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2Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
3Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, C.so
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Abstract: The central-zone vibrational spectrum of �-quartz (SiO2) is calculated by building the Hessian matrix
numerically from the analytical gradients of the energy with respect to the atomic coordinates. The nonanalytical part
is obtained with a finite field supercell approach for the high-frequency dielectric constant and a Wannier function
scheme for the evaluation of Born charges. The results obtained with four different Hamiltonians, namely Hartree–Fock,
DFT in its local (LDA) and nonlocal gradient corrected (PBE) approximation, and hybrid B3LYP, are discussed,
showing that B3LYP performs far better than LDA and PBE, which in turn provide better results than HF, as the mean
absolute difference from experimental frequencies is 6, 18, 21, and 44 cm�1, respectively, when a split valence basis
set containing two sets of polarization functions is used. For the LDA results, comparison is possible with previous
calculations based on the Density Functional Perturbation Theory and usage of a plane-wave basis set. The effects
associated with the use of basis sets of increasing size are also investigated. It turns out that a split valence plus a single
set of d polarization functions provides frequencies that differ from the ones obtained with a double set of d functions
and a set of f functions on all atoms by on average less than 5 cm�1.

© 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1873–1881, 2004
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Introduction

The calculation of vibrational spectra of molecular systems is a
well-known procedure, today implemented in most of the relevant
molecular computer codes.1,2 The method is based on the calcu-
lation of the Hessian matrix, either numerically or analytically.3

The case of crystalline systems is different, as the development of
reliable and accurate computer codes is at an earlier stage than in
molecular quantum chemistry and, as a matter of fact, only a few
ab initio codes permit the calculation of vibrational spectra. So far,
to our knowledge, the most consistent implementations are those
employing Density Functional Perturbation Theory methods and
plane waves as a basis set.4–6 Our implementation in the periodic
ab initio CRYSTAL code,7 that uses a basis of local functions, is
more similar to the computational scheme of molecular codes. It is
based on a recent implementation of the calculation of the analyt-
ical gradients of the total energy with respect to the nuclear

positions8,9 (R. Orlando, V. R. Saunders, R. Dovesi, in prepara-
tion). The Hessian matrix is then obtained by numerical differen-
tiation.

The effect of Hamiltonian, basis set, and numerical parameters
of the calculation is well documented in the case of small mole-
cules,10–13 but not in the case of periodic systems, where the
algorithms are much less consolidated, and a variety of methods
has been proposed.

In a previous article14 the effect of the computational parame-
ters on the accuracy of the vibration frequencies of �-quartz
calculated with CRYSTAL at the � point was discussed at length.
The aim of the present article is to extend such an analysis to the
effect of the Hamiltonian and basis set. Four different Hamiltoni-
ans are considered, namely Hartree–Fock (HF), Density Func-
tional Theory (DFT) both in the local (LDA) and the nonlocal
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(PBE) formulation, and B3LYP, a hybrid scheme that has been
shown to provide excellent frequency values for molecular10 and
crystalline systems.15–20 Convergence with the basis set size is
also investigated. This will permit a proper comparison with pre-
vious LDA calculations by Gonze et al.5 and Umari et al.,6 who
used a plane-wave basis set in a Density Functional Perturbation
Theory scheme.

Computational Method

In the CRYSTAL program7 the forces on the atoms are computed
analytically8,9 (V. R. Saunders and R. Orlando, in preparation),
and the Hessian matrix is computed by numerical differentiation of
the gradient vector.14 A two-point formula is used with 0.001 Å as
a step. The nonanalytical correction to the Hessian, that must be
added in the case of ionic compounds to take long-range Coulomb
effects due to coherent displacement of the crystal nuclei into
account (see sections 5, 10, 34, and 35 in ref. 21, and eqs. (3) and
(6) in ref. 6), depends essentially on the electronic (clamped
nuclei) dielectric tensor �� and the Born effective charge tensor
associated with every atom. The former is evaluated by applying a
saw-tooth finite field along the direction of interest,22 the latter
through well-localized Wannier functions.23–26

