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Abstract 

 

 Theoretical calculations on neutral model substrates of enzyme catalysis exhibit relatively 

high potential energy barriers with respect to values derived from experimental rate constants fitted 

to conventional expressions. A statistical theory based on the coupling of vibrational modes of the 

protein to the reaction coordinate affords a new expression for the unimolecular rate constant. Rate 

constants computed with the proposed theory are many orders of magnitude greater than the 

corresponding values given by traditional Arrhenius-type laws for a given potential energy barrier 

and temperature. Within this model, the hypothesis of a lowering of the potential energy barrier 

caused by specific interactions at the active site is no longer necessary. The dependence of the 

unimolecular rate constant by the energy barrier and temperature is given by the ratio of the 

incomplete and the complete gamma functions of Euler. The performance of the proposed model is 

tested against experimental rate constant for the hydrolysis of N-acetyl-L-tryptophan ethyl ester and 

N-acetyl-L-tyrosine ethyl ester catalyzed by α-chymotrypsin. The experimentally accessible 

quantity   kln/T T  may serve to discriminate between the conventional model (reduction of the 

potential energy barrier) and catalysis through dynamical coupling. 
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1. Introduction 

 

 Experimental rate constants for enzyme-catalyzed processes are usually fitted to Arrhenius-

type equations affording energies of activation in the range of 42–50 kJ mol
-1

.
1
 On the other hand, 

various accurate theoretical calculations on model system at the active site fail to give barriers 

below ~84 kJ mol
-1

, once the electroneutrality of the system is satisfied.
2
 The effect of the medium, 

either explicitly modeled through the supermolecule approach, or approximated by polarized 

continuum models, does not significantly alter the gas-phase activation barriers. Recently, the role 

of protein dynamics in catalysis has become more evident and has been modeled by stochastic 

macromolecular mechanics,
3
 QM/MM studies of tunneling,

4
 and single-molecule approaches to 

conformational fluctuations.
5
 Also, dynamical disorder theories take into account different channels 

to reaction products that originate from a distribution of potential energy barriers.
6
 Each 

conformational change of the protein that occurs in the same time scale of the catalyzed process 

generates a reaction channel with its own rate constant. In this work the distribution of the reaction 

barrier due to conformational changes in the Michaelis-Menten complex is thought to be sharply 

peaked around the value E
≠
. Our computational experience with stereoelectronic effects on model 

systems related to enzyme-catalyzed reactions suggests that the influence of protein residues on the 

energy of reactant and transition structure is very similar, and does not significantly affect the 

reaction barrier. A stochastic treatment of a simple classical system embedded in a medium with 

cooperative modes led us to develop a model that predicts high reaction rates for the unimolecular 

rate constant of reactions exhibiting relatively high potential energy barriers for the breaking and 

forming of bonds between non-hydrogen atoms.
7
 The expression for the unimolecular rate constant 

of the catalyzed step from the Michaelis-Menten complex to products is 

 

a

E

a ek 
 ,      (1.1) 

 

where  represents the fundamental frequency with which a system with a number a of modes of 

the medium coupled to the reaction coordinate crosses the barrier, E
≠
 indicates the reaction potential 

energy barrier including the zero point energy (ZPE), and β=(kT)
-1

. The enhancement exhibited by 

the rate constant in eq 1.1 with respect to a system without cooperative effects is given by the 

exponential sum function Ωa 
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The sum 1.2 depends on the number of active modes a and the reduced barrier βE
≠
, and it can be as 

high as 1.4 10
17

, a value experimentally observed for orotidine 5'-monophosphate decarboxylase.
8
 

