1)nhn,ntn
βn

n! , for t→∞.

Since β>0 and pn∈C(0,∞), the results follow from the sign permanence
theorem.

Finally, note that by integrating ĝn in (6.37) over (0,t), or by truncating
(6.29), brief calculations reveal that an approximation Ĝn of the FPT cdf G
can be defined as

Ĝn(t)= 1
Γ(α+1)

n∑
k=0

(−1)k
k! hn,k [Γ(α+k+1)−Γ(α+k+1,βt)] , t∈ [0,∞)

(6.41)
where Γ(a,t)= ∫∞

t τa−1e−τdτ is the incomplete Gamma function.
In the following sections we will deal with the actual computation of ĝn

in (6.37).

6.4 Computational Issues

6.4.1 An Iterative Procedure

In the following we propose a procedure to recover the n-th approximation
ĝn which reduces the overall computational time to evaluate (6.37) and can
be implemented iteratively. This procedure relies on a recurrence relation
obtained using nested products. Indeed, thanks to the representation (6.37),
we can exploit the fact that pn(t) can be efficiently evaluated for any t>0
using the recurrence relation

dn,i(t)=hn,i−1−
βt

i
dn,i+1(t) for i∈{n,n−1, . . . ,1}, (6.42)
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with the initial condition dn,n+1(t) =hn,n, since the last value gives dn,1(t) =
pn(t).

We stress out that in practice we cannot take n arbitrarily large, due
to numerical errors which may incur in the computation of the coefficients
{B(α,β)

j }j≥0 as in (6.24). Clearly, using infinite precision operations would
avoid this issue. Software tools like Mathematica and R allow for arbitrarily
large but finite precision. This swiftly becomes prohibitively slow. In
some scenarios, resorting to this may be needed to obtain a satisfactory
approximation, as will be seen in the numerical examples of Section 6.6.3.
However, in most of the cases we can rely on the following iterative procedure
to compute ĝn in (6.37).

To this aim, let us first observe that (6.42) can be easily updated to n+1,
returning dn+1,1(t) =pn+1(t) from the initial condition dn+1,n+2(t) =hn+1,n+1.
Indeed, from the second equation in (6.38), a little thought let us recover
{hn+1,i}n+1

i=0 from {hn,i}ni=0 using

hn+1,i=
 B

(α,β)
n+1 for i=n+1

hn,i+B(α,β)
n+1

(
α+n+1
n+1−i

)
for i=0, . . . ,n.

(6.43)

The coefficient B(α,β)
n+1 can be computed from {Bj(α,β)}nj=1 as well, using the

recursion formula in Proposition 6.25. Algorithm 2 provides a pseudo-code
explanation of the iterative procedure.

6.4.2 On the Order n of the Approximation

It is clear that the choice of the truncating order n is of upmost importance.
Since in the previous section we have provided an iterative procedure to
compute ĝn in (6.37), the next step is choosing a stopping criterion for
Algorithm 2. Naturally, one should start by considering a convergence-based
stopping criterion, which is commonly seen in the literature along with
graphical checks (see, e.g., Provost and Ha, 2016). That is, the practitioner
shall run the iterative procedure until the smallest n such that, for a user
chosen tolerance ϵ>0, it holds that

∥ĝn− ĝn−1∥L2 <ϵ, (6.44)

where L2 is the usual space of square integrable functions. However, for
our two applications in Sections 6.6.2 and 6.6.2, this criterion proved to be
affected by numerical instability. The reason is that condition (6.44) may
be satisfied for large values of n where the corresponding accumulation of
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Algorithm 2: Iterative procedure for computing ĝn

1: For n=1:
1. Compute E[T ]

2. Set B(α,β)
0 =1 and B(α,β)

1 =1−β E[T ]
(α+1)1

3. Compute h0,1 and h1,1 using (6.38), from which p1 and ĝ1 are computed
2: For n>1:

1. Compute E[T n]

2. Compute B(α,β)
n by the recurrence formula

B(α,β)
n =

n∑
j=1

(
n

j

)
(−1)j+1B(α,β)

n−j + (−β)nE[T n]
(α+n)n

3. Compute ĝn

Set hn,n =B(α,β)
n

Update hn−1,i to hn,i +B(α,β)
n

(
α+n

n− i

)
Run recursion (6.42) and set ĝn =fα,β dn,1.
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numerical error has already compromised the approximation. Therefore,
we looked into another way to stop the iteration procedure in the previous
section at a n large enough such that a satisfactory approximation is obtained,
while, at the same time, numerical errors are not yet encountered. Our
choice, which will be detailed below, relies on the subsequent normalization
condition satisfied by the sequence {hn,i} in (6.38).

Proposition 6.4.1. For all n≥0 we have

hn,0 +
n∑
i=1

(−1)i
i! hn,i(α+ i)i=1. (6.45)

Proof. From 1. in Proposition 6.1.2, we have
n∑
i=0

(−1)i
i! βihn,i

∫ ∞

0
tifα,β(t)dt=1 for all n≥0.

The result follows by observing that the integrals in the lhs of (6.101) are
the moments of the gamma rv with pdf fα,β, that is

∫ ∞

0
tifα,β(t)dt= Γ(α+1+ i)

βiΓ(α+1) , i∈N .

As a result of an extended number of numerical experiments, some of
which will be reported later in Section 6.6, increasing n in (6.37) as long
as (6.45) is satisfied with a fixed level of tolerance proved to guarantee a
satisfactory approximation. With the more conservative aim of obtaining a
positive approximant, we further propose to join the normalisation condition
(6.45) with an additional condition following from Proposition 6.3.1. This
condition guarantees an order n of approximation such that pn(t) is positive
close to the origin and as t→+∞. Set

ĥn=hn,0 +
n∑
i=1

(−1)i
i! hn,i(α+1)i. (6.46)

For a fixed ε>0, the iterative procedure for computing ĝn in (6.37) is run
as long as

(|ĥn+1−1|<ε for a fixed ε>0) or (hn,0>0 and (−1)nhn,n>0) (6.47)

is fulfilled.
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6.4.3 On the Choice of α and β

Using a reference density such as fα,β introduces two additional parameters
that can be adjusted to enhance the approximant ĝn. Denote with Xα,β

the rv having pdf fα,β in (6.19). Heuristically, one would like the reference
density fα,β to resemble as much as possible the unknown objective pdf g.
Since we suppose that g is unknown while the moments (resp. cumulants) of
T are known, a classical method (see, e.g., Provost and Ha, 2016) consists
in matching the first two moments (resp. cumulants) of Xα,β with the first
two moments (resp. cumulants) of T . Let us underline that a range of
possibilities was investigated for α and β in this regard. However, what
proved to be the more consistent in terms of the resulting approximation
was the following "simpler" choice. That is we set

α= c2
1[T ]
c2[T ]−1= E2[T ]

V[T ] −1 and β= c1[T ]
c2[T ] = E[T ]

V[T ] , (6.48)

since with these choices we have

E[Xα,β]= α+1
β

=E[T ] and E[X2
α,β]= (α+1)(α+2)

β2 =E[T 2].

As mentioned above, this choice conceptually falls within the classical method
of moments, and, moreover, from 3. in Proposition 6.1.2, also simplifies
the computation of ĝn since its first two coefficients will be zero, that is
B(α,β)

1 =B(α,β)
2 =0 in (6.31).

Remark 6.4.2. Note that, under the choice in (6.48), the conditions on g
involving α and β in Proposition 6.2.5 become conditions involving the first
two moments (or cumulants) of T , which we assume to be known. □

Different choices are also suggested in Belt and den Brinker (1997) where
results concerning the determination of the two parameters α and β are
presented. Unfortunately, adopting these choices requires a knowledge of
the FPT pdf not depending on α and β, which is in general not true.

Now, note that the choices of α and β in (6.48) return

cν [Xα,β]= cν [T ]=
√
c2[T ]
c1[T ]

where cν denotes the coefficient of variation. In such a case the first equation
in (6.48) reads α+1 = (cν [T ])−2. Thus an higher coefficient of variation of T
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reduces α+1 and increases the chance of a vertical asymptote of the gamma
pdf fα,β in 0. As we know that g(0)=0, the occurrence of this vertical
asymptote may cause of numerical issues which are further exacerbated if
the FPT pdf is flat with a large mean value and a heavy right tail with a
large variance. To address this issue, an useful tool is the employment of
a suitable standardization technique. The concept is straightforward and
consists in constructing the approximation g̃n of the pdf g̃ corresponding to

T̃ =T/σT , (6.49)

where σT is the standard deviation of T . The approximated FPT pdf and
cdf can be recovered as

ĝn(t)= 1
σT
g̃n

(
t

σT

)
and Ĝn(t)= G̃n

(
t

σT

)

respectively. As c2[T̃ ] = Var[T̃ ] = 1, from (6.48) the parameters of the gamma
pdf are

α̃ := (E[T̃ ])2−1 and β̃ :=E[T̃ ]

so that α̃+1= β̃2 =(cν[Xα̃,β̃])−2 =(cν[T̃ ])−2 and Var[Xα̃,β̃]=1. The advan-
tage of this strategy is that it should provide an "initial" approximation (the
gamma pdf) with a shape resembling the desired shape of the FPT pdf.
Moreover, the moments E[T̃ n] grow slower than the moments E[T n], leading
to an observed improvement of numerical stability.

Since the pdf g has support (0,∞), further information on the shape of
the density can be recovered using some dispersion indices that work as
the coefficient of variation but provide further global statistical information
(Kostal et al., 2011). In particular we consider the relative entropy based
dispersion coefficient

ch := σh
E(T ) = 1

E(T ) exp
{∫ ∞

0
g(t)lng(t)dt−1

}
. (6.50)

The value of σh quantifies how evenly is the pdf over (0,∞). Moreover,
in logarithmic scale, ch is inversely proportional to the Kullback-Leibler
dinstance of the pdf g from the exponential density with mean E[T ]. For
densities resembling the exponential distribution, the coefficients cν and ch
are approximately equal to 1.
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6.4.4 On the Monotonicity of Ĝn

Fix ∆t>0. The computation of the FPT cdf approximant Ĝn as in (6.41)
can benefit from the iterative calculation of the increments

∆Ĝn(t)= 1
Γ(α+1)

n∑
k=0

(−1)k
k! hn,k [Γ(α+k+1,βt)−Γ(α+k+1,β(t+∆t))]

(6.51)
where

∆Ĝn(t)= Ĝn(t+∆t)−Ĝn(t), t>0.
Since there could exists t>0 such that ĝn(t)<0, the corresponding incre-
ments ∆Ĝn(t) in (6.51) might be negative and, consequently, the approxi-
mated cdf may turn out to be decreasing in these intervals. Furthermore, if
in a right-hand neighborhood of the origin the first increments are already
negative, this might cause negative values of Ĝn itself in the same neighbor-
hood. We propose a simple correction to this last scenario. Set τ0 =0 or
τ0 =min{t>0|∆Ĝn(t)<0}, depending if ∆Ĝn(∆t) is negative or not, and
τ1 =min{t>τ0|Ĝn(t)>Ĝn(τ0)}. Then, iteratively find the intervals [τi,τi+1]
such that
τi=min{t>τi−1|∆Ĝn(t)<0} and τi+1 =min{t>τi|Ĝn(t)>Ĝn(τi)}

in order to replace Ĝn(t) with an increasing line for t∈ [τi,τi+1]. Let us
refer with Ĝcorr

n to the result of this procedure when applied to Ĝn. We
stress out that for the cases here considered in Section 6.6.3, if present, the
intervals t∈ [τi,τi+1] had a small amplitude and that is why a simple line
has been considered. The usefulness of this procedure is twofold. Firstly,
one obtains an approximated cdf Ĝcorr

n which is positive and increasing.
Secondly, carrying out a numerical differentiation of Ĝcorr

n would provide
an approximation to the FPT pdf g which is positive. However, since by
construction Ĝcorr

n (t) is linear for t∈ [τi,τi+1], the pdf will be constant in
[τi,τi+1]. This construction of a positive approximant for the FPT pdf
g is computationally simple, but it is clear that it might fail to fit some
properties which a FPT pdf should enjoy. The following subsection provides
a numerical procedure which is equally simple but aims to provide a positive
approximant to g that takes more into account the properties of a FPT pdf.

6.4.5 On the Positivity of ĝn
Although the stopping criteria in (6.47) take into account Proposition 6.3.1,
there is no guarantee that ĝn(t) is non-negative for t in (0,∞) depending on
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the values assumed by pn(t) for t∈ (t1,t2) in Proposition 6.3.1. We propose
the following strategy to address this issue.

Suppose then there exists t1,neg,t2,neg in (0,∞) such that (t1,neg,t2,neg)⊆
(t1,t2) and ĝn(t)<0, t∈ (t1,neg,t2,neg). In what follows we develop a simple
numerical procedure whose aim is to replace ĝn(t) with a suitable positive
function p(t), for t in a generic interval (t′1,t′2)⊇ (t1,neg,t2,neg). As we continue,
we shall further assume Condition 6.2.1. Then, from 1. in Proposition 6.2.2 we
have that g is unimodal and, as will be clear later, the following construction
can be made conceptually easier. Indeed, suppose then m∗ = maxt∈(0,∞) ĝn(t)
be the unique approximated mode of the FPT rv T . Consequently, ĝn could
be negative in an interval located to the right or/and to the left of m∗. In
both cases, a natural approach would consist in building a fourth-degree
polynomial p interpolating smoothly (t′1, ĝn(t′1)) and (t′2, ĝn(t′2)), fulfilling
the additional constraints imposed by the conservation of probability mass

∫ t′2

t′1
p(t)dt=

∫ t′2

t′1
ĝn(t)dt, (6.52)

as well as positivity and monotonicity. Since such a polynomial is unique,
the last two remaining conditions could only possibly be satisfied by a
computationally heavy choice of t′1 and t′2 or by selecting an higher degree
polynomial. In both cases, the procedure could become cumbersome to carry
out. Therefore, in the following we propose a different lighter approach both
to determine numerically (t′1,t′2) and to correct ĝn, taking into account the
conditions required on the FPT pdf g in Theorem 6.3.1.