The geometry of �-quartz, that is, the inner coordinates27 and
two cell parameters, has been fully optimized for each Hamiltonian
considered (HF, LDA,28,29 PBE,30 and B3LYP31). The B3LYP
equilibrium geometry has also been recalculated with different
basis sets. Inner coordinates and cell parameters have been opti-
mized separately within an iterative procedure based on the total
energy gradients calculated analytically with respect to the nuclear
coordinates and numerically with respect to the cell parameters.
Convergence has been tested on the root-mean-square (RMS) and
the absolute value of the largest component of both gradients and
nuclear displacements. The thresholds for the maximum and the
RMS forces and the maximum and the RMS atomic displacements
(in a.u.) have been set to 0.00045, 0.00030, and 0.00180, 0.00120,
respectively. Optimization is considered complete when the four
conditions are simultaneously satisfied both for the fractional
coordinates and the cell parameters. The level of accuracy in
evaluating the Coulomb and exchange series is controlled by five
parameters.7 The values used in the present calculations are 6, 6,
6, 6, and 12. For the DFT part, 55 radial and 434 angular points
have been used for every atomic grid, corresponding to an un-
pruned Lebedev quadrature with � � 13. The reciprocal space has
been sampled according to a regular sublattice with a shrinking
factor of 3, corresponding to 7 independent k points in the irre-
ducible Brillouin zone. Choice of the present computational con-
ditions allows accuracy within 2 cm�1 in the evaluation of the
vibration frequencies of �-quartz.14

Regarding the basis sets, modified Pople’s 6-21G* and 6-31G*
for Si and O, respectively, have been used as reference basis sets,
which will collectively be labeled as 1d. The exponents (in
bohr�2) of the most diffuse sp and d orbitals have been optimized
at the HF level (0.09 and 0.60 for Si and 0.29 and 0.47 for O). A
more flexible basis set, labeled as 2d, has been obtained by adding
a second set of d orbitals; the exponents of the two d shells are:
2.56 (Si), 0.54 (Si), 2.00 (O), and 0.41 (O). For completeness, two

smaller basis sets, 0d and 1d(Si), have also been considered, with
the first corresponding to the complete elimination of d orbitals
from 1d and the latter to suppressing only oxygen d orbitals. The
importance of f functions has also been tested.

Results and Discussion

Geometry and Total Energy: Basis Set
and Hamiltonian Effects

The effect of the basis set on the equilibrium geometry and total
energy has been investigated in the case of the B3LYP Hamilto-
nian (Table 1). The two smallest basis sets, 0d and 1d(Si), provide
poor geometries. For example, the predicted volume is 129 and
127 Å3, respectively, to be compared to 114 Å3 of 2d, whereas the
Si–O–Si angle is 149 and 157 degrees, to be compared to 142 in
the case of 2d. Also, the total energy is much higher (about 360
mhartree) with 0d than with 2d, the addition of d atomic orbitals
to the Si basis set being particularly important. For these reasons
0d and 1d(Si) are expected to reproduce frequencies poorly. Even
so, these basis sets will be considered in the calculation of vibra-
tion frequencies as well, to check the influence of a poor determi-
nation of the equilibrium geometry on the vibration spectrum.

1d and 2d basis sets provide very similar geometries, with a
volume difference below 1%, the Si–O–Si angle differing by less
than 1 degree and the Si–O distances by about 0.005 Å. Of the
energy gain (55 mhartree per cell) from 1d to 2d only 0.2 mhartree
are associated with the geometry optimization from 1d to 2d (see
�E in Table 2), leading to the conclusion that performing such an
optimization would not be strictly necessary.

If the same basis set optimized at the HF level is used with DFT
Hamiltonians, as is usually done in molecular quantum chemistry,
we obtain the equilibrium geometries and total energies reported in
Tables 1 (last column) and 2 (columns 1–3). The B3LYP, PBE,
and HF equilibrium geometries are close to the experiment, as

Table 1. Equilibrium Geometry and Total Energy (E) of �-Quartz
as a Function of the Basis Set Size (see Text for Definitions)
at the B3LYP Level.