Low reaction barriers may be actually computed for systems (reagent and transition 

structure) bearing a whole charge. However, they follow from unrealistic gas-phase ion models, as 

can be shown by the explicit inclusion of the corresponding counterion. In fact, including a formate 

ion into the quantum-mechanical model for the N
1
-protonated C4a-hydroperoxyflavin has a 

dramatic effect on the reaction barrier for oxygen atom transfer to dimethyl sulfide.
9
 The isolated 

cation exhibits an artificially low MPW1K/6-31+G(d,p) barrier of 17.6 kJ mol
-1

, while the 

corresponding barrier for the neutral ion pair is 66.8 kJ mol
-1

, lower with respect to the unprotonated 

neutral system that reacts with a barrier of 90.5 kJ mol
-1

. Thus, the charged system would appear to 

lower the barrier by 72.9 kJ mol
-1

, with a corresponding increase in the rate constant of a factor of 

6.18 10
12

, while the actual reduction is 23.7 kJ mol
-1

 with an increase in rate of only a factor of 1.46 

10
4
. This study aims to extend the rate law already proposed for enzyme-catalyzed processes and to 

show that eq 1.1 gives a correct description of experimental data. In this way the discrepancy 

between high experimental rate constants for enzyme-catalyzed reactions and the low rate constants 

computed with potential energy barriers obtained by quantum chemistry calculations on model 

systems is resolved. The proposed model for catalysis may be extended to other catalysts that 

operate through the binding of a substrate to a cavity, like zeolites
10

 and cyclodextrins.
11

 In section 

3.1 we derive the rate law making use of an extended definition of a transition structure in phase 

space. Section 3.2 investigates the hydrolysis of N-acetyl-L-tryptophan ethyl ester and N-acetyl-L-

tyrosine ethyl ester catalyzed by α-chymotrypsin both by fitting the experimental rate constants at 

different temperatures to eq 1.1 and by density functional theoretical calculations. Section 3.3 

indicates the temperature dependence of the quantity     kTT T ln/    for the catalyzed process 

as a verification of the novel rate expression. 
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2. Methods of Calculation 

 

 Quantum chemistry calculations were carried out using the GAUSSIAN 98 suite of 

programs,
12

 utilizing redundant internal coordinates geometry optimization.
13

 All structures were 

fully optimized at the MPW1K
14

 and B3LYP
15

 levels of theory. The 6-31G(d) and 6-31+G(d,p) 

basis sets have been used throughout the study. Vibrational frequency calculations were used to 

characterize the stationary points as either minima or first-order saddle points at the level indicated. 

Solvation calculations were carried out with the isodensity surface polarized continuum model 

(IPCM) method.
16

 Molecular graphics were obtained with the program Moldraw.
17

 The 

thermodynamic potential G was evaluated at 298 K and 1 bar within the rigid rotor-harmonic 

oscillator approximation.
18

 

 

 

3. Results and Discussion 

 

3.1. Statistical Model for Enzymatic Activity. 

 

 We now derive an expression for the rate constant of a catalyzed reaction with potential 

energy barrier E
≠
, taking place in a system with total energy E and total number of vibrational 

modes s, of which a are strongly coupled to the reaction coordinate. We begin by extending the 

definition of transition structure to include the whole domain in phase space leading to product with 

a frequency . Following this extension we can write the energy-dependent rate constant as 
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Equation 3.1.1 represents the ratio between the number of vibrational states with energy  E  in 

a active modes, energy E-ε in s-a modes, and the total number of states. Once we have an explicit 

expression for k(E,E
≠
), we obtain the rate constant as the thermodynamic average 
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where zv is the vibrational partition function. Since eq 3.1.1 applies to the large composite system of 

substrate and medium, we neglect the translational and rotational contributions to the density of 

states. Assuming that the reactive frequency  does not depend on E and changing the variable of 

integration to Ex   we have 

 

 
 


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x

xa exxdx
z

xk
,

1


 v

,      (3.1.3) 

 

with  Ex  . Taking (E,E
≠
) as the convolution integral between the density of states a(ε) and 

s-a(E-ε) we obtain 

 

     


 



E

E

asa EdEE  , .      (3.1.4) 

 

