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Semiparametric Bayesian models are nowadays a popular tool in event history analysis. An
important area of research concerns the investigation of frequentist properties of posterior
inference. In this paper, we propose novel semiparametric Bayesian models for the analysis
of competing risks data and investigate the Bernstein–von Mises theorem for differentiable
functionals of model parameters. The model is specified by expressing the cause-specific haz-
ard as the product of the conditional probability of a failure type and the overall hazard rate.
We take the conditional probability as a smooth function of time and leave the cumulative
overall hazard unspecified. A prior distribution is defined on the joint parameter space, which
includes a beta process prior for the cumulative overall hazard. We first develop the large-
sample properties ofmaximum likelihood estimators by giving simple sufficient conditions for
them to hold. Then, we show that, under the chosen priors, the posterior distribution for any
differentiable functional of interest is asymptotically equivalent to the sampling distribution
derived frommaximum likelihood estimation. A simulation study is provided to illustrate the
coverage properties of credible intervals on cumulative incidence functions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The study of Bernstein–von Mises (BvM) type theorems has recently received a renewed interest in the context of nonpara-
metric statistics. Indeed, such an interest stems from the debate on posterior inconsistency originated by the paper of Diaconis
and Freedman (1986). The BvM theorem states that the posterior distribution of the model parameter centered at the maxi-
mum likelihood estimator (MLE) is asymptotically equivalent to the sampling distribution of the MLE. In a parametric setup, it
represents a quite standard result, roughly implied by consistency and asymptotic normality of the MLE. See, e.g., Ghosh and
Ramamoorthi (2003) and references therein. On the other hand, in infinite-dimensional models, the choice of the prior distri-
bution influences the large-sample properties of the posterior and BvM-type results are in general difficult to establish, because
of both the over-whelming mathematics involved in their derivation and the fact they may not hold. See Cox (1993), Freedman
(1999) and Zhao (2000).

For nonparametric survival models there exist positive results for the family of neutral to the right processes (Doksum, 1974),
which constitute the most common prior used on the space of survival distributions. Indeed, Kim and Lee (2004) investigate the
BvM theorem for right-censored survival data and show that it holds under minimal conditions that are matched by the most
common processes within this family. Their method is based on describing neutral to the right processes via the corresponding
randomcumulativehazard, takenas an increasingadditiveprocess, i.e. an increasingprocesswith independent andnotnecessarily
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stationary increments. See, e.g., Sato (1999). This approach was first introduced by Hjort (1990) and developed further by
Kim (1999). Kim and Lee (2004) proceed by proving that the BvM theorem holds for the cumulative hazard function in terms of
the large-sample distribution of theNelson–Aalen estimator and, then, extend the result to the survival function via the functional
delta method. The survival function is in fact recovered from the cumulative hazard via the product integral, which is compactly
differentiable. Still in the context of nonparametric survival models, the following step in the analysis of BvM type asymptotics
is naturally represented by the proportional hazards regression model, which stands out for its wide use in applications. The
derivation of the BvM theorem within this framework has been successfully carried out by Kim (2006) and De Blasi and Hjort
(2007). Their results witness the convenience of working at the cumulative hazard level, in that Bayesian methods can be readily
extended to more complex event history data by using the multiplicative intensity model of Aalen (1978).

In this paper we derive a BvM result for competing risks models, which represent another important class of statistical tools
in the context of event history analysis, aiming at the description of the occurrences of failure times with multiple endpoints.
We adopt a semiparametric formulation and consider frequentist estimation by following a counting process approach, see the
monograph by Andersen et al. (1993) (ABGK henceforth). The quantities of interest are expressed as differentiable functionals
of the model parameters, say (A,�), where A is the functional parameter and � is the finite-dimensional parameter. A property
of the considered formulation is that the total likelihood factorizes in two parts, corresponding to A and �, so that the derivation of
the large-sample properties of the corresponding MLE is simplified. The functional delta method is then the key tool for deriving
the limiting distribution of the functionals of interest. We exploit the factorization in the likelihood in order to establish a BvM
theorem for the aforementioned functionals: the strategy is to take A and � independent in the prior in order to get independence
in the posterior; thus, the asymptotic normality follows from a further application of the functional delta method, provided that
we establish the BvM theorem for the marginal posterior distributions of A and �. As for the infinite-dimensional parameter, we
utilize the results in Kim and Lee (2004) by appropriately choosing the prior. The main effort for � consists in establishing the
good behavior of its conditional likelihood: the continuity and nonnegativity of the prior density leads then to the BvM theorem
by using arguments similar to those in Ghosh and Ramamoorthi (2003, Theorem 1.4.2). We are then able to provide simple and
neat sufficient conditions for the BvM theorem to hold for any differentiable functional of the model parameters.

