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ABSTRACT 
 

Geologic mapping and integrated strati- 
graphic and structural observations of a gyp- sum 
quarry from northwestern Italy allow evaluation 
of the relative contributions, the time 
relationships, and the causative links between 
tectonic, sedimentary, and diapiric processes in 
the genesis of chaotic sediments of Messinian 
age. Three chaotic units are exposed in the 
quarry: together, they make up a composite 
chaotic unit that is unconform- ably overlain by 
post-chaotic sediments. Unit 
1 is composed of blocks of primary evaporites that 
are juxtaposed to marine marls by sub- vertical 
transpressive faults and are parallel to the fault 
surfaces. Unit 2 unconformably overlies Unit 1, 
and consists of a lenticular sedimentary body 
containing both angular and rounded blocks, 
randomly distributed in a fine-grained matrix. 
Unit 3 consists of a  10-m-wide  body  bounded  
by  transpres- sive faults, and pierces both 
Units 1 and 2. It is composed of strongly 
deformed muddy deposits that envelop blocks of 
gypsum and carbonate rocks. Between the core 
and the margins, various zones have been 
defined based on the increasing amount of 
deforma- tion toward the margins. The post-
chaotic sediments unconformably overlie both 
Units 
1 and 2, sealing the main fault systems. 

The composite chaotic unit is related to 
thrust propagation during a regional phase of 
deformation, and is the result of different 
evolutionary stages, in each of which a sin- gle 
genetic mechanism prevailed. Tectonic 

 
  

faulting prevailed during stage 1 and was 
responsible for the formation of a tectonically 
disrupted assemblage (Unit 1). During stage 
2, gravity-driven sedimentary phenomena, 
related  to  slope  oversteepening  triggered by 
ongoing thrust propagation, resulted in the 
deposition of Unit 2. Gravity sliding was favored 
by the mechanical weakening of sediments 
caused by tectonic faulting. Over- pressure 
conditions resulting from the rapid deposition of 
Unit 2 triggered the rise of a diapir (Unit 3) that 
pierced Units 1 and 2. The involvement of 
methane-rich fluids in the formation of the 
diapir is suggested by the occurrence of blocks 
of methane-derived carbonates, found not in 
the quarry, but just outside it. 
 
Keywords: chaotic deposits, tectonics, sedi- 
mentary processes, diapiric processes, Messin- 
ian, Tertiary Piedmont Basin. 
 
INTRODUCTION 
 

Chaotic rock bodies, or mélanges, are com- 
mon components of ancient orogenic belts and 
present-day accretionary complexes (e.g., Hsü, 
1968; Aalto, 1981; Cloos, 1982; Cowan, 1985; 
Barber and Brown, 1988; Orange, 1990; Orange et 
al., 1993; Onishi and Kimura, 1995; Orange and 
Underwood, 1995; Pini, 1999; Cowan and Pini, 
2001). Their origin is commonly attributed to (1) 
tectonic disruption and mixing of originally coherent 
sequences, responsible for the forma- tion of 
tectonic mélanges that, depending on the degree 
of stratal disruption, retain the original 
composition of the parent succession (broken 
formations, Hsü, 1968; type I mélanges, Lash, 

1987; tectonosomes, Pini, 1999) or may include 
exotic blocks (e.g., Hsü, 1973; Raymond, 1984; 
Şengör,   2003);   (2) gravitational   submarine 
downslope movements (olistostromes, Beneo, 
1956; Flores, 1956; Abbate et al., 1970; type II 
mélanges, Lash, 1987); or (3) shale diapirism 
caused by the rising toward the seafloor of over- 
pressured, fluid-permeated fine-grained sedi- 
ments (type III mélanges, Lash, 1987). 

Despite valuable criteria having been pro- 
posed to discriminate among these mechanisms 
(e.g., Orange, 1990; Orange and Underwood, 
1995; Pini, 1999), the recognition of the role 
played by each of them in the geological record is 
problematic, due to the strong facies conver- 
gence of their products and to the fact that later 
deformation and metamorphism often obscure 
the prevailing forming processes. Moreover, these 
mechanisms are not mutually exclusive, and can 
coexist and interact in a complex way: for 
example, tectonic movements provide favor- able 
conditions for gravity sliding through both the 
creation of topography and the mechanical 
weakening of sediments, and may also encour- 
age shale diapirism by creating conduits for mud 
extrusion (e.g., Kopf, 2002; Chamot- Rooke et al., 
2005). In the same way, the load- ing provided by 
the rapid deposition of slumps and slides may 
generate the overpressure neces- sary for the 
intrusion of mud diapirs (e.g., Col- lison, 1994) and 
the extrusion of mud volcanoes (Sautkin et al., 
2003) that, in turn, can create a topography able 
to trigger further sliding (e.g., Clennell, 1992). 