0d 1d(Si) 1d 2d

a 5.132 5.124 4.943 4.926
c 5.675 5.593 5.429 5.421
V 129.423 127.170 114.894 113.945
Six 0.47342 0.49623 0.46766 0.46835
Ox 0.42570 0.42878 0.41307 0.41197
Oy 0.26402 0.20717 0.27249 0.27103
Oz 0.12690 0.17245 0.11474 0.11560
Si–O1 1.6571 1.5949 1.6245 1.6197
Si–O2 1.6608 1.6380 1.6275 1.6225
Si–O–Si 148.88 157.12 142.14 142.16
E �1319.79557 �1320.07810 �1320.12194 �1320.15705

Cell parameters (a and c) and distances (Si–O1 and Si–O2) are in Å, the
volume (V) in Å3, the Si–O–Si angle in degrees, E in hartree; Six and Oi

are fractional coordinates.
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expected, with PBE performing slightly worse, with slightly longer
Si–O distances and smaller Si–O–Si angles by 4 degrees. On the
contrary, LDA provides a volume that is about 10% smaller, as a
consequence of the Si–O–Si angle being just 135 degrees instead
of 143.

The effect of adapting the basis set to the Hamiltonian has also
been investigated by reoptimizing the outer sp and d exponents in
the 1d basis set specifically for LDA, PBE, and B3LYP. The
B3LYP and PBE results, given in Table 3, are not so different from
the ones obtained with the basis set optimized at the HF level, nor
are the corresponding geometries. Upon optimization with

B3LYP, for example, Si–O distance varies only by 0.002 Å (com-
pare the 1d column in Table 1 with the B3LYP column in Table
3), and the Si–O–Si angle by 2.3 degrees, with about 3 Å3 increase
in the volume and an energy gain of the order of 10 mhartree.

In the case of LDA, modifications in the basis set (compare the
exponents given earlier and in Table 3) are more important, and the
corresponding energy gain is about twice as large. The change in
the equilibrium geometry is, however, negligible (e.g., the change
in volume is below 1%). Nevertheless, for completeness, data
corresponding to basis sets and geometries in Table 3 will also be
reported.

The Dielectric Tensor and the Born Charges

The use of a supercell22 in the calculation of the dielectric tensor
with the method mentioned in the previous section requires a
preliminary analysis of the convergence trend as a function of the
supercell size. The results in Table 4 refer to HF calculations
performed with the 1d basis set. They show that N � 8 (size of the
supercell) provides well converged results.

In Table 5, the dielectric tensor components evaluated at N �
8 for 1d and 2d with four different Hamiltonians are reported and

Table 2. Equilibrium Geometry and Total Energy of �-Quartz.

This work Umari et al.a Gonze et al.b

ExpcHF PBE LDA LDA LDA

a 4.915 4.926 4.765 4.870 4.815 4.916
c 5.405 5.409 5.300 5.346 5.321 5.405
V 113.077 113.668 104.215 109.804 106.836 113.123
Six 0.47079 0.46571 0.45652 0.471 0.461 0.470
Ox 0.41460 0.40872 0.40492 0.415 0.410 0.413
Oy 0.26627 0.27595 0.29097 0.265 0.281 0.267
Oz 0.12058 0.11015 0.09986 0.121 0.108 0.119
Si–O1 1.6047 1.6319 1.6136 1.58 1.60 1.607
Si–O2 1.6068 1.6347 1.6188 1.59 1.61 1.613
Si–O–Si 144.34 139.67 135.12 144.8 139.1 143.7
E �1316.70108 �1319.54190 �1313.91555
�E �0.00018 �0.00017 �0.00026

The present results have been calculated with basis set 2d (see text) optimized at the HF level. �E denotes the amount
of energy gain for the optimization performed with the 2d basis set starting from the geometry optimized with the 1d
basis set. Other symbols and units as in Table 1.
aRef. 6. bRef. 5. cRef. 32.