2. Semiparametric competing risks models

The semiparametric model has statistical interest on its own and is described as follows. We consider the pair (T0,D0), where
T0 is the failure time and D0 ∈ {1, . . . , k} is the type of failure, meaning that the event under observation has k different and
mutually exclusive outcomes. The joint distribution of (T0,D0) can be specified via the cause-specific hazard (CSH) function:

�j(t) = lim
�t→0

Pr{t�T0 < t + �t,D0 = j|T� t}/�t, j = 1, . . . , k,

that is �j(t) is the instantaneous rate of a failure of type j at time t. Alternatively, one can describe competing risk data via the
marginal probabilities Pj(t) = Pr{T0� t,D0 = j}, which are known as cumulative incidence functions (CIF). We rather consider
cumulative CSH, defined as dAj(t) = dPj(t)/S(t−), where S(t) = Pr{T0 > t} is the survival function. In the continuous case, Aj is the
integral of �j, while, in general, it is a right-continuous, nondecreasing function with jumps in (0, 1).

We work in a semiparametric setting and specify Aj as follows:

Aj(t) =
∫ t

0
pj(s,�) dA(s), j = 1, . . . , k, (1)

where (i) pj : R+ × Rp → [0, 1] is a smooth function continuous in t and twice differentiable in � such that
∑

j� k pj(s,�) = 1
for each s and �; (ii) A = ∑

j� k Aj is the cumulative overall hazard and is left unspecified. Our results apply to a general class of
models, for pj as detailed in Section 8 (see Eq. (26) therein). However, in order to ease the flow of ideas and avoid heavy notation,
we focus first on the crucial case⎧⎪⎨⎪⎩

pj(s,�) = e�j1+�j2spk(s,�), j = 1, . . . , k − 1,

pk(s,�) =
{ ∑
h� k

e�h1+�h2s

}−1

,
(2)

where �k1 = �k2 = 0 is needed for guaranteeing the identifiability of the model. The proportionality factor pj(t,�) describes the
conditional probability of a failure of type j at time t, given one failure occurs at that time:

pj(t,�) = lim
�t↓0

Pr{T0 ∈ [t, t + �t),D0 = j}
Pr{T0 ∈ [t, t + �t)} = dAj(t)

dA(t)
, (3)

see ABGK, Section II.6. Following the terminology of Gasbarra and Karia (2000), we call pj the cause-specific conditional probability.
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Note that pj corresponds to the subdensity dPj/dt normalized over its sum, while, in the continuous case, it is recovered from
the CSHs via normalization, i.e. pj(t)=�j(t)/

∑
h� k �h(t). In particular, (2) can be seen as the cause-specific conditional probabilities

that arise by starting with Gompertz-type CSH and by normalization for the k-th one. The cause-specific conditional probability
describes the relative risk of a failure type in terms of the overall rate of failure as it varies over time. The common approach
to the study of prevalence of risks is via the CIFs, even though they do not provide changes in the relative risk of failure. The
quantity pj is a valid alternative, presenting the advantage of having a sound interpretation as conditional probability. There
exist other quantities that can be used to describe competing risk data, depending on the nature of the application at issue, see
the discussion in Pepe and Mori (1993). In order to avoid confusion, the reader should note the difference with the conditional
probability Pr(T0� t|D0 = j), sometimes used for describing competing risks data in the so-called mixture model. See, e.g., Larson
and Dinse (1985).