The study of both modern (e.g., Brown and 
Westbrook, 1988; Reed et al., 1990; Barry et al., 
1996; Maslin et al., 1998; Bouriak et al., 2000; 
Diaz del Rio et al., 2003) and ancient examples 
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(e.g., Conti and Fontana, 2002, 2005; Clari et al., 
2004; Lucente and Taviani, 2005) indicates a close 
genetic link between gas hydrate decom- position, 
tectonics, shale diapirism, and mass wasting. Gas 
hydrate decomposition can pro- vide large 
amounts of gas-rich fluids (generally methane) 
that migrate upward through faults. This process 
can induce shale diapirism and mud volcanism, 
and can also cause sedimentary instability 
through the reduction of the shear 

strength of the overlying sediments (Henriet and 
Meniert, 1998). 

Nonmetamorphic Messinian chaotic sedi- 
mentary bodies in the Northern Apennines, Sic- ily 
and Spain, have been described (e.g., Rov- eri et 
al., 2003; Artoni et al., 2004; Lucente et al., 2005; 
Manzi et al., 2005), and their genesis has been 
attributed to large-scale slope failure, probably 
triggered by thrusting during an intra- Messinian 
tectonic phase (Roveri et al., 2003). 

In the Tertiary Piedmont Basin, the Messinian 
succession is largely made up of chaotic sedi- 
ments (Fig. 1) that, due to the lack of later defor- 
mation and metamorphism, are suitable for the 
study of the mechanism(s) responsible for their 
formation (Dela Pierre et al., 2002; Irace, 2004; 
Festa et al., 2005; Irace et al., 2005). Previous 
studies have pointed out that they are the result 
of mass-wasting events linked to intra-Messinian 
tectonics. Moreover, the contribution of the rise 
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of methane-rich fluids through the sedimentary 
column and related shale diapirism is suggested by 
the common occurrence of blocks of authi- genic 
methane-derived carbonates in the chaotic 
sediments. However, relationships among tec- 
tonic, sedimentary, and diapiric processes are not 
yet clear, mainly because limited outcrop condi- 
tions hamper the reconstruction of the geometry 
of the dismembered sedimentary bodies. 

In this paper we present a detailed study, 
including geologic mapping and integrated 
stratigraphic and structural observations, of the 
Moncucco gypsum quarry, located on the south- 
ern flank of Torino Hill (Fig. 1A). Quarrying has 
provided an excellent outcrop that offers a unique 
opportunity to consider the contributions of tec- 
tonic, gravitational, and diapiric processes in the 
genesis of the Messinian chaotic sediments, their 
time relationships, and causative links. 

 
REGIONAL GEOLOGIC SETTING 

 
The Tertiary Piedmont Basin is composed of 

upper Eocene–Messinian sediments deposited 
unconformably, after the mesoalpine collisional 
event, on both alpine metamorphic rocks and 
Apennine Ligurian units (e.g., Gelati and Gnac- 
colini,  1988;  Castellarin,  1994;  Mutti  et  al., 
1995; Roure et al., 1996). Deposition of these 
sediments was strongly influenced by synsedi- 
mentary compressional tectonics related to the 
building of the Apennine thrust belt. As a conse- 
quence, several tectono-sedimentary domains, 
deposited on different crustal blocks and char- 
acterized by different sedimentary features, 
developed during the Cenozoic (e.g., Biella et al., 
1997). They are the Tertiary Piedmont Basin (sensu 
stricto, s.s.) to the south, and the Monfer- rato–
Torino Hill to the north; their relationships are 
masked by Pliocene–Quaternary deposits (Fig. 1A) 
that are locally as thick as 2000 m (Mosca, 
2006). 

Both the Tertiary Piedmont Basin s.s. and 
the  Monferrato–Torino  Hill  are  overthrust  to 
the north onto the Po Plain foredeep, along the 
late Neogene to Quaternary Padane thrust front 
(Fig. 1C), currently buried below the Quaternary Po 
Plain deposits (Dalla et al., 1992; Castellarin, 
1994; Falletti et al., 1995). 

The Torino Hill succession unconformably 
overlies a metamorphic basement buried at a 
depth of 2–3 km (Biella et al., 1997), interpreted as 
the South Alpine basement (Mosca, 2006). 

regional northwest-southeast–striking transpres- 
sional fault zone that corresponds to the surface 
expression of a deep-seated steep shear zone 
(Piana and Polino, 1995; Piana, 2000). 

The Torino Hill succession consists of upper 
Eocene–lower Messinian deep-water deposits 
composed of alternating hemipelagic muds and 
arenaceous to conglomeratic resedimented beds 
(Bonsignore et al., 1969). This succession was 
deformed by three contractional faulting stages of 
Rupelian, Burdigalian, and Serravallian age (Festa 
et al., 2005). A fourth deformational phase of late 
Messinian age (the intra-Messin- ian phase) is 
evidenced by the emplacement of Messinian 
chaotic sediments, the object of this paper. 
Regional north-south shortening, related to the 
northward migration of the Padane thrust front, 
prevailed during the intra-Messinian phase. This 
caused only minor displacement along the 
preexisting fault systems (northwest-southeast 
and northeast-southwest striking) of the Torino 
Hill and Monferrato domains, which underwent 
southward tilting (Festa et al., 2005). 
 