Table 3. Equilibrium Geometry and Total Energy of �-Quartz Obtained
with 1d-Type Basis Sets Optimized for Each Hamiltonian.

HF LDA B3LYP PBE

a 4.960 4.767 4.984 4.978
c 5.444 5.318 5.479 5.481
V 115.991 104.668 117.876 117.595
Six 0.47398 0.45475 0.47139 0.46817
Ox 0.41710 0.40419 0.41469 0.41131
Oy 0.26134 0.29112 0.26570 0.27174
Oz 0.12487 0.10119 0.12060 0.11453
Si–O1 1.6086 1.6190 1.6262 1.6391
Si–O2 1.6106 1.6240 1.6291 1.6423
Si–O–Si 146.31 135.35 144.40 141.66
spSi 0.08048 0.24073 0.08249 0.08336
dSi 0.60399 0.72299 0.60906 0.60221
spO 0.28915 0.25052 0.27271 0.27280
dO 0.47331 0.31499 0.39446 0.36200
E �1316.67477 �1313.89968 �1320.13054 �1319.51644

spSi denotes the exponent (in bohr�2) of the outest sp set of atomic orbitals
of silicon. Other symbols and units as in Table 1.

Table 4. Dielectric Tensor Components of �-Quartz Calculated at the
HF Level with Supercells of Increasing Size.

N �xx �zz

2 — 1.717
4 1.645 1.961
6 1.925 1.961
8 1.935 1.961

Supercells are obtained by multiplying a (for �xx) or c (for �zz) by integer N.
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compared with experiment and two previous plane-wave LDA
calculations.5,6 0d and 1d(Si) results are also reported in the case
of B3LYP. The four Hamiltonians provide quite different values
for the two constants, the difference being greater than 20% in
some case. As expected, HF strongly underestimates the experi-
mental constants, as a consequence of the low polarizability of the
corresponding wave function. Conversely, LDA overestimates the
experimental finding, but by about 50% of the HF error. PBE and
B3LYP perform better, and differ by less than 0.10 from the
measured values. The effect of the basis set, when going from 1d
to 2d is smaller than 2% in all but one case (HF), where it reaches
4%. As expected, 0d and 1d(Si) perform poorly, with errors as
large as 15% with respect to 2d. The difference between the two
tensor components is small (of the order of 0.06, or below) and
slightly larger than according to Gonze5 and Umari6 or the exper-
iment (about 0.03). Regarding the comparison of the present and
previous LDA calculations, our data appear closer to the older
result by Gonze than to the more recent data by Umari et al.

Born charges are reported in Table 6. Basis set and Hamiltonian
effects are relatively small, especially for diagonal terms (less than
5%). Relative differences in the off-diagonal terms can be as large

Table 5. Calculated Dielectric Tensor Components of �-Quartz with
Various Hamiltonians and Basis Sets.

�xx �zz

0d 1d(Si) 1d 2d 0d 1d(Si) 1d 2d

HF 1.935 2.018 1.961 2.071
B3LYP 2.025 1.909 2.213 2.258 2.070 1.935 2.256 2.302
PBE 2.389 2.426 2.447 2.479
LDA 2.479 2.525 2.547 2.593
LDAa 2.429 2.457
LDAb 2.527 2.566
Exp.c 2.356 2.383

Experimental and plane-wave LDA calculated data are reported for com-
parison.
aRef. 6.
bRef. 5.
cRef. 32.

Table 6. Born Charges of Si and O Atoms Calculated with Various Basis Sets and Hamiltonians.