We integrate eq 3.1.4 choosing the classical form for the vibrational density of states for a(ε) and 

s-a(E-ε), 
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The density of vibrational states for the transition structure becomes 
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where xxu /  and 
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The function   vv zzua /  thus represents the ratio between the volume in phase space that leads to 

products with frequency  and the total volume which is associated with the reactant and 

compatible with the total energy E. The fundamental quantity ψa(u) can be expressed in the 

following equivalent forms 
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and 
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In eq 3.1.8b 
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and in eq 3.1.8c  u;as,a   and  asa  ,  are the incomplete (    
 

u
ba xxdxu;b,a

0

11 1 ) and 

complete (    
 

1

0

11 1
ba xxdxb,a ) beta functions, respectively. Plots of the function ψa(u) are 

shown in Figure 1. For a relatively low number of active modes, the volume of phase space leading 

to products is already considerably large with respect to the volume computed by traditional 

theories (ψ1(u)). Using eq 3.1.6 in 3.1.3, and assuming that the set {


i } does not depend on the 

energy, the rate constant takes the form 
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The lower limit of the integral in eq 3.1.10 is given by the reduced energy barrier βE
≠
, since systems 

with total energy below this threshold do not contribute to the rate. The classical partition function 

zv is given by 
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Substituting eq 3.1.8a into 3.1.10 we obtain 

 

 
   

 













x

xis
a

i

i
a exxdx

isi

x

z

zxk 1
1

0 1v

v


.      (3.1.12) 

 

and changing the variable of integration to xxt   we have 

 

 










1

0 !

a

i

i
xa

i

x
e

z

zxk

v

v


.      (3.1.13) 

 

Frequency contributions from the medium as well as from the reacting system are included in the 

set { 

i } in eq 3.1.13. Also, the extended definition of the transition structure makes eq 3.1.13 

dependent on the system-specific reactive frequency . From eqs 3.1.10 and 3.1.13 we recover the 

relation 
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already obtained in ref 7 for s and a integers using the form 3.1.8b for ψa. Since the right-hand side 

of eq 3.1.14 represents the survival function of the standard gamma distribution  aex xa  /1 ,
19

 the 

function ψa has the property 
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Equations 3.1.10 and 3.1.15 allow us to write the rate constant in the form 
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where   



0

1 xa exdxa  and   



x

xa exdxx,a 1
 are the complete and incomplete gamma 

functions of Euler, respectively. The dependence of the rate constant from the potential energy 

barrier is thus in general not purely exponential, but it rather follows the incomplete gamma 

function. In the particular case of a = 1, the ratio    axa  /,  in eq 3.1.16 is equal to xe  and we 

recover the classical transition state theory with ν as the fundamental frequency. It must be 

emphasized that the vibrational partition functions pertain to the composite system of reactant and 

the surrounding medium, whether it is a catalyst or a solvent. The mechanisms operated by enzymes 

and other catalysts that couple their structures to the substrate differ from the corresponding 

processes in liquid solvents not in principle, but in the number of modes coupled to the reaction 

coordinate. For an arbitrary form of the density of vibrational states, eq 3.1.3 may be integrated 

iteratively by parts obtaining 
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where n

xn  indicates the derivative of order n with respect to x. Equation 3.1.17 may prompt further 

research in the density of vibrational states that does not follow the classical form 3.1.5. 

Restricting the definition of a transition structure in phase space to a point in the proximity 

of a first-order saddle point with a momentum in the direction of products, we may recover a 

universal frequency in the expression for the rate constant. The average velocity in this direction is 

taken by a Maxwell-Boltzmann distribution with the integrals over the polar and azimuth angles 

restricted to one-half of their full range 
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The ratio of <v> over the de Broglie wavelength λ=h/(2πμkT)
1/2

 gives the fundamental frequency 

 

h

kT





v
.      (3.1.19) 

 

3.2. Performance of the Model. 

 

Experimental data for the hydrolysis of N-acetyl-L-tryptophan ethyl ester and N-acetyl-L-

tyrosine ethyl ester catalyzed by α-chymotrypsin
20

 were fitted to eq 1.1. Couples of values for ν and 

E
≠
, obtained for each value of a, and standard deviations to the n experimental points  iTk  
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21
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for each fit are listed in Tables 1 and 2. The ratio between σ and the average rate constant in the 

temperature range of the experiment is on the order of 10
-2

, indicating that the regressions in Tables 

1 and 2 represent good fits to experimental data. The best fits (minimum σ) are given by 34 and 1 

oscillators for N-acetyl-L-tryptophan ethyl ester and N-acetyl-L-tyrosine ethyl ester, respectively. 