Estimation of the joint distribution of (T0,D0) is carried out via the cause-specific conditional probability pj and the cumulative
overall hazard A. The model parameters (A,�) take values in the product space � = D[0,�] × Rp, where p = 2k − 2 and D[0,�] is the
space of cadlag functions on the (possibly infinite) time interval [0, �]. All the relevant survival quantities are obtained from (A,�)
via functionals like the cumulative CSH Aj (see (1)), the survival function S(t) = ∏

[0,t]{1 − dA(s)} and the CIF Pj(t), in the present
setting given by

Pj(t) =
∫ t

0

∏
[0,s)

{1 − dA(u)}pj(s,�) dA(s), j = 1, . . . , k. (4)

Here
∏

stands for the product integral, see Gill and Johansen (1990). As we are interested in the asymptotic properties of the
posterior distribution of Aj, S and Pj, we make use of the following two facts: (i) for Aj given in (1), the mapping � : (A,�) →
(A1, . . . ,Ak) from � to (D[0,�])

k is compactly differentiable; (ii) compact differentiability satisfies the chain rule: the composition
of differentiable functionals is differentiable, with derivative equal to the composition of the derivatives (see Gill, 1989). Thus, it
follows that S and Pj are compactly differentiable functionals of (A,�) as well.

The rest of the paper is organized as follows. In Section 3, we introduce the counting process formulation of cause-specific
failure times and show that a factorization in the likelihood of (A,�) takes place. We exploit the similarity of pj(t,�) in (2) with
a multinomial logistic regression model in order to derive the asymptotic properties of the MLE for �, while nonparametric
estimation for A is obtained via the Nelson–Aalen estimator. Then, the allied limiting distributions for Aj, S and Pj are derived
using the functional delta method. In Section 4, we develop Bayesian methods by using a Jeffreys prior for � and specifying a
nonparametric prior for A via the beta process of Hjort (1990). Section 5 provides the two BvM theorems for A and �, which, in
turns, imply the asymptotic normality of the posterior distribution of Aj and Pj. In Section 6, a simulation study is presented, with
focus on the empirical coverage of credible sets for Pj(t). In order to ease the flow of ideas, we collect the more technical proofs
in Section 7. In Section 8, we provide conditions for the BvM theorem to hold for a larger family of models which includes (2) as
a special case; we also show how the previously developed techniques may be adapted to this family. Finally, some concluding
remarks and lines of future research are provided.

3. Asymptotics for likelihood estimation

Let us start by introducing the counting process formulation of competing risks data. Aswewant to account for right-censoring,
we indicate the sample by (T1,D1), . . . , (Tn,Dn), where Ti is the (possibly right-censored) failure time and Di = {0, 1, . . . , k} is the
observed failure type: Di =0 if Ti is right-censored, whereas Di = j if i-th individual is observed to fail due to cause j. The censoring
mechanism is assumed to be independent of the failure time and the failure type. For each observation (Ti,Di), we consider k
counting processes Ni,j(t) = I{Ti� t,Di = j}, j = 1, . . . , k, and the at-risk process Yi(t) = I{Ti� t}. According to Aalen's multiplicative
intensity model, Ni,j can be decomposed as

Ni,j(t) =
∫ t

0
Yi(s) dAj(s) + Mi,j(t), j = 1, . . . , k, (5)

i.e. the sumof the intensity process and amartingale residualMi,j. In the followingweuse the notation 〈M〉 for the variation process
ofM and 〈M,M′〉 for the covariation process ofM andM′,M andM′ being martingales. Under standard regularity conditions, that
we assume to hold, we have 〈Mi,j〉(t) = ∫ t

0 Yi(s) dAj(s) and orthogonality at the failure type level: 〈Mi,j,Mi,h〉 = 0. Summation at
the individual level preserves the representation in (5), as well as orthogonality, and will be denoted by suppressing the index i.
We also make use of the aggregated process N·(t) =∑

j� k Nj(t), which counts the number of failure of any types occurred before
time t.

The likelihood for (A,�) can be expressed by the product integral in multinomial form:

L(A,�) =
∏
t

⎧⎪⎨⎪⎩
∏
j� k

(Y(t) dAj(t))
dNj(t)

⎧⎨⎩1 −
∑
j� k

dAj(t)

⎫⎬⎭
1−dN·(t)

⎫⎪⎬⎪⎭



Author's personal copy

P. De Blasi, N.L. Hjort / Journal of Statistical Planning and Inference 139 (2009) 2316 -- 2328 2319

cf. Eq. (2.7.2′′) in ABGK, Section II.7. Upon substitution of (1), the part involving � can be separated out from that involving A, so
that L(A,�) factorizes in two components, say L(A) and L(�), where

