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A B S T R A C T

Artificial intelligence (AI) profoundly influences value creation by boosting efficiency, fostering innovation and 
driving new business models and technological advancements, all while nurturing human intelligence (HI). 
However, the collaboration between AI and HI, crucial for augmenting the creation of green value and achieving 
sustainable development in manufacturing firms, remains ambiguous. We employed panel data from 935 A-share 
listed manufacturing firms in China (2010− 2022) to reveal the potential influence mechanism of AI and HI 
collaboration on green value creation. Our findings revealed that AI technology adoption facilitated 
manufacturing firms in harnessing their HI for green value creation. Under the influence of AI technology 
adoption, HI, as with manufacturing firms’ human and structural capital, contributed positively to green value 
creation. It is noteworthy that while higher-quality relational capital served as a potential driving force for 
manufacturing firms in creating green value, heightened AI technology adoption significantly impeded enthu-
siasm for this mechanism. The conclusions elucidate the intricate relationship between AI and HI collaboration 
and green value creation, expanding the application of technology adoption within the green innovation 
ecosystem. Furthermore, they offer practical insights for manufacturing firms in their pursuit of green value 
creation.

1. Introduction

With the rising popularity of the ecosystem view, human focus has 
shifted from competition to synergy, as well as from understanding in-
dividual development to comprehending symbiotic development with 
the outside world (Moore, 1993; Nambisan, 2018). Cooperation and 
symbiosis between organisations increasingly emphasise their value 
advantages. Ecosystem participants co-evolve while simultaneously 
competing with each other (Adner, 2006). Promoting the deep inte-
gration of innovation agents and the technological environment within 
an ecosystem (Adner and Kapoor, 2016; Lee et al., 2023) and building a 
green innovation ecosystem are strategic choices to seize new oppor-
tunities for manufacturing transformation (Bag and Pretorius, 2022; Jia 
et al., 2023). Currently, artificial intelligence (AI) technology is fully 
being integrated into various fields, impacting the human economy, 
politics, culture, society and ecological civilisation construction with 

new concepts, forms and models (Callen et al., 2023). This integration 
has extensive and profound effects on human production and life 
(Stefano et al., 2022). Particularly for firms, both big and small, efforts 
have been initiated to incorporate AI as a cornerstone of their value- 
creation strategies.

The creation of value originates from the identification, acquisition 
and restructuring of different resources within the innovation ecosystem 
to form new combinations (Adner and Kapoor, 2010; Amit and Han, 
2017; Al-Omoush et al., 2023). Scarce, valuable and irreplaceable het-
erogeneous resources are crucial to value creation, with AI considered 
not only a technology but also a resource (Ahn and Chen, 2022). AI 
provides green-related knowledge, information and technological re-
sources for manufacturing firms to enhance their ability to create green 
value (Lugosi, 2021). Technology can change the mode of value delivery 
and creation in the innovation ecosystem (Chatterjee et al., 2020), 
assisting innovation agents in analysing, integrating and allocating both 
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internal and external resources. The application of AI technology em-
powers both the innovation chain and the value chain, making all as-
pects of innovative production data driven and intelligent (El-Kassar and 
Singh, 2019; Valle-Cruz and García-Contreras, 2023). It helps 
manufacturing firms promptly identify value demands and effectively 
address them, thereby promoting green value creation and sustainable 
development.

Human intelligence (HI) encompasses cognitive abilities, such as 
thinking, self-awareness and intention (Fan et al., 2021). HI enables 
specific abilities, such as remembering, learning, understanding, plan-
ning, logical reasoning, problem-solving and communication. Within 
the green innovation ecosystem, the key to creating green value for 
manufacturing firms lies in HI resources (Wright et al., 2001; Li et al., 
2021). The boundary between AI and HI lies in the level of cognition and 
creativity, and currently, AI is still in a ‘semi-cognitive’ stage (Guikema, 
2022). The most appropriate approach should be to delegate tasks based 
on the strengths of machines and humans. However, the current value 
creation of firms is limited to the utilisation of existing resources 
(including tangible and intangible resources). The utilisation of new- 
generation AI technology resources is very limited, and integrating 
external AI and internal HI for value creation in firms is a dual deficiency 
of cognition and ability. Therefore, collaborating with AI and HI to 
promote green value creation and achieve sustainable green develop-
ment in manufacturing firms is a hot topic worthy of attention in both 
academic and business circles.

Creating green value involves enhancing the utilisation of core re-
sources in the production of products or services to meet customer 
needs, consequently reducing resource or energy consumption and 
waste (Priem et al., 2018; Schilling and Seuring, 2023). Despite the 
richness of achievements in value creation research, the literature has 
paid limited attention to green value creation. Previous studies have 
explored value creation from various perspectives. The first perspective 
includes production factors, exploring the contributions of different 
production factors to value creation. These include the value forms and 
quantities provided by different production factors (Itami and Nishino, 
2010; Niu et al., 2021), transition in key production factors (Tantalo and 
Priem, 2016; Bag and Pretorius, 2022), data production factors 
(Pinochet et al., 2021) and intellectual capital (Li et al., 2021; Lugosi, 
2021; Santarsiero et al., 2023). The second includes input-output pro-
cesses, providing a deeper analysis of the impact of different factors on 
the efficiency of value creation. Production factor resources have a 
fundamental role in firm value creation, but the arrangement and 
combination of different factor resources, such as resource allocation 
and utilisation (Baert et al., 2016), digital resource configuration (Amit 
and Han, 2017; Sultana et al., 2022) and resource collaboration (Al- 
Omoush et al., 2023), can affect the efficiency of value creation. The 
third includes customer views, exploring the reverse driving effect of 
market demand on value creation. This encompasses value co-creation 
between firms and customers (Xie et al., 2016; Jost and Susser, 2020) 
and demand-side strategy (Priem et al., 2018; Guo et al., 2022). The 
fourth includes financial aspects, exploring the driving role of social 
responsibility (Broadstock et al., 2020; Reimsbach and Braam, 2023) 
and business models (IHeanachor et al., 2021; Schilling and Seuring, 
2023) in value creation. The final perspective includes the value chain. 
The acquisition, organisation, circulation and utilisation of resources in 
the digital era, such as the digital global value chain (Oliveira et al., 
2021; Lee et al., 2023) and value co-creation in the closed-loop supply 
chain (Zhang et al., 2022; Liu et al., 2021), will have a significant impact 
on their value creation. These studies have explored the issue of value 
co-creation at different stages of the value chain. However, analysing the 
green value creation of manufacturing firms within the innovation 
ecosystem from an environmental perspective is still in its develop-
mental stage.

As a driving force for the ongoing scientific and technological rev-
olution, AI has garnered unprecedented attention. Existing research has 
extensively examined AI’s impact at the macro and micro levels, 

addressing aspects such as employment (Felten et al., 2021; Yang, 
2022), economic growth (Makridis and Mishra, 2022; Yang et al., 2023), 
income inequality (Acemoglu and Restrepo, 2020), employee innova-
tion (Ahn and Chen, 2022; Yin et al., 2024), education (Smirnov et al., 
2023), emergency management (Fan et al., 2021; Dubey et al., 2022; 
Guikema, 2022), diagnosis (Lei et al., 2020; Sahu et al., 2023; Yao et al., 
2023), innovation and entrepreneurship management (Pietronudo et al., 
2022; Shepherd and Majchrzak, 2022; Giudice et al., 2022), the supply 
chain (Sinha and Anand, 2017; Khan and Sinha, 2022; Ivanov, 2023; 
Valle-Cruz and García-Contreras, 2023) and decision-making and pre-
dictions (Azadeh et al., 2012; Balasubramanian et al., 2022). The above- 
mentioned studies have explored the impact of AI on various aspects of 
human production and life from different perspectives, but unfortu-
nately, the current research lacks a comprehensive investigation into 
how AI technology affects the green value creation of manufacturing 
firms.

To address these gaps, our objective is to explore the relationship 
between HI and the green value creation of manufacturing firms as well 
as the impact of AI technology on it. Our empirical study focuses spe-
cifically on listed Chinese manufacturing firms. The potential contri-
butions include expanding the understanding of the relationship 
between HI and green value creation. Additionally, we aim to unveil 
how AI technology adoption influences green value creation and in-
teracts with HI, providing new insights into the green transformation of 
the manufacturing industry. Finally, we comprehensively evaluate 
green value creation using both forward and reverse indicators, 
contributing valuable insights to the organisational-level measurement 
of green value creation.

The following section elucidates the theoretical foundation for AI 
and HI collaboration to augment manufacturing firms’ green value 
creation and formulates the hypotheses. Section 3 outlines the methods 
employed in this study, and Section 4 elucidates the findings. The 
concluding section encompasses research summaries, theoretical con-
tributions, managerial implications, limitations and future research 
directions.