In accord with the discussion above, two possible scenarios might occur:

a) ĝn(t)<0 for t∈ (t1,neg,t2,neg) with t2,neg<m
∗

b) ĝn(t)<0 for t∈ (t1,neg,t2,neg) with t1,neg>m
∗.

Therefore, two procedures were developed which take into account the
behavior of the FPT pdf either in a right-handed neighborhood of the origin
- Case a) - and on the tail - Case b) - with the aim of minimizing the number
of parameters involved while streamlining the writing and the procedure.
Note that no conservation of the probability mass (6.52) is required in this
strategy. Empirically, this is justified by the fact that in all the numerical
examples in Section 6.6.3 the negative areas are so small that the mass
involved can be considered negligible.
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Case a)

Since g(0) = 0, we set t′1 := 0. To reduce the number of parameters, we assume
p(t)=atδ with a>0 and δ> α

2 +1 according to Theorem 6.3.1. Therefore,
the correction of ĝn(t) is defined as

ĝcorrn (t)=
at

δ 0≤ t≤ t′2,
ĝn(t) t> t′2.

(6.53)

In order to achieve a certain level of smoothness, a and δ in (6.53) are chosen
such that

p(t′2)= ĝn(t′2) and d
dtp(t)

∣∣∣∣∣
t=t′2

= d
dt ĝn(t)

∣∣∣∣∣
t=t′2

.

Finally, we set

t′2 :=min
{
t∈ (0,m∗)

∣∣∣∣∣
∫ t

0
ĝn(t)dt>0

}

to avoid an excessive increment of the probability mass when ĝn is replaced
by ĝcorrn . Fig. 6.4.1-a) shows an example of negative ĝn(t) for t close to the
origin together with its correction ĝcorrn (t), as obtained by the procedure
described above.

Case b)

We assume p(t)=aebt, with a>0 and b<0, according to 2. in Proposition
6.2.2, since we have assumed Contion 6.2.1. Therefore, the correction of
ĝn(t) is defined as

ĝcorrn (t)=


ĝn(t) t< t′1
aebt t′1≤ t≤ t′2
ĝn(t) t> t′2.

(6.54)

In this case, a and b are chosen such that

p(t′1)= ĝn(t′1) and p(t′2)= ĝn(t′2).

In order to fit a decreasing exponential function in the interval (t′1,t′2), the
endpoints t′1 and t′2 are chosen such that

t′2 =min
{
t> t2

∣∣∣∣∣ d
dt ĝn(t)<0

}
and t′1 =min{t< t1 | ĝn(t)>ĝn(t′2)} .

263



Fig. 6.4.1-b) shows an example of negative ĝn(t) for values of t larger than
the mode together with its correction ĝcorrn (t), as obtained by the procedure
just described.

We end this subsection by stating that a similar procedure could clearly
be followed even when g is not unimodal, albeit with less "automation":
graphical checks of ĝn could be used to individuate the possible intervals of
negativity and a suitable positive function p could then be built on a case
to case basis.

a)

b)

t′1

t′2

t′2

Figure 6.4.1: In a) plots of the approximation ĝn and of its correction ĝcorr
n (6.53) over

the interval (0,t′2) are given for n=10 and parameters y0 =0, µ=3, S=10, c=−10,
σ=1.2,τ =0.2 (see case Ccir in Section 6.6.3). In b), plots of the approximation ĝn and
of its correction ĝcorr

n (6.54) over the interval (t′1,t′2) are given for n=9 and parameters
y0 =0.2, µ=0.9, S=1, c=0, σ=1.2,τ =2/3 (see case Acir in Section 6.6.3).
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6.5 The CIR Process, the GBM and their First Pas-
sage Time Problems

In the following two subsections we briefly recall the definition and some
facts about the FPT problem for the two processes on which we have applied
the above explained approximation method.

6.5.1 The CIR Process

As already mentioned in the introduction, we denote by CIR process the
unique strong solution of the following stochastic differential equation (see,
e.g., Feller, 1951)

dY (t)=(−τY (t)+µ)dt+σ
√
Y (t)−cdW (t), t≥0, (6.55)

where {W (t)}t≥0 is a standard Brownian motion, c≤0, τ >0, µ∈R, σ>0
and Y0 =y0. The state space of the process is the interval (c,+∞). Depending
on the underlying parameters, the endpoints c and +∞ can or cannot be
reached in a finite time. According to the Feller classification of boundaries
(Karlin and Taylor, 1981), c is an entrance boundary if it cannot be reached
by {Y (t)}t≥0 in finite time, and there is no probability flow to the outside
of the interval (c,+∞). In particular,

c is an entrance boundary if s :=2(µ−cτ)/σ2≥1.

This will be assumed to hold as we continue.
In the following, we denote with Tcir the FPT rv for the CIR pro-

cess and with gcir (resp. Gcir) the corresponding pdf (resp. cdf). The
Laplace transform LT [gcir](z) of gcir is such that LT [gcir](z)=1 if y0≡S
and LT [gcir](z)<+∞ for any different y0 (see, for example, Masoliver and
Perelló, 2012). A closed form expression of LT [gcir](z) can be found in
D’Onofrio et al. (2018) and reads as

LT [gcir](z)=
Φ
(
z
τ ,s,

2τ(y0−c)
σ2

)
Φ
(
z
τ ,s,

2τ(S−c)
σ2

) , z >0 (6.56)

where Φ(a,b,z)= 1F1(a;b;z) is the confluent hypergeometric function of the
first kind (or Kummer’s function). Except for the case S=0, the Laplace
transform in (6.56) cannot be inverted explicitly, as explained for example
in Martin et al. (2011). As known, information on the moments of Tcir
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could be obtained by direct derivation of LT [gcir], a way which however is
not feasible in general for the CIR process. Fortunately enough, expression
(6.56) has been used in a clever way in Di Nardo and D’Onofrio (2021) to
obtain the cumulants of Tcir, which are given in the following. Recall that,
if T has moment generating function E[ezT ]<∞ for all z in an open interval
about 0, then its cumulants {ck(T )}k≥1 are such that

∑
k≥1

ck(T )z
k

k! = logE[ezT ]

for all z in some (possibly smaller) open interval about 0. Using the logarith-
mic polynomials {Lk} as in (2.12), the FPT cumulants of the CIR process
can be expressed as (Di Nardo and D’Onofrio, 2021)

ck(Tcir)=(−τ)−k [c∗
k (y0)−c∗

k(S)] , k≥1, (6.57)

where

c∗
k(w)=Lk

[
h1

(2τ(w−c)
σ2

)
,h2

(2τ(w−c)
σ2

)
, . . . ,hk

(2τ(w−c)
σ2

)]
, (6.58)

with hj(y)= j!∑n≥j

[
n
j

]
yn

n!⟨s⟩n
, for j∈{1,2, . . . ,k},

[
n
j

]
the unsigned Stir-

ling numbers of first type and ⟨·⟩n the n-th rising factorial.
Then, FPT moments of the CIR process can be obtained from FPT cumu-

lants (Di Nardo and D’Onofrio, 2021) using the complete Bell polynomials
{Bk} as in (2.5) and {c∗

k} given in (6.58), that is

E
[
T kcir

]
= (−1)k

τk

k∑
i=0

(
k
i

)
Bk−i

[
c∗

1 (y0) , . . . ,c∗
k−i (y0)

]
Bi [−c∗

1(S), . . . ,−c∗
i (S)] (6.59)

for k∈N+. The following well-known (see, e.g., Di Nardo and Senato, 2006)
recursion formula, which can be found in Section 2.A of the Appendix of
Chapter 2, is particularly convenient from a computational point of view
and can be used to recover FPT moments from the knowledge of cumulants.
For k∈N+ we have

E
[
T k
]
= ck(T )+

k−1∑
i=1

(
k−1
i−1

)
ci(T )E

[
T k−i

]
. (6.60)
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In the absence of a threshold, the CIR process admits a stationary distribu-
tion which is a shifted gamma distribution with the following shape, scale
and location parameters

Y∞∼Gamma
(
s,

1
2
σ2

τ
,c

)
.

Therefore, Condition 6.2.1 holds and, provided that β<2/E[T ] and g(t)=
o
(
tδ
)

with δ> α
2 , we can apply Proposition 6.2.5 to obtain that gcir has the

following series representation

gcir =fα,β

(
1+

∑
k≥1
B(α,β)
k L

(α,β)
k

)
with B(α,β)

k =1+
k∑
j=1

k
j

(−β)jE[T jcir]
(α+j)j

.

(6.61)
Remark 6.5.1. Recall that to be able to enjoy the information on the
approximation error given in Proposition 6.3.1, we should additionally have
gcir∈C2([0,∞)). Following (Pauwels, 1987, Section 3), who has studied
the smoothness of FPT pdfs, we could have alternatively asked that there
exists ε>0 such that σ

√
x≥ ε, for all x in the state space of the process.

This condition implies, in this case, the existence and boundedness of at
least the first two derivatives of an FPT pdf g. In the present context of
the CIR process, to investigate Pauwels’ condition, one could follow Feller’s
classification of the boundaries (Feller, 1952). Using the transition densities
of the CIR process (Masoliver and Perelló, 2012), one has to show that the
flux through the value ε is zero or that the capacity of the interval [0,ε)
vanishes (Bertini and Passalacqua, 2008). Proceeding analitically proved to
be a complex task. However, for a fixed and small ε>0 we have observed,
at least numerically, that the capacity of the interval [0,ε) (see formula 19
in Bertini and Passalacqua, 2008) goes to zero as µ increases. This means
that for a “large enough” choice of µ, the mentioned assumption in Theorem
6.3.1 should be satisfied. □

6.5.2 The Geometric Brownian Motion

The GBM is a regular diffusion process on (0,+∞). It can be obtained
as a transformation of a Brownian motion and for this reason it is also
called exponential Brownian motion (see, for instance Yor, 1992). Indeed,
if X(t)=(µ− σ2

2 )t+σW (t) for t≥0 is a drifted Brownian motion, then the
stochastic process

Y (t)=y0 e
(µ− σ2

2 )t+σW (t) =y0 e
X(t) with µ> σ2

2 (6.62)
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is said GBM with starting point y0∈R and with infinitesimal mean and
variance (µ− σ2

2 )y and σ2y2, respectively (see, e.g., Karlin and Taylor, 1981).
The transition pdf of the GBM is known to be a lognormal pdf with

parameters µ− σ2

2 and σ
√
t. It can be obtained by solving the Fokker-Planck

equation, which in the case of the GBM reduces to the canonical form of
the heat equation. As we continue, we denote with Tgbm the FPT rv for the
GBM and with ggbm the corresponding pdf.

The Laplace transform LT [ggbm](z) of ggbm is known and can be found,
for instance, in Borodin and Salminen (2002). We have

LT [ggbm](z)=
(
y0

S

)k(z)
with k(z)= 1

σ2


√√√√√(µ− σ2

2

)2
+2σ2z+

(
σ2

2 −µ
) .

A little thought reveals that it can be rewritten as

LT [ggbm](z)=exp
{
k(z)ln

(
y0

S

)}
=exp

ab
(

1−
√

1+ 2b2

a
z

) (6.63)

with
a= (lnS− lny0)2

σ2 >0 and b= lnS− lny0

µ− σ2

2
>0. (6.64)

From the well known relationship MTgbm
(z)=LT [ggbm](−z) between the

moment generating function MTgbm
(z) =E[exp(zTgbm)] and the laplace trans-

form, (6.63) implies that Tgbm has an inverse gaussian distribution IG(a,b)
of parameters a (the shape) and b (the mean), that is

ggbm(t)=
√

a

2πt3 exp
(
− a(t−b)2

2b2t

)
, t>0. (6.65)

The statistical properties of IG(a,b) have been examined in Tweedie (1957).
Therein, the moments of Tgbm are shown to be

E[T n]= bn
n−1∑
k=0

(n−1+k)!
k!(n−1−k)!

bk

(2a)k = exp(a/b)
b

1
2 −n Kn− 1

2

(
a

b

)√2a
π

(6.66)

where Kν(z) is the modified Bessel function of second type (Gradshteyn and
Ryzhik, 1994)

K±ν(z)= 1
2

(z
2

)ν ∫ ∞

0
x−ν−1 exp

(
−x− z2

4x

)
dx (6.67)
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under the conditions |argz|<π/2 and Rez2>0. Since zKν−1(z)−zKν+1(z) =
−2νKν(z) (see, for instance, Gradshteyn and Ryzhik, 1994), the following
recursion formula for the FPT moments can be readily derived:

E[T n+1
gbm ]= (2n−1)b2

a
E[T ngbm]+b2E[T n−1

gbm ], n≥1 (6.68)

with E[T 0
gbm]=1 and E[Tgbm]= b.

A new and alternative expression of the FPT moments for the GBM can
be obtained by using the partition polynomial as in (2.11), that is

Gn(y;x1, . . . ,xn)=
∑
j=1

yjBn,j(x1, . . . ,xn−j+1) (6.69)

where {Bn,j} are the partial exponential Bell polynomials as in (2.1). The
latter, combined with the relatively simple expression of the cumulants of
Tgbm that shall be recalled in the proof of the next proposition, provides a
(polynomial) closed-form expression of the moments of Tgbm which lets one
avoid the evaluation of Kν in (6.66).

Proposition 6.5.2.