STRATIGRAPHY OF MESSINIAN 
SEDIMENTS OF THE TERTIARY 
PIEDMONT BASIN 
 

The Tertiary Piedmont Basin is a classic area for 
Messinian stratigraphy (Mayer-Eymar, 1867; Sacco, 
1889–1890). After the publication of the deep-
dessication model of the Mediterranean (Hsü et 
al., 1973), Sturani (1973, 1978) provided an 
updated description of the Piedmont Messin- ian 
succession in the southern part of the Tertiary 
Piedmont Basin (Alba region, Fig. 1A), where a 
normal succession is present. This succession 
starts with deep-water pre-evaporitic marine sed- 
iments (Sant’Agata Fossili marls) of Tortonian– 
early Messinian age (Sturani and Sampò, 1973), 
 

 
 

Moncucco quarry 
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AAF 

LM                
 
 

GSF 

followed by shallow-water primary evaporites, 
referred to as the Gessoso Solfifera Formation. 
This transition, described as very sharp, would 
point to the sudden drop of sea level heralding the  
Mediterranean  salinity  crisis  (Cita  et  al., 
1978). The Gessoso Solfifera Formation is fol- 
lowed by post-evaporitic continental and brack- 
ish-water sediments, correlatable to the Lago 
Mare deposits of the Mediterranean area. 

Further research has shown that the Alba suc- 
cession is a local exception. In large sectors of the 
Tertiary Piedmont Basin (Fig. 1A), Messin- ian 
sediments comprise the Valle Versa chaotic 
complex, with a maximum outcrop thickness of 
200 m, and are attributed to the lower part of the 
post-evaporitic interval (Irace, 2004). 

In the Monferrato and Torino Hill areas, the 
Valle Versa chaotic complex forms a lenticu- lar 
sedimentary body (Fig. 2) that unconform- ably 
overlies lower Oligocene–lower Messinian marine 
sediments (Dela Pierre et al., 2002); in the 
Moncucco quarry, the complex overlies primary 
evaporites (see following). The upper boundary is a 
discontinuity surface separating the Valle Versa 
chaotic complex from lower Pliocene marine 
deposits (Argille Azzurre Formation) or locally 
(Moncucco) from brackish-water post-evaporitic 
Lago Mare sediments (see following). 

The Valle Versa chaotic complex consists of a 
fine-grained unconsolidated matrix, made up of 
mud breccias (see following), that envelops 
blocks of different size and composition, includ- ing 
gypsum and a wide range of carbonate facies. 
Gypsum blocks range in size from meters to several 
hundreds of meters, and consist of primary 
selenites. Carbonate blocks are smaller (a few 
decimeters to several tens of meters) and are 
composed of evaporitic vuggy carbon- ates, 
skeletal facies of early Messinian age, and 
methane-derived carbonates. These include dif- 
 
 
 
 
 

E 
 
 
VVC 

The Monferrato succession is developed on Cre- 
taceous–lower Eocene nonmetamorphic Ligu- 

Oligocene - lower Messinian marine sediments 50 m  5 km 

rian units (e.g., Biella et al., 1997). The mag- 
netic basement is buried at a depth of 8–10 km 
(Cassano et al., 1986; Miletto and Polino, 1992). 
The Torino Hill and Monferrato successions are 
separated by the Rio Freddo deformation zone, a 

Figure 2. Stratigraphic scheme of the Messinian succession of Torino 
Hill and Monferrato. GSF—Gessoso Solfifera Formation; VVC— 
Valle Versa chaotic complex; LM—Lago-Mare deposits; AAF— 
Argille Azzurre Formation (lower Pliocene). The vertical dashed bar 
indicates the position of the Moncucco quarry. 
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ferent types of rocks (thinly laminated peloidal 
carbonates, clast- and mud-supported breccias 
with remains of chemosymbiotic bivalves) that 
share the same isotopic signature (very nega- tive 

δ13C values ranging from –25‰ to –50‰ 
[Peedee belemnite]) of the carbonate cements. 
The  presence  of  these  rocks,  considered  to be 
authigenic carbonates formed by the rise of 
methane-rich fluids toward the basin floor 
(Clari et al., 1988, 1994; Cavagna et al., 1999), 
strongly suggests the role of shale diapirism in 
the formation of the Valle Versa chaotic com- 
plex (Dela Pierre et al., 2002). Moreover, the 
chaotic succession exposed at Verrua Savoia, at 
the northern edge of the Monferrato domain, has 
recently been interpreted as the geological 
record of the activity of a Messinian mud vol- 
cano (Clari et al., 2004), further supporting the 
role played by diapirism in the genesis of the Valle 
Versa chaotic complex. 