Clearly, the values of ν and E
≠
 given by the best fits in Tables 1 and 2, so different for similar 

reactions catalyzed by the same enzyme, are not consistent and a choice must be made between the 

two different sets. 

To this purpose, density functional calculations were performed on model substrates to 

determine the potential energy barrier for hydrolysis. As a reference point we take the uncatalyzed 

hydrolysis of methyl acetate that proceeds with the MPW1K/6-31G(d) potential and free energy 

barriers of 104.9 and 121.7 kJ mol
-1

 (Figure 2). As a consequence of the similarity in the structural 

and electronic features of methyl and ethyl acetate, both esters are expected to exhibit similar 

reaction barriers for hydrolysis. In fact, the calculated free energy barrier for the hydrolysis of 

methyl acetate is in good agreement with the experimental value of 127.9 kJ mol
-1

 for the hydrolysis 

of ethyl acetate.
21

 Since TS-2 exhibits a proton relay from the nucleophile water molecule toward 

the carbonyl oxygen, all structures have been optimized using the MPW1K functional of Truhlar,
11
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especially designed for hydrogen transfer reactions. All structures were also re-optimized with the 

more established B3LYP functional of Becke. In all cases the difference between potential and free 

energy barriers computed with the two methods was found to be minimal (Table 3). The extended 

organization of the water molecules in TS-2 is responsible for the high entropy of activation that 

reflects in the 16.8 kJ mol
-1

 difference between ΔG
≠
 and  ZPEE  (potential energy barrier including 

the zero point energy). The reaction path from TS-2 to product was followed by an intrinsic reaction 

coordinate (IRC) calculation
22

 affording the reaction intermediate CH3C(OH)2OCH3•H2O, already 

observed by Schmeer
23

 for the hydrolysis of ethyl acetate. The effect of the basis set on the reaction 

barrier was determined re-optimizing minimum 1 and TS-2 at the MPW1K/6-31+G(d,p) level. The 

 ZPEE  and ΔG
≠
 resulted in 115.4 and 133.0 kJ mol

-1
, respectively, indicating that the 6-31G(d) basis 

set gives an adequate description of the relative energetics of the species involved. 

In the first step of hydrolyses catalyzed by α-chymotrypsin, the amino acid Ser-195 is the 

attacking nucleophile at the carbonyl group of the ester. His-57 assists the attack by hydrogen 

bonding to the hydroxyl group of serine, its effect enhanced by the interaction of the imidazole ring 

with Asp-102. We model this series of interactions with the participation of an imidazole ring as a 

general base catalyst favoring the attack of a water molecule to the carbonyl. Formic acid further 

assists with a hydrogen bond to the imidazole ring or the carbonyl group of the ester, depending on 

its ionization state. We first modeled the hydrogen bond between Asp-102 and His-57
24

 by a 

formate anion binding to the hydrogen atom of the imidazole ring (structure 3, Figure 3). Although 

we advocate the opportunity of extending the model until all counterions are accounted for and 

ensure electroneutrality of the system, we chose to investigate first a smaller portion of the 

microenvironment around the substrate with –1e charge. The counterion relative to the formate-

imidazole anion has thus been omitted in structure 3 and TS-4. The resulting potential energy 

barrier for the first step of hydrolysis is 94.2 kJ mol
-1

.
25

 The calculated barrier is lowered to 81.0 kJ 

mol
-1

 in TS-6, where formic acid is in its neutral state. The two models are thought to represent the 

catalytic steps of α-chymotrypsin at basic and acidic pH, respectively.
26

 However, both barriers are 

significantly above the range predicted by conventional Arrhenius analysis. This behavior has 

already been observed with other model systems;
2,7,9

 the interaction of the substrate with the 

coenzyme and the active site is responsible for a considerable reduction of the potential energy 

barrier with respect to the gas phase or solvated process. Nevertheless, the resulting barriers are still 

significantly above the expected range of 42–50 kJ mol
-1

. The effect of solvation was also estimated 

through single-point calculations at the MPW1K/6-31G(d) level on minimum 5 and TS-6 within the 