E[T ngbm]=
(
−2b2

a

)n
Gn

−a
b
; 1
2 ,
(1

2

)
2
, . . . ,

(1
2

)
n−j+1

 (6.70)

Proof. From the power series expansion of ln[MTgbm
(λ)−1] with MTgbm

(λ)
the moment generating function of Tgbm, cumulants {cn[Tgbm]} of Tgbm result
to be (Tweedie, 1957)

cn[Tgbm]= (2n−3)!!b
2n−1

an−1 for n≥1 (6.71)

with (2n−3)!! = (2n−3)·· ·5 ·3 ·1. Since (2n−3)!! = (−1)n−12n
(

1
2

)
n

with
(

1
2

)
n

=∏n−1
j=0 (1

2−j) the lowering factorial, from (6.71) we also have

cn[Tgbm]=
(
−a
b

)(
−2b2

a

)n(1
2

)
n

for n≥1. (6.72)

As known, moments E[T ngbm] can be recovered from cumulants through the
partial exponential Bell polynomials (see Section 2.A in the Appendix of
Chapter 2)

E[T n]=
n∑
j=1

Bn,j(c1[Tgbm], . . . ,cn−j+1[Tgbm]), for n≥1, (6.73)
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with {Bn,j} given in (2.1). The result follows replacing (6.72) in (6.73)
and using the well known property Bn,j(pqx1,pq

2x2, . . .) =pjqnBn,j(x1,x2, . . .)
(Comtet, 1970).

From (6.71), the following recursion holds for the FPT cumulants

cn[Tgbm]= (2n−3)b2

a
cn−1[Tgbm]

starting with c1[Tgbm]=E[Tgbm]= b.
The GBM does not have a stationary distribution, thus we cannot apply

directly Proposition 6.2.5. However, thanks to the fact that in this case
ggbm is known, we can state a simpler version of Proposition 6.2.3 and an
analogue of Proposition 6.2.5.

Proposition 6.5.3. If

I=
∫ ∞

0
t−(α+3) exp

(
−At− a

t

)
dt<∞, (6.74)

with A= a
b2 −β, then

ggbm=fα,β

(
1+

∑
k≥1
B(α,β)
k L

(α,β)
k

)
with B(α,β)

k =1+
k∑
j=1

k
j

(−β)jE[T jgbm]
(α+j)j

.

(6.75)

Proof. The result is immediate after using Proposition 6.2.3, noting that in
this case ∫ ∞

0
t−αeβtggbm(t)2 dt= aΓ(α+1)e2a/b

2πβα+1 I.

Corollary 6.5.4. Condition (6.74) is fulfilled if and only if

β≤ 1
σ2

(
µ− σ

2

2

)2

. (6.76)

Proof. Note that (6.76) is equivalent to have A= 1
σ2

(
µ− σ2

2

)2
−β≥0 in

(6.74). If A>0 from 3.471 no. 9 in Gradshteyn and Ryzhik (1994), we get

∫ ∞

0
t−(α+3) exp

(
−At− a

t

)
dt=2

(
A

a

) 2+α
2

Kα+2(2
√
aA)<∞
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where Kν is the modified Bessel function of second type. If A=0, by a
suitable change of variable and using 3.478 no. 1 in Gradshteyn and Ryzhik
(1994), we have
∫ ∞

0
t−(α+3) exp

(
−At− a

t

)
dt=

∫ ∞

0
x(α+2)−1e−axdx=a−(α+2)Γ(α+2)<∞.

If A<0, the integrand function in I grows with t and the condition (6.74)
is not fulfilled.

The following theorem provides a more precise bound on
∥∥∥∥ggbm−ĝn

fα,β

∥∥∥∥
α,β

exploiting the knowledge of ggbm.

Theorem 6.5.1. If β< 1
σ2

(
µ− σ2

2

)2
and k∈N, then there exists a constant

Ck>0 such that
∥∥∥∥∥ggbm− ĝnfα,β

∥∥∥∥∥
α,β

≤Ck
( 1√

n

)k
for all n>k (6.77)

with Ck =O(kk).

Proof. Set ã= a
2 and Ã= a

2b2 −β in order to write

ggbm(t)
fα,β(t) =D exp

(
−Ãt− ã

t

)
t−

3
2 −α with D=

√
ã

π

ea/bΓ(α+1)
βα+1 .

According to Theorem 6.2.5 in Funaro (1992), if for a fixed k∈N

tm/2
dm
dtm

[
ggbm(t)
fα,β(t)

]
∈L2

fα,β(t)(0,∞) for 0≤m≤k (6.78)

then there exists a constant C>0 such that∥∥∥∥∥ggbm− ĝnfα,β

∥∥∥∥∥
α,β

≤C
( 1√

n

)k ∥∥∥∥∥∥tk/2 dk
dtk

[
ggbm(t)
fα,β(t)

]∥∥∥∥∥∥
α,β

for all n>k. (6.79)

By recursion, we have

dm
dtm

[
ggbm(t)
fα,β(t)

]
= (−1)m

2m D exp
(
−Ãt− ã

t

)
t−2m− 3

2 −αq2m(t) for m≥0

(6.80)
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where q2m(t) is a polynomial of degree 2m such that

q2m(t)=
2k∑
j=0

c2m,jt
j = q2m−2(t)[2Ãt2 +(4m−1+2α)t−2 ã]− 2t2 d

dtq2m−2(t)

(6.81)
with q0(t)=1 and c2m,2m=(2Ã)m /=0, c2m,0 =(−2ã)m.

Now set

q̃4m(t)= [q2m(t)]2 =
4m∑
j=0

c̃4m,jt
j and Im=

∫ ∞

0
tm
( dm

dtm

[
ggbm(t)
fα,β(t)

])2
fα,β(t)dt.

Fix an integer 0≤k<n. Since 2Ã+β= c1[T ]
c2[T ]−β>0 we have Im<∞ for all

m≥0 and in particular condition (6.78) holds for 0≤m≤k. Indeed using
the modified Bessel function of second type (6.67) and the integral 3.471 no.
9 in Gradshteyn and Ryzhik (1994), we have

Im= D2

22m

4m∑
j=0

c̃4m,j

∫ ∞

0
exp

(
−(2Ã+β)t− a

t

)
t(−3m−2−α+j)−1 dt (6.82)

= D2

22m−1

4m∑
j=0

c̃4m,jK3m−j+(α+2)

(√
4a(2Ã+β)

)[√
a

2Ã+β

]−3m−2−α+j
<∞.

Eq. (6.77) follows from (6.79) setting m=k and

Ck =CIk∝
1

22k

4k∑
j=0

c̃4k,jK3k−j+(α+2)

(√
4a(2Ã+β)

)[√
a

2Ã+β

]−3k−2−α+j
.

(6.83)
In (6.83), note that 3k−j+α+2>0 for j=0, . . . ,3k+1 as α+1>0. For
3k+2≤ j≤4k, the order of the modified Bessel function involved in Ck
might be positive, depending on the magnitude of α. Let us first suppose
α>k−2 such that 3k−j+α+2>0 for all j=0, . . . ,4k. As for ν→∞ one
has

Kν(z)∼
√
π

2ν

(2ν
ez

)ν
(6.84)

then

Ck∝
1

22k

4k∑
j=0

c̃4k,j√
3k−j+α+2

(3k−j+α+2
ea

)3k−j+α+2
. (6.85)

When k grows, the dominant term in (6.85) is for j= 0, and the result follows.
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6 – First Passage Time Density Approximation

If α<k−2, then Ck might be splitted in Ck∝Ck,1 +Ck,2 with

Ck,1 = 1
22k

k∗∑
j=0

c̃4k,jK3k−j+(α+2)

(√
4a(2Ã+β)

)[√
a

2Ã+β

]−3k−2−α+j

Ck,2 = 1
22k

4k∑
j=k∗+1

c̃4k,jK3k−j+(α+2)

(√
4a(2Ã+β)

)[√
a

2Ã+β

]−3k−2−α+j

where k∗ is such that 3k−k∗ +α+2>0 and 3k−k∗ +α+1<0. For α∈
(−1,0), we have 3k−j+(α+2)<0 for 3k+2≤ j≤4k and Ck,2 includes the
maximum number of terms, that is

Ck,2 = 1
22k

4k∑
j=3k+1

c̃4k,jKj−3k−(α+2)

(√
4a(2Ã+β)

)[√
a

2Ã+β

]−3k−2−α+j

∼ 1
22k

4k∑
j=3k+1

c̃4k,j√
j−3k−α−2

(
j−3k−α−2
e(2Ã+β)

)j−3k−α−2
. (6.86)

The dominant term in (6.86) is for j=4k and the asymptotic behaviour of
Ck is still of order kk.

Observe that for k=2, from (6.77) we recover a similar result to the one
obtained in Theorem 6.3.1.

Remark 6.5.5. Note that if β= 1
σ2

(
µ− σ2

2

)2
the integral Im in (6.82) con-

verges if and only if α>m−2. Indeed in such a case 2Ã+β=0 and Im in
(6.82) reduces to

Im=
4m∑
j=0

c̃4k,j

∫ ∞

0
exp(−ay) y(3m+2+α−j)−1 dt. (6.87)

The integral on the rhs of (6.87) is convergent if and only if 3m+2+α−j >0
for all j=0, . . . ,4m, that is if and only if α>m−2. Therefore (6.77) still
holds with k<α+2. In such a case we have

Ck = CIk∝
1

22k

4k∑
j=0

c̃4k,ja
3k+α+2−jΓ(3k−j+α+2)

∝ 1
22k

4k∑
j=0

c̃4k,ja
3k+α+2−j (3k−j)3k−j+α+3/2

e3k−j (6.88)

as Γ(z+b)∼
√

2πe−zzz+b−1/2. As the leading term in (6.88) is for j=0, we
still have Ck =O(kk).
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6.6 Numerical Results

In this section, the functions Ĝn in (6.41) and ĝn in (6.37) are used to
approximate the FPT cdf Gcir (resp. Ggbm) and the FPT pdf gcir (resp. ggbm)
of a CIR process as in (6.55) (resp. GBM process as in (6.62)) with the
corrections suggested in subsections 6.4.4 and 6.4.5, given the series repre-
sentation of gcir in (6.61) (resp. of ggbm in (6.75)). In each of the two cases,
we will stress out different strengths and weaknesses of the proposed method.
For instance, while in the GBM case we will try to highlight how differently
shaped reference and objective density may impact the approximation, fo-
cusing on the pdf, in the CIR case we will show how the standardization
explained in the second part of Section 6.4.3 may be an useful tool to deal
with the same issue and we will also deal with the cdf.

Before examining specific numerical examples, in the following subsection
we provide some details on how the goodness of approximation can be
assessed.

6.6.1 Comparisons With Alternative Approximation Methods

GBM Since ggbm is known as explained in Section 6.5.2, it was possible
to test the accuracy and efficiency of the approximation by comparing ĝn
in (6.37) with the true FPT pdf ggbm in (6.65) using the following two
approaches:

(a) a graphical approach by simply comparing the plot of ĝn and ggbm,

(b) a quantitative approach by computing |ggbm(t)− ĝn(t)| for t>0.

CIR As a closed form of the FPT pdf gcir and cdf Gcir for a CIR process
is in general not available, the validity of proposed approximations needs to
be evaluated by comparing it with other estimates obtained using different
techniques.

As mentioned in the introduction, for one-dimensional diffusion processes,
the FPT pdf through a time-dependent boundary can be recovered as the
solution of a Volterra integral equation of the second kind (Buonocore et al.,
1987). With appropriate numerical methods for approximating the integral,
a discrete numerical evaluation of this solution can be performed to obtain
an approximation of gcir. However, during the implementation of these
methods, we encountered significant challenges. When the coefficient of
variation is large, this procedure was prone to overflow failures, potentially
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6 – First Passage Time Density Approximation

leading to highly inaccurate results. This issue is likely exacerbated by the
inevitable propagation of numerical errors, as in this procedure the new
approximated values of the FPT pdf rely on those computed in previous
steps. Nevertheless, even for FPT pdfs with a small coefficient of variation,
we faced several implementation difficulties. Indeed, in any case, the presence
of the Bessel function in the transition pdf of the process complicates the
numerical evaluation of its derivatives. Moreover, similar issues arose when
using the R package fptdApprox (Román-Román et al., 2023). Despite
these challenges, the numerical results, excluding these pathological cases,
are comparable to those obtained through classical Monte Carlo methods.
Consequently, we have opted to use Monte Carlo methods as alternative
tools to assess the accuracy of our approximations.

In this context, with Monte Carlo method we refer to simulating sample
paths of the CIR process and look for their FPTs over the given threshold.
Within this procedure, we first implemented the Milstein algorithm (Platen
and Kloeden, 1992) to sample the paths of the CIR process, which generates
a trajectory by a suitable discretisation of the stochastic differential equation
(6.55). As it is well-known, this procedure may easily become time-consuming.
For instance, to get a FPT sample of size N >0, it is clear that at least
N different trajectories of the CIR process must be generated. Indeed, not
all the generated trajectories may reach the threshold in a "reasonable"
time. This also implies that the FPT pdf can be underestimated if a
finite time interval has been set for the simulation, as usually happens.
Moreover, the fixed time step determines how accurately the dynamics can
be described and the computational time increases as this time step gets
smaller. Therefore, it is necessary to choose a very small step size and
simulate many trajectories of the CIR process to obtain significant results.
This can become computationally intense, especially if the coefficient of
variation of T is large, as a consequence of the likelihood of a large time
span length over which the trajectories must be simulated.

Similar problems may arise when sampling trajectories of the CIR process
using its transition pdf, a non-central chi-square distribution (see, e.g., Feller,
1951). Set ∆t>0. In such a case, starting from Y0 =y0, an instance of Y∆t
is generated from the conditional distribution of Y∆t|Y0 =y0, an instance of
Y2∆t from the conditional distribution of Y2∆t|Y∆t and so on. The results
obtained by the two Monte Carlo methods are comparable. However we
have used the Milstein algorithm, since the computational time is lower in
all the cases examined.
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Once a sample of independent and identically distributed (i.i.d.) FPTs,
denoted by T ={T1, . . . ,TN}, N ∈N+, has been collected, the empirical cdf
(ecdf) can be used to obtain a sufficiently reliable estimate of the cdf shape.
Among the available nonparametric methods for estimating the pdf, the
histogram is the most widely used. However, its limitations, such as the
significant dependence on bandwidth choice, are well-documented in the
literature. Kernel density estimators (KDEs) are often cited as simple
alternatives to histograms. Nevertheless, if the unknown pdf is supported on
the positive half-line and lacks smoothness at the origin, the kernel method
may be inefficient (Hall, 1980). For instance, the KDE might obscure the
mode of the unknown pdf by assigning positive mass to negative values (see
Fig. 6.6.9). To achieve the smoothness characteristic of KDEs while obtaining
an adequate estimated density with support (0,∞), an estimator based on an
orthogonal series can be highly competitive (Efromovich, 2010). This latter
approach turns out to be an intriguing application of the approximation ĝn
itself and thus will be discussed in more detail in Section 6.7.2. Consequently,
to evaluate the effectiveness of these approximations, histograms and classical
KDEs have been employed despite their known shortcomings.