 
MONCUCCO GYPSUM QUARRY 

 
The most visually striking characteristic of the 

Moncucco quarry is the chaotic setting of the  
upper  Miocene  sediments  (Figs. 3A,  3B, and 4). 
Three chaotic units (Units 1, 2, and 3) are 
recognized due to their geometric and strati- 
graphic position, their internal organization, and 
the nature (tectonic versus sedimentary) of their 
bounding surfaces. These units form a compos- ite 
chaotic unit that is in turn unconformably overlain 
by post-chaotic sediments. 

 
Composite Chaotic Unit 

 
Unit 1 

Unit 1 is composed of upper Tortonian to lower 
Messinian hemipelagic muds (Sant’Agata Fossili 
marls) and disrupted blocks of primary evaporites 
(Gessoso Solfifera Formation). 

The Gessoso Solfifera Formation is mostly 
preserved in 200-m-thick blocks (A and B in Figs. 
3A and 4) bounded at the top by an angu- lar 
unconformity. In block A a cyclic evaporite 
succession, ~80 m thick, is present. It consists of 
an alternation of decimeter-thick black mud- 
stone beds and selenitic gypsum tabular bodies, 
10–30 m thick. Three stacked cycles, each one 
formed by a mudstone-gypsum couple, can be 
seen in this block (Fig. 5A). The uppermost bed is 
made up of gypsum-rudites that are also found in 
block B. Other smaller gypsum blocks, rang- ing is 
size from meters to several tens of meters, are 
also present (e.g., block C, Fig. 3C). 

The largest Gessoso Solfifera Formation block 
(A in Fig. 4) is juxtaposed against the 
Sant’Agata Fossili marls along a north-north- 
west–south-southeast shear zone. This consists of 
two subparallel main faults (Fig. 5A), hun- 

dreds of meters long, linked by northwest-south- 
east synthetic oblique reverse faults (Fig. 4). The 
low-angle intersection of these two fault systems 
isolates 10-m-wide lenticular tectonic slices and 
defines a map-scale S-C dextral-transpressive 
shear zone, sealed to the south by the angular 
unconformity at the base of Unit 2 (Fig. 4). 

Similar structural associations are observable at 
the mesoscale. At this scale the Sant’Agata 

Fossili marls are deformed by a scaly fabric 
that, close to the main faults, consists of mil- 

limeter- to centimeter-spaced pervasive shear 
lenses (L sensu Naylor et al., 1986) identified by 
the interlacing of R and P shears (Fig. 5B), often 

displaying shiny and striated surfaces. The 
associations of R and P shears and the kinematic 

indicators on shear surfaces are consistent with 
right-lateral transpressive movements (Fig. 5B). 

Away from the main faults the pervasive- ness 
of the scaly fabric decreases, whereas its 

spacing increases; an S-C fabric, defined by 
centimeter- to decimeter-sized lithons, can be 

observed (Fig. 3D). Shear directions deduced 
from S-C fabric indicate right-lateral transpres- 

sive movements. Far from the faults, the degree 
of stratal disruption gradually decreases and 

the bedding of the Sant’Agata Fossili marls is 
still recognizable. 

Elongated, lozenge-shaped gypsum blocks (i.e., 
blocks C and F, Fig. 4A), 1 m to several meters in 
size, are tectonically enclosed in the Sant’Agata 
Fossili marls. Their long axes are parallel to the 
mesoscale shear zones and the main fault 
surfaces (Fig. 3C). This defines a structurally 
ordered block-in-matrix fabric that coincides with 
the structural fabric observed, at different scales, 
in the Sant’Agata Fossili marls matrix. Also, block 
A is strongly aligned to the main fault surfaces. 
 
Unit 2 

Unit 2 comprises the Valle Versa chaotic com- 
plex, which is attributed to the post-evaporitic 
interval of the Messinian (Irace, 2004). In the 
quarry it unconformably overlies the disrupted 
assemblage  of  Unit  1  (Fig. 4).  On  the  gyp- 
sum beds, the discontinuity surface is karstic (Fig. 
3A), and is attributed to an intra-Messinian phase 
of subaerial exposure of gypsum on which Pliocene 
and Quaternary karst phenomena are superposed 
(Fioraso and Boano, 2002; Fioraso et al., 2004). 

The Valle Versa chaotic complex gives rise to 
a lenticular sedimentary body that changes in 
thickness laterally from 30 m to zero, but 
reaches a thickness of 100 m outside the quarry 
(Irace,  2004).  The Valle Versa  chaotic  com- plex 
consists of both angular and rounded hard blocks, 
varying from a decimeter to several meters, 
floating with a random distribution in 

a muddy matrix (Fig. 3E). A highly disordered 
setting that strongly contrasts with the structural 
order of Unit 1 can be seen here. 

The blocks consist of primary selenitic gyp- sum 
and resedimented gypsum-rudites, evapo- ritic 
vuggy carbonates, carbonate breccias, and 
fossiliferous micritic limestones, which result from 
cementation of the Sant’Agata Fossili marls (Figs. 
6A, 6C) and often show features (coated grains, 
circumgranular cracks) inter- preted as due to 
pedogenesis (Irace, 2004). No blocks of methane-
derived carbonates have been found at Moncucco. 
These rocks are a common facies just outside the 
quarry. 

