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The predictability problem in the inverse energy cascade of two-dimensional turbulence is
addressed by means of high resolution direct numerical simulations. The growth rate as a function
of the error level is determined by means of a finite size extension of the Lyapunov exponent. For
errors within the inertial range, the linear growth of the error energy, predicted by dimensional
argument, is verified with great accuracy. Our numerical findings quantitatively confirm the results
of the classical TFM closure approximation. @01 American Institute of Physics.
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Unpredictability is an essential property of turbulent on direct numerical simulations of Navier—Stokes equations
flows. Turbulence is characterized by a large number of deis still lacking.
grees of freedom interacting with nonlinear dynamics. Thus In this communication we address the predictability
turbulence is chaotiand hence unpredictabjéut the stan- problem for two-dimensional turbulence by means of high

dard approach of dynamical system theory is not sufficient téesolution direct numerical simulations. Turbulence is gener-
characterize predictability in turbulente. ated in the inverse cascade regime where a robust energy

In fully developed turbulence, the maximum Lyapunov cascade is observéfi The absence of intermittency correc-

exponent diverges, with the Reynolds number thus bein§Ons makes th?j problem simpler than in the three-

very large for typical turbulent flowsNevertheless, a large dlmefn5|onal case.fveloglty Etat.lstlffsnergy spectrum, 'srt]ruc—lf

value of the Lyapunov exponent does not imply automati-n_”e_I unt(rzwtlon;zlre KOL:n to be In close agreement with self-

cally short time predictability. A familiar example is the at- simiiar theory @a RoImogorov. . . .
- ) . . The model equation is the two-dimensional Navier—

mosphere dynamics: convective motions in the atmospherg . . .

make the small scale features unpredictabler dfte orless tokes equation written for the scalar vorticiy(r,t)

. prec ' =—Ay(r,t) with generalized dissipation and linear friction
but large scale dynamics can be predicted for several days, as
it is demonstrated by weather forecasting. This effect, which
can be called “strong chaos with weak butterfly effect,” &tw+J(w,¢)=(—l)p+lvapw—aw—f, (1)
arises in systems possessing many characteristic scales and
times. From this point of view, turbulence probably repre-
sents the example most extensively studied.

The first attempts at the study of predictability in turbu-
lence date back to the pioneering work of Loreand to the

whereJ represents the Jacobian with the stream function
and the velocity isu=(dy,— ). p is the order of the
dissipation;p=1 for ordinary dissipationp>1 for hyper-

. . . viscosity. As it is customary in numerical simulations, we
Krau;hnap anq Leith papefﬁ On the '_Oas's of.clo.sure aP- yse hygerviscous dissipatioi/p#S) in order to extend the
proximations, it was possible to obtain quantitative predicne gl range. Although this can affect the small scale fea-
tions on the evolution of the error in different turbulent situ- .o« of the vorticity field? in our simulations dissipation is
ations, both in two and three dimensions. not involved in the cascade and has simply the role of re-

A more recent approach to the problem is based on dymoying entrophy at small scales. The friction term (i
namical system theory. Chaotic properties and predictabilityemoves energy at large scales: it is necessary in order to
of turbulent flow have been extensively investigated in sim-avoid Bose—Einstein condensation on the gravest hfode
plified models of turbulence, called shell models, with par-and to obtain a stationary state. Energy is injected into the
ticular emphasis on the relations with intermittericy Be- system by a random forcing-correlated in time which is
cause predictability experiments in fully developedactive on a shell of wavenumbers arougconly. Numerical
turbulence are numerically rather expensive, a similar studyntegration of(1) is performed by a standard pseudo-spectral
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FIG. 2. Average error energdE,(t)) growth. Dashed line represents clo-
sure prediction(5), dotted line is the saturation vali& The initial expo-
nential growth is emphasized by the lin-log plot in the inset.

FIG. 1. Stationary energy spectrui(k) (thick line) and error spectrum
Ea(k,t) at timet=0.1,0.2,0.4,0.8,1.6k;= 320 is the forcing wavenumber.
In the inset we plot the compensated specteifdk3E (k).

code fully dealiased with second-order Adams—BashfortiProposed by Lorerfzassumes that the time it takes for the
time stepping on a doubly periodic square domain with reso®Tor to induce a complete uncertainty at wavenumboes
lution N= 1024 proportional to the characteristic time at that scafer(k).