6.6.2 Numerical Examples for the GBM

Recall that for the GBM the FPT pdf is known and we have

ggbm(t)=
√

a

2πt3 exp
(
− a(t−b)2

2b2t

)
, t>0. (6.89)

where
a= (lnS− lny0)2

σ2 >0 and b= lnS− lny0

µ− σ2

2
>0.

We consider three different cases of the GBM defined as in (6.62). Throughout
the whole section we fix the boundary S= 10 and the starting position y0 = 1.

case Agbm: µ=4 and σ=1.4,

case Bgbm: µ=2.2 and σ=1.4,

case Cgbm: µ=1.4 and σ=1.4.

Note that as shown in Fig. 6.6.1, as the parameters change, the FPT pdf
ggbm and the reference pdf fα,β can be remarkably different. From now
onward, whenever mentioned, the stopping criteria in (6.47) are employed
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Figure 6.6.1: Plots of the FPT pdf ggbm (red dashed line) and the corresponding reference
pdf fα,β (black solid line), in a) for case Agbm with α=2.54 and β=4.65, in b) for case
Bgbm with α=0.43 and β=0.76 and in c) for case Cgbm with α=−0.05 and β=0.09.

with ε= 10−14. Furthermore, for all the three considered cases the parameters
α and β of fα,β in (6.37) have been chosen according to Section 6.4.3. In
Figs. 6.6.2, 6.6.3 and 6.6.4 we have plotted the polynomial approximation
ĝn (blue solid line) and the true density ggbm (red dashed line) for the three
mentioned cases using four different orders of approximation each time.

By comparing the three figures we can make the following remarks.

(a) In case Agbm, where the reference pdf fα,β and the FPT pdf ggbm have a
similar behaviour, a low degree n already guarantees a good approxima-
tion,

(b) as µ diminishes and the computed α decreases, indicating an increased cv
for Tgbm as explained in Section 6.4.3, the reference pdf loses its typical
bell shape and deviates further away from the FPT pdf ggbm,

(c) in all the considered cases the goodness of the approximation increases
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Figure 6.6.2: Plots of the polynomial approximation ĝn (blue solid line) and of the true
density ggbm (red dashed line) in case Agbm with S=10, y0 =1, µ=4 and σ=1.4 for n=3
in a) n=5 in b) n=16 in c) and n=30 in d), where the last n is the minimum integer
s.t. conditions (6.47) do not hold.

with n as long as conditions (6.47) are satisfied,

(d) compared with cases Agbm and Bgbm, case Cgbm proves to be the hardest
to tackle; in fact even for n=36 the approximant ĝn does not match
the peak of ggbm. A cause of this could be the fact that, for α<0, the
mode of the reference pdf fα,β is not well defined and thus the initial
approximation is very different from ggbm. Moreover, for the choice of
parameters σ2 = 1.4 and µ= 1.4 the stochastic component of the dynamics
prevails over the deterministic one, resulting in a flatter FPT pdf ggbm.
To get a better approximation we should consider even higher values
of n, but this would be prevented by the increasing numerical errors,
unless one employs an increased numerical precision (an example of this
will be given in the CIR scenario).

In Fig. 6.6.5 we have plotted the absolute error between the true FPT pdf
278



6 – First Passage Time Density Approximation

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 a)approx

true

b)approx

true

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 c)approx

true

0 2 4 6 8

d)approx

true

Figure 6.6.3: Plots of the polynomial approximation ĝn (blue solid line) and of the true
density ggbm (red dashed line) in case Bgbm with S= 10, y0 = 1, µ= 2.2 and σ= 1.4 for n= 3
in a) n=8 in b) n=16 in c) and n=29 in d), where the last n is the minimum integer
s.t. conditions (6.47) do not hold.

ggbm and the approximated ĝn, that is the function |ggbm(t)− ĝn(t)| for t>0,
for the three considered cases and for the smallest n such that conditions
(6.47) do not hold anymore.

6.6.3 Numerical Examples for the CIR

Before proceeding further, note that, unlike for the GBM, in the case of
the CIR process an additional issue arises in computing (6.25). As they are
not available in a closed form, the moments of Tcir are calculated from its
cumulants (6.57) using the recursion (6.60). Because of the series involved in
(6.57), a truncation order m should be chosen before computing the moments
through (6.60). Here, a standard approach has been used, which involves
computing partial sums of the series as long as their difference exceeds an
input tolerance. To analyse the efficiency and the usefulness of the proposed
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Figure 6.6.4: Plots of the polynomial approximation ĝn (blue solid line) and of the true
density g (red dashed line) in case C with S=10, y0 =1, µ=1.4 and σ=1.4 for n=3 in
a) n=15 in b) n=25 in c) and n=36 in d), where the last n is the minimum integer
s.t. conditions (6.47) do not hold.

method in the CIR process case we consider three different sets of parameters
for (6.55).

case Acir: y0 =0.2, µ=0.9, S=1, c=0, σ=1.2 and τ =2/3,

case Bcir: y0 =0.01, µ=0.005, S=0.02, c=0, σ=0.1 and τ =0.25,

case Ccir: y0 =0, µ=3, S=10, c=−10, σ=1.2 and τ =0.2.
We stress out again that in these three cases a closed form of the FPT
pdfs gcir and cdfs Gcir is not available. Nevertheless, by observing plots of
empirical FPT cdfs in Fig. 6.6.6, we can infer that the different considered
parameters result in FPT pdfs gcir and cdfs Gcir with various forms and
statistical properties.

The empirical cdfs have been constructed after using the Milstein method
to simulate a sample of 104 FPTs for each case, as said in Section 6.6.1.
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a)

b)

c)

Figure 6.6.5: Plots of the absolute error |ggbm− ĝn| between the true FPT pdf ggbm and the
approximation ĝn for the smallest n s.t. conditions (6.47) do not hold in case Agbm with
S=10, y=1, µ=4 and σ=1.4 in a), case Bgbm with S=10, y0 =1, µ=2.2 and σ=1.4 in
b) and case Cgbm with S=10, y=1, µ=1.4 and σ=1.4 in c).

As we continue, these three samples are denoted by TAcir , TBcir and TCcir

respectively.
For each case, as further information on the shape of the unknown FPT

pdf gcir, we have computed the FPT dispersion coefficients as given in Section
6.4.3. The coefficient of variation is computed using the theoretical FPT
mean and variance, since they are known from Section 6.5.1. The estimated
relative entropy based dispersion coefficient ĉh is computed with the Vasicek
estimator (Kostal and Pokora, 2012) using the samples TAcir , TBcir and TCcir

respectively. The results are given in Table 6.6.1.
As in the previous subsection, note that, whenever mentioned, the stopping

criteria in (6.47) are employed with ε=10−14 and recall that parameters
α and β in (6.37) have been chosen according to the first part of Section
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Figure 6.6.6: Plots of the empirical (not standardized) FPT cdfs for cases Acir (in solid
red), Bcir (in dash green), and Ccir (in dashed purple).

Table 6.6.1: FPT dispersion indexes cv and ĉh togheter with mean, standard deviation,
skewness and kurtosis for the cases A, B and C.

cv ĉh E[T ]
√

Var[T ] γ1 κ1
A 0.855 0.909 1.16 0.984 1.968 5.9862
B 1.231 0.916 2.991 13.56 2.39 8.118
C 0.765 0.855 3.937 9.084 1.905 5.572

6.4.3. Unlike in the previous section, in this case we have employed the
standardization procedure detailed in the second part of Section 6.4.3. Indeed,
Figs. 6.6.7, 6.6.8, 6.6.9 and 6.6.10 refer to the standardized FPT rv T̃ in
(6.49). In Fig. 6.6.7 we have plotted the empirical cdfs Ge, corrisponding to
the samples TAcir , TBcir and TCcir , together with the approximated cdfs G̃n,
as obtained using (6.51) and the corrections described in Section 6.4.4, for
∆t=10−5, normalized by the corresponding standard deviations (see Table
6.6.1). Moreover each figure displays the maximum absolute error defined
as εa=maxt≥0 |G̃n(t)−Ge(t)|. Figs. 6.6.8, 6.6.9 and 6.6.10, correspond to
cases Acir, Bcir and Ccir respectively. To emphasise the differences in density
estimations, as discussed in Section 6.6.1, we have plotted in these figures a
classical KDE and the standardised approximated pdf g̃n, corrected according
to Section 6.4.5. Since the three considered instances correspond to FPT pdfs
with different shapes, these comparisons should help in providing a further
comprehensive picture of the strengths and weaknesses of the proposed
method in addition to the already treated GBM case. They are discussed in
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εa = 0.01513 εa = 0.06027 εa = 0.02197

a) b) c)

Figure 6.6.7: Plots of the approximated G̃n (in solid blue) and of the empirical cdf (in
dashed red) together with the corresponding maximum absolute error εa. The plots refer:
to case Acir in a) with n=10, α=0.367 and β=1.17; to case Bcir in b) with n=10,
α=−0.34 and β=0.812; to case Ccir in c) with n=9, α=0.7 and β=1.306. Note that
G̃n(t) is obtained using the stopping criteria (6.47) and corrected according to Section 6.4.4
while the empirical cdf is obtained from the standardized samples TAcir ,TBcir and TCcir

respectively.

the following.

Figure 6.6.8: plot of g̃n (in solid blue) in case Acir with n=10, α=0.367 and β=1.17,
obtained with the stopping criteria (6.47) and corrected to ensure positivity as in (6.54),
together with a KDE (in dashed red) and a histogram both computed with the standardized
sample TAcir .
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a)

b)

Figure 6.6.9: In a), plot of g̃n (in solid blue) in case Bcir with n=10, α=−0.34 and
β=0.812, obtained with the stopping criteria (6.47) together with a KDE (in dashed red)
and a histogram both computed with the standardized sample TBcir . In b), a plot of g̃n (in
solid blue) in case B with n=55, α=−0.34 and β=0.812, obtained without any stopping
criterion, increasing the numerical precision.

Case Acir

Among the three instances taken into consideration, case Acir has the lightest
tail (see Fig. 6.6.6). Intuitively, this should result in an accurate approxi-
mation even with a small value of n. Indeed the maximum absolute error
between the empirical and approximated cdf is low as shown in Fig. 6.6.7-a).
It is assumed at t=0.134. For the pdf, the suggested approach combined
with the stopping criteria (6.47) yield an approximation g̃n with n=10,
α=0.367 and β=1.17. In this case, g̃n is negative on a small interval after
the mode, as shown in Fig. 6.4.1. Therefore, the correction outlined in Sec-
tion 6.4.5 has been implemented. This corrected approximation is plotted in
Fig. 6.6.8. An estimated pdf obtained with a classical KDE and a histogram,
both computed on the standardized sample TAcir , are shown on the same
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Figure 6.6.10: plot of g̃n (in solid blue) for case Ccir with n=9, α=0.7 and β=1.306,
obtained with the stopping criteria (6.47) and corrected to ensure positivity as in (6.53),
together with a KDE (in dashed red) and a histogram both computed with the sample
TCcir , after the latter has been standardized.

figure.

Case Bcir

In this case, different considerations are required. From Table 6.6.1, the
FPT rv Tcir has a coefficient of variation larger than 1. This makes the
approximation more challenging because the distribution seems to have
a significant tail (see Fig. 6.6.6). The stopping criteria (6.47) yield an
approximated FPT pdf g̃n with n=10, α=−0.34 and β=0.812, which can
be seen in Fig. 6.6.9 a). When compared with a KDE and a histogram, it
seems that n= 10 is not enough to recover g̃cir. A relatively low n is caused
by the first conservative stopping criterion in (6.47), proposed to avoid
numerical instability, which, in this trickier case, seems to arise somehow
quickly. To underline that the behavior of g̃n is significantly influenced by the
numerical precision, Fig. 6.6.9-b) shows the remarkably good approximation
obtained when computing g̃n with a very high numerical precision, allowing
to push the iterative procedure up to n=55. The numerical precision has
been raised using the R-package bignum (Hall, 2023). Still, it is worth to
mention that the approximation g̃n in Fig. 6.6.9-a) yields a satisfactory result
for the tail of g̃cir. Note that the maximum absolute error between empirical
and approximated cdf, assumed at t=0.042, is higher compared to case A
(see Fig. 6.6.7-b)).
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Case Ccir

In this case, the FPT pdf has a coefficient of variation less than 1 along with
a tail whose heaviness lies between cases Acir and Bcir, as can be seen in
Fig. 6.6.6 and Table 6.6.1. As in case Acir, this value of the coefficient of
variation should intuitively ensure a good approximation. The suggested
approach yields an approximated FPT pdf g̃n with n=9, α=0.7 and β=
1.306. In this case, g̃n is negative on a small interval before the mode and
close to the origin (see Fig. 6.4.1). Therefore, also in this case, the correction
of g̃n described in Section 6.4.5 has been used. The result is shown in
Fig. 6.6.10. Furthemore, as expected, the maximum absolute error between
the empirical and approximated cdfs (see Fig. 6.6.7-c)) is low. It is assumed
at t=1.365.

6.7 Applications

6.7.1 An Acceptance-Rejection Type Algorithm

In this section we delineate an application of the polynomial FPT pdf
approximation described previously. Let n∈N. It consists in a modified
acceptance rejection algorithm which exploits the form of the approximant
ĝn in (6.37).