The matrix surrounding the blocks consists of 
mud breccias, which are composed of light 
colored clays containing angular clasts, a mil- 
limeter to a few centimeters in size, of dark 
mudstones and less commonly of whitish marls 
and  black  sandstones  (Fig. 6B).  These  sedi- 
ments are characterized by an isotropic texture, 
defined by the lack of a preferred orientation of 
the clasts. They are comparable to the brecciated 
matrix described in the olistostromes of Sicily 
(e.g., Beneo, 1956; Rigo de Righi, 1956) and the 
Apennines (Abbate et al., 1970; Pini, 1999). 

Micropaleontological   analyses   performed 
on five samples collected in the matrix have 
revealed scarce and badly preserved upper Tor- 
tonian to lower Messinian planktonic foramin- 
ifera, interpreted as reworked (E. Bicchi, 2005, 
personal commun.). 
 
Unit 3 

Unit 3 consists of a 10-m-wide chaotic body, 
bounded by north-northeast–south-southwest 
transpressive  faults  (Figs. 4  and  7A),  that 
pierces Units 1 and 2. It is composed of strongly 
deformed Sant’Agata Fossili marls that envelop 
blocks of gypsum and carbonate rocks (mainly 
consisting of evaporitic vuggy limestones), 
decimeters to several meters in size. 

Three zones between the core and the mar- 
gins have been defined on the basis of increas- 
ing amounts of deformation toward the margins 
(Fig. 7B). 

1. The core zone, 8–10 m wide, is where the 
Sant’Agata Fossili marls are lightly deformed and 
do not show a pervasive scaly cleavage. This 
suggests disaggregation and intergranular flow 
of the clay grains in a nonconsolidated 
sediment (Knipe, 1986). The bedding is folded by 
strongly asymmetric cylindrical folds with 
irregular arcuate axial trends and steeply 
plunging axes (Fig. 7A). Angular and loosely 
clustered blocks of gypsum and evaporitic car- 
bonates (e.g., blocks D and E in Figs. 7A and 
8A), 1 m to several tens of meters in size, are 
randomly distributed in the Sant’Agata Fossili 
marls matrix. 
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Figure 3. (A) Panoramic view of the Moncucco quarry. SAF—Sant’Agata Fossili marls (upper Tortonian-lower Messinian); GSF—Ges- 
soso Solfifera Formation (Messinian); VVC—Valle Versa chaotic complex (upper Messinian); LM—Lago-Mare deposits (upper Messin- 
ian); AAF—Argille Azzurre Formation (lower Pliocene). Capital letters (A–E) indicate the blocks described in the text. (B) Drawing of 
Figure 3A, showing the distribution of the three chaotic units discussed in the text. (C) Unit 1: lozenge-shaped gypsum block tectonically 
included within the SAF (block C, Fig. 3A). Symbols as in A. (D) Unit 1: S-C structures in the SAF marls. The C planes coincide with the 
bedding surfaces. Red arrows indicate the sense of shear. Location in C. (E) Unit 2: VVC: angular to rounded gypsum and carbonate blocks 
floating in a fine-grained matrix. See A for location. (F) Tectonic contact separating Unit 1 and Unit 3. The boundary between the marginal 
and the transitional zones is also shown (white dotted line). See Figure 7A for location. 
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2. The transitional zone is 50–100 cm wide 
(Fig. 7B); the intensity of scaly cleavage defor- 
mation  gradually  increases  toward  the  mar- 
gins, up to define decimeter-sized shear zones. 
The bedding of the Sant’Agata Fossili marls is 
highly disrupted here. Centimeter- to decimeter- 
sized scaly cleavage and S-C fabric, parallel to the 
margins, indicate opposing sense of shear on the 
opposite margins of the structure (oblique- 
sinistral and oblique-dextral transpressive 
movements on the southeastern and northwest- 
ern margins, respectively; Fig. 7C). Long-axis 
blocks of gypsum, carbonates, fault breccias, and 
cemented mud breccias (wrenched from the host 
rocks) float in the Sant’Agata Fossili marls (Fig. 8C). 
These blocks, a few centimeters to decimeters 
in size, are rotated and elongated par- allel to the 
scaly cleavage and the shear zones. In places, 
lightly deformed wedge-shaped areas (a few 
centimeters in size) similar to pressure 

shadows (Fig. 8D) are observed at the termina- 
tions of the blocks. Wisps and tails of broken 
disaggregated material coming off these blocks 
are spread along the shear zones in the matrix. 

Higher up, where Unit 3 pierces Unit 2, blocks 
belonging to the Valle Versa chaotic complex 
and/or wrenched from the host rocks, with 
decimeter- to meter-sized long axes, are rotated 
parallel to the margins of Unit 3. 