2. Theoretical background and hypothesis development

2.1. Value creation within the innovation ecosystem

An innovation ecosystem is a network composed of multiple actors 
(Adner, 2006), including participants and a series of environmental el-
ements (Adner and Kapoor, 2016). As a source of value creation, 
members within the innovation ecosystem can drive the bidirectional 
flow of internal and external resources through open strategies 
(Nambisan, 2018), thereby enhancing value-creation capabilities. 
Simultaneously, the innovation ecosystem can break through traditional 
barriers and leverage network-embedding effects to promote value co- 
creation among different participants (Beltagui et al., 2020).

Actor network theory (ANT) suggests that scientific knowledge is a 
dynamic network process formed by the interaction and construction of 
multiple heterogeneous actors (Callon and Latour, 1981). An actor 
network is not textual or physical but a constantly evolving and flowing 
actor trace (Latour, 1986). Actors include both traditional sociological 
human actors (e.g., people, social groups or organisations) and all non- 
human actors (e.g., technology, artefacts, cultural concepts or in-
stitutions) (Sayes, 2014). Drawing upon ANT, manufacturing firms and 
AI technology are the two main actors within the innovation ecosystem. 
The core actors in creating value for manufacturing firms are humans. 
Human knowledge, experience and judgment play a crucial role in the 
success of innovation (Lugosi, 2021). Human behaviour can promote 
innovation and value creation through innovative activities, collabora-
tive relationships and knowledge sharing (Santarsiero et al., 2023). As a 
tool and resource, technology can change human production modes, 
organisational forms and market structures, thereby promoting inno-
vation and value creation (Adner and Kapoor, 2010). Interaction and 
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cooperation between humans and technology are key to achieving value 
creation.

The advent of the new generation of AI technology has laid the 
groundwork for the expansion of HI, and its impact on the innovation 
ecosystem is noteworthy. The AI era has brought unprecedented un-
certainty to traditional manufacturing. Therefore, it is crucial to un-
derstand how human beings, as carriers of knowledge resources and 
capabilities, and technological factors affect the value creation of 
manufacturing firms and the evolution of innovation ecosystems.

2.2. The core knowledge resource of HI: Intellectual capital

The development of HI has undergone a long historical evolution, 
progressing from the basic ability of simple counting to the advanced 
capability of conceptual abstraction. HI manifests at different levels of 
development (Fan et al., 2021). Compared to AI, HI exhibits several 
significant features. First, HI represents the ability of human beings to 
engage in autonomous reasoning activities. Second, it enables human 
beings to express and create knowledge, particularly through the uti-
lisation of tacit knowledge. Third, it can formulate plans and arrange-
ments for future actions as well as actively learn for specific purposes. 
Fourth, it possesses the most crucial human abilities—thinking ability 
and conscious activity (Brooks, 1991; Bennett, 2022).

In simple terms, HI refers to the ability of humans to learn from 
experience, adapt to new situations, understand and process abstract 
concepts and use knowledge to manipulate the environment (Searle, 
1980). Drawing on value creation theory, firm value creation is the 
process of utilising various internal and external resources and capa-
bilities to achieve a competitive advantage (Tantalo and Priem, 2016; 
Valle-Cruz and García-Contreras, 2023). The focus of this process is on 
the human beings within an organisation. Therefore, the green value 
creation of manufacturing firms involves using their HI in the process of 
creating products or services that meet customer needs. This, in turn, 
can improve the utilisation rate of core resources (Xie et al., 2016), 
thereby reducing the consumption and waste of resources or energy. 
Additionally, manufacturing firms leverage HI to minimise their impact 
on the environment, such as by reducing carbon emissions in the process 
of value creation, thereby effectively improving environmental effi-
ciency (Reimsbach and Braam, 2023).

In the knowledge economy era, market competition has evolved into 
a contest for knowledge and talent (Farzaneh et al., 2022). This shift has 
led to an extension of the concept of capital to encompass knowledge 
and the intelligence that possesses and generates knowledge—referred 
to as intellectual capital (IC) (Edvinsson and Malone, 2005; Hanifah 
et al., 2022). IC, as a concretised resource of HI, plays a pivotal role in 
the pursuit of organisational value appreciation (Kang and Snell, 2009; 
Xu and Li, 2022). It encompasses all knowledge-based strategic re-
sources within an organisation, such as experience, creativity, technol-
ogy, processes and relationships, collectively known as the core capital 
of IC (Oliveira et al., 2010). Additionally, IC has been demonstrated to 
be fundamental for implementing innovation in manufacturing firms 
(Dost et al., 2016; Beltramino et al., 2021).

As a strategic resource, IC furnishes firms with ample knowledge 
resources and dynamic capabilities to engage with the market, facili-
tating the creation of green value (Bassi and Van Buren, 2007; Tseng and 
Goo, 2013). According to Bayraktaroglu et al. (2019), the effective 
utilisation of knowledge resources and capabilities is integral to firm 
growth. Consequently, we assert that IC is the paramount HI for orga-
nisations. IC serves as a continuous input, propelling organisational 
value creation by not only relying on internal human capital but also 
harnessing structural and relational capital from inter-organisational 
relationships (Li et al., 2021). Therefore, we posit that all dimensions 
of IC constitute the core driving force for manufacturing firms to 
implement green value creation. Human capital ensures the talent 
necessary for green value creation, while structural capital provides 
internal institutional support and relational capital ensures 

organisational collaboration.

2.3. AI technology adoption within the innovation ecosystem

Human beings continually develop intelligent tools as an extension 
of their capabilities to enhance HI (Fan et al., 2021; Giudice et al., 2022). 
The innovation ecosystem encompasses both innovation agents and an 
innovation environment (Chin et al., 2022). Serving as core players in 
this ecosystem, manufacturing firms establish close interactions with 
other stakeholders through supply chains, industry–university research 
alliances and innovation networks (Huang et al., 2022). While AI rep-
resents just one aspect of the technological environment, this environ-
ment plays a crucial role in ensuring the vitality of the innovation 
ecosystem (Chatterjee et al., 2020). In addition, the relationship be-
tween resources and environmental context is reciprocal, guided by the 
constructivism resource view (Shepherd and Majchrzak, 2022). The 
innovation ecosystem is essentially ‘jointly constructed’ through the 
coupling and interaction of the innovation agents and environment. 
Within an open green innovation ecosystem, the creation of green value 
for manufacturing firms becomes a strategic choice that integrates the 
internal HI with the external technological environment of the firm (El- 
Kassar and Singh, 2019; Chin et al., 2024).

AI plays a crucial role in providing technical conditions for resource 
coordination among participants in the innovation ecosystem. It 
significantly enhances the efficiency of resource matching and facilitates 
the realisation of new value-creation paths (Yoo et al., 2012; Tang et al., 
2022). Notably, AI technology enables closer integration of various 
entities and innovative resources across different fields within the sys-
tem (Beltagui et al., 2020). In the era of industrial big data, AI tech-
nology plays a pivotal role in driving intelligent production in 
manufacturing firms, ultimately facilitating the creation of green value 
(Yam et al., 2023). On the one hand, AI promotes technological inno-
vation across various entities within the green innovation system by 
optimising the technological environment, strengthening technology 
spillovers and accumulating innovative elements (Felten et al., 2021; 
Yang, 2022). Technological innovation, as a key force, contributes 
significantly to green development. Concurrently, AI technology facili-
tates green improvements in manufacturing production processes 
through real-time monitoring of pollution emissions, precise governance 
and optimising and upgrading clean production models (Makridis and 
Mishra, 2022). Analysing this dynamic relationship from a technology 
adoption perspective can enhance our understanding of the intricate 
interplay between the process and the results of green value creation in 
manufacturing firms. Therefore, we propose the following hypothesis:

H1: Manufacturing firms’ AI technology adoption has a significant pos-
itive impact on their green value creation within the green innovation 
ecosystem.

2.4. AI and HI collaboration to augment manufacturing firms for green 
value creation

As value creation models transform, the entire social system is 
transitioning into an era of collaboration between HI and AI (Callen 
et al., 2023). The remarkable advancements in AI are facilitating and 
driving the integration of AI and HI to achieve technological forecasting 
and assessment across various industries and domains. The combination 
of AI algorithms with human decision-makers enhances organisational 
agility and adaptability to changing conditions (Dubey et al., 2022; Chin 
et al., 2022). However, in the nascent application of AI and HI in the 
green value-creation field of manufacturing firms, several debates 
persist.

Simultaneously, we recognise the significance of HI in the value- 
creation process and the variations in resources across different value 
logics. IC does not singularly influence firm value creation; rather, its 
impact is realised through the coupling of human capital, structural 
capital and relational capital (Tseng and Goo, 2013; Hanifah et al., 
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2022). Therefore, it is essential to conduct specific analyses of the 
different dimensions of IC.