L(A) =
∏
t

{
dA(t)dN·(t){1 − dA(t)

}Y(t)−dN·(t)
}
, (6)

L(�) =
∏
i�n

∏
j� k

pj(�, ti)
�Ni,j(ti). (7)

Here L(A) is the likelihood of the cumulative overall hazard, and simply corresponds to the case of right-censored survival times;
L(�) is the conditional likelihood of � and depends only on the uncensored observations. The factorization of L(A,�) represents
an important property of model (1): it leads to frequentist estimation in a straightforward way by means of the Nelson–Aalen
estimator Ân(t) = ∫ t

0 Y(s)−1 dN·(s) for A and the MLE �̂n for �. Note that the Nelson–Aalen estimator has a maximum likelihood
interpretation, see ABGK, Section IV.1. Upon substitution of (2) for pj(�, t) in (7), the conditional likelihood L(�) is similar to the
likelihood for a multinomial logistic regression model with the type of failure as response variable and the time of failure as
regression variable. Then, one can exploit the good properties of themultinomial logistic regressionmodel, in particular the strict
concavity of the log-likelihood of the regression coefficient provided that there is overlap on the space of covariate variables, see
Albert and Anderson (1984). This allows us to provide simple and neat conditions for the large-sample properties of �̂n to hold.

To this aim, we postulate that model (1)–(2) is in force for a certain cumulative overall hazard Atr, with derivative �tr, and for
a parameter vector �tr ∈ R2k−2. We also assume that observations are recorded over a fixed and finite time window [0, �]. The
required conditions are the following:

(A) There exists a positive function y such that supt∈[0,�]|n−1Y(t) − y(t)|→p 0.

(B)
∫ �
0 (t2 + 1)3�tr(t) dt <∞.

(C) ∃j, h ∈ {1, . . . , k}, j � h, such that pj(t,�tr), ph(t,�tr) >0 for any t ∈ [0, �].

Condition (A) guarantees that Y(�) → ∞ in probability as n → ∞, which is needed for the asymptotic distribution of the
Nelson–Aalen estimator Ân. For example, if right-censoring is determined by independent censoring times with common dis-
tribution function G, then it is sufficient to assume that G(�−) <1. The integrability condition (B) is needed for the convergence
(in probability) of the variation processes of martingales obtained from Mj via stochastic integration. The infinite interval case
cannot be derived from the finite interval case, since one has

∫∞
0 �tr(t) dt = ∞. Some extra conditions have then to be made

on the likelihood contribution in the tail (�,∞), see, e.g., Andersen and Gill (1982, Theorem 4.2). Condition (C) assures that, for
sufficiently large sample sizes, there is overlap of cause-specific failure times, which is needed for the concavity of log L(�), see
Lemma 1 in Section 7.

Before describing the limiting distribution of (̂An, �̂n), we introduce some more notation that will be also needed in the rest of
the paper. Let �n(�) = log L(�) and use the counting process formulation to write

�n(�) =
∑
j� k

∫ �

0
[zj(t)

t� + log pk(t,�)] dNj(t), (8)

where zj(t) is the (2k − 2)-dimensional function having (1, t)t in the j-th block and zeros elsewhere. Note that zk(t) is identically
zero and is introduced formathematical convenience. Upon definition of e(t,�)=∑j� k zj(t)pj(t,�), the function zj(t)−e(t,�) stands
for � log pj(t,�)/��. Next, define the information matrix � = ∫ �

0 V(t,�tr)y(t)�tr(t) dt, where V(t,�)=∑
j� k pj(t,�)[zj(t)− e(t,�)]⊗2,

so that � ∼ N(0,�−1) denotes a multivariate normal random vector with covariance matrix given by the inverse of �. As for the
asymptotic distribution of the Nelson–Aalen estimator Ân, define the function 	2(t) = ∫ t

0 y(s)−1�tr(s) ds and let W be a standard

Brownian motion. For a vector b= (b1, . . . , bp)
t, write |b| = (btb)1/2 and b⊗2 = bbt, while, for B a p× pmatrix, |B| is the determinant

and vec(B) is the column vector of length p2 with the j-th block equal to the j-th column of B. The covariance matrix of a matrix-
valued random variable X is then defined as cov(X) = E{[vec(X) − vec(EX)][vec(X) − vec(EX)]t}. Finally, let C[0,�] be the space of
continuous functions defined on the interval [0, �].