The acceptance-rejection method is a well known technique for sampling
from a distribution that is unknown or difficult to simulate through the
classical inverse transformation. Under such circumstances, samples are col-
lected from an auxiliary density by making use of a probability of acceptance
(Chib and Greenberg, 1995; Casella et al., 2004).

More in details, let Z be an absolutely continuous rv with pdf π. Suppose
there exists a constant M>0 and a pdf q such that

q(x)>0 and π(x)
q(x) ≤M, ∀x∈ supp(π). (6.90)

The acceptance-rejection method exploits the condition in (6.90) to sample
from the support of Z. Clearly, the rv Xq having density q should be easy
to sample from. Suppose that, as in the case of the CIR process, the FPT
pdf g is unknown and the moments of T (or the cumulants of T ) are known.
We then assume that g

f has the L2
fα,β

series representation
g

fα,β
=
∑
k≥0

a
(α,β)
k Q

(α,β)
k . (6.91)
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Recall that from the latter we obtain the approximant ĝn as

ĝn(t)
fα,β(t) =pn(t), t∈ (0,∞), (6.92)

where pn is given in (6.38). We further assume ĝn is non-negative for all
t>0. Note that, in practice, the latter assumption is not restrictive since we
can always provide a positive approximant using the methodology proposed
in Section 6.4.5. Expression (6.92) clearly resembles (6.90). Unfortunately,
since pn is a polynomial for any n>0, the right hand side of (6.92) is
unbounded on (0,∞) and thus condition 6.90 is not satisfiable.

By suitably correcting for the unboundedness of pn, we provide a modifi-
cation of the standard acceptance-rejection method with the aim of sampling
from the FPT rv T using (6.92). Let Tn be the rv with pdf ĝn over (0,∞).
As we continue, Condition 6.2.1 is assumed to hold, so that we can make
use of statements 1. and 2. of Proposition 6.2.2, as shall become clearer in a
moment. The main steps of the method we propose can be summarized as
follows:

i) find a constant C>0 such that P(T >C)≤ ε, for a fixed, small ε>0;

ii) for t≤C apply the classical acceptance-rejection method to a truncated
approximant ĝTn|C using the ratio

ĝTn|C(t)
f̃α,β|C(t)

≤M where M = P(Tn≤C)
P(Xα,β≤C) max

t∈[0,C]
pn(t) (6.93)

and

f̃α,β|C(t)= fα,β(t)
P(Xα,β≤C)1(0,C](t), ĝTn|C(t)= ĝn(t)

P(Tn≤C)1(0,C](t); (6.94)

iii) for t>C sample from a truncated exponential rv T̄ with pdf

gT̄ (t)= 1
E[T ] exp

(
−t−C
E[T ]

)
1(C,+∞)(t). (6.95)

Note that the last step takes into account 2. of Proposition 6.2.2, that is, the
FPT pdf’s exponential asymptotic behaviour for one-dimensional diffusion
processes with steady-state distribution (see, for instance, Masoliver and
Perelló, 2014; Nobile et al., 1985).
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Remark 6.7.1. Note that the last step could be implemented whenever we
know that there exists a well known pdf h, whose corresponding rv Xh should
be easy to sample from, such that

g(t)≈h(t), t→∞.

Exploring this could be subject of future work (see Section 7.2.3 in Chapter
7).

Algorithm 3 outlines the proposed method for constructing an “approxi-
mated” sample S of size N from T .

Algorithm 3: Modified acceptance-rejection method

Set the parameters α, β>0, n∈N+ and ε>0.
Initialise

Find a constant C>0 such that P(T >C)≤ ε.
Set M as in (6.93).
j←1.
S←{}.

While j <N

With probability ε
Generate T̄ from the truncated exponential pdf in (6.95).
S←S∪ T̄ .
j← j+1.

With probability 1−ε
Generate G from the truncated gamma pdf f̃α,β|C in (6.94).
Generate U ∼U(0,1).
While U >

ĝTn|C(G)
M f̃α,β|C(G)

Generate G from the truncated gamma pdf f̃α,β|C in (6.94).
Generate U ∼U(0,1).

S←S∪G.
j← j+1.

Return S.

In addition to the user-specified input parameters, the constant C in i)
must be chosen for the algorithm initialization. The so-called Vysochanskij-
Petunin inequality for one-sided tail bounds (Mercadier and Strobel, 2021)
can be employed to achieve that.

Theorem 6.7.1 (Vysochanskij-Petunin inequality). If r≥0 and X is a rv
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with unimodal density, finite mean µ and finite variance σ2, then

P(X−µ≥ r)≤


4
9

σ2

σ2+r2 if 3r2≥5σ2,
4
3

σ2

σ2+r2 − 1
3 otherwise.

(6.96)

Since, under our assumptions, the moments of T are known and the FPT
rv g is unimodal from 1. in Proposition 6.2.2, the Vysochanskij-Petunin
inequality can be applied. Indeed, to recover a C such that P(T >C)≤ ε,
one can proceed as follows. Fix ε>0. Setting 4σ2/[9(σ2 +r2)] = ε in the first
inequality (6.96), we recover r= r(ε) as a function of ε and get the condition
ε≤1/6 from 3r(ε)2≥5σ2. Then set C=µ+r(ε) where

r(ε)=


√

4σ2

9ε −σ2 if ε≤1/6,√
4σ2

1+3ε−σ2 if 1/6<ε≤1.
(6.97)

It is clear that the quality of the outcome of Algorithm 3 relies on the
approximation ĝn and the selection of an exponential distribution for t>C.
A theoretical justification for it is provided in the following. At first, in
the next result we compute the cdf of the rv Y whose observations are
generated by Algorithm 3, using the classical proof of the validity of the
acceptance-rejection method.

Lemma 6.7.2. If Y denotes the rv sampled at the end of each cycle of
Algorithm 3, then

P(Y ≤ t)= ε

[
1−exp

(
−t−C
E(T )

)]
+(1−ε)P(Tn≤ t |Tn≤C), t>0

where C, n and ε are given in Algorithm 3, and Tn is the rv with pdf ĝn.

Proof. According to Algorithm 3, we have

P(Y ≤ t)=P(X=1)P(T̃ ≤ t)+P(X=0)P(G≤ t |Gaccepted) (6.98)

where X is a Bernoulli rv of parameter ε∈ (0,1) independent from the rv T̃ ,
with truncated exponential pdf gT̄ in (6.95), and the rv G with truncated
gamma pdf f̃α,β|C in (6.94). Thus from (6.95) and (6.98), we have

P(Y ≤ t)= ε

[
1−exp

(
−t−C
E(T )

)]
+(1−ε)P(G≤ t |Gaccepted). (6.99)

For the latter term in (6.99) observe that

P(G≤ t |G accepted)=M P(G≤ t,G accepted) (6.100)
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since P(G accepted)=1/M with M given in (6.93). Moreover

P(G≤ t, G accepted)=
∫ ∞

0
P(G≤ t, G accepted |G=x) f̃α,β|C(x) dx

=
∫ ∞

0
P(G≤ t |G=x)P(G accepted |G=x) f̃α,β|C(x) dx

(6.101)

since (G≤ t) and (G accepted) are conditionally independent events. For
any x∈ (0,∞), observe that P(G≤ t |G=x)=1x≤t and

P(G accepted |G=x)=P
U ≤ ĝTn|C(G)

M f̃α,β|C(G)

∣∣∣∣∣G=x


=P

U ≤ ĝTn|C(x)
M f̃α,β|C(x)

= ĝTn|C(x)
M f̃α,β|C(x)

(6.102)

since U is a rv with uniform distribution over (0,1). Plugging (6.102) in
(6.101) and the resulting integral in (6.100), we get

P(G≤ t |G accepted)=M
∫ ∞

0
1x≤t

ĝTn|C(x)
M f̃α,β|C(x)

f̃α,β|C(x)dx=
∫ t

0
ĝTn|C(x)dx,

and the result follows from (6.94).

The following is a technical lemma necessary for the forthcoming proposi-
tion. For any t≤C, it provides an upper bound of the error in approximating
the truncated FPT cdf P(T ≤ t |T ≤C) with the corresponding approxi-
mated P(Tn≤ t |Tn≤C) obtained using the Laguerre-Gamma expansion ĝn
in (6.37).

Lemma 6.7.3. Under the same hypotheses as Lemma 6.7.2, for any t≤C
we have∣∣∣∣P(Tn≤ t |Tn≤C)−P(T ≤ t |T ≤C)

∣∣∣∣
≤ 1

P(Tn≤C)

 ∑
k≥n+1

(a(α,β)
k )2


1
2 (

1+ 1
P(T ≤C)

)
(6.103)

where a(α,β)
k =E[Q(α,β)

k (T )] for k≥0, with Q(α,β)
k as in (6.11).
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Proof. For t≤C, let gT |C(t)=1(0,C](t)g(t)/P(T ≤C) be the truncated FPT
pdf and ĝTn|C(t) as in (6.94). We have∣∣∣∣ĝTn|C(t)−gT |C(t)

∣∣∣∣=
∣∣∣∣∣ ĝn(t)
P(Tn≤C)−

g(t)
P(T ≤C)

∣∣∣∣∣
≤ 1

P(Tn≤C) |ĝn(t)−g(t)|+g(t)
∣∣∣∣∣ 1
P(Tn≤C)−

1
P(T ≤C)

∣∣∣∣∣ .
Using the previous inequality, the difference between the truncated FPT cdf
and its approximation by means of the Laguerre-Gamma expansion may be
bounded as follows:

|P(Tn≤ t |Tn≤C)−P(T ≤ t |T ≤C)|=
∣∣∣∣∣
∫ t

0
[ĝTn|C(s)−gT |C(s)]ds

∣∣∣∣∣
≤
∫ ∞

0
|ĝTn|C(t)−gT |C(t)]|dt≤ 1

P(Tn≤C)

∫ ∞

0

|ĝn(s)−g(s)|
φα,β(s) φα,β(s)ds

+
∣∣∣∣∣ 1
P(Tn≤C)−

1
P(T ≤C)

∣∣∣∣∣
∫ ∞

0
g(s)ds︸ ︷︷ ︸
=1

= 1
P(Tn≤C)

∥∥∥∥∥ ĝn−gfα,β

∥∥∥∥∥
L1(ν)

+
∣∣∣∣∣ 1
P(Tn≤C)−

1
P(T ≤C)

∣∣∣∣∣ (6.104)

where L1
ν is the Hilbert space of the integrable functions with respect to the

measure ν having density fα,β. Observe that∥∥∥∥∥ ĝn−gfα,β

∥∥∥∥∥
L1(ν)
≤
∥∥∥∥∥ ĝn−gfα,β

∥∥∥∥∥
L2

ν

=
 ∑
k≥n+1

(a(α,β)
k )2

1/2

(6.105)

where the last equality follows from (6.32). Finally, since∣∣∣∣∣ 1
P(Tn≤C)−

1
P(T ≤C)

∣∣∣∣∣≤ 1
P(Tn≤C)

(
1+ P(Tn≤C)

P(T ≤C)

)
(6.106)

with P(Tn≤C)≤1, plugging (6.106) and (6.105) in (6.104) the result follows.

Given the latter lemma, we are able to state the following proposition
which provides a theoretical justification of the proposed acceptance-rejection
Algorithm 3.
Proposition 6.7.4. Under the same hypotheses as Lemma 6.7.2, for every
δ>0, there exist a finite constant Cδ and an integer nδ ∈N such that, for
n>nδ and C>Cδ in Algorithm 3, we have

|P(Y ≤ t)−P(T ≤ t)|<δ, t>0.
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Proof. Fix δ, n>0 and ε>0 and let C>0 be the corresponding quantity
calculated in Algorithm 3. Let any t>0. By plugging P(T ≤ t)=P(T ≤
C)P(T ≤ t|T ≤C)+P(T >C)P(T ≤ t|T >C) in |P(Y ≤ t)−P(T ≤ t)| and us-
ing Lemma 6.7.2, the following bound can be recovered:

|P(Y ≤ t)−P(T ≤ t)|≤P1 +P2

where

P1 := |εP(T̄ ≤ t | T̄ >C)−P(T >C)P(T ≤ t |T >C)|
P2 := |(1−ε)P(Tn≤ t |Tn≤C)−P(T ≤C)P(T ≤ t |T ≤C)|,

T̄ is the truncated exponential rv with pdf in (6.95) and Tn is the rv
with pdf ĝn. Now, let us bound P1. Adding and subtracting the quantity
εP(T ≤ t |T >C) in P1, we get

P1≤P1,1 +P1,2 with
{
P1,1 := ε|P(T̄ ≤ t | T̄ >C)−P(T ≤ t |T >C)|,
P1,2 := P(T ≤ t |T >C)|ε−P(T >C)|.

Since P(T >C)≤ ε by the definition of C and thanks to the exponential
behaviour of the tails of the FPT pdf which holds by 2. of Proposition 6.2.2,
by eventually decreasing ε it is always possible to find Cδ,1 (big enough) such
that P1,1<

δ
4 and P1,2<

δ
4 . Let us apply the same strategy to P2. Adding

and subtracting the quantity (1−ε)P(T ≤ t |T ≤C) in P1, we get

P2≤P2,1 +P2,2 with
{
P2,1 := (1−ε)|P(Tn≤ t |Tn≤C)−P(T ≤ t |T ≤C)|,
P2,2 := P(T ≤ t |T ≤C)|ε−P(T >C)|.

From Lemma 6.7.3, the quantity P2,1 can be made sufficiently small by
taking an nδ ∈N large enough since the remainder (6.32) goes to zero as
n increases, as we have assumed (6.109). Similarly as what has been done
for P1 above, thanks to the exponential behaviour of the FPT pdf tail, by
eventually decreasing ε we can always find Cδ,2 and nδ such that P2,1<

δ
4

and P2,2<
δ
4 . Setting Cδ =max(Cδ,1, Cδ,2) concludes the proof.