2.4.1. Human capital and AI technology adoption
In manufacturing firms, human capital stands out as the most critical 

component of HI and serves as the ultimate driver of value creation, 
fuelled by creativity and initiative (Xu and Li, 2022). The human capital 
within a manufacturing firm encompasses the collective knowledge, 
skills, experience and other personal abilities of all personnel, including 
employees and managers (Bayraktaroglu et al., 2019). These capabilities 
can be cultivated, maintained and strengthened through various means, 
including formal education, training programmes and self-perception, 
thereby enhancing the overall stock of organisational human capital 
(Hanifah et al., 2022).

Notably, human capital imbued with green consciousness plays a 
pivotal role in stimulating the green innovation process within firms. It 
contributes to enhancing production and manufacturing efficiency by 
reducing resource and energy consumption while improving utilisation 
rates (Tseng and Goo, 2013). Additionally, human capital with a green 
mindset is instrumental in planning and resolving green issues within 
organisations (Edvinsson and Malone, 2005; Guenster et al., 2011). The 
impact of human capital on green value creation stems primarily from 
the abilities, attitudes and experiences of employees and encompasses 
their capacity to optimise practices, reflect on challenges and devise 
solutions (Tang et al., 2022). In the realm of green innovation, high- 
quality human capital can swiftly identify core issues, make informed 
decisions and enable firms to respond adeptly to changes in the external 
environment (Wright et al., 2001; Yousaf, 2021). Furthermore, in the era 
of the green economy, high-quality human capital positively influences 
both customers and the environment. For instance, enhancing product 
or service reliability contributes to increased customer satisfaction and 
social recognition (Liebowitz and Suen, 2013), ultimately creating 
higher green value for customers, the environment and society.

AI technology adoption plays a pivotal role in enhancing the effi-
ciency of green value creation by elevating the level of human capital 
within manufacturing firms. First, in the context of high AI technology 
adoption, manufacturing employees can rapidly acquire new green 
knowledge. This accelerated learning not only bolsters individual 
development (Verma and Singh, 2022) but also facilitates the trans-
formation and upgrading of firm human capital, thereby augmenting the 
capacity to generate green value.

Moreover, AI technology adoption enables the infusion of digital 
technology into firms, thereby upgrading traditional technologies and 
opening avenues for R&D personnel to pursue iterative green technology 
innovations (Jia et al., 2023). Within the realm of AI technology adop-
tion, R&D personnel leverage next-generation digital technologies to 
complement and enhance traditional approaches, thereby enabling a 
precise analysis of green production (Yam et al., 2023).

Lastly, AI technology adoption contributes to enhanced awareness 
among managers regarding environmental issues related to existing 
products and technologies. This heightened awareness aims to propel 
manufacturing firms towards improving products and technologies 
guided by green demand (Bassi and Van Buren, 2007; Li et al., 2021), 
ultimately intensifying the creation of green value. Therefore, based on 
these observations, we propose the following hypothesis:

H2a: Human capital significantly promotes manufacturing firms to create 
green value, and AI technology adoption significantly positively moderates 
this relationship.

2.4.2. Structural capital and AI technology adoption
Structural capital serves as the manifestation of HI within 

manufacturing firms, encompassing organisational structure, culture, 
internal control systems and workflow (Oliveira et al., 2010; Farzaneh 
et al., 2022). It takes various forms, including hardware, software, 
technology, institutions, databases, organisational structure and infor-
mation systems, which can be copied, shared and disseminated within 

an organisation (Liebowitz and Suen, 2013; Yousaf, 2021).
The impact of structural capital on green value creation in 

manufacturing firms manifests in several aspects. First, high-quality 
structural capital facilitates convenient channels for the trans-
formation of green knowledge, especially in improving organisational 
resource utilisation. Well-structured organisations support cross- 
departmental communication and information sharing among internal 
members (Dost et al., 2016), leading to enhanced operational efficiency, 
reduced resource redundancy and subtle improvements in the efficiency 
of resource value creation (Li et al., 2021). Second, the organisational 
collaboration and integration mechanisms embedded in structural cap-
ital contribute to the enhancement of corporate culture and organisa-
tional structure, providing conditions conducive to the promotion of 
green value-creation activities (Beltramino et al., 2021). Third, high- 
quality structural capital encourages flexibility in expressing ideas and 
learning norms (Farzaneh et al., 2022). This fosters emotional depen-
dence and organisational commitment among employees, thereby pro-
moting positive green innovation behaviours (Tseng and Goo, 2013; 
Farzaneh et al., 2022) aimed at creating green value.

AI technology adoption plays a crucial role in enhancing the flexi-
bility of organisational structures and management systems, effectively 
elevating the level of structural capital and fostering green value crea-
tion. First, the widespread adoption of AI technology is driving a 
transformation in the internal management approaches of firms (Raisch 
and Krakowski, 2021). In the context of the digital and green economy, 
changes in organisational structure and culture necessitate employees to 
assume roles beyond their traditional functions (Bertani et al., 2021). 
Manufacturing firms must initiate top-level design, cultivate new skills 
among employees and promote green value creation to adapt to shifts in 
the external environment.

Second, AI technology adoption brings about changes in traditional 
business and value-creation models (Raisch and Krakowski, 2021). 
Historically dominated by individual firms and exhibiting closed-source 
characteristics, these models have evolved in the AI era to integrate a 
broader range of external resources across organisational boundaries. 
This integration allows users or external R&D personnel to actively 
participate in the entire process of green value creation, fostering open 
networked innovation and providing significant momentum for 
manufacturing firms to continuously generate green value.

Third, AI technology adoption enhances the organisational and 
management efficiency of value-creation activities. The impact of AI 
technology adoption is evident in the revolution of internal organisa-
tional structures towards networking and flattening (Yam et al., 2023), 
breaking down barriers between different links, modules and de-
partments within firms. These revolutions have made organisational 
structures more flexible and resilient, facilitating communication and 
the sharing of green knowledge elements among different systems 
(Liebowitz and Suen, 2013; Verma and Singh, 2022). Therefore, based 
on these observations, we propose the following hypothesis:

H2b: Structural capital significantly promotes manufacturing firms to 
create green value, and AI technology adoption significantly positively 
moderates this relationship.

2.4.3. Relational capital and AI technology adoption
Relational capital is an intangible asset of HI within manufacturing 

firms, offering a potential driving force for green value creation (Tseng 
and Goo, 2013). In the process of green value creation, the contribution 
of relational capital lies in establishing a ‘bridge’ between firms and 
their stakeholders (Kale et al., 2000; Li et al., 2021). Firms achieve 
benefit sharing with stakeholders through positive interactions with 
customers, suppliers and communities. This shared technology exchange 
community facilitates communication and coordination among different 
entities (Oliveira et al., 2010), thereby building a technological bridge 
for product and technology restructuring, ‘co-green innovation’ and 
expanding the scope of green value creation (Yousaf, 2021).

High-quality relational capital can maintain a high level of trust with 
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stakeholders, thereby improving the potential for green technology to be 
applied to diverse customers and markets (Li et al., 2021). It also per-
meates green innovation concepts throughout the supply chain network, 
incorporating environmental and social responsibility principles. 
Manufacturing firms leverage relational capital to guide other entities in 
green innovation, effectively reducing resource and energy consumption 
in the innovation process (Xu and Li, 2022), lowering costs, enhancing 
green value creation and achieving a balance between profitability and 
environmental protection (Kammerer, 2009; Yousaf, 2021).

As an increasing number of manufacturing firms leverage AI tech-
nology adoption to reduce energy consumption and enhance resource 
efficiency, the quest for improved green value creation is intensifying 
(Callen et al., 2023). However, it is essential to acknowledge that the 
expansion of business boundaries driven by AI technology has elevated 
organisational relationship capital while simultaneously introducing 
heightened uncertainty and complexity (Raisch and Krakowski, 2021). 
First, manufacturing firms with elevated relational capital often find 
themselves deeply embedded in relational networks, resulting in more 
homogeneous knowledge and skills (Beltramino et al., 2021). Con-
strained by group consciousness, these firms may resist acquiring new 
knowledge and opportunities from external sources, thus weakening the 
positive impact of AI technology adoption on green value creation.

Second, when manufacturing firms possessing rich relationship 
capital confront AI technology adoption, the substantial impact of AI 
may lead them to resist absorbing new ideas and to seek to maintain the 
stability of existing relationship networks. This resistance may result in 
‘shortsighted behaviour’ (Jia et al., 2023) and a more conservative 
approach to green value creation (Tang et al., 2022).

Third, AI technology adoption may encourage manufacturing firms 
with higher levels of relational capital to develop a ‘free-riding’ men-
tality, potentially diminishing their motivation for independent green 
innovation (Raisch and Krakowski, 2021). This, in turn, weakens the 
overall influence of relational capital in promoting green value creation.