Basis set Hamiltonian

Born tensors

Si O

3.738 0.000 0.350 �1.937 0.554 �0.625
1d B3LYP 0.000 3.041 0.000 0.506 �1.460 0.431

�0.303 0.000 3.501 �0.586 0.509 �1.755

3.720 0.000 0.339 �1.929 0.561 �0.645
2d B3LYP 0.000 3.030 0.000 0.517 �1.442 0.449

�0.301 0.000 3.488 �0.600 0.519 �1.749

3.706 0.000 0.229 �1.933 0.513 �0.615
2d HF 0.000 3.164 0.000 0.464 �1.456 0.400

�0.221 0.000 3.493 �0.560 0.444 �1.762

3.715 0.000 0.419 �1.924 0.590 �0.657
2d PBE 0.000 2.954 0.000 0.546 �1.427 0.470

�0.369 0.000 3.476 �0.622 0.559 �1.735

3.626 0.000 0.427 �1.863 0.519 �0.545
2d LDA 0.000 2.947 0.000 0.506 �1.461 0.456

�0.358 0.000 3.467 �0.527 0.534 �1.733

3.671 0.000 0.224 �1.915 0.519 �0.615
PWa LDA 0.000 3.021 0.000 0.564 �1.413 0.505

�0.257 0.000 3.450 �0.648 0.447 �1.715

3.633 0.000 0.324 �1.999 0.429 �0.679
PWb LDA 0.000 3.016 0.000 0.480 �1.326 0.298

�0.282 0.000 3.453 �0.718 0.222 �1.726

The last two entries refer to previous Plane-Wave (PW) LDA data calculated in the same cartesian frame.
aRef. 6.
bRef. 5.
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as 50% (see the xz component of the Si tensor), although absolute
differences are of the same order of magnitude as in diagonal
terms. Similar considerations apply to the comparison of the three
LDA calculations.

The Frequencies: Basis Set and Hamiltonian Effects

There are 24 transverse-optical (TO) and 20 longitudinal-optical
(LO) vibration modes in �-quartz. The variability of the calculated
vibration frequencies �v as depending on the basis set and Ham-
iltonian will be estimated through four global indices evaluated
with respect to a reference set of frequencies �v

ref as follows:

��� � �
v

��v � �v
ref�

�� � �
v

�v � �v
ref

�max � max��v � �v
ref�

�min � min��v � �v
ref� v � 1, 2, . . .

The effect of the basis set has been explored at the B3LYP level of
theory and with reference to the experiment (Table 7) and to the
data calculated with the 2d basis set (Table 8). The calculations
have been performed at the geometries optimized with each basis
set, namely 0d, 1d(Si), 1d, 2d. As expected, 0d and 1d(Si) basis
sets produce poor frequencies, with a mean difference ��� (Table 8)
of 23 and 42 cm�1, respectively, from the frequencies calculated
with 2d (the error is about the same when reference is made to the

Table 7. Dependence of B3LYP Vibration Frequencies (in cm�1) of �-Quartz at � on the Basis Set Size.

0d 1d(Si) 1d 2d 2d � f Exp.

174.8 �44.2 32.3 �186.7 219.6 0.6 216.0 �3.0 223.3 4.3 219.0
A1-TO 333.8 �24.2 366.7 8.7 348.8 �9.2 350.4 �7.6 356.5 �1.5 358.0

414.1 �54.9 460.0 �9.0 464.3 �4.7 465.1 �3.9 466.9 �2.1 469.0
1087.6 5.6 1133.0 51.0 1090.8 8.8 1085.4 3.4 1085.8 3.8 1082.0

354.3 �7.0 423.4 62.1 351.8 �9.5 352.3 �9.0 360.7 �0.6 361.3
A2-TO 453.9 �45.1 460.7 �38.3 499.4 0.4 500.9 1.9 502.3 3.3 499.0

782.2 4.2 819.2 41.2 787.0 9.0 783.8 5.8 787.6 9.6 778.0
1109.4 37.4 1151.2 79.2 1084.4 12.4 1076.4 4.4 1077.3 5.3 1072.0

135.4 2.4 123.2 �9.8 135.2 2.2 132.5 �0.5 141.3 8.3 133.0
241.1 �27.9 253.2 �15.8 261.8 �7.2 263.6 �5.4 265.2 �3.8 269.0
380.9 �12.6 430.6 37.1 390.5 �3.0 391.3 �2.2 394.8 1.3 393.5