Remark 6.7.5. Note that although Proposition 6.7.4 guarantees that we can
always choose a constant C and an order n such that the cdf of Y sampled in
each cycle of Algorithm 3 is sufficiently close to the cdf of T , as C increases
by decreasing ε, as seen in (6.97), M =maxt∈[0,C]pn(t) will increase or at
most remain constant. However, the probability of acceptance in Algorithm 3
is 1

M . Therefore, there is a trade-off between increasing C, to achieve better
accuracy, and the running time of the proposed algorithm.
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The ability of Algorithm 3 to generate a satisfactory “approximated"
sample from the FPT rv is shown in Figs. 6.7.1, 6.7.2, and 6.7.3. Since
we have initially assumed Condition 6.2.1, the method has been hereby
applied only to the CIR process. Additionally, in this case, the lack of a
closed form of gcir and of exact simulation methods are strong motivations
for investigating this procedure. We consider cases Acir, Bcir and Ccir as
in Section 6.6.3 with the standardisation procedure outlined in Section
6.4.3. Hence in (6.94), instead of ĝn, we use the approximation g̃n of the
pdf g̃cir corresponding to T̃ =T/σT , where σT is the standard deviation
of T . Moreover, whenever mentioned, n in g̃n has been computed using
the stopping criteria in (6.47) with ε=10−14 and the parameters α and
β in (6.37) have been chosen according to the first part of Section 6.4.3.
Again, case Bcir requires a special attention for two main reasons. On one
hand, the corresponding α=−0.34 and β= 0.812 leads to a peaked reference
distribution, which increases the probability of rejection. On the other
hand, a high numerical precision is required to obtain a satisfactory g̃n, as
already mentioned. However, in our numerical experiments the main source
of a lengthy computational time was the higher order n used for obtaining
g̃n, rather than the acceptance-rejection method itself. Despite this, the
overall computational time remained competitive when confronted with the
remaining cases.

6.7.2 Orthogonal Series Estimators

Suppose a sample of i.i.d. FPTs T ={T1, . . . ,TN} generated by a FPT rv T
having unknown density g is available, arising either from simulations or
from experiments. We additionally assume that not even the moments (or
cumulants) of T are known. Nevertheless, we can still assume that g

f has a
L2
fα,β

series representation and as usual from the latter we can formally obtain
the approximant ĝn, even though it cannot be directly computed. However,
it can be still exploited in this context as shown in the following. Indeed,
given the availability of a sample it is intuitive to replace the theoretical
moments appearing in the cofficients {B(α,β)

k }k≥0 of ĝn as in (6.24) with the
corresponding sample moments computed on T . Proceeding in this way, a
straightforward calculation shows that replacing FPT moments {E[T j]}nj=1

with sample moments is equivalent to replacing E[L(α,β)
k (T )] in (6.24) with
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C

rejection sampling

ĝTn|C(t)

Mf̃α,β|C(t)

rejected

accepted

sample from truncated exp

Figure 6.7.1: Plot of rejected draws (in red) and accepted draws (in blue) for the acceptance-
rejection part of Algorithm 3 with N =3000, ϵ=0.05 and n=10 applied to case Acir,
together with the corresponding Mf̃α,β|C and g̃Tn|C = g̃n

P(Tn≤C)1(0,C] as in (6.94), with C=
3.97, α= 0.367 and β= 1.17. Only a portion (10%) of rejected and accepted draws has been
plotted, for easier viewing. On the same plot an histogram computed on the sample of size
N =3000 arising from Algorithm 3 with the aforementioned parameters is shown.

ĝTn|C(t)

Mf̃α,β|C(t)

rejected

accepted

sample from truncated exprejection sampling

C

Figure 6.7.2: Plot of rejected draws (in red) and accepted draws (in blue) for the acceptance-
rejection part of Algorithm 3 with N = 3000, ϵ= 0.05 and n= 55 applied to case Bcir, together
with the corresponding Mf̃α,β|C and g̃Tn|C = g̃n

P(Tn≤C)1(0,C] as in (6.94), with C=3.621,
α=−0.34 and β=0.812. Only a portion (10%) of rejected and accepted draws has been
plotted, for easier viewing. On the same plot an histogram computed on the sample of size
N =3000 arising from Algorithm 3 with the aforementioned parameters is shown.
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ĝTn|C(t)

Mf̃α,β|C(t)

rejected

accepted

rejection sampling sample from truncated exp

C

Figure 6.7.3: Plot of rejected draws (in red) and accepted draws (in blue) for the acceptance-
rejection part of Algorithm 3 with N = 3000, ϵ= 0.015 and n= 9 applied to case Ccir, together
with the corresponding Mf̃α,β|C and g̃Tn|C = g̃n

P(Tn≤C)1(0,C] as in (6.94), with C= 6.65, α= 0.7
and β=1.306. Only a portion (10%) of rejected and accepted draws has been plotted, for
easier viewing. On the same plot an histogram computed on the sample of size N =3000
arising from Algorithm 3 with the aforementioned parameters is shown.

its sample mean estimator

l̄k = 1
N

N∑
i=1
L

(α,β)
k (Ti).

Then, the FPT pdf g which has generated the sample T can estimated for
t∈ (0,∞) and n∈N by

ḡn(t)=fα,β(t)
(

1+
n∑
k=1

l̄kb
(α,β)
k L

(α,β)
k (t)

)
with b

(α,β)
k = k!Γ(α+1)

Γ(α+1+k) ,

(6.107)
which is known as an orthogonal series estimator of g (see, e.g., Efromovich,
2010). This observation reveals an additional advantage of using the Laguerre-
Gamma approximation. If the FPT moments/cumulants are not known
but a random sample is available, the Laguerre-Gamma approach offers the
opportunity to recover an approximation of the FPT pdf similarly as an
orthogonal series estimator. In such a case, the estimates carried out by
sample moments or by k-statistics (Di Nardo and Guarino, 2022) replace
the occurrences of FPT moments or cumulants respectively.

Figs 6.7.4 and 6.7.5 respectively show that the results obtained by the
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orthogonal series method on a collected FPT sample are pretty much equiva-
lent to the Laguerre-Gamma approximations in the case of known moments
presented in Section 6.6.3 and 6.6.2 respectively, when the stopping criteria
addressed in Section 6.4.2 are used for both the procedures.

0 5 10 15
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0
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0

0
.2
5

approx

KDE

Figure 6.7.4: Plot of ḡn (in solid purple) from the sample TCcir for case Ccir with n=7,
α=0.8 and β=0.49, obtained with the stopping criteria (6.47), together with a KDE (in
dashed red) and a histogram both computed with the sample TCcir

In this context, it is natural to ask for a method to choose n in ḡn which
depends on the sample T at hand. We briefly recall the general idea in the
following. Under additional and somehow complicated hypotheses on the
true pdf g, estimations of the convergence order of ḡn to g are assessable
through the mean integrated squared error (Hall, 1980). By using the
orthogonality of the generalised Laguerre polynomial sequence, for n∈N the
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Figure 6.7.5: Plot of ḡn (in solid purple) from a sample TBgbm
of size N =104 generated

with the Milstein method for case Bgbm with n=34, α=0.39 and β=0.73, obtained with
the stopping criteria (6.47), together with a plot of ggbm (in dashed red).

mean integrated squared error is (Diggle and Hall, 1986)

J(n) = E
∫ ∞

0

∣∣∣∣∣ ḡn(t)−g(t)
fα,β(t)

∣∣∣∣∣
2
fα,β(t) dt

 (6.108)

= 1
N

n∑
k=1

b
(α,β)
k Var[L(α,β)

k (T )]+
∑
k>n

b
(α,β)
k E[L(α,β)

k (T )]2

with b
(α,β)
k as in (6.107). Thus increasing the sample size N leads to a

reduction of the error J(n) as expected from the estimation of moments
with sample moments.

The vast majority of the strategies in the literature to choose the degree of
the polynomial approximation n in (6.107) starts from the idea of minimising
(6.108), see for example Diggle and Hall (1986). A discussion on which
strategy is the most effective in our two applications, or, additionally, a
general treatment of this procedure, goes beyond the scope of this thesis.
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6.7.3 Approximated Maximum Likelihood Estimation

As in the previous context, suppose a sample of i.i.d. FPTs T ={T1, . . . ,TN}
generated by a FPT rv T having unknown density g is available, arising
either from simulations or from experiments. The moments (or cumulants) of
T are supposed to be known. As we continue, we will denote g by gθ, to make
explicit the fact that it depends on the parameters θ∈Θ of the underlying
process, considering the starting position and barrier to be fixed and known.
For instance, θ=(µ,σ2)∈ (−∞,+∞)×(0,+∞)=Θ for the GBM. The goal
is to estimate them with a suitably modified maximum likelihood estimation.
In this case, we assume that for any θ∈Θ the ratio gθ

fα,β
has a L2

fα,β
series

representation
gθ
fα,β

=
∑
k≥0

a
(α,β)
k,θ Q

(α,β)
k , θ∈Θ. (6.109)

From the latter we obtain the approximant ĝn,θ as

ĝn,θ(t)
fα,β(t) =pn,θ(t), t∈ (0,∞), θ∈Θ, (6.110)

where pn is given in (6.38). We further assume that for any θ∈Θ and
n∈N the approximant ĝn,θ is non-negative for all t>0. Note that in the
series representation (resp. the approximant) we have that the dependence
on θ is found in the moments {E[T j]θ}j≥0 which appear in the coefficients
a

(α,β)
k,θ of the series (resp. the sum). Then, it is intuitive to proceed by using

the approximated density ĝn,θ in the likelihood function instead of the true
unknown density gθ. Note that n denotes the truncation order and N denotes
the sample size. The approximate MLE (AMLE) of θ then is

θ̂n,N =argmax
θ∈Θ

ln,N(θ), (6.111)

with ln,N(θ)= lnLn,N(θ), and

Ln,N(θ)=
N∏
i=1
ĝn,θ(Ti).

The maximisation problem in (6.111) must be numerically solved. Before
proceeding, we make note to the reader that extensive additional studies
must be set forth to theoretically ground this AMLE. This issue may be
subject of future work and will be discussed in the appropriate section at the
end of this thesis (see Section 7.2.3 in Chapter 7). Nevertheless, we provide
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some numerical experiments in the case of the CIR. Following standard
practices when using this process in the context of neuronal modelling (see,
e.g., Ditlevsen and Lansky, 2006), we have only tackled the estimation of
the parameters µ and σ in (6.55) and we consider the remaining ones fixed
and known. The true parameters have been selected according to cases
Acir, Bcir and Ccir in Section 6.6.3. For each of the three combination of
parameters, 1000 instances of the AMLE in (6.111) have been computed
for three simulated samples T NAcir

, T NBcir
and T NCcir

with sample size N ∈
{500,1000,5000}. In each case, the maximisation problem in (6.111) has
been solved by using a global optimisation algorithm implemented in the
R package nloptr (Johnson, 2024). Additionally, recall that the order of
approximation n, α and β must be chosen when computing the approximant
ĝn. These choices require a few more words. For the former, a maximum nmax
is set at the beginning of the numerical optimisation involved in computing
the AMLE for a given sample: whenever ĝn needs to be evaluated, the
iterative procedure for computing it is stopped if our stopping criteria (6.47)
are met or if nmax is reached. For lightening the computational costs, nmax
has been set to 10 in all cases considered. For the latter parameters, two
possibilities have been considered. The first one involved fixing α and β
at the beginning of the numerical optimisation involved in computing the
AMLE for a given sample, using the choice in Section 6.4.3 employing
sample moments computed from the considered sample instead of theoretical
moments. The second one instead goes as follows. For a given sample,
for each (µ′,σ′) in which one wants to evaluate ĝn during the numerical
optimisation, a couple (α′,β′) is computed using the choice in Section 6.4.3
with the theoretical moments corresponding to (µ′,σ′). The latter choice
proved to be more well behaved and it is the one chosen for the results
presented here. However, we stress out again that all of these aspetcs must
be further investigated. The bias and MSE resulting from these experiments
are reported in Table 6.7.1. An inspection of the latter reveals satisfactory
values which confirm that the proposed AMLE is a promising technique
worthy of further studies.

6.8 Conclusions

In this chapter we have studied a method for approximating the FPT pdf
and cdf of a one dimensional regular diffusion process that relies on a series
expansion involving the generalised Laguerre polynomials and the gamma
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Bias MSE

µ σ µ σ

T 500
Acir

8.86×10−3 −7.85×10−2 4.88×10−3 2.05×10−2

T 1000
Acir

4.83×10−4 −6.15×10−2 1.30×10−3 1.11×10−2

T 5000
Acir

−2.73×10−3 −6.68×10−2 7.97×10−4 1.05×10−2

T 500
Bcir

5.44×10−5 1.36×10−1 6.63×10−7 6.77×10−1

T 1000
Bcir

3.07×10−5 6.56×10−2 3.23×10−7 1.80×10−1

T 5000
Bcir

8.09×10−5 3.93×10−2 1.79×10−7 1.93×10−3

T 500
Ccir

−2.71×10−2 4.91×10−2 4.97×10−2 3.21×10−3

T 1000
Ccir

−3.23×10−2 4.15×10−2 1.04×10−2 1.77×10−3

T 5000
Ccir

−3.74×10−2 4.11×10−2 5.77×10−3 1.73×10−3

Table 6.7.1: For cases Acir, Bcir and Ccir in Section 6.6.3, the bias and MSE of the AMLE
in (6.111) for (µ,σ), estimated from 1000 random samples of size N ∈{100,500,1000}
generated, as explained in Section 6.6.1, with the Milstein method.

pdf. We began by recalling the more general method of moment based
series representations for pdfs, which hinges upon expanding them with
respect to a family of complete orthonormal polynomials and a reference
density. Then, with this theory at hand, we have explained how it can be
applied to approximating the FPT pdf and cdf, and, under appropriate
assumptions, we have given a result on the approximation error. In the
same spirit, considerations on the choice of the reference pdf parameters
have been made as well and some conditions for the non-negativity of the
approximant in a right hand side of the origin and in the tail have been
given. Furthermore, methods of standardisation according to considerations
on dispersion measures are proposed. Naturally, we have then discussed
the computational aspects. An iterative procedure coupled with stopping
criteria aimed to ensure numerical stability have been established. We have
also considered a strategy to overcome the possible negativity of the resulting
function, a feature that is clearly undesirable in the approximation of a pdf.