Lastly, the introduction of AI technology in the workplace, coupled 
with environmental changes and technological progress, has generated 
heightened job insecurity among employees (Yam et al., 2023). In 
response, employees may unintentionally engage in high-risk green 
innovation behaviours to avoid mistakes, inadvertently inhibiting their 
green value-creation activities. Therefore, based on these observations, 
we propose the following hypothesis:

H2c: Relational capital significantly promotes manufacturing firms to 
create green value, but this mechanism is weakened in the presence of higher 
AI technology adoption.

Based on the above discussion, we constructed an analytical frame-
work for AI–HI collaboration and green value creation to explore the 
impact mechanism of AI technology adoption in the green value- 
creation process of manufacturing firms. The specific conceptual 
model is shown in Fig. 1.

3. Methods

3.1. Sample and data

We utilised Chinese A-share listed firms as the initial sample. 
Drawing on prior studies (Duan et al., 2021; Huang et al., 2022), the 
authors applied the following criteria to select the final sample. First, 
manufacturing firms were selected based on their classifications and 
codes within China’s national industrial economy (GB/4754–2011). 
Second, firms with no green invention patent applications during the 
research period (2010–2022) were excluded. Third, firms marked with 
‘ST’ and ‘*ST’ were eliminated. Fourth, firms whose core variables could 
not be matched with data from other variables were excluded. Finally, 
firms with significant missing variable data were also eliminated. We 
chose manufacturing firms as the sample because, first and foremost, 
manufacturing is an important component of China’s industrial system 
and is the leading industry in the national economy. According to data 
from the Chinese Ministry of Industry and Information Technology, the 
total number of manufacturing firms in China reached 6.03 million in 
2023, with manufacturing added value accounting for 26.2 % of GDP 
and about 30 % of the global total, firmly ranking it first in the world. 
Second, while the proportion of manufacturing as a secondary industry 
has decreased, there have been continuous problems, such as environ-
mental pollution and overcapacity, that have had a huge impact on the 
environment. Third, under the requirements of carbon neutrality goals, 
exploring the green development of the manufacturing industry is not 
only a result of policy regulation but also a requirement of market 
competition. Therefore, choosing manufacturing firms for the sample 
has important theoretical value and practical implications.

This study drew on two distinct data sources. The first encompassed 
fundamental data, such as financial metrics, patent records and research 
and development (R&D) information, at the manufacturing firm level. 
These details were derived from the CSMAR database and the annual 
reports of the respective firms. The second source consisted of envi-
ronmental protection and corporate social responsibility (CSR)–related 
data for manufacturing firms obtained from Rankins CSR Ratings reports 
(www.rksratings.cn) and Hexun CSR reports (www.hexun.com).

Given that data related to R&D innovation and environmental 
governance in the annual reports and third-party databases were 
notably absent before 2010 for the sample firms, this study opted for 
data consistency and result stability by restricting the sample period to 
2010–2022. Recognising that the green value-creation process of 
manufacturing firms exhibits a lag in output effects, the main effect test 
employed dependent variable data from 2011 to 2022 to mitigate 
endogeneity issues. Other variables were considered within the range of 
2010–2021. Ultimately, this study compiled panel data samples from 
939 A-share listed manufacturing firms over 12 years.

Additionally, for robustness testing, the dependent variable mea-
surement data utilised was the annual pollutant discharge equivalent. 

Fig. 1. Conceptual model.
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This served as a reverse indicator, eliminating the need for lag consid-
eration. Consequently, the data sample interval for robustness testing 
extended from 2010 to 2022.

3.2. Measures

3.2.1. Dependent variable: Green value creation in manufacturing firms
As mentioned earlier, green value creation involves enhancing 

resource utilisation, minimising resource or energy consumption and 
reducing waste in the process of developing products or services (Priem 
et al., 2018; Schilling and Seuring, 2023). For manufacturing firms, 
creating green value necessitates not only the achievement of economic 
benefits but also the attainment of environmental benefits (Guenster 
et al., 2011; Yousaf, 2021). In the realm of economic value, 
manufacturing firms secure economic rent through green innovation 
and realise environmental value by mitigating their impact on the 
environment through the application of green technology. To measure 
the green value creation of the sample firms, this study employed two 
key indicators: green innovation efficiency and emission pollutant 
equivalents.

Green innovation efficiency serves as a positive indicator that 
directly mirrors the level of green value creation, encompassing both the 
research and development (R&D) efficiency and the application effi-
ciency of green technology (Yousaf, 2021). The data for this metric were 
primarily computed using the two-stage data envelope analyse-slack 
based model (DEA-SBM) model. On the other hand, the equivalent 
value of pollutants emitted by manufacturing firms functions as a 
reverse indicator. A higher value indicates a lower level of green value 
creation (Kock et al., 2012; Reimsbach and Braam, 2023). According to 
the ‘Management Measures for the Collection of Pollutant Discharge 
Fees in China’, the pollutant emissions of firms primarily include 
chemical oxygen demand and ammonia nitrogen emissions in industrial 
wastewater, as well as sulphur dioxide and nitrogen oxide emissions in 
industrial exhaust gas. To quantify these emissions, we standardised the 
emissions of the aforementioned four pollutants, converting them into a 
unified pollution-equivalent number. We then summed the pollution 
equivalent numbers (adding 1 before taking the logarithm) to derive the 
pollution equivalent value. This value reflects the pollution emission 
levels of manufacturing firms.

3.2.2. Independent variables
The degree of adoption and application of AI in the actual production 

process of manufacturing firms significantly influences such firms’ value 
creation (Lee et al., 2022; Verma and Singh, 2022; Zhang et al., 2024). 
While previous studies have often measured AI using indicators such as 
total factor productivity, the technological progress index, number of 
patent authorisations and per capita equipment value (Pillai and Siva-
thanu, 2020; Shepherd and Majchrzak, 2022; Cirillo et al., 2023), these 
metrics may not accurately capture AI technology adoption. Drawing 
from existing studies, we adopted the per-capita value of AI-related 
machinery and equipment within manufacturing firms as an indicator 
to measure AI adoption in the green innovation ecosystem.

IC, the embodiment of HI resources in manufacturing firms, has 
evolved into a distinctive strategic resource and a fundamental driver of 
value creation (Beltramino et al., 2021; Lugosi, 2021). Following the 
prevailing accounting methodology, investments in human capital are 
predominantly represented by salaries paid. Structural capital in-
vestments, encompassing management systems and corporate culture 
development, are typically accounted for within management expenses. 
Similarly, relational capital, involving activities such as sales channel 
development and customer relationship management, is reflected in 

sales expenses. Building on existing research (Bayraktaroglu et al., 
2019), this study employed specific financial metrics to measure each 
dimension of IC. Human capital (HC) is gauged using compensation and 
cash accounts paid to employees, structural capital (SC) is measured 
through administrative expenses in the income statement and relational 
capital (RC) is assessed via selling expenses. Subsequently, the value- 
added (VA) coefficient method was applied to derive specific values 
for each dimension. The VA of a firm is composed of net profit, depre-
ciation expenses, financial expenses, income tax, payable wages and 
welfare expenses.

3.2.3. Control variables
Manufacturing firms at different life stages can significantly influ-

ence innovation (Kock et al., 2012). Firms experiencing better growth, 
in contrast to those facing greater downward development pressure, are 
more inclined to embrace green innovation and value creation (Wolf, 
2014; Huang et al., 2022) to align with the demands of the times. Thus, 
firm growth is considered the first control variable measured by the 
growth rate of operating income.

Green value creation, viewed at the social level as a contribution to 
the ecological environment, is directly influenced by the level of social 
responsibility and impacts the motivation of manufacturing firms 
(Broadstock et al., 2020; Huang et al., 2022). As such, the social re-
sponsibility scores disclosed in the corporate social responsibility re-
ports were employed as a control variable.

Firm size, the third control variable, is crucial, as larger firms possess 
advantages in manpower, capital and risk resistance (Santoro et al., 
2018). Previous studies have indicated that firm size directly influences 
willingness and performance in creating green value (Forés and 
Camisón, 2016). Manufacturing firm size was quantified using the log-
arithm of total assets.

R&D investment has been identified as the foundation for 
manufacturing firms to undertake green technology innovation and 
directly impacts such firms’ ability and performance in creating green 
value (Huang et al., 2022). Hence, the intensity of R&D expenditure was 
the fourth control variable, measured by the proportion of R&D 
expenditure to the main business income.

Financial leverage, reflecting a firm’s operating and financial situa-
tion, plays a crucial role. Firms with relatively abundant financial re-
sources and sound operating conditions possess a stronger ability to 
engage in green innovation and value creation (Flammer, 2021). 
Financial leverage, the fifth control variable, was measured through the 
asset–liability ratio.