E-TO 428.8 �23.7 444.1 �8.4 446.9 �5.6 447.0 �5.5 456.4 3.9 452.5
667.4 �30.6 699.7 1.7 703.0 5.0 702.9 4.9 704.7 6.7 698.0
728.4 �70.6 780.5 �18.5 808.2 9.2 810.5 11.5 807.5 8.5 799.0

1103.2 37.2 1144.5 78.5 1077.2 11.2 1068.2 2.2 1069.2 3.2 1066.0
1152.6 �5.4 1241.6 83.6 1167.9 9.9 1163.1 5.1 1166.4 8.4 1158.0

379.7 �5.3 427.3 42.3 377.3 �7.7 377.1 �7.9 385.0
A2-LO 557.8 4.8 578.3 25.3 556.7 3.7 555.9 2.9 553.0

788.0 �3.0 822.9 31.9 800.8 9.8 797.1 6.1 791.0
1273.6 43.6 1337.6 107.6 1261.2 31.2 1252.1 22.1 1230.0

135.4 2.4 123.4 �9.6 135.3 2.3 132.6 �0.4 133.0
241.6 �27.4 253.2 �15.8 263.7 �5.3 265.5 �3.5 269.0
395.2 �6.8 430.7 28.7 400.2 �1.8 400.0 �2.0 402.0

E-LO 524.4 12.4 541.7 29.7 510.7 �1.3 508.0 �4.0 512.0
668.1 �32.9 701.8 0.8 705.8 4.8 705.7 4.7 701.0
746.2 �65.3 801.5 �10.0 820.9 9.4 822.8 11.3 811.5

1151.6 �3.4 1235.0 80.0 1165.1 10.1 1160.2 5.2 1155.0
1262.7 35.7 1330.4 103.4 1253.1 26.1 1243.3 16.3 1227.0

��� 24.1 43.4 7.9 5.8 4.7
�� �10.9 20.4 4.0 1.9 3.7
�min �70.6 �186.7 �9.5 �9.0 �3.8
�max 43.6 107.6 31.2 22.1 9.6

The exponents of the most diffuse sp and d shells have been optimized at the HF level. Analytical and global differences
with respect to the experimental frequencies33 are also given. The global indices ���, �� , �min, and �max (see text for
definition) extend to both TO and LO frequencies, with the exception of 2d � f, referred to TO modes only.
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experiment), and a maximum difference as large as 80 and 180
cm�1, respectively. 1d frequencies are, however, much closer to
2d, as ��� reduces to 3 cm�1, and they are also systematically
closer to experiment. A preliminary calculation of the TO vibration
frequencies has been performed with an even larger basis, 2d � f,
obtained from the original 2d basis set by including an additional
set of f functions (seven components) for every atom, with the
exponents being 0.53 and 0.73 for Si and O, respectively. The
equilibrium geometry considered in this case is, again, the one
determined with 2d. The four global indices (Table 7) show
proximity of 2d � f frequencies to 2d, about in the same order of
1d. However, when compared to the experimental data, ��� is 6.7,
4.8, and 4.7 for the TO frequencies computed with 1d, 2d, and

Table 8. Statistical Analysis of the Dependence of B3LYP Vibration
Frequencies of �-Quartz at � on the Basis Set Size Referred
to the 2d Set of TO and LO Frequencies.

0d 1d(Si) 1d 2d � f

��� 22.7 42.2 3.0 3.9
�� �12.8 18.5 2.1 3.5
�min �82.1 �183.7 �2.3 �3.0
�max 35.0 87.1 9.8 9.4

Statistics relative to 2d � f are restricted to TO modes. Symbols as in
Table 8.

Table 9. Vibration Frequencies of �-Quartz Obtained at � with Four Different Hamiltonians
and the 2d Basis Set Optimized at the HF Level.