The accuracy of the approximation has been tested on the GBM and
on the CIR process. The latter case where the true FPT density is not
known provides a prototypical example for the usefulness of this tool. Three
numerical examples, spanning various shapes of FPT pdfs and cdfs, have
been investigated for both of them.
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As a side result of the practicality of the approximation three applications
have been considered. One is an acceptance-rejection-like method, that
makes a clever use of the form of the approximation function. It allows the
generation of FPT data when its distribution is unknown but the moments
(or cumulants) are known.

When only a sample of FPT data is available, the second application
shows that the structure of the Laguerre-Gamma series expansion can be
used to construct an estimator of the FPT pdf. This technique is known in
the literature as the method of orthogonal series estimators.

Finally, with the third application, we have set forth an example of how
the Laguerre-Gamma series expansion could be used to perform parameter
estimation, in the case where a sample of FPT data is available, and, unlike
in the previous scenario, the moments are known.

Future work will be discussed in the ending section of this thesis.
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Appendix

6.A Generalised Laguerre Polynomials

In the following we recall the definition and some properties of the generalised
Laguerre polynomials L(α)

n . We refer the reader to two classical monographs
Sansone (1991) and Szegő (1975) for more details. They are usually defined
for α>−1 and non-negative integers n by Rodrigues’ formula

L(α)
n (x)= 1

n!x
−αex

dn

dxn

(
e−xxn+α

)
, x∈ [0,∞).

From the latter, the closed form expression for the generalised Laguerre
polynomials can be recovered

L(α)
n (x)=

n∑
k=0

n+α

n−k

(−x)k
k! , x∈ [0,∞).

For instance, for n∈N and x∈ [0,∞) they satisfy the following recurrence
relations

1.

(n+1)L(α)
n+1(x)=(2n+α+1−x)L(α)

n (x)−(n+α)L(α)
n−1(x). (6.112)

2.
L

(α)
n+1(x)=

(2n+α+1−x
n+1

)
L(α)
n (x)−

(
n+α

n+1

)
L

(α)
n−1(x). (6.113)

3.
d

dx
L(α)
n (x)=−L(α+1)

n−1 (x). (6.114)

The polynomials L(α)
n are orthogonal with respect to the weight function

xαe−x on the interval [0,∞), that is∫ ∞

0
xαe−xL(α)

n (x)L(α)
m (x)dx= Γ(n+α+1)

n! δnm. (6.115)

303



Finally, we also recall that the generalised Laguerre polynomials are eigen-
functions of the following Sturm-Liouville problem

d
dt
(
tα+1e−ty′

)
+ktαe−ty=0, with y=y(t), k∈N+ . (6.116)
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis we have presented three main lines of research related by the
underlying unifying thread of hydrological data analysis and modelling.

The first part was dedicated to discrete models for interarrival times and
other related rainfall temporal variables, with the broader aim of providing
a description of the rainfall occurrence process. We reviewed the HLZ
distribution and expressed its properties in a more compact way, providing
some new insights. A new result on its convolution was provided. To
expand the range of options for fitting daily rainfall interarrival times data,
we further explored two additional distributions which have never been
considered for such variables and are closely associated to the Lerch family:
the Poisson-stopped HLZ distribution, and a one inflated HLZ distribution.
Subsequently, we introduced other temporal variables linked to daily rainfall
interarrival times, specifically wet and dry spells as well as wet and dry
chains. At the best of our knowledge, the latter have never been deeply
investigated in the literature. We then demonstrated how their distributions
can be derived from the distribution of interarrival times and vice versa.
Hinging upon these relationships, firstly a procedure called direct method
(DM) was presented, where the distribution of wet spells and dry spells
(as well as of the corresponding chains) is derived as a consequence of the
assumption of i.i.d. interarrival times. In other words, the rainfall occurrence
process is described by a renewal process. Note that in this case, the wet
spells will have a geometric distribution. Secondly, the latter assumption
was relaxed in an indirect method (IM) where wet spells and dry spells are
modelled separately, that is, under the assumption of an alternating renewal
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process, hence including the possibility of a non-constant rain probability
inside a rainfall cluster. Then we presented the empirical results obtained on
daily rainfall data arising from measurements at 6 European stations which
span a variety of rainfall regimes. Firstly, the three aforementioned discrete
distributions were fitted and compared on rainfall depths and interarrival
times obtained from the available dataset. On the one hand, the obtained
results confirm the effectiveness and flexibility of the HLZ distribution, on
the other, they showed how the Poisson stopped HLZ distribution may prove
to be superior in some cases, where it is able to match the performance of
the one inflated HLZ distribution. Secondly, we applied the DM and IM
to the same data. Our findings indicate that the geometric distribution
does not consistently replicate the ws frequencies accurately, even in cases
where it frequencies are well modelled by the HLZ distribution. Enhanced
performance is observed when using the IM, suggesting the existence of an
underlying internal structure within multiday rainfall events. It is commonly
assumed that the internal structure observed in sub-daily rainfall records
(e.g., 10-minute intervals) vanishes when data is aggregated at daily levels
(see, e.g., Ridolfi et al., 2011). However, the analysis presented here contest
this assumption for certain studied locations, indicating that the internal
dynamics of rainfall events may persist even at the daily time scale. In
other words, these results highlights the need for more flexible modelling
approaches, such as the IM, to accurately capture these complexities. An
additional enhancement in the fittings is achieved when the datasets are
divided into two periods, indicating that incorporating local seasonality
could improve inferences. Interestingly, in most locations, the DM applied
to seasonal data remains a viable and straightforward approach. The results
of this study may help in scenario simulations of drought and flood events,
considering that probabilistic functions, such as those applied in this work,
are at the base of stochastic climate modelling.

Motivated by the problem of describing the dependence between some of
the variables encountered in the previous chapters and inspired by the ideas
contained in the essay on dependence between random vector Geenens (2020),
in the second part of the thesis we proposed copula-like models for finitely
supported bivariate discrete random vectors. Initially, we reviewed some of
Geenens (2020)’s main ideas and explained how they form the conceptual
building block of our results. Using the fundamental concept of I-projection
(in the sense of Csiszár, 1975) on a Fréchet class of pmfs with fixed arbitrary
(positive) margins, we then were able prove a Sklar-like decomposition for
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a bivariate pmf p into its two margins and a unique copula pmf u, playing
the role of a representative of dependence. Additionally supposing that p
has a rectangular support (that is, p is strictly positive), this decomposition
was then exploited to build a statistical model for p, hinging upon the
possibility of separately specifying the margins and the associated copula
pmf u. Regarding both the nonparametric and parametric estimation of the
latter, inferential and goodness of fit tools were developed and studied both
theoretically and empirically. Indeed, theoretical results were complemented
by finite-sample experiments and a data example. As a result that is both
key for the study of the asymptotics of these inferential procedures and of
independent interest, we proved that I-projections (in the sense of Csiszár,
1975) on a Fréchet class of pmfs with fixed arbitrary (positive) margins are
differentiable in a certain sense. Afterwards, we tackled the generalisation
of this result in the following way. When substituting the Kullback–Leibler
divergence, which underlies I-projections, with the more general class of the
so-called ϕ-divergences (see, e.g., Ali and Silvey, 1966; Csiszár, 1967; Liese
and Vajda, 1987; Csiszár and Shields, 2004, and the references therein), one
obtains ϕ-projections. We have then established conditions under which
ϕ-projections are continuously differentiable, in the broader context of finite
measures on finite spaces. When the target set for the ϕ-projection is
convex, we demonstrated that the necessary assumptions can be derived
from straightforward and verifiable conditions. These findings were utilized
to determine the asymptotics of ϕ-projection estimators (i.e., minimum
ϕ-divergence estimators) for projections onto parametric sets of probability
vectors, sets of probability vectors with specified fixed moments, and finally
on Fréchet classes of bivariate probability arrays, as done previously, but
with a more general point of view, particularly amenable to multivariate
extensions. In these examples our theoretical findings were empirically tested
with various simulations.

Since the study of the time that some hydrological variables take to reach
certain thresholds holds an important role in applications, the third part
of this thesis dealt with a method for approximating the first passage time
probability density function and cumulative distribution function of some
one dimensional diffusions. This approximation is obtained by truncating
a series expansion involving the generalised Laguerre polynomials and the
gamma probability density, and it relies on the knowledge of the moments, or
equivalently, of the cumulants of the FPT random variable. After reviewing
the more general procedure underlying this tool, sufficient conditions for
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the existence of the series expansion in the FPT case were given and, under
the latter, a result on the approximation error has been provided. We then
naturally considered the computational aspects. In this regard, we provided
an iterative procedure coupled with stopping criteria aimed to ensure nu-
merical stability and we also considered a strategy to overcome the possible
negativity of the resulting function. Furthermore, methods for choosing the
parameters of the gamma density, along with a simple standardisation trick,
were proposed, both developed according to considerations on dispersion
measures. Various numerical experiments on the GBM and on the CIR
process were performed to confirm the efficiency and practicality of the
method. The case of the CIR process, where the true FPT density is not
known, provided a prototypical example for the usefulness of this tool. As a
byproduct of the approximation, we were able to present three applications.
One is an acceptance-rejection-like method, that makes a clever use of the
form of the approximation function. It allows the generation of FPT data
when its distribution is unknown but the moments (or cumulants) are known.
Again, we have shown its effectiveness in the CIR case. The second appli-
cation was used to show that the structure of the Laguerre-Gamma series
expansion can be used to construct an estimator of the FPT probability
density function when only a sample of FPT data is available and not even
the moments of the underlying random variable are known. Finally, with the
third application, we have set forth an approximated maximum likelihood
estimation which enlightens how Laguerre-Gamma series expansion can be
used to perform parameter estimation, in the case where a sample of FPT
data is available, and, unlike in the previous scenario, the moments are
known.

7.2 Future Works

Similar to the previous section, following the conceptual subdivision of this
thesis, the discussion on future works shall be divided in three main parts.

7.2.1 Direct and Indirect Method

The models proposed in this thesis are local. Due to the large distances
between the stations considered in our dataset, we were able to assume
spatio-temporal independence and to proceed with our methodology on each
single station separately. However, when the network of stations at hand
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is dense, spatial dependence of weather events might need to be taken into
account. This problem could be addressed by combining our procedure
with more complex stochastic space-time models. For example, in looking
for spatial patterns, hidden Markov models (Robertson et al., 2004, 2006;
Hughes and Guttorp, 1994) suppose the existence of hidden states as a link
between synoptic atmospheric measurements and the local precipitation
process. In our particular case, tools such as the latter could be employed
to model spatial dependence between parameters.

Additionally, a more in depth statistical analysis of the dependence
between the rainfall amounts and the corresponding wet spell length should
be carried out. For instance, it would be of interest to investigate the
possibility of modelling the rainfall depths conditioned to the length of the
wet spell with the Lerch family. This is currently subject of ongoing research
by us.

7.2.2 Copula Like Models for Discrete Random Vectors

Multivariate Extension We strongly believe that the proposed methodology
can be fully extended to the multivariate case since the key results related
to I-projections (and, more in general, ϕ-projections) are not limited to
the bivariate case. A first effort in this context is merely notational, as
to delineate a smoothly reading framework for copula arrays of arbitrary
dimension. Afterwards, a fundamental step is to provide a multivariate
version of the Sklar-like decomposition found in Proposition 4.4.1. To this
aim, it seems that only minor modifications of its proof must be set forth.
Furthermore, a multivariate generalisation of the odds ratios on which we
based our concept of dependence structure should be sought. Fortunately,
multidimensional odds ratios seem to appear in the literature and, naturally,
in addition to them, conditional odds ratios (see, e.g., Rudas, 2018, Section
6.2) should also be taken into consideration, as can be for example inferred
from a careful read of the recent work Perrone et al. (2024). Unsurprisingly,
as hinted in the latter reference, a multivariate version of the IPFP (see
Barthélemy and Suesse, 2018, Section 2.1, for an example) would maintain
the multidimensional and conditional odds ratios constant when used to
compute a copula array. For what concerns the statistical aspects, parametric
models of the form in (4.47) would need to be developed. Considering
multivariate families of classical copulas should do the job. Finally, note
that the results stated in Section 5.3.3 of Chapter 5 could be used to derive
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the limiting distributions of I-Projections on multivariate Fréchet classes.
Indeed, it should suffice to consider an arbitrary dimensional version of
the vectorisation operator to be able to employ those results into the array
scenario, as exemplified by the last application of Chapter 5, modulo the
increased notational effort. Hence, they could be used to investigate the
asymptotics of nonparametric and parametric estimators of copula arrays.

Non Rectangular Supports The assumption of rectangular support could
be replaced by an alternative postulate for the support of p (based for
instance on domain knowledge). We briefly describe the practical challenges
that would need to be addressed to adapt the proposed statistical modelling
methodology. Following a (possibly multivariate version of) Proposition 4.4.1,
one would need to verify the existence of a pmf with uniform margins that
shares the same support as p. In this direction, a multivariate result analo-
gous to Proposition 4.2.3 would be needed. To the best or our knowledge, it
seems that a detailed reading of Csima (1970) should provide the necessary
theory. Then, a suitable smoothed estimator of p, similar to (4.39), would
need to be proposed so that the corresponding empirical copula pmf of the
form in (4.40) could be practically computed via the IPFP. Furthermore,
parametric models of the form in (4.47) with matching support for p would
need to be developed. Finally, the results stated in Section 5.3.3 of Chapter
5, already mentioned in the item above, could also be used to investigate the
asymptotics of nonparametric and parametric estimators of copula arrays
with possibly non rectangular support, albeit with some minor required
modifications.

The extensions to the multivariate and non rectangular support case are
subject of a paper currently under writing.