In addition, environmental management authentication signifies 
that manufacturing firms garner more recognition in environmental 
governance and pollutant emissions control (Kock et al., 2012; Yousaf, 
2021; Huang et al., 2022), reflecting their level of green value creation. 
This article incorporated the number of manufacturing firms that had 
obtained environmental management authentication as a control 
variable.

Furthermore, the supervision of manufacturing firms by environ-
mental authorities is a pivotal factor influencing green innovation and 
value creation. Conversely, firms subjected to penalties by environ-
mental authorities place greater emphasis on green value creation 
(Huang et al., 2022; Reimsbach and Braam, 2023). Environmental su-
pervision was measured using dummy variables and served as the sev-
enth control variable. Detailed names and measures of all variables are 
presented in Table 1.
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3.3. Model

This article employed a panel data model to analyse the relationship 
mechanism between HI and the green value creation of manufacturing 
firms. Simultaneously, we explored the potential interaction mechanism 
of AI technology adoption from the technology adoption perspective to 
comprehensively measure the possible influence mechanism of the 
collaboration between AI and HI on the green value creation of 
manufacturing firms. The following regression model was constructed: 

GVCi,t = α0 + α1AIAi,t +α2HHCi,t +α3HSCi,t + α4HSCi,t +Σj
iδ

• Controlsi,t + μ1,i,t + ε1,i,t (1) 

GVCi,t = α0 +α1AIAi,t + α2HHCi,t + α3HSCi,t +α4HSCi,t

+ β1AIAi,t ×HHCi,t + β2AIAi,t ×HSCi,t

+ β3AIAi,t ×HRCi,t +Σj
iδ • Controlsi,t + μ1,i,t + ε1,i,t

(2) 

For formulas (1) and (2), the abbreviations for all variables can be 
found in Table 1. Additionally, a, β and δ in the models represent the 
regression coefficients of the model intercept term, independent vari-
ables and control variables, respectively. Here, i represents different 
manufacturing firms and t represents the year. 

∑
δ•Controls refers to the 

set of other control variables not shown in the model. μ represents the 
random disturbance item and ε is the residual item.

4. Results

4.1. Descriptive statistics and correlation analysis

Table 2 presents the mean, median, standard deviation, minimum, 
maximum and sample size of all the variables in this study. The mean of 
green innovation efficiency (GVC1) was 1.052, ranging from a minimum 
of 0.272 to a maximum of 1.992, which indicated significant variation in 
the current green innovation efficiency among manufacturing firms. The 
pollution emission equivalent data of manufacturing firms (GVC2) 
suggested a relatively small difference in pollution emissions. The mean 
of AI technology adoption was − 0.021, with a range from − 0.054 to 
1.582. The overall distribution exhibited an obvious triangular struc-
ture, indicating that the utilisation of AI technology adoption by most 
manufacturing firms in China was at a relatively low level.

The results of the IC data revealed significant differences among 
manufacturing firms in terms of human capital, structural capital and 
relational capital. Concerning the control variables, there were notable 
variations in the social responsibility, R&D investment and growth of 
manufacturing firms, while differences in other variables were relatively 
small.

Table 3 displays the correlation coefficient matrices among the 
variables. The results indicated a significant positive correlation be-
tween AI adoption, structural capital and green value creation. Addi-
tionally, relational capital exhibited a positive correlation with green 
value creation, while human capital was negatively correlated. These 
findings provide preliminary support for the theories presented in this 
article. However, determining the intrinsic causal relationship between 
variables necessitates controlling for other influencing factors and 
excluding alternative theoretical explanations. The observed correla-
tions formed the foundation of the subsequent regression analysis.

4.2. Hypotheses test results

Before the regression analysis, we conducted Hausman and Breusch- 
Pagan tests (Huang et al., 2022; Wang and Shibayama, 2022). The re-
sults indicated a rejection of the original hypotheses (p = 0.000, p =
0.000). As a result, the fixed-effect model was deemed appropriate for 
this article.

Table 4 presents the regression results of the main hypotheses. In 
Model (1), the benchmark model, most control variables demonstrated a 
significant correlation with the green value creation of manufacturing 
firms, underscoring the necessity of controlling these variables. The 
intensity of R&D investment was significantly positive, suggesting that 
sustained and long-term R&D investment is essential for green value 
creation in manufacturing firms. Environmental supervision and 
authentication both play pivotal roles in reflecting the green value 
creation of manufacturing firms. Environmental supervision signifies a 
practice of green innovation driven by external institutional pressure, 
while environmental authentication directly mirrors the level of green 

Table 1 
Variables and measures.

Variables Variable name Variable measures Source reference

Dependent 
variables

Green value 
creation (GVC)

Green innovation 
efficiency (GIE).

Priem et al., 2018; 
Schilling and 
Seuring, 2023

The natural 
logarithm of the 
number of pollutant 
emission equivalent 
plus 1.

Yousaf, 2021; 
Reimsbach and 
Braam, 2023

Independent 
variables

AI technology 
adoption (AIA)

The per capita value 
of AI-related 
machinery and 
equipment.

Pillai and 
Sivathanu, 2020; 
Zhang et al., 2024; 
Cirillo et al., 2023

HI-human capital 
(HHC)

VA/HC Bayraktaroglu 
et al., 2019

HI-structural 
capital (HSC)

VA/SC Bayraktaroglu 
et al., 2019

HI-relation capital 
(HRC)

VA/RC Bayraktaroglu 
et al., 2019

Control 
variables

Firm growth (FG) The growth rate of a 
firm’s operating 
income.

Wolf, 2014; Huang 
et al., 2022

Corporate Social 
Responsibility 
(CSR)

The score of social 
responsibility in the 
CSR annual report.

Broadstock et al., 
2020; Huang et al., 
2022

Firm size (FS) Logarithm of total 
assets.

Forés and Camisón, 
2016

Intensity of R&D 
expenditure 
investment (RDE)

R&D expenditure / 
main business 
income.

Huang et al., 2022

Financial leverage 
(FL)

Asset-liability ratio Huang et al., 2022

ISO 
authentication 
(IA)

1 means passed ISO 
authentication and 
0 means others.

Yousaf, 2021; 
Huang et al., 2022

Environmental 
supervision (ES)

1 means key 
pollution monitoring 
firms and 0 means 
others

Huang et al., 2022; 
Reimsbach and 
Braam, 2023

Table 2 
Descriptive statistics of variables.

Variables Mean S.D. Min P50 Max N

GVC1 1.052 0.371 0.272 1.027 1.992 11,935
GVC2 0.143 0.005 0.131 0.144 0.153 11,935
AIA − 0.021 0.046 − 0.054 − 0.027 1.582 11,935
HHC 102.0 35.37 − 15.95 80.83 269.4 11,935
HSC 1.921 4.093 − 124.2 1.776 194.4 11,935
HRC − 0.041 4.132 − 13.06 0.302 19.27 11,935
CSR 21.24 15.72 − 17.19 17.99 90.87 11,935
RDE 0.079 0.322 − 0.087 0.036 12.59 11,935
ES 0.236 0.421 0.000 0.000 1.000 11,935
IA 0.255 0.433 0.000 0.000 1.000 11,935
FS 22.28 1.168 19.59 22.19 26.45 11,935
FG 0.165 0.388 − 0.658 0.121 4.024 11,935
FL 0.428 0.188 0.027 0.428 0.908 11,935
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value creation. Large-scale manufacturing firms may exhibit higher risk 
resistance, potentially contributing to better green performance in 
creating green value. Notably, social responsibility, firm growth and 
financial leverage exhibited significant negative effects, contrary to 
intuitive expectations. This discrepancy may stem from the close asso-
ciation between green value creation and strategic orientation, leading 
to differences in strategies and response times among manufacturing 
firms. Additionally, the process-oriented and lagged nature of green 
value creation may contribute to a lack of immediate results in the short 
term.

In Model (2), we tested the impact of AI technology adoption, 
revealing an estimated coefficient of 0.293 that was significant at the 1 
% level. Additionally, in the tests of Models (7)–(10), this effect 
remained significantly positive. These findings strongly suggest that AI 
technology adoption exerts a substantial positive influence on the green 
value creation of manufacturing firms, confirming H1.

Examining the results of Models (3) and (7), we analysed the effect of 
human capital from both HI and AI technology adoption on the green 
value creation of manufacturing firms. In Model (3), the coefficient of 
HHC was 0.119, significant at the 1 % level. In Model (7), the coefficient 
of HHC × AIA was 0.015, significant at the 5 % level. These results 
indicate that a higher level of human capital contributes to enhanced 
creativity and initiative in the value-creation process. This encourages 
manufacturing firms to leverage their HI resources for green value cre-
ation, with this mechanism being particularly crucial in the context of 
higher AI technology adoption. Collectively, these outcomes validate 
H2a.