3. The marginal zone (Fig. 7B) separates the 
transitional zone from the host rocks (Figs. 3F 
and 8A). This consists of a thin collar (~10– 
30 cm  wide)  of  mud  breccias,  composed  of 
green to brown clays enveloping angular clasts, 
1 mm to centimeters in size, of whitish marls 
and black sands. In contrast to the mud brec- cias 
of Unit 2, fluidal features characterize these 
sediments. They are evidenced by the alignment of 
elongated clasts to the external boundaries of Unit 
3 (Fig. 8B). Toward the host rock, the mud 

breccias show the same characteristics, but are 
cemented by carbonates. 

The faults bounding the diapir displace the 
north-northwest–south-southeast    faults,    but it 
is not clear if they represent the reactivation of 
minor tectonic surfaces related to Unit 1 or newly 
formed faults. 
 
Post-Chaotic Sediments 
 

The composite chaotic unit is followed by well-
bedded marls that unconformably overlie both 
the Valle Versa chaotic complex (Unit 2) and the 
Sant’Agata Fossili marls (Unit 1), seal- ing the 
main fault systems. These sediments contain 
brackish-water ostracods and molluscs that allow 
correlation to the upper Messinian Lago Mare 
sediments of the Mediterranean region. They are 
followed in sharp contact by lower  Pliocene  
marine  sediments,  through  a 
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black sandy bed very rich in organic matter 
recognized in many sites in the Mediterranean 
region (Cita et al., 1978; Roveri et al., 2003). 

 
DISCUSSION 

 
The possible processes responsible for the 

production of chaotic sediments, i.e., tecton- 
ics, diapirism, and mass flows, are not mutually 
exclusive, but rather can operate together or 
sequentially (Lash, 1987). However, in the geo- 
logic record the distinction of the role played by 
each of these mechanisms and their causative 
links are difficult to evaluate because of the 
strong facies convergence of the resulting rock 
bodies,  which  are  often  physically  separated 
and do not show preserved vertical and lateral 
relationships. On the contrary, in our example the 
stratigraphic and crosscutting relationships among  
different  chaotic  products  (Units  1, 
2, and 3) can be observed in outcrop, and the 
prevailing mechanisms responsible for the for- 
mation of each unit are still recognizable. They 
operated sequentially in a short time span (corre- 
sponding to the lower part of the post-evaporitic 
interval; i.e., after deposition of the evaporites but 
prior to deposition of upper Messinian Lago Mare 
sediments) and were triggered by regional 
tectonic deformation related to the northward 

migration of the Padane thrust front during the 
intra-Messinian phase (Dela Pierre et al., 2002; 
Irace, 2004; Festa et al., 2005). Four evolution- ary 
stages can be recognized (Fig. 9). 
 
Stage 1 
 

Unit 1 was formed during Stage 1. Our 
observations indicate that this is a tectonically 
disrupted unit (sensu Cowan and Pini, 2001) 
resulting from the in situ tectonic dismember- 
ment of the pre-evaporitic (Sant’Agata Fossili 
marls) and evaporitic succession (Gessoso Sol- 
fifera Formation) deposited in response to the 
Messinian salinity crisis (Fig. 9). 

Although it may be difficult to differentiate 
between gravity-related and tectonic deforma- 
tion in poorly consolidated sediments (Ineson, 
1985; Maltman, 1994), the following factors allow 
us to favor tectonic faulting as the main 
contributory process: (1) the repetition, at differ- 
ent scales, of similar structural associations that 
are all consistent with right-lateral transpres- sive  
movements;  (2) the  structurally  ordered block-
in-matrix fabric and the elongated and lozenge 
shape of the blocks, which are distinc- tive 
features of other disrupted units in tectonic 
mélanges (e.g., Pini, 1999); (3) the alignment of 
the blocks to the mesoscale shear zones and the 

scaly fabric observed in the Sant’Agata Fossili 
marls matrix, which suggests that the gypsum 
blocks are tectonic slices wrenched from the 
Gessoso Solfifera Formation during its tectonic 
juxtaposition to the Sant’Agata Fossili marls and 
aligned parallel to the direction of tectonic 
transport; and (4) the decrease of stratal disrup- 
tion far away from the faults. 

Map-scale observations support this interpre- 
tation. They indicate that the faults juxtaposing the 
blocks of Unit 1 represent the intra-Messinian 
reactivation of splays of major northwest-south- 
east faults linked to the Rio Freddo deformation 
zone (Festa et al., 2005). Dextral-transpressive 
reactivation of these faults is consistent with north- 
south regional shortening related to the north- 
ward migration of the Padane thrust front (Festa et 
al., 2005). Intra-Messinian tectonic movements 
caused the tilting upward of the gypsum blocks, 
their alignment parallel to the faults, and their 
juxtaposition to the underlying Sant’Agata Fos- sili 
marls. The karst surface developed above the 
evaporites suggests subaerial exposure of the tec- 
tonically disrupted unit during this stage. 
 