Theorem 1. Assume conditions (A)–(C) hold. Then
√
n(̂�n − �tr) and

√
n(̂An − Atr) are asymptotically independent and

√
n(̂An − Atr)→dW(	2) on D[0,�], (9)

√
n(̂�n − �tr)→dN(0,�

−1). (10)

The asymptotic independence of
√
n(̂�n − �tr) and

√
n(̂An − Atr) is a key ingredient for the derivation of the asymptotic

distribution of the plug-in estimators for Aj, S and Pj. As for Aj, consider the mapping � : (A,�) → (A1, . . . ,Ak) from D[0,�] × R2k−2
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to (D[0,�])
k defined by Eqs. (1)–(2) and write � as the composition � = �2 ◦ �1, where �1 : R2k−2 → (C[0,�])

k is defined by

�1(�) = [p1(t,�), . . . ,pk(t,�)]
t and is compactly differentiable at each point of x ∈ R2k−2 with derivative given by

(d�1(�) · x)(t) =

⎛⎜⎝ [z1(t) − e(t,�)]txp1(t,�)
...

[zk(t) − e(t,�)]txpk(t,�)

⎞⎟⎠ .

On the other hand, �2 : (C[0,�])
k × D[0,�] → (D[0,�])

k is defined by �2(p1, . . . ,pk,A) = (A1, . . . ,Ak), where Aj = ∫
pj dA. Using the

properties of the integral (see ABGK, Proposition II.8.6) we have that, for (h1, . . . ,hk,H) in the space (C[0,�])
k ×D[0,�] such that each

hj is integrable with respect to H, �2 has derivative:

d�2(p1, . . . , pk,A) · (h1, . . . ,hk,H) =

⎛⎜⎝
∫
h1 dA + ∫

p1 dH
...∫

hk dA + ∫
pk dH

⎞⎟⎠ .

The compact differentiability of � is then a direct consequence of the chain rule of compact differentiability. The next corollary
provides the limiting distribution of

√
n[̂Aj(t) − Aj(t)], j = 1, . . . , k, in terms of a vector of dependent Gaussian processes. Here Âj

stays for Aj in (1) with (̂An, �̂n) substituted for (A,�). The thesis follows from two applications of the functional delta method, see
Gill (1989).

Corollary 1. For j = 1, . . . , k define the Gaussian process

Uj(t) =
∫ t

0
[zj(s) − e(s,�tr)]

t�pj(s,�tr)�tr(s) ds +
∫ t

0
pj(s,�tr) dW(	2(s)).

Then, the following weak convergence result on (D[0,�])
k holds:

√
n[(̂A1, . . . , Âk) − (A1, . . . ,Ak)]→d(U1, . . . ,Uk).

In order to derive the asymptotic distribution of S and Pj, it is convenient to look at competing risks data as the transition
times of a Markov process with one transient state “0 : alive” and absorbing state j = 1, . . . , k corresponding to “failure of type j”.
Let P(s, t) be the corresponding transition matrix for 0� s� t and write P(t) = P(0, t). Then

P(t) =
∏
[0,t]

{I + dA(s)}, (11)

where I is the identity matrix and A is the transition intensity matrix with element (1, 1) equal to −A, elements (1, j+ 1) equal to
Aj, elements (j + 1, j + 1) equal to 1 and zeros elsewhere, j running through {1, . . . , k}. Note that [S(t), P1(t), . . . , Pk(t)] corresponds
to the first row of P(t). The thesis of Corollary 1 can be written as

√
n(Â − A)→d U for U the matrix-valued Gaussian process with

first row equal to (−W(	2),U1, . . . ,Un) and zeros elsewhere. Upon definition of the matrix Cj having element (1, 1) equal to −1,
element (1, j+1) equal to 1 and zeros elsewhere, the covariancematrix ofU(t) is given by cov(U(t))=∑

j,h� k vec(Cj) vec(Ch)
t
jh(t),

where


jh(t) =
∫ t

0
[zj(s) − e(s,�tr)]

tpj(s,�tr)�tr(s) ds�−1
∫ t

0
[zh(s) − e(s,�tr)]ph(s,�tr)�tr(s) ds +

∫ t

0
pj(s,�tr)ph(s,�tr)

�tr(s)
y(s)

ds.