Models (4) and (8) investigated how the structural capital of HI in 
manufacturing firms influenced green value creation under the influ-
ence of AI technology adoption. In Model (4), the coefficient of HSC was 
0.057, significant at the 1 % level. In Model (8), the coefficient of HSC ×
AIA was 0.086, significant at the 10 % level. These findings suggest that 

Table 3 
Correlation coefficient matrix of variables.

Variables GVC AIA HHC HSC HRC CSR RDE ES IA FS FG FL

GVC 1
AIA 0.098*** 1
HHC − 0.006 − 0.004 1
HSC 0.025*** 0.106*** 0.011 1
HRC 0.010 0.002 0.000 0.003 1
CSR − 0.239*** − 0.068*** 0.017* 0.163*** − 0.001 1
RDE 0.055*** 0.004 0.005 − 0.002 0.001 − 0.075*** 1
ES 0.388*** 0.115*** 0.012 0.082*** 0.004 − 0.112*** − 0.026*** 1
IA 0.075*** − 0.027*** 0.011 0.021** − 0.017* 0.127*** − 0.030*** 0.081*** 1
FS 0.269*** 0.144*** 0.010 0.141*** 0.012 0.142*** − 0.167*** 0.299*** 0.075*** 1
FG − 0.115*** − 0.013 0.002 0.104*** − 0.001 0.087*** − 0.049*** − 0.033*** − 0.031*** 0.047*** 1
FL 0.059*** 0.069*** − 0.049*** − 0.060*** 0.011 − 0.107*** − 0.024*** 0.063*** − 0.005 0.426*** 0.020** 1

*, **, and *** indicate that they pass the test at the levels of 10 %, 5 %, and 1 %, respectively.

Table 4 
Regression results.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AIA 0.293*** 0.103** 0.051* 0.024*** 0.014*
(0.075) (0.008) (0.001) (0.001) (0.000)

HHC 0.119*** 0.074*** 0.095* 0.002**
(0.014) (0.007) (0.054) (0.001)

HSC 0.057*** 0.003*** 0.036* 0.001*
(0.007) (0.001) (0.021) (0.001)

HRC 0.001* 0.001** 0.010* 0.010***
(0.001) (0.001) (0.001) (0.003)

HHC × AIA 0.015** 0.003*
(0.007) (0.001)

HSC × AIA 0.086* 0.026**
(0.052) (0.007)

HRC × AIA − 0.033*** 0.237***
(0.004) (0.070)

CSR − 0.004*** − 0.004*** − 0.003*** − 0.004*** − 0.004*** − 0.002*** − 0.005*** − 0.006*** − 0.005*** − 0.016***
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

RDE 0.145*** 0.144*** 0.152*** 0.151*** 0.144*** 0.079*** 0.312*** 0.308*** 0.108*** 0.509***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.005) (0.082) (0.082) (0.017) (0.043)

ES 0.254*** 0.252*** 0.247*** 0.244*** 0.254*** 0.118*** 0.168*** 0.163*** 0.265*** 1.037***
(0.008) (0.008) (0.009) (0.009) (0.008) (0.005) (0.031) (0.031) (0.019) (0.035)

IA 0.046*** 0.046*** 0.042*** 0.049*** 0.046*** 0.024*** 0.009 0.014 0.033 0.109***
(0.008) (0.008) (0.009) (0.009) (0.008) (0.005) (0.040) (0.040) (0.022) (0.036)

FS 0.243*** 0.241*** 0.255*** 0.244*** 0.243*** 0.131*** 0.273*** 0.233*** 0.197*** 0.829***
(0.005) (0.005) (0.006) (0.006) (0.005) (0.003) (0.031) (0.034) (0.011) (0.022)

FG − 0.102*** − 0.101*** − 0.096*** − 0.109*** − 0.102*** − 0.052*** − 0.093*** − 0.104*** − 0.069*** − 0.316***
(0.007) (0.007) (0.008) (0.008) (0.007) (0.004) (0.027) (0.026) (0.016) (0.032)

FL − 0.058** − 0.054** − 0.099*** − 0.056* − 0.058** − 0.050*** − 0.492*** − 0.366** − 0.093* − 0.199*
(0.027) (0.027) (0.030) (0.030) (0.027) (0.016) (0.166) (0.168) (0.054) (0.115)

Constant − 4.324*** − 4.273*** − 4.640*** − 4.430*** − 4.325*** − 1.921*** − 4.914*** − 4.061*** − 3.451*** − 16.69***
(0.109) (0.110) (0.119) (0.117) (0.110) (0.061) (0.681) (0.738) (0.240) (0.472)

Observations 11,935 11,935 11,935 11,935 11,935 11,935 11,935 11,935 11,935 11,935
R-squared 0.396 0.397 0.404 0.415 0.397 0.408 0.269 0.275 0.348 0.322
P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses, *, **, and *** indicate that they pass the test at the levels of 10 %, 5 %, and 1 %, respectively.
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the structural capital of manufacturing firms utilising their HI resources 
can indeed promote green value creation. Importantly, this mechanism 
became more pronounced in the context of higher AI technology 
adoption, validating H2b.

Models (5) and (9) explored changes in the mechanism by which 
manufacturing firms utilised their HI resources to create green value 
through relational capital when exposed to higher AI technology 
adoption. In Model (5), the coefficient of HRC was 0.001, significant at 
the 10 % level. In Model (9), the coefficient of HRC × AIA was − 0.033, 
significant at the 1 % level. These results suggest that manufacturing 
firms can promote green value creation by leveraging their relational 
capital. However, this impact mechanism was significantly weakened in 
the presence of higher external AI technology adoption. These findings 
support H2c.

4.3. Robustness test

4.3.1. Replacing the dependent variable measurement
In the test to replace the dependent variable measure, we utilised the 

pollutant emission equivalent of manufacturing firms as a proxy variable 
for green value creation to examine the hypothesis. To account for the 
inverse relationship between the emission pollutant equivalent and 
green value creation, we processed the data accordingly. Table 5 pre-
sents the robustness test results for replacing the dependent variable 
measurement.

Similarly, Model (1) served as the benchmark, the chosen control 
variables exhibited a significant impact on green value creation, 
measured by the reverse variable of the pollutant discharge equivalent. 
Model (2) tested the impact of AI technology adoption, yielding an 
estimated coefficient of 0.381, significant at the 1 % level. The effects 
remained significantly positive in Models (7)–(10), further supporting 
H1. Models (3)–(5) and (7)–(9) investigated the effects of different 

dimensions of HI and AI technology adoption on green value creation in 
manufacturing firms. In Models (3) and (7), the coefficient of HHC was 
0.013, significant at the 10 % level, while the coefficient of HHC × AIA 
was 0.030, significant at the 1 % level. In Models (4) and (8), the co-
efficient of HSC was 0.343, and the coefficient of HSC × AIA was 0.729, 
both significant at the 1 % level. In Models (5) and (9), the coefficient of 
HRC was 0.771, significant at the 1 % level, and the coefficient of HRC 
× AIA was − 0.001, significant at the 5 % level. These results further 
verify and support hypotheses H2a, H2b and H2c.

Furthermore, in Tables 4 and 5, Models (6) and (10) include both the 
main effect and all interaction effects, respectively. While the direction 
of each estimated effect remained consistent, there were slight changes 
in the coefficients and significance levels. This can be attributed to the 
inclusion of all regression terms, particularly the interaction terms of AI 
technology adoption, which may have introduced collinearity. None-
theless, despite these adjustments, the empirical results continued to 
support the research hypothesis, indicating a certain degree of 
robustness.

4.3.2. Excluding industries with high digitalization
A discernible disparity exists between the demand for and the extent 

of integration with AI technology across industries exhibiting varying 
degrees of digitization. Industries that are highly digitalized offer a more 
robust data foundation, superior technical conditions, and ample talent 
support, facilitating the adoption of AI technology by manufacturing 
firms. Furthermore, within these highly digitalized industries, the traits 
of knowledge and capital intensity are increasingly prominent, accom-
panied by a higher quality and abundance of intellectual capital. 
Consequently, to mitigate the influence of industry digitalization on the 
green value creation efforts of manufacturing firms, we conducted 
robustness testing on industry samples with differing levels of digitiza-
tion. Table 6 displays the robustness test results specifically for the 

Table 5 
Robustness test results for replacing the dependent variable measurement.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AIA 0.381*** 0.021* 0.040* 0.011** 0.072**
(0.061) (0.006) (0.012) (0.000) (0.002)

HHC 0.013* 0.007** 0.019*** 0.091*
(0.007) (0.107) (0.007) (0.127)

HSC 0.343*** 0.208* 0.037* 0.198**
(0.130) (0.133) (0.019) (0.149)

HRC 0.771*** 3.205*** 0.768*** 2.603***
(0.259) (1.003) (0.259) (0.920)

HHC × AIA 0.030*** 4.834
(0.002) (1.261)