Stage 2 
 

During this stage, Unit 2 (Valle Versa cha- otic 
complex) was deposited on the disrupted 
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blocks of Unit 1 (Fig. 9). The characteristics of 
the Valle Versa chaotic complex (lower and upper 
depositional contacts being discontinuity surfaces, 
the totally chaotic arrangement of the deposits 
that contain blocks widely ranging of size and 
randomly distributed in the matrix, the 
occurrence of a brecciated matrix composed of 
isotropic mud breccias) are consistent with an 
origin caused by gravity sliding. The composi- 
tions of the largest blocks (mostly composed of 
gypsum and evaporite carbonates) and of the 
matrix, in which millimeter-sized clasts from the 
Sant’Agata Fossili marls have been found, indicate 
that the previously disrupted upper Miocene 
succession was the source of the Valle Versa 
chaotic complex. The conditions in which these 
sediments have been deposited cannot be 
evaluated precisely. However, the following fac- 
tors allow us to speculate that the Valle Versa 
chaotic complex was deposited by subaerial 
debris-flows: (1) the karstic surface below the 
Valle Versa chaotic complex; (2) the occurrence of 
hard blocks of Sant’Agata Fossili marls with 

clear pedogenic features; and (3) the lack of 
sedimentary structures and fossils indicative of 
deposition in a marine environment. 

These deposits could represent the proxi- mal 
portion of coeval submarine chaotic facies recently 
imaged by seismic data south of Torino Hill, where 
they are buried below a thick cover of Pliocene–
Quaternary sediments (Mosca, 2006). 

The mechanisms that favored sediment fail- ure 
must be looked for in tectonic deformation 
related to the northward migration of the Padane 
thrust front. This process had two main effects: 
(1) the southward tilting of the Monferrato and 
Torino Hill domains, that induced slope over- 
steepening necessary to trigger sediment failure, 
leading to deposition of thick debris flows on the 
inner side of a positive relief related to ongo- ing 
thrust propagation; and (2) the mechanical 
weakening of the sediments by the north-north- 
east–south-southwest strike-slip faults, respon- 
sible for the disruption of the upper Miocene 
succession. Studies on modern slides indicate that 
fault activity could represent a potential 

triggering mechanism for slope instability (e.g., 
Bugge et al., 1988; Mulder and Cochonat, 1996; 
Gee et al., 2005). 
 
Stage 3 
 

Both Unit 1 and Unit 2 are crosscut by Unit 3, the 
intrusive contacts of which suggest its dia- piric 

origin (Fig. 9). This is confirmed by the opposing 
sense of shear on the opposite margins of the 

structure (e.g., Orange, 1990) and by the 
threefold zonation of deformation and the block- 
in-matrix arrangement inside of it. These fea- 

tures are consistent with extrusion mechanisms 
(“extrusion like toothpaste” sensu Higgings and 
Saunders,  1967)  of  poorly  consolidated  and 

overpressured   fine-grained   sediments   under 
metastable conditions (e.g., Barber et al., 1986). 

The  distribution,  size,  and  shape  of  the 
cemented  blocks  floating  in  the  matrix  are 
related to differences of velocity gradient of the 

poorly consolidated Sant’Agata Fossili marls 
(acting as a viscous fluid) migrating through 
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rigid host rocks (selenitic gypsum), as described 
both in theoretical models (e.g., Komar, 1972; 
Bishop, 1978) and ancient diapirs (e.g., Barber and 
Brown, 1988; Brown and Westbrook, 1988; 
Orange, 1990; Brown and Orange, 1993). In 
particular, the occurrence of randomly distrib- 
uted large and angular blocks only in the core of 
the diapir (blocks D and E, Fig. 7A), the align- 
ment of long-axis blocks to the scaly cleavage (Fig. 
8C), and their increased clustering toward the 
external zones are consistent with an increase in 
velocity gradient toward the marginal contacts 
(Komar, 1972; Orange, 1990). 

In contrast to the marginal zones of other 
ancient diapiric mélanges, in which the mélange 
matrix displays an intense scaly cleavage (Barber et 
al., 1986; Orange, 1990; Brown and Orange, 
1993; Orange and Underwood, 1995), in our 
example a narrow zone of fluidal mud breccias 
has been observed at the contact between the dia- 
pir and the host rocks (Figs. 3F and 8B). These 
sediments likely formed in response of the upward 
movement of wet, unconsolidated, and overpres- 
sured clays entraining slightly more coherent clasts 
during their ascension (e.g., Kopf, 2002; Sautkin et 
al., 2003). They played a role in the diapir 
emplacement, forming a collar of scarcely viscous, 
quasi-fluid material that encouraged the 

rise of the more viscous, main diapiric body, con- 
fining it from the rigid host-rock. 

The emplacement of the diapir resulted in the 
reorganization of Unit 2 through the rotation of its 
blocks parallel to the diapir margins and the 
mixing of a tongue of Sant’Agata Fossili marls 
(emplaced  by  diapirism)  with  the  sedimen- tary 
chaotic body (Fig. 9), and could also have 
induced the local uplift and the gentle bending of 
Unit 2; however, no evidence of these last 
processes have been found. 