We now let the previous notation prevail. The next corollary describes the limiting distribution of
√
n[̂P(t) − P(t)], where P̂ stays

for the transitionmatrix Pwith (̂An, �̂n) substituted forA in (11) via Eq. (1). The thesis follows from an application of the functional
delta method and the formula for the derivative of the product integral, see Gill and Johansen (1990).

Corollary 2. The transition matrix P̂ has the following asymptotic behavior:

√
n[̂P(t) − P(t)]→dZ(t) =

∫ t

0
P(s−) dU(s)P(s, t)

for each t ∈ [0, �], where Z(t) has covariance matrix given by

cov(Z(t)) =
∫ t

0
P(s, t)t ⊗ P(s−) d cov(U(s))P(s, t) ⊗ P(s − )t.
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It follows that an explicit formula for the asymptotic distribution of
√
n[̂Pj(t) − Pj(t)] is given by

Zj(t) =
∫ t

0
S(u−) dUj(u) −

∫ t

0

Pj(t) − Pj(u)
S(u)

S(u−) dW(	2(u)),

with asymptotic variance

var(Zj(t)) =
∫ t

0
S(u − )2

{
(Pj(t) − Pj(u))

2

S(u)2
	2(u) du − 2

Pj(t) − Pj(u)
S(u)

pj(u,�tr)	2(u) du + d
jj(u)

}
. (12)

4. Bayesian inference

As far as model (1) is concerned, Bayesian inference requires the specification of a prior distribution for (A,�) on the infinite-
dimensional space D[0,�] × R2k−2. We proceed by taking A and � to be independent in the prior and, then, derive the posterior
distributions separately because of the factorization in L(A,�). As for the prior distribution of A, we employ the beta process of
Hjort (1990), which is an increasing additive process with paths that lie, with probability one, in the space of cumulative hazard
functions. A formal definition of the beta process is as follows. LetA is the set of right-continuous nondecreasing functions A on
R+, such that A(0) = 0 and A is increasing to infinity with jumps in (0, 1). Let A0 ∈ A with jumps at points {t1, t2, . . .} and let c be
a piecewise continuous, nonnegative real valued function on [0,∞). Then, a beta process with parameters c and A0, in symbols
A ∼ Beta(c,A0), is defined as an increasing additive process with Lévy–Khinchine representation given by

E[e−uA(t)] =
∏

j:tj � t

E[e−u�A(tj)]e− ∫ t
0
∫ 1
0 (1−e−us)s−1(1−s)c(z)−1c(z) ds dA0,c(z),

where �A(tj) is the jump size at location tj and is distributed as a beta random variable of parameters c(tj)�A0(tj) and c(tj){1 −
�A0(tj)}, whereas A0,c(t) = A0(t) − ∑

tj � t �A0(tj). Note that dA(s) has mean dA0(s) and variance dA0(s){1 − dA0(s)}/{1 + c(s)},
indicating that A0 is the prior guess at A and c determines the concentration of the random function around A0. In particular, the
choice c(t) = m exp{−A0(t)} makes the random distribution function 1 −∏

[0,t] {1 − dA(s)} distributed as a Dirichlet process with
prior mean equal to [1 −∏

[0,t] {1 − dA0(s)}] and concentration parameter m. In this case m can be interpreted as the strength of
the prior beliefs in A0, corresponding to the size of an imaginary prior sample from a lifetime distribution with cumulative hazard
A0.

The convenience of using a beta process prior for the overall cumulative hazard is that we are modeling the occurrence of
simple events, disregarding the type of failure observed. In fact, the likelihood contribution L(A) depends only on the failure times
t1, . . . , tn and the censoringmechanism (see Eq. (6)). Then, one can exploit the conjugacy of the beta process to i.i.d. right-censored
lifetimes to get

A|data ∼ Beta
{
c + Y ,

∫
cdA0 + dN·

c + Y

}
, (13)

where we have used the counting process notation introduced in Section 2. The second parameter in (13) corresponds to the
posterior mean and has increments given by a convex linear combination of the Nelson–Aalen estimator Ân(t) and the prior mean
A0. The plain Nelson–Aalen estimator Ân arises in the noninformative case of c(t) ≡ 0 for any t. If A0 is continuous, then, in the
posterior, there are new fixed points of discontinuity at any observed failure time ti, the distribution of the jump size being

�A(ti)|data ∼ beta(c(ti)�A0(ti) + dN·(ti), c(ti)[1 − �A0(ti)] + Y(ti) − dN·(ti)).