Smoothing The proposed inference procedures rely on the initial smoothing
in (4.39), which aims to ensure numerical convergence of the IPFP with
"high probability". Our choice of smoothing is arbitrary, and alternative
smoothing strategies should be empirically investigated.

Additional Simulations From a statistical practice perspective, the asymp-
totic results in Section 4.5 could be used to derive asymptotic confidence
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intervals for various nonparametric and parametric estimates. With addi-
tional implementation effort, fitting and goodness-of-fit testing could be
extended to multiparameter parametric families J in (4.47). This is reserved
for a future project. Our focus on families J built via (4.48) was purely for
practical convenience due to the available functionalities in R. Other classes
of parametric families J were discussed in Section 7 of Geenens (2020).

Countably Infinite Supports Finally, the theoretical extension to the count-
ably infinite support case could be tackled. In (Geenens, 2020, Section 8)
we can find the following suggestion, based on a truncation and limiting
argument. Let p be the pmf of a bivariate random vector (X,Y ) supported
on N×N and denote by pN a suitable truncation of p (see the construction
in Geenens, 2020, Section 8.1), which is a pmf with rectangular support
[N ]× [N ], where N ∈N+. Let u1,N and u2,N be uniform univariate pmfs on
[N ]. According to Proposition 4.2.1, since pN has a rectangular support,
uN =Iu1,N ,u1,N

(pN) exists for all N ∈N+ and, according to the initial Def-
inition 4.1.2, it is the pmf of a bivariate random vector (UN ,VN) having
uniform margins on {N}={ 1

N+1 , . . . ,
N
N+1}. It is easy to see that UN and

VN both converge in distribution to a U(0,1) as N goes to infinity. Ideally
then, we should expect that (UN ,VN) converges in law to a bona fide con-
tinuous copula C on [0,1]2. Geenens (2020) affirms that such convergence
is guaranteed by Theorem 3.1.8 in Durante and Sempi (2015). However,
it does not seem that the main condition appearing in that theorem is
straightforwardly satisfied by the sequence of discrete copulas associated to
the sequence of copula pmfs {Iu1,N ,u1,N

(pN)}N≥1. Therefore, a more careful
investigation of this convergence is needed. Supposing for a moment that it
holds, we should then provide an explanation of how C would play the role
of the representative of the dependence of (X,Y ). Again, one could argue
that it follows from the fact that C itself can be seen as a representation
of the infinite odds ratios ωij for (i,j) in N+\{1}× N+\{1} of p. Finally,
the biggest issue to face in this scenario seems to be, even conceptually,
the obtainment of a Sklar-like decomposition between p and its margins: a
uniform distribution on the integers does not exist.

An Initial Application To a Simple Daily Rainfall Generator As mentioned in
the introduction, it may happen that rainfall records are too brief to conduct
reliable and meaningful analyses. Hence, stochastic models are commonly
used to simulate synthetic series and to generate longer alternative rainfall
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scenarios that are statistically consistent with observed data. In this context,
such tools are known as rainfall generators. One known and straightforward
method of building a daily scale rainfall generator is by describing the
alternation between rainy and non rainy days with a reliable pmf pws of the
wet spells ws and pds of the dry spells ds, usually under their independence.
Moreover, a distribution for the rainfall depths on the rainy days h, usually
independent from ws, is also used, to generate the positive rainfall when
needed. According to the setup seen in Chapter 2 and Chapter 3, we consider
h as discrete and therefore we let ph be the associated pmf. Then, very
simply, instances of ws and ds are alternatively (independently) generated
according to pws and pds (Wilks, 1999b). Given a wet spell of length m∈N+

and a dry spell of length m′∈N+, m rainfall depths are generated according
to ph for the wet days and m′ zeroes are stored for the dry days.

However, if signs of associations between the aforementioned variables are
present in the available data, one could use the methodology proposed in
Chapter 4 to construct a more reliable rainfall generator. Let us delineate,
with some degree of informality, how that could be achieved. We describe
first the involved statistical model and the related fitting, then we explain
the very simple algorithm.

Since ws, ds and h are theoretically supported on the integers, some sort
of truncation would need be employed. However, note that, in practice,
everything should work, as the support is forcibly limited to a finite number
when implementing the procedure. For example, a multiple of the maximum
value found in the available data. With this in mind, pardoning some lack
of rigor, we can consider the bivariate pmf pws,ds (resp. pws,h) associated to
the bivariate discrete random vector (ws,ds)(resp. (ws,h), as constructed
at the end of Section 3.1.1). Naturally, both these pmfs have a rectangular
support, since, a priori, no values of the underlying random values have a
reason to be excluded. Then, a three steps statistical model of the type in
Section 4.5 could be postulated for pws,ds (resp. pws,h) and fitted to available
(ws,ds)(resp. (ws,h)) data arising from a series of daily rainfall records
h. Furthermore, the fitting could be seasonal. For instance, let seas in
{S1,S2}, where the latter are defined as in Chapter 3. Then, more in details,
as described in Section 4.5, one could proceed as follows.

1. Estimate the univariate margins pws, pds and ph parametrically; let
p[α[n]

seas]
ws , p[β[n]

seas]
ds and p

[γ[n]
seas]

h be the resulting estimates. For instance, fol-
lowing the first two chapters, we could assume that ws, ds and h belong
to the HLZ family of discrete distributions.
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2. Estimate the copula pmfs uws,ds and uws,h parametrically; let u[θ[n]]
ws,ds and

u
[η[n]]
ws,h be the resulting estimate. In this case, to chose an appropriate

parametric discrete copula pmf, one could proceed with simple graphical
checks or compare the values of the log-likelihood at the estimates, as
hinted at the end of Section 4.7, as ad-hoc model selection procedures
still need to be developed.

3. Form a final parametric estimate of pws,ds and pws,h as in (4.31) via an
I-projection as

p
[α[n]

seas,β
[n]
seas,θ

[n]
seas]

ws,ds =I
p

[α[n]
seas]

ws ,p
[β[n]

seas]
ds

(u[θ[n]
seas])

and

p
[α[n]

seas,γ
[n]
seas,η

[n]
seas]

ws,h =I
p

[α[n]
seas]

ws ,p
[γ[n]

seas]
h

(u[η[n]
seas]).

Then, in the following, we propose a simple generalisation of the above briefly
described algorithm for the rainfall generator, whose aim is to incorporate
dependence between the variables involved (we omit the season for notational
simplicity). For instance, fix a preceding dry spell dsi−1 = l, with i,l∈N∗.
Then

1. generate a wsi according to ws|ds= l, whose pmf is easily obtained from
p

[α[n],γ[n],θ[n]]
ws,ds and pds. Suppose wsi=m, with m∈N+;

(a) generate and store m instances of h|ws=m, whose pmf is easily
obtained from p

[α[n],γ[n],η[n]]
ws,h and ph;

2. generate a dsi according to ds|ws=m, whose pmf is easily obtained
from p

[α[n],γ[n],θ[n]]
ws,ds and pws. Suppose dsi=m′, with m′∈N+;

(a) store m′ zeroes;

3. repeat the previous steps until the preset number of generated rainfalls
has been reached.
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7.2.3 FPT Density Orthogonal Approximation

As explained in the beginning sections of Chapter 6, the outlined approxima-
tion method is a particular case of the more general procedure of orthogonal
approximations of probability density functions. With this in mind, it should
become clear that two of the presented applications could be extended to
a more general setup, as in the following. Consider a rv X with unknown
density g and known moments, such that a suitable reference density f is
known, to which we can associate a complete family of orthonormal poly-
nomials {Pj}j≥0. Then, assume that g

f ∈L
2
f so that we have g

f =∑∞
j=0ajPj.

The approximant gn for n∈N+ is defined as

gn(x)=f(x)
n∑
j=0

ajPj(x), x∈ supp(X),

where we set supp(X)={x∈R :g(x)>0} and we recall that aj =E[Pj(X)].
The following two extensions should be considered. We shall report some
more details for ease of explanation.

Approximated Acceptance Rejection Method Further suppose that the ap-
proximant ĝn is positive. Recall that it clearly satisfies

ĝn(x)
f(x) =

n∑
j=0

ajPj(x)=pn(x), x∈ supp(X). (7.1)

Since pn is a polynomial for any n>0, the right hand side of (6.92) is
unbounded if supp(X) is. In the latter case, we have provided in Section 6.7
a suitable modification of the standard acceptance-rejection method with
the aim of "approximately" sampling from X using (7.1). In the following,
suppose X̂n be the rv with pdf ĝn over supp(X). A key step in the procedure
was to exploit the known behaviour for large t of the FPT pdf. Assuming
a similar knowledge for X, by only slightly modifying the last step we can
summarise a "more general" procedure in the following way:

i) find a constant C such that P(X>C)≤ ε, for a fixed, small ε>0;

ii) for t≤C apply the classical acceptance-rejection method using the ratio

f̂X̂n|C(x)
g̃G|C(x) ≤M where M = P(X̂n≤C)

P(G≤C) max
x∈[0,C]

pn(x) (7.2)
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and

g̃G|C(x)= g(x)
P(G≤C)1(0,C](x), f̂X̂n|C(x)= ĝn(x)

P(X̂n≤C)
1(0,C](x); (7.3)

iii) for t>C sample from a truncated rv X̄ whose behaviour should be
arbitrarily close to the behaviour of X in its tails, as ε decreases and C
increases.

Obviously, the first fundamental step in this extension would be a clarification
and subsequent formalisation of the statement in step iii) above. Then,
seemingly minor adjustments to the proofs at the end of Section 6.7 are
needed.
Remark 7.2.1. Suppose supp(X) is bounded, without loss of generality we
can take supp(X) = (a,b) with a and b in R. In this case, we can just apply
step ii) of the above procedure. That is, for t∈ (a,b), apply the classical
acceptance-rejection method using the ratio

f̂X̂n(x)
g̃(x) ≤M, x∈ (a,b), where M = max

t∈(a,b)
pn(t). (7.4)

□

Approximated Maximum Likelihood Estimation In Section 6.7.3 we have
presented simulation experiments of an approximated maximum likelihood
procedure. In the following, we try to explain the steps needed to ground
theoretically the proposed method, using the present broader setup. Suppose
that the density of X has a parametric form g(·;θ) (unknown as well), where
θ∈Θ and Θ is an open subset of Rm for a positive integer m. Let θ0∈Θ
be the true unknown parameter, that is such that g(·)=g(·;θ0). Now, as
usual in classical statistics, suppose to be in possession of n independent
copies X1,X2, . . . ,Xn of X. Notice that, in the following, n is now the sample
size, unlike in the previous paragraph. Our goal is to estimate θ0 through
maximum likelihood, by overcoming the fact that g is not known in a closed
form through the orthogonal series expansion we have described. From now
on, we shall make a discussion taking inspiration from Aït-Sahalia (2002),
which provided a similar construction in a more complex scenario. Define
the classical log-likelihood as

ℓn(θ|X)=
n∑
i=1

logg(Xi;θ)
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and the relative classical maximum likelihood estimator as

θ̂n=argsup
θ∈Θ

ℓn(θ|X).

Since g(·;θ) is not available, we consider its approximant gJ as in the following

gJ(x;θ)=f(x)
J∑
j=0

E[Pj(X)]θPj(x), x∈ supp(X),

where J in N+ is the truncation parameter. Note that we removed the
hat from the approximation of g to avoid confusion with the maximum
likelihood estimator and, for similar reasons, that we shall refer to the
truncation parameter with J . The subscript θ in the writing E[Pj(X)]θ
denotes that the dependence of gJ on θ is found in the known moments
E[X i]θ for i∈N. Indeed, E[Pj(X)]θ =∑j

i=0bi,jE[X i]θ, where bi,j are the
coefficients of Pj. Then, define the approximated log likelihood as

ℓJn(θ|X)=
n∑
i=1

loggJ(Xi;θ)

and the relative approximated maximum likelihood estimator as

θ̂Jn =argsup
θ∈Θ

ℓJn(θ|X).

To proceed, it is necessary to prove that as J tends to infinity, θ̂Jn will
converge (in a suitable way) to the classical estimator θ̂n (which is not
computable) and then that it is possible to find a sequence Jn tending to
infinity, as the sample size grows to infinity, such that θ̂Jn

n will converge (in
a suitable way) to the true parameter θ0. Let us make a series of (maybe
too strict) assumptions, both on the convergence of the partial sums gJ(·;θ)
and on the regularity of g(·;θ). They are based on a series of assumptions
found in Aït-Sahalia (2002).

Assumption 1 (convergence of the partial sums). The convergence of
gJ(x;θ) to g(x;θ) is uniform in x over supp(X) and uniform in θ over Θ.

Assumption 2 (regularity). The true unknown density g satisfies the usual
regularity conditions for the consistency and asymptotic normality of the
classical MLE.
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Assumption 3 (positivity of the partial sums). The roots of the polynomials
{Pj} are such that, for any J >0, the approximant gJ is positive on at least
a finite number of intervals contained in supp(X).

Assumption 4 (tightness). For every ϵ>0 there exist a compact Kϵ⊂R
such that P(X ∈Kϵ)≥1−ϵ.

Then, we should be able to state the following theorem, whose proof is
currently under writing. The arrow p→ indicates convergence in probability.

Theorem 7.2.1. Let Pθ0 be the probability measure having density g(·)=
g(·;θ0). Then, under Assumptions 1, 2 and 4:

1. Fix the sample size n. Then, as J→∞, we have that θ̂Jn
p→ θ̂n under

Pθ0.

2. As n→∞, a sequence Jn tending to infinity can be found such to deliver
any convergence rate of θ̂Jn

n to θ̂n. In particular, there exists Jn tending to
infinity such that θ̂Jn

n and θ̂n will share the same asymptotic distribution.

A next important step would need to provide a data-dependent choice
of the truncation parameter J . Indeed, our stopping criteria are aimed at
preserving numerical stability, and, in the current scenario where a sample
is available, do not take into account the fact that a too large J would
probably increase the variance of the approximated estimator θ̂Jn . Finally,
extensive numerical experiments would be needed to investigate the finite
sample size behaviour of this procedure.
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