Shale diapirism is caused by overpressure 
conditions that in turn could be the result of tec- 
tonic and/or gravity-driven sedimentary load- ing, 
density inversion, and gas (generally meth- ane) 
generation and migration (Kopf, 2002). 
Mechanical discontinuities (e.g., faults, bedding 
surfaces, joints) often provide preferential path- 
ways for mud expulsion (e.g., Bishop, 1978; Brown 
and Westbrook, 1988; Orange, 1990; Cartwright, 
1994; Losh et al., 1999). 

At Moncucco, the rise of the diapir could have 
been caused by a combination of sedimentary 
loading  and  strike-slip  faulting.  Rapid  burial of 
low-permeability layers (Sant’Agata Fossili marls) 
belonging to previously disrupted Unit 1 may have 
caused pore-fluid dissipation, which resulted in 
pore pressure exceeding hydrostatic 

pressure and the sediment becoming overpres- 
sured (e.g., Maltman, 1994). At the same time, 
the north-northeast–south-southwest strike-slip 
faults could have favored the emplacement of the 
diapir, working as preferential conduits for the 
upward migration of the overpressured, fluid-rich 
muds (e.g., Bishop, 1978; Kopf, 2002; Chamot-
Rooke et al., 2005). Tectonic faulting may have 
also played a prominent role in the fracturing of 
the evaporites, which usually pro- vide an 
impermeable layer, preventing extrusion of deeper 
overpressured sediments to the surface 
(Camerlenghi et al., 1995). 

Direct evidence that the fluids involved in the 
emplacement of the diapir were rich in meth- ane 
has not been found at Moncucco. However, the 
occurrence of several blocks of cold-seep 
carbonates in the Valle Versa chaotic complex 
close to Moncucco and other sectors of Monfer- 
rato and Torino Hill strongly suggests the role 
played by methane. 
 
Stage 4 
 

The complex and interrelated processes that 
produced the composite chaotic unit faded out in 
late Messinian time with the unconformable 
deposition above it of the Lago-Mare sediments 
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(Fig. 9). These sediments were deposited dur- 
ing an interval of tectonic quiescence (Roveri et 
al., 2003), and record the filling of the basin by  
hyposaline  waters.  They  are  overlain  by the 
lower Pliocene Argille Azzurre Formation, which 
evidences the reestablishment of fully marine 
conditions. 

 
CONCLUSIONS 

 
The relative contributions of tectonic fault- ing, 

gravitational, and diapiric processes in the genesis 
of a Messinian composite chaotic unit have been 
evaluated. It appears that these mech- anisms 
affected each other. Faulting was respon- sible for 
the disruption of the originally coherent 
stratigraphic succession, favoring the failure of 
mechanically weakened sediments and encour- 
aging shale diapirism through the creation of 
mechanical discontinuities working as conduits for 
the rising of overpressured sediments. In our 
example, loading provided by deposition of 
gravitative chaotic sediments could have con- 
tributed (together with the circulation of meth- 
ane-rich fluids in the sedimentary column) to 
diapir intrusion, which in turn caused a partial 
reorganization of the dismembered sediments 
produced by the other two processes. 

The imprint of tectonic deformation is rec- 
ognizable in Unit 1 by the structurally ordered 
block-in-matrix fabric and by the scale- 
independent deformation pattern of the muddy 
sediments, consistent with regional shortening 
related to the intra-Messinian tectonic event. 

The key features of gravity driven sedimen- tary 
phenomena (Unit 2) can be seen in the lower and 
upper depositional contacts, the lack of any 
orientation of the hard blocks, their random dis- 
tribution within the matrix, and the brecciated 
texture of the matrix, which consists of isotropic 
mud breccias lacking any preferred orientation of 
the clasts. Intrusive contacts displayed by Unit 3, 
the threefold zonation of deformation inside it, 
and the opposing sense of shear on its opposite 
margins are the most striking evidence, well 
recognized in outcrop, of shale diapirism. An 
additional criterion is the presence of blocks of  
methane-derived  carbonates  (Clari  et  al., 
2004), not found in the quarry, but just outside it. 
An unusual feature is the thin envelope of 
fluidal mud breccias at the contact between the 
diapir and the host rocks. This collar of scarcely 
viscous material promoted the rise of the more 
viscous main diapiric body, confining it from the 
rigid host rocks. 

Large volumes of Messinian chaotic sedi- ments 
characterize the Tertiary Piedmont Basin and 
other parts of the Mediterranean area. In these  
sedimentary  bodies,  only  the  imprint left by 
gravitational movements can be seen. 

However, it must be taken into account that in the 
highly mobile geodynamic setting where these 
deposits formed, slope failure was likely to be the 
prevailing process, able to completely conceal the 
traces of both tectonic faulting and shale 
diapirism: the role played by these latter 
mechanisms in the genesis of the chaotic sedi- 
ments could thus be underestimated. 
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