Sample paths from the posterior distribution of A are readily obtained by simulating independently the beta distributed jumps
and the continuous paths. For a fine grid of the time axis, the increments of the continuous part can be approximated by summing
beta random variates, generated in accordance with (13).

As for theparameter�, anydensity function�(�)with supportR2k−2 canbeused, although specifying ameaningful distribution
can be a difficult task. A possibility is to adopt the prior density dictated by Jeffreys rule,which is suited to the case of little available
prior information. For general parametricmodels, the Jeffreys prior is proportional to |Jn(�)|1/2, the square root of the determinant
of the informationmatrix. Since the conditional likelihood L(�) is interpretable in terms of amultinomial logistic regressionmodel,
it is easy to see that Jeffreys prior is given by

�(�) ∝
∣∣∣∣∣∣
∑

i:di � 0

V(ti,�)

∣∣∣∣∣∣
1/2

. (14)
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See Ibrahim and Laud (1991). In order to simulate from the posterior density �(�|data) ∝ �(�)×L(�), we exploit the log-concavity
of L(�). In fact, by Lemma 1 in the Section 6.1, L(�) is log-concave as long as there is overlapping of cause-specific failure times.
In this case, a log-concave prior �(�) leads to a log-concave posterior density, so that one can use coordinatewise the adaptive
rejection sampling (Gilks and Wild, 1992). Once we simulate A∗ from A|data and �∗ from �(�|data), inference on CIFs can be
obtained via posterior averaging. The trajectory {A∗(t), t�0} will be of pure jumps, with jump times 0 < s1 < s2 < · · · obtained by
reordering the uncensored failure times in the data and the time points used in the discretization of the continuous part. Then,
we compute

P∗
j (t) =

∑
i:si � t

⎧⎨⎩∏
l<i

[1 − �A∗(sl)]pj(si,�
∗)�A∗(si)

⎫⎬⎭
as a variate from the posterior distribution of Pj, see Eq. (4).

It is worth mentioning that a related Bayesian semiparametric approach to the analysis of competing risks data can be found
in Gasbarra and Karia (2000). They also consider the cause-specific conditional probability and the overall hazard rate, but with
a different prior specification. As for the cause-specific conditional probability, they take a random partition of the time axis
and assign to each segment an independent k-dimensional Dirichlet distributed random vector. Then pj is obtained by kernel
smoothing. As for the overall hazard, they use a convolution of gamma processes at the hazard rate level, in the spirit of Lo and
Weng (1989). A fully nonparametric treatment of the competing risks model is instead implicit in Hjort (1990, Section 5), where
the beta process is used for Bayesian inference on nonhomogeneous Markov processes. The idea is to assign independent beta
processes to all CSHs, using the fact that, given a sample of right-censored cause-specific failure times, theypreserve independence
and are still beta distributed in the posterior.

5. BvM theorem

In this section we provide the BvM theorem for the posterior distribution of Aj and Pj. Indeed, we prove that, under a beta
process prior for the overall hazard and minimal conditions on the prior density �(�), the posterior distribution of (A,�) is
asymptotically equivalent to the sampling distribution of (̂An, �̂n), as stated in Theorem 1. The claimed BvM result for Aj and Pj
is, then, a direct consequence of the functional delta method. Note that the same is true for all differentiable functionals of (A,�)
or of the CSHs Aj: we can then rely on posterior averaging having valid frequentist properties. Indeed, thanks to the BvM result,
Bayesian credible sets are guaranteed to reach asymptotically nominal coverage probability like consistent estimation based on
the likelihood. This has important consequences from a practical point of view. Since the Bayesian computational capacity has
increased, Bayesian credible sets represent an alternative to confidence intervals when traditional methods do not lead to easily
implementable algorithms. The BvM theorem is the theoretical justification of this practice.