HF B3LYP LDA PBE

216.7 �2.3 216.0 �3.0 261.6 42.6 220.8 1.8
A1-TO 381.3 23.3 350.4 �7.6 332.3 �25.7 332.0 �26.0

504.9 35.9 465.1 �3.9 482.1 13.1 451.8 �17.2
1144.4 62.4 1085.4 3.4 1089.1 7.1 1050.3 �31.7

395.4 34.1 352.3 �9.0 326.3 �35.0 326.3 �35.0
A2-TO 544.1 45.1 500.9 1.9 504.6 5.6 481.6 �17.4

823.4 45.4 783.8 5.8 791.1 13.1 764.6 �13.4
1132.4 60.4 1076.4 4.4 1086.4 14.4 1038.5 �33.5

138.8 5.8 132.5 �0.5 143.4 10.4 128.8 �4.2
286.5 17.5 263.6 �5.4 263.5 �5.5 252.8 �16.2
427.4 33.9 391.3 �2.2 376.9 �16.6 372.4 �21.1

E-TO 490.6 38.1 447.0 �5.5 443.8 �8.7 424.0 �28.5
740.9 42.9 702.9 4.9 721.7 23.7 681.5 �16.5
847.7 48.7 810.5 11.5 835.0 36.0 797.0 �2.0

1125.2 59.2 1068.2 2.2 1070.3 4.3 1030.8 �35.2
1235.8 77.8 1163.1 5.1 1141.7 �16.3 1117.9 �40.1

423.3 38.3 377.1 �7.9 351.3 �33.7 350.2 �34.8
A2-LO 609.2 56.2 555.9 2.9 543.9 �9.1 528.9 �24.1

837.0 46.0 797.1 6.1 816.8 25.8 778.2 �12.8
1315.2 85.2 1252.1 22.1 1249.6 19.6 1210.4 �19.6

138.8 5.8 132.6 �0.4 143.7 10.7 128.8 �4.2
288.1 19.1 265.5 �3.5 266.9 �2.1 255.4 �13.6
436.6 34.6 400.0 �2.0 389.1 �12.9 380.4 �21.6

E-LO 558.9 46.9 508.0 �4.0 497.2 �14.8 479.8 �32.2
743.2 42.2 705.7 4.7 726.5 25.5 685.2 �15.8
865.7 54.2 822.8 11.3 844.7 33.2 806.2 �5.3

1232.7 77.7 1160.2 5.2 1137.3 �17.7 1115.4 �39.6
1310.8 83.8 1243.3 16.3 1234.7 7.7 1201.4 �25.6

��� 43.7 5.8 17.5 21.0
�� 43.5 1.9 3.4 �20.9
�min �2.3 �9.0 �35.0 �40.1
�max 85.2 22.1 42.6 1.8

The differences with respect to the experimental data33 are also reported. Symbols and units as in Table 7. The global
indices are evaluated with respect to the experimental frequencies.
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2d � f, respectively, that is, 2d � f data appear to approximate
the experimental TO spectrum about as well as 2d, although the
error distribution is different. In fact, 2d � f exhibits a more
systematic overestimation of the experimental values, as is ex-
pected for B3LYP. When referred to the experimental TO frequen-
cies, �� results to be 3.7 and 0.1 for 2d � f and 2d, respectively.

These considerations about the dependence of vibration fre-
quencies on the basis set size are in no way peculiar to B3LYP, and
can be extended to the various Hamiltonians. For example, the
mean absolute difference between 1d and 2d is 6.1, 3.0, 3.3, and
2.9 for HF, B3LYP, LDA, and PBE, respectively.

Frequencies in Table 9 have been obtained with the four
Hamiltonians and the 2d basis set, as optimized at the HF level.
Statistics refer to the experimental data. The mean absolute error is
44, 6, 18, and 21 cm�1 for HF, B3LYP, LDA, and PBE, respec-
tively, indicating that B3LYP performs much better than LDA,
that in turn, performs slightly better than PBE, whereas HF is by
far the worst approximation of the experimental data. �max shows
a similar trend, being 85, 22, 42, and 40 cm�1, respectively.