IPCM model with the upper bound value of 6 for the relative permittivity of the protein.
27

 The 
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potential energy barrier (84.0 kJ mol
-1

) is close to the gas-phase value and reflects the small effect 

of the relatively hydrophobic medium on the reaction barrier of polar substrates. 

To assess the energy barriers for hydrolysis of the actual enzyme substrates N-acetyl-L-

tryptophan ethyl ester and N-acetyl-L-tyrosine ethyl ester, the structures of clusters of the substrates 

with two water molecules (7 and 9) and the corresponding transition structures for the attack to the 

carbonyl (TS-8 and TS-10) were optimized at the MPW1K/6-31G(d) level of theory (Figures 4 and 

5). The potential energy barrier for hydrolysis of N-acetyl-L-tryptophan ethyl ester and N-acetyl-L-

tyrosine ethyl ester are 128.0 and 110.3 kJ mol
-1

, respectively. Re-optimization at the B3LYP/6-

31G(d) level does not significantly affect these results (Table 3). The reaction barrier for the 

nucleophilic attack of a water molecule on N-acetyl-L-tyrosine ethyl ester parallels the 

corresponding energetics of methyl acetate. The uncatalyzed hydrolysis of N-acetyl-L-tryptophan 

ethyl ester is predicted to be slower. Two typical regressions of experimental rate constants at 

different temperatures to eq 1.1 are shown in Figure 6. The potential energy barriers obtained by the 

theoretical calculations are in the range corresponding to 15-20 active modes. Conversely, the 

conventional regression to the Rice-Ramsperger-Kassel (RRK) expression
28

 gives 50.9 and 45.7 kJ 

mol
-1

 as potential energy barriers for the catalyzed hydrolysis of N-acetyl-L-tryptophan ethyl ester 

and N-acetyl-L-tyrosine ethyl ester, respectively.
29

 

 

3.3. Relationship with Transition State Theory. 

 

The conventional theory of rates is expressed by eq 3.1.13 with a = 1 and eq 3.1.19 as the 

fundamental frequency. Catalysis is consequently interpreted as a lowering of the potential energy 

barrier E
≠
 in the expression for the rate constant 
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 Ee
z

z

h

kT
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v

v
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Applying the operator   ln/T T  on both sides of eq 3.3.1, we obtain the quantity 

 

      ETukln
T

T T



1

11
,      (3.3.2) 

 

that depends on temperature through the terms 1/β and the difference of thermal corrections (Δu
≠
) to 

the potential energy of the transition structure and reagent. 
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The same operation performed on eq 3.1.13 affords the quantity λa(T) 

 

   
a

a
aaTa ETukln

T
T




 


 ,      (3.3.3) 

 

where    aEx
a

aaaax 


 /,/
1

1  , and a is the number of active modes. In eq 

3.3.3 the dependence on temperature is more pronounced, being given by both terms Δu
≠
 and 

ΔΩa/Ωa. Plots of λ1(T) and λa(T), with Δu
≠
 calculated at different temperatures for minimum 7 and 

TS-8 (hydrolysis of N-acetyl-L-tryptophan ethyl ester), are shown in Figure 7. The behavior of λ(T) 

may determine if the cooperative mechanism of coupled active modes to the reaction coordinate is 

in effect. Indeed, increased enthalpies of activation at reduced temperatures (biphasic Arrhenius 

behavior) have already been observed in thermophilic enzymes,
30

 with the experimental values for 

ΔH
≠
 of 98.7 and 61.1 kJ mol

-1
 in the 5-30 and 30-65 

o
C temperature ranges, respectively. The plots 

in Figure 7 exhibit this kind of behavior, more pronounced for high values of a. 