HSC × AIA 0.729*** 7.966***
(0.053) (2.616)

HRC × AIA − 0.001** 4.724***
(0.000) (1.337)

CSR − 0.364*** − 0.362*** − 0.363*** − 0.373*** − 0.364*** − 0.407*** − 0.354*** − 0.352*** − 0.364*** − 0.361***
(0.012) (0.012) (0.012) (0.013) (0.012) (0.014) (0.012) (0.012) (0.012) (0.012)

RDE 1.543*** 1.536*** 1.544*** 1.638*** 1.540*** 1.727*** 1.509*** 1.511*** 1.539*** 1.533***
(0.064) (0.064) (0.064) (0.067) (0.064) (0.070) (0.064) (0.064) (0.064) (0.064)

ER 0.179*** 0.177*** 0.179*** 0.202*** 0.179*** 0.212*** 0.171*** 0.172*** 0.179*** 0.177***
(0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004)

EC 0.040*** 0.040*** 0.039*** 0.032*** 0.039*** 0.038*** 0.038*** 0.039*** 0.039*** 0.040***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004)

SIZE 1.304*** 1.292*** 1.304*** 1.160*** 1.303*** 1.342*** 1.277*** 1.271*** 1.303*** 1.293***
(0.017) (0.017) (0.017) (0.018) (0.017) (0.019) (0.017) (0.017) (0.017) (0.017)

CG − 0.221*** − 0.218*** − 0.220*** − 0.193*** − 0.220*** − 0.218*** − 0.204*** − 0.206*** − 0.220*** − 0.217***
(0.017) (0.017) (0.017) (0.018) (0.017) (0.019) (0.017) (0.017) (0.017) (0.017)

LR − 0.074*** − 0.071*** − 0.074*** − 0.055*** − 0.073*** − 0.069*** − 0.074*** − 0.070*** − 0.074*** − 0.071***
(0.012) (0.012) (0.012) (0.013) (0.012) (0.013) (0.012) (0.012) (0.012) (0.012)

Constant 0.176*** 0.170*** 0.047 − 0.223*** − 0.989** − 3.743*** 0.192*** 0.029 − 0.982** − 2.905***
(0.010) (0.010) (0.071) (0.051) (0.391) (1.151) (0.071) (0.052) (0.391) (1.058)

Observations 11,935 11,935 11,935 11,935 11,935 11,935 11,935 11,935 11,935 11,935
R-squared 0.589 0.590 0.589 0.551 0.589 0.587 0.595 0.596 0.589 0.591
P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses, *, **, and *** indicate that they pass the test at the levels of 10 %, 5 %, and 1 %, respectively.
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exclusion of highly digitalized industries.
Model (1) still demonstrates the effectiveness of control variables 

selection. Model (2) tested the impact of AI technology adoption, with 
an estimated coefficient of 1.609, significant at the 1 % level. After 
excluding the influence of high digitalization industries, H1 still main-
tains robustness.

Models (3) and (6) demonstrated the impact of HHC and AI tech-
nology adoption in manufacturing firms on green value creation. In 
model (3), the coefficient of HHC was 0.002, significant at the 1 % level; 
The coefficient of HHC × AI in model (6) was 0.004, which had no 
significant promoting effect on green value creation. The reason for this 
result may be that in manufacturing firms with low levels of digitization, 
employees generally lack digital skills related to AI technology. In this 
case, they often rely more on their initiative and creativity to engage in 
green value creation activities.

Models (4) and (7) showed the impact of HSC and AI technology 
adoption on green value creation in manufacturing firms. The coeffi-
cient of HSC in the model (4) was 0.007, significant at the 1 % level; The 
coefficient of HSC × AI in the model (7) was 0.074, significant at the 10 
% level. Hypothesis H2b was further validated. Models (5) and (8) re-
flected the impact of HRC and AI technology adoption on green value 
creation in manufacturing firms. The coefficient of HRC in model (5) 
was 0.014, significant at the 1 % level; The coefficient of HRC × AI in the 
model (8) was − 0.371, significant at the 10 % level, indicating the 
robustness of H2c.

5. Discussion and conclusion

AI opens up new possibilities for human value creation, rejuvenating 
production factors, content and various fields. Addressing the impera-
tive of green and sustainable development, the exploration of how 
manufacturing firms can leverage their HI in collaboration with AI to 

create environmentally friendly value has become a focal point in both 
theoretical and practical domains (Guikema, 2022).

Despite extensive research on systematic value creation (Niu et al., 
2021; Oliveira et al., 2021; Al-Omoush et al., 2023; Reimsbach and 
Braam, 2023; Santarsiero et al., 2023), there remains significant room 
for investigating the green value creation of manufacturing firms. 
Moreover, while the existing literature extensively examines the impact 
of AI from macro and micro perspectives (Felten et al., 2021; Balasu-
bramanian et al., 2022; Pietronudo et al., 2022; Ivanov, 2023; Yin et al., 
2024), there is a dearth of studies exploring the boundary conditions of 
AI technology adoption’s impact on green value creation in 
manufacturing firms. In contrast to previous studies, this article delved 
into the potential interaction mechanisms of AI technology adoption by 
comprehensively measuring the impact of collaboration between AI and 
HI on the green value creation of manufacturing firms within the green 
innovation ecosystem.

The empirical analysis of data from 935 A-share listed manufacturing 
firms in China yielded the following conclusions. First, AI technology 
adoption has significantly and positively impacted the green value cre-
ation of manufacturing firms. In other words, AI technology adoption 
facilitates the use of HI by manufacturing firms within the green inno-
vation ecosystem.

Second, the human capital and structural capital of HI within 
manufacturing firms have a significant positive impact on such firms’ 
green value creation, and AI technology adoption significantly moder-
ates this relationship. That is, high-quality human capital enhances 
creativity and initiative in the process of creating green value, thereby 
contributing to green innovation and a higher value for customers, the 
environment and society. Simultaneously, high-quality structural capi-
tal acts as a lubricant for manufacturing firms to create green value. 
Human and structural capital, the most critical HI resources and capa-
bilities within an organisation, are indispensable elements in the process 

Table 6 
Robustness test results for excluding industries with high digitalization.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

AIA 1.609*** 1.499*** 1.265*** 1.714***
(0.227) (0.244) (0.285) (0.232)

HHC 0.002*** 0.001**
(0.000) (0.000)

HSC 0.007*** 0.006***
(0.002) (0.002)

HRC 0.014*** 0.003
(0.004) (0.007)

HHC × AIA 0.004
(0.004)

HSC × AIA 0.074*
(0.043)

HRC × AIA − 0.371*
(0.197)

CSR − 0.004*** − 0.004*** − 0.005*** − 0.005*** − 0.004*** − 0.004*** − 0.004*** − 0.004***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

RDE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ES 0.203*** 0.194*** 0.204*** 0.201*** 0.203*** 0.195*** 0.193*** 0.194***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

IA 0.062*** 0.060*** 0.062*** 0.063*** 0.062*** 0.061*** 0.062*** 0.061***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

FS 0.151*** 0.140*** 0.151*** 0.146*** 0.151*** 0.140*** 0.137*** 0.140***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

FG − 0.127*** − 0.126*** − 0.129*** − 0.135*** − 0.128*** − 0.128*** − 0.132*** − 0.128***
(0.010) (0.010) (0.010) (0.011) (0.010) (0.010) (0.011) (0.010)

FL 0.541*** 0.541*** 0.551*** 0.569*** 0.548*** 0.551*** 0.565*** 0.550***
(0.035) (0.034) (0.035) (0.036) (0.035) (0.035) (0.035) (0.034)

Constant − 2.549*** − 2.266*** − 2.568*** − 2.472*** − 2.553*** − 2.276*** − 2.215*** − 2.270***
(0.161) (0.166) (0.162) (0.165) (0.161) (0.166) (0.167) (0.165)

Observations 5361 5361 5361 5361 5361 5361 5361 5361
R-squared 0.440 0.445 0.440 0.441 0.442 0.446 0.447 0.448
P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses, *, **, and *** indicate that they pass the test at the levels of 10 %, 5 %, and 1 %, respectively.
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of creating green value for manufacturing firms. Especially in complex 
entities and contexts with distinct characteristics within the green 
innovation ecosystem, such mechanisms have become even more 
important due to the impact of AI technology adoption.

Third, the relational capital of HI can significantly promote 
manufacturing firms to create green value, but AI technology adoption 
negatively moderates this relationship. That is to say, high-quality 
relational capital can serve as a potential driving force for 
manufacturing firms to create green value. However, heightened AI 
technology adoption significantly impedes enthusiasm for this 
mechanism.