As mentioned earlier, the valence part of the 1d basis set has
also been reoptimized for each DFT Hamiltonian, as reported in
Table 3. The frequency values calculated with these modified basis
sets at the corresponding equilibrium geometries have been ana-
lyzed in terms of the global indices defined above (Table 10),
which can be compared with the results obtained with the 1d basis
set optimized for HF. The performance of these specifically reop-
timized basis sets is not very different from the original 1d, when
compared with experiment. Actually, the new basis sets perform
slightly worse: ��� increases by 2 cm�1 for B3LYP and LDA and
by about 8 for PBE; data, as measured by �min and �max, are also
more randomly scattered with respect to the experimental mea-
surements. On one hand, these indices show that specific reopti-
mization of the basis set for each Hamiltonian has no dramatic
effect on the calculated frequencies but, on the other hand, the
larger disagreement with respect to experiment seems to suggest
that partial reoptimization of the basis set (restricted to valence
functions only) may lead to some inconsistency, which is probably
related to core-valence unbalancing. Thus, on the basis of this

analysis, the strategy of using standard basis sets optimized at the
HF level in DFT calculations, which is commonly adopted in
molecular quantum chemistry, appears to be the best choice.
However, more extensive sets of data should be considered to draw
general conclusions.

Comparison with Previous LDA Calculations

As the last point, we compare the present data with the two
previous LDA calculations.5,6 The comparison in our previous
article15 is extended here to LO modes and larger 2d basis set.
The equilibrium geometry obtained with the three methods is
reported in Table 2, the dielectric constants in Table 5 and Born
charges in Table 6. Table 11 gives the obtained frequencies and
the difference with respect to experiment. Overall, the three
schemes seem to provide similar agreement with experiment,
��� being 17, 18, and 13 cm�1, and both �min and �max

exhibiting a similar trend. However, closer inspection shows
that differences are far from negligible as, for example, �� is 3.4,
8.1, and �11.6 for the present calculations, Umari’s and
Gonze’s, respectively. In particular, the large difference be-
tween the two plane-wave calculations is surprising. A more
appropriate comparison is available in Table 12, where cross-
comparisons between the calculated data are also reported,
showing that the inclusion of the set of LO frequencies in the
statistics does not alter the trend observed in Table 12 of ref. 14.
In particular, it is confirmed that the present results compare
slightly better with Gonze’s work in all respects: predicted
equilibrium geometry, dielectric constants, Born charges, and
vibrational spectrum at �.

It was argued in the previous section that reoptimization of the
basis set for LDA is more troublesome than with other DFT
Hamiltonians, as core functions should also be involved. Table 12
also suggests that the definition of the pseudopotentials, which has
a crucial role in plane-wave calculations, can have some influence
on results.

Conclusions

In the present article it has been shown that it is possible to
calculate the vibration frequencies of relatively large crystalline
systems by using a local basis and standard quantum chemistry
techniques with high accuracy at relatively low cost. This scheme
is implemented in a version of the CRYSTAL03 code still under
development. It has been shown that convergence with respect to
the basis set size is easily achieved. The B3LYP Hamiltonian
performs very well (mean absolute error of 6 cm-1 and largest
absolute error of 22 cm-1), with an unprecedented accuracy in
solid state, confirming previous experience with molecules. The
LDA results are less satisfactory. PBE performs slightly worse
than LDA and HF is affected by larger errors.

The full vibrational spectrum of a large class of materials is
now within reach at relatively low cost.

Table 10. Statistics Concerning DFT Frequencies Obtained for �-Quartz
at � with the 1d Basis Set Optimized for HF and the 1d Type Basis
Sets Reoptimized for Each Hamiltonian (Reoptimized 1d)
as Reported in Table 3.

Basis set Global index B3LYP LDA PBE

��� 7.9 18.3 19.5
1d �� 4.0 3.4 �18.9

�min �9.5 �37.1 �36.7
�max 31.2 41.8 8.4

��� 10.2 20.9 26.7
Reoptimized �� �2.7 7.5 �26.7
1d �min �24.2 �39.0 �40.5

�max 26.7 41.0 �6.2

Symbols and units as in Table 7. The global indices are referred to
experiment.
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