 

4. Conclusions 

 

1. This work relates a new rate expression for enzyme-catalyzed processes to conventional 

transition state theory. In the above formulation the potential energy barrier of a process is regarded 

as an intrinsic property that is not significantly affected by the environment. The dramatic increase 

in rate of enzymatic processes is interpreted as a consequence of the dynamic coupling between 

modes of the medium to the reaction coordinate. 

2. In general, unimolecular rate constants for enzyme-catalyzed reactions depend on the reduced 

barrier βE
≠
 as the incomplete gamma function of Euler (eq 3.1.16). This law reduces to the 

exponential dependence of conventional transition state theory in the particular case of one active 

mode. The quantity     kln/TT T  , evaluated experimentally at different temperatures for 

the catalyzed process, is proposed as a test to support or disprove the theory. 

3. The performance of the proposed rate expression was tested against experimental rate constants 

for the hydrolysis of N-acetyl-L-tryptophan ethyl ester and N-acetyl-L-tyrosine ethyl ester catalyzed 

by α-chymotrypsin. The potential energy barriers computed by density functional theory for the 

same processes were found to be considerably higher with respect to the values predicted by an 

Arrhenius analysis. Using the potential energy barriers obtained by theoretical calculations, the 
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proposed rate expression affords the experimental unimolecular rate constants for ~15 active modes 

of α-chymotrypsin. 

 

5. Summary 

 

 The expression for the unimolecular rate constant for enzyme-catalyzed processes reported 

in a previous work is re-derived more generally. While the traditional transition state theory 

explains catalysis in terms of reduced barriers, the above result regards reaction barriers as intrinsic 

properties. The considerable rate enhancements exhibited by enzyme-catalyzed reactions with 

respect to the corresponding processes in solution are interpreted as a consequence of the enhanced 

coupling of active modes to the reaction coordinate. Density functional calculations give potential 

energy barriers for the hydrolysis of two enzyme substrates in excess of values predicted by the 

Arrhenius analysis of experimental data. The novel rate expression reported in this work is able to 

account for high rates without resorting to a reduction in the reaction barrier which is not supported 

by theoretical calculations. 
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Figure 1. Plots of the quantity ψ10 (solid line) and ψ30 (dotted line) for s = 100. The corresponding 

function for one active mode (ψ1, dashed line) is also shown for comparison. 
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Figure 2. Potential energy (  ZPEE ) and free energy (G
≠
) of activation for the uncatalyzed 

hydrolysis of methyl acetate. Geometries are optimized at the MPW1K/6-31G(d) level; distances are 

in angstroms. Values at the B3LYP/6-31G(d) level of theory are reported in parentheses. 
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Figure 3. Potential energies (  ZPEE ) and free energies (G
≠
) of activation for the hydrolysis of 

methyl acetate catalyzed by imidazole hydrogen bonded to a formate anion (3 and TS-4) and formic 

acid (5 and TS-6). Geometries are optimized at the MPW1K/6-31G(d) level; distances are in 

angstroms. Values at the B3LYP/6-31G(d) level of theory are reported in parentheses. 
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Figure 4. Relative energy (  ZPEE ) and free energy (G
≠
) of reactant model N-acetyl-L-tryptophan 

ethyl ester (7) and the transition structure for hydrolysis (TS-8). Geometries are optimized at the 

MPW1K/6-31G(d) level; distances are in angstroms. Values at the B3LYP/6-31G(d) level of theory 

are reported in parentheses. 
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Figure 5. Relative energy (  ZPEE ) and free energy (G
≠
) of reactant model N-acetyl-L-tyrosine 

ethyl ester (9) and the transition structure for hydrolysis (TS-10). Geometries are optimized at the 