; : . . S ~ —13,-213
Stationary turbulent flow is obtained after a very long Within the Kolmogorov frameworkz(k)=e""*k™“*. Re-
simulation starting from a zero initial vorticity field. At sta- Verting this dimensional expression one canisl?zyitggt at fixed

tionarity one observes a wide inertial range with a well de-fime the error have reached the schigt)=e 1 % At

veloped Kolmogorov energy spectruri(k) = Ce2%5/3 larger scales the error is still very small in comparison with

(Fig. 1). Structure functions in physical space are found inthe typical energy, while at smaller scale the two fields are

agreement with the self-similar Kolmogorov thedfy. completely decorrelated. Thus at each time we have a char-
Starting from a configuration of the velocity field acteristic scal&g(t) which divide uncorrelated scales from

u,(r,0) in the stationary state, one generates a se¢pad  correlated ones:

turbed configuration 0 if k<kg(t),

U,(r,0)=uy(r,0)+ v28u(r,0), (2 Eatkt)= E(k) if k>kg(t).

in which the initial errorsu(r,0) is very smallthe factory2 By inserting(4) in (3), using the Kolmogorov spectrum for
is only for normalization conveniengeThe two configura- E(K) and assuming the dimensional expressiorkigt) one
tions are integrated in time according(fo and the evolution ends with the predictidr®
of the errordu(r,t) is computed according t@). Of course, E,(1)=Get )
because we are interested in studying the error growth in- A '
duced by the turbulent dynamics, we use the same realizatiobhe numerical constar® in (5) can be obtained only by
of random forcing in both simulations. repeating the argument more formally within a closure
From (2) one defines the error energy and the error enframework®**>The physical meaning a8 is the ratio of the
ergy spectrum 4s3

4

EA(t)zfo Ea(k,t) dk= %f | Su(r,t)|%d?r. 3) L 1

Normalization in(2) ensures thaE , (k,t) — E(k) for un- x
correlated fieldgi.e., for t—o). Assuming that the initial 01 ¢ Sy
error can be considered infinitesimal, the magnitude of the = 10 —— :
difference field starts growing exponentially arigl,(t) g, v
=E,(0)exp(At) wherel is the maximum Lyapunov expo- 102+ 1 / o >
nent of the systert* The error growth in this stage is con- . '
fined at the faster scales in the inertial range, corresponding 0.1 : : .
in our model to the scales close to the forcing wavenumber 3 . 107 9-1 .
k¢, while at larger scales the two fields remain correlated 10 108 102 0.1
(see Fig. 1 At larger times, wherk, (ks ,t) becomes com- 5

parable withE(k;), the exponential growth terminates, be- - _ _
cause the two fields are completely decorrelated at smaﬁ'Gt- _3-t F('S”'tihs'ze '—Yaptl”:_ov exPC;”e’t“(ﬁ)laS ?Q;U”gt@“ t?]f velocity un-

= : . certainty o. € asymptotc constant value — IS € maximum
Scal_es K( kf)' The error gI’OWth con'_tlnues at Iarger scales InLyapunov exponent of the turbulent flow. Dashed line represent prediction
the inertial range, where the two fields are still correlated7). |n the inset we show in the compensated pl6s) 5%/e. The line rep-

and an algebraic regime sets in. The dimensional predictioresent the fit to the constaAt=3.9.
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rate of uncorrelated energy production to the rate of energy In order to emphasize scaliri@), in Fig. 3 we also show
injected by the forcing and transferred to large scales the compensation of(5) with €5 2. Prediction(7) is veri-

In Fig. 2 we plot the time evolution of the error energy fied with very high accuracy which allows us to determine
(E4(t)) obtained from direct numerical simulations aver-the value of A=3.9+0.1. With the present value of
aged over 20 realizations. The exponential regime is clearly=1.12, this corresponds to a valig@=4.1. The physical
visible at small time, while the linear regim®) is barely  picture we obtain is that the creation of uncorrelated energy
observable, making the precise determinatiotdifficult. in the inertial range due to chaotic dynamics is about four

The dimensional predictability argument given abovetimes faster than the energy transfer rate.
can be rephrased in a language more close to dynamical sys- Our numerical result is in remarkable agreement with the
tems by introducing the finite size Lyapunov exponentold prediction obtained within the test field model clodure
(FSLE) analysis. FSLE is a generalization of the Lyapunovwhich givesG=4.19. At least from the point of view of
exponent to finite size errors, which was recently proposegredictability, two-dimensional turbulence thus seems to be
for the analysis of systems with many characteristic s¢alesvery well captured by low-order closure scheme. As a con-
In a nutshell, one computes the “error doubling time” sequence we can exclude, on the basis of our numerical find-
T,(9), i.e., the time it takes for an error of siZeto grow a  ings, the existence of intermittency effects in the inverse cas-
factor r (for r=2 we have actually a doubling timeThe cade of error. This is a result which is probably of more
FSLE is defined in terms of the average doubling time as general interest than the specific problem discussed in this

communication.
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