5.1. Theoretical contributions

This study contributes to theory and the literature in several ways. 
First, it adopts a green development perspective to explore the rela-
tionship mechanism and internal logic of how manufacturing firms 
utilise HI for green value creation, which has important theoretical 
value. Specifically, we examined whether and how IC, as the core 
resource and capability of HI, can drive the green value creation of 
manufacturing firms for sustainable development, both theoretically 
and empirically. Previous studies have focused predominantly on the 
antecedents and mechanisms of value creation and IC (Amit and Han, 
2017; Li et al., 2021; Lugosi, 2021; Pinochet et al., 2021; Santarsiero 
et al., 2023; Schilling and Seuring, 2023). However, there is a notable 
gap in the literature regarding the role of IC as an HI resource and its 
impact on the green value creation of manufacturing firms. Therefore, 
our findings expand the scope of research on the relationship between HI 
and green value creation within organisations, shedding light on the 
driving factors of green value creation in manufacturing firms.

Second, we revealed the mechanism through which AI technology 
influences the green value creation of manufacturing firms from a 
technology adoption perspective. This introduces a novel research idea 
and direction for studying the development of green transformation in 
the manufacturing industry. While previous studies have extensively 
explored the direct impact of AI technology at the macro and micro 
levels (Acemoglu and Restrepo, 2020; Balasubramanian et al., 2022; 
Verma and Singh, 2022; Yang et al., 2023; Yin et al., 2024), the influence 
mechanism of AI technology as a technological environment in the green 
value creation of innovation entities in the green innovation ecosystem 
remains insufficiently explained. Thus, our conclusions contribute by 
applying actor network theory to green value creation and offering new 
insights for manufacturing firms as innovation subjects engaged in green 
value creation within the green innovation ecosystem. Importantly, this 
study introduces a fresh perspective for exploring issues related to green 
development.

Third, this article explored the research topic of green value creation 
for manufacturing firms in a green innovation ecosystem from the 
perspective of AI and HI collaboration. Additionally, we employed two 
indicators, green innovation efficiency and pollution emission equiva-
lent, to comprehensively evaluate and measure the green value creation 
of manufacturing firms. Although the measurement of green innovation 
(El-Kassar and Singh, 2019; Chin et al., 2022) and value creation 
(Tantalo and Priem, 2016; Li et al., 2021; Schilling and Seuring, 2023) 
are extensively studied in the literature, these measurements primarily 
rely on green patents or financial indicators. While these positive in-
dicators reflect essential issues to a certain extent, they also have certain 
limitations. In light of these shortcomings, we chose to test the rela-
tionship mechanism using positive indicators (green technology 
research and development and application efficiency) and negative in-
dicators (pollution emissions equivalent). The efficiency of green tech-
nology R&D and application reflects the economic and environmental 
benefits of green value creation, with larger values indicating higher 
levels of green value creation for manufacturing firms. Conversely, the 
pollutant emissions equivalent value serves as a reverse indicator of 
green value creation, where larger values signify lower levels of green 

value creation in manufacturing firms. Therefore, our conclusions offer a 
valuable supplement to the measurement of green value creation at the 
organisational level.

5.2. Practical implications

The findings of this study offer valuable operational and practical 
implications for government and manufacturing firms making strategic 
decisions on green development.

First, the green value creation of manufacturing firms depends 
heavily on green innovation, a complex process that necessitates 
collaboration and integration within the green innovation ecosystem 
(Wolf, 2014; Huang et al., 2022). To achieve green value creation, 
manufacturing firms should continually expand their green knowledge 
base, enhance the interaction and integration of green knowledge across 
different fields and avoid knowledge isolation. This involves encour-
aging employees to share green knowledge, reconfiguring existing 
technical knowledge (Forés and Camisón, 2016) and embracing new 
concepts, such as co-creation networks and leverage, to disrupt tradi-
tional value-creation methods (Oliveira et al., 2021; Hanifah et al., 
2022). In the green innovation ecosystem, manufacturers should steer 
clear of value chains and information silos. By embracing a new value 
system, manufacturing firms can enhance their green value creation 
through innovative business models, resetting product architectures, 
data value mining, external resource integration, optimised business 
processes and other avenues, thereby achieving sustainable market 
competition.

Second, HI, represented by IC, stands as the most critical resource 
and capability for manufacturing firms in the process of green value 
creation. Despite advancements in AI technology facilitating resource 
interaction, the relationship between HI and AI remains essentially a 
relationship between humans and tools (Callen et al., 2023). It is un-
deniable that AI has surpassed humans in scientific computing and 
deductive performance, but it is still a derivative and a functional 
imitation of HI. Human capital, particularly green talent, plays a pivotal 
role as the driving force behind other forms of capital (Dost et al., 2016). 
Manufacturing firms can improve their green knowledge, ability and 
technology through employee education and training (Wright et al., 
2001; Tseng and Goo, 2013). Human capital, structural capital, and 
relational capital work together to increase the stock of green knowledge 
(Liebowitz and Suen, 2013), contributing to green value creation. 
Manufacturers need to systematically transform the knowledge, expe-
rience and skills hidden within green human capital into overall 
organisational knowledge and integrate it into areas such as organisa-
tional structure and culture to leverage the role of green value creation 
(Jost and Susser, 2020). Simultaneously, maintaining friendly relation-
ships with stakeholders enhances the capital stock of green relations and 
sustains the potential driving force of green value creation in 
manufacturing firms (Li et al., 2021).

Third, manufacturing firms should leverage external AI technology 
adoption to drive green value creation in green innovation ecosystems. 
Strengthening AI technology adoption can promote the efficiency of 
human green value creation during the digitalisation and intelligence 
promotion processes. This involves integrating internal and external 
green resources and deepening the integration of AI technology and 
green innovation processes to enhance the ability to create green value 
(Felten et al., 2021). Building a green talent team, cultivating em-
ployees’ green insights, thinking patterns, and knowledge and using AI 
technology adoption to drive employees to participate in green inno-
vation are crucial for upgrading green value creation (Verma and Singh, 
2022; Yang, 2022). Leveraging digital technology to optimise organ-
isational structures and management mechanisms promotes collabora-
tive green innovation among departments (Raisch and Krakowski, 
2021), thereby improving the efficiency of green value creation. Man-
ufacturers should strive to reduce their embedding in relationship net-
works, maintain reasonable relationship strength and avoid path 
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dependence to prevent their reluctance to think and short-sighted be-
haviours from hindering AI technology adoption and driving green 
value creation in manufacturing firms (Beltramino et al., 2021; Jia et al., 
2023). Our primary focus should be on enhancing the AI capabilities of 
organisations and employees, utilising AI to bolster human creativity 
rather than impede it.

Fourth, our findings hold profound implications for both government 
decision-making and the advancement of pertinent industrial sectors. 
The government should formulate comprehensive policies to encourage 
manufacturing firms to adopt AI technology, incorporating incentives 
such as tax relief and R&D subsidies (Reimsbach and Braam, 2023). 
Additionally, it could establish a dedicated fund to support manufac-
turers in their AI research and application endeavors, ultimately driving 
the green transformation of the manufacturing sector. The government 
should intensify its efforts to cultivate and attract talent in the artificial 
intelligence area (Dubey et al., 2022; Schilling and Seuring, 2023), 
thereby providing intellectual support to manufacturing firms and 
expediting the widespread adoption and application of AI technology 
within manufacturing. Concurrently, the government must establish an 
exhaustive regulatory framework to ensure the legality, safety, and 
ethical standards of artificial intelligence technology applications. 
Additionally, industry associations ought to formulate stringent industry 
benchmarks for the deployment of AI technology (Hanifah et al., 2022; 
Cirillo et al., 2023), thereby nurturing the evolution of manufacturing 
towards environmentally friendly and intelligent paradigms.

5.3. Limitations and directions for the future

While this study empirically tested the collaboration of AI and HI on 
the green value creation of manufacturing firms from an environmental 
perspective, certain limitations warrant consideration. In future 
research, it is essential to expand and deepen the exploration of green 
development and transformation within manufacturing firms. First, 
although we uncovered the direct mechanism by which HI contributes to 
the creation of green value in manufacturing firms, we did not consider 
the mediating mechanism between HI and green value creation. Future 
research should delve into the process of creating green value and 
explore its most comprehensive impact mechanisms. Second, this article 
employed IC as a proxy variable for HI in manufacturing firms. How-
ever, there is significant heterogeneity in the level of IC among 
manufacturing firms in different industries. Therefore, future research 
could consider a more precise classification of manufacturing firms in 
various industries. Third, we focused solely on examining the direct 
impact mechanism of the single dimension of AI technology adoption on 
green value creation and its interaction with IC in manufacturing firms. 
In future studies, we aim to further explore the diverse impact mecha-
nisms of AI technology adoption in different dimensions of green value 
creation.

These future research directions will address the current limitations 
and contribute to a more nuanced understanding of the collaboration 
between AI and HI in the context of green value creation for 
manufacturing firms.
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