MPW1K/6-31G(d) level; distances are in angstroms. Values at the B3LYP/6-31G(d) level of theory 

are reported in parentheses. 
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Figure 6. Regressions of the experimental rate constants for hydrolysis of N-acetyl-L-tryptophan 

ethyl ester (1) and N-acetyl-L-tyrosine ethyl ester (2) catalyzed by α-chymotrypsin. The dots 

represent experimental points and the curves eq 1.1 for the specified values of a (coupled modes to 

the reaction coordinate) and E
≠
 (potential energy barrier, kJ mol

-1
). The conventional theory predicts 

barriers of 50.9 and 45.7 kJ mol
-1

 for the hydrolysis of 1 and 2, respectively. 
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Figure 7. Predicted dependence on temperature of the quantities λa(T) (1, 2, and 3) and λ1(T) (4), 

computed for the catalyzed hydrolysis of N-acetyl-L-tryptophan ethyl ester with the specified values 

of a (coupled modes to the reaction coordinate) and 

aE  (potential energy barrier). 
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Table 1: Parameters relative to equation 1.1 for the hydrolysis of N-acetyl-L-tryptophan ethyl 

ester (7) catalyzed by α-chymotrypsin. 

 

a s E
≠
/kJ mol

-1
 s

1 3.79 10
10

 50.9 0.521 

5 9.84 10
7
 60.3 0.480 

10 3.41 10
6
 72.1 0.432 

15 4.74 10
5
 84.0 0.390 

20 1.26 10
5
 95.8 0.355 

25 4.79 10
4
 107.6 0.329 

30 2.29 10
4
 119.5 0.314 

34
*
 1.42 10

4
 128.9 0.310 

35 1.28 10
4
 131.3 0.311 

40 7.99 10
3
 143.1 0.319 

45 5.40 10
3
 155.0 0.338 

50 3.88 10
3
 166.9 0.366 

55 2.92 10
3
 178.7 0.399 

60 2.29 10
3
 190.6 0.438 

65 1.85 10
3
 202.5 0.480 

70 1.53 10
3
 214.3 0.525 

75 1.29 10
3
 226.2 0.571 

80 1.11 10
3
 238.1 0.619 

 

(*)
 Value of a that minimizes σ 
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Table 2: Parameters relative to equation 1.1 for the hydrolysis of N-acetyl-L-tyrosine ethyl ester 

(9) catalyzed by α-chymotrypsin. 

 

a s E
≠
/kJ mol

-1
 s

1
*
 2.05 10

10
 45.7 5.181 

5 7.23 10
7
 55.0 5.328 

10 3.27 10
6
 66.7 5.509 

15 5.51 10
5
 78.4 5.688 

20 1.68 10
5
 90.1 5.865 

25 7.15 10
4
 101.8 6.040 

30 3.74 10
4
 113.5 6.212 

35 2.25 10
4
 125.2 6.383 

40 1.49 10
4
 136.9 6.552 

45 1.06 10
4
 148.6 6.720 

50 7.93 10
3
 160.4 6.885 

55 6.20 10
3
 172.1 7.050 

60 5.02 10
3
 183.8 7.212 

65 4.17 10
3
 195.6 7.373 

70 3.54 10
3
 207.3 7.533 

75 3.06 10
3
 219.1 7.692 

80 2.68 10
3
 230.8 7.849 

 

(*)
 Value of a that minimizes σ 
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Table 3: Reaction barriers (E
≠
/kJ mol

-1
) and activation Gibbs free energies at 298 K (G

≠
/kJ 

mol
-1

) based upon MPW1K/6-31G(d) and B3LYP/6-31G(d) calculations for the hydrolysis 

reactions represented in Figures 2-5. 

 

Process MPW1K B3LYP 

 E
≠
 G

≠
 E

≠
 G

≠
 

1 → TS-2 104.9 121.7 106.8 123.2 

3 → TS-4 94.2 108.6 87.7 101.7 

5 → TS-6 81.0 96.9 92.8 108.2 

7 → TS-8 128.0 141.0 129.7 140.0 

9 → TS-10 110.2 118.4 114.1 122.3 
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