As in Section 2, we assume that data are generated under model (1)–(2) with true parameters (Atr,�tr), and that conditions
(A)–(C) hold. The convergence of the posterior distribution holds in probability, where convergence in probability refers to
repeated sampling from the true distribution of (T0,D0).

Theorem 2. Let A be a beta process (A0, c) and let �, independent of A, have density �. Assume that A0 is continuous with bounded and
positive density on (0, �) and that 0 < inft∈[0,�] c(t)�supt∈[0,�] c(t) <∞. Moreover, assume � to be positive and continuous at �tr. Then,
as n → ∞,

√
n(A − Ân)|data→d W(	2) on D[0,�] in probability, (15)

√
n(� − �̂n)|data→d N(0,�

−1) in probability. (16)

Convergence in (15) is implied by Theorem 2 in Kim and Lee (2004), which holds under the hypotheses made on the prior
parameters c and A0 of the beta process. The proof of (16) is deferred to Section 6, where we extend the arguments in Theorem
1.4.2 in Ghosh and Ramamoorthi (2003) to the multiparameter case and adapt them to the present setting.

The independence in the posterior distribution of A and � implies that a BvM theorem also holds for their joint distribution in
accordancewith the asymptotic result in Theorem1. Corollaries 3 and 4 provide the BvM for Aj and Pj and follow fromapplications
of the functional delta method, as implemented in Section 2. See also Kim and Lee (2004).

Corollary 3. Under the hypotheses of Theorem 2

√
n[(A1, . . . ,Ak)t − (̂A1, . . . , Âk)t]|data→d(U1, . . . ,Uk)

t

on (D[0,�])
k in probability, where Âj(t) and Uj(t) are defined as in Corollary 1.
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Table 1
Empirical coverage of interval estimates for P1(t∗) (upper block) and P2(t∗) (lower block) based on 1000 independent samples.

Method n = 30 n = 50 n = 100 n = 200 n = 500

P1(t∗)
Bayesian

(m = 1) 0.928 0.936 0.941 0.940 0.942
(m = 10) 0.905 0.917 0.933 0.927 0.937
(m = 20) 0.844 0.864 0.902 0.911 0.929

Semiparametric 0.916 0.921 0.927 0.926 0.929
Nonparametric 0.941 0.946 0.950 0.946 0.945

P2(t∗)
Bayesian

(m = 1) 0.933 0.933 0.946 0.939 0.952
(m = 10) 0.899 0.910 0.934 0.933 0.942
(m = 20) 0.842 0.863 0.895 0.915 0.935

Semiparametric 0.901 0.908 0.921 0.920 0.929
Nonparametric 0.932 0.944 0.951 0.944 0.953

Nominal coverage is 95%.

Corollary 4. Under the hypotheses of Theorem 2, for j = 1, . . . , k,

√
n(Pj − P̂j)|data→d

∫ t

0
S(u−) dUj(u) −

∫ t

0

Pj(t) − Pj(u)
S(u)

S(u−) dW(	2(u))

on D[0,�] in probability, where P̂j(t) = ∫ t
0
∏

[0,s){1 − dÂn(u)}pj(s, �̂n) dÂn(s).

6. Simulation study

In this section we investigate the validity of the BvM theorem on simulated data by comparing the coverage probability
of frequentist and Bayesian intervals for the CIF. We generate competing risks data with two types of failure (k = 2) from
independent lifetimes (T1, T2) with Gompertz distributions, so that model (1)–(2) is in force. Specifically, T1 ∼ Gomp(a1, b1) with
(a1, b1) = (log(0.05), 0.6) and T2 ∼ Gomp(a2, b2) with (a2, b2) = (log(0.01), 1), resulting in expected lifetimes equal to 3.6 and 4.1,
respectively. Right-censoring is introduced via exponential distributed random times with mean 10, resulting in a censoring of
approximately 25%. We consider data of five different sample sizes, n = 30, 50, 100, 200, 500 and, for each data set, we perform
interval estimation of P1 and P2 at the time point t∗ = 4.

Bayesian inference on P1(t∗) and P2(t∗) is based on 5000 posterior variates from �(�|data) and 5000 trajectories from the
posterior beta process A|data. As for �, we use the Jeffreys prior in (14) and implement the adaptive rejection sampling coordinate-
wise for a total of 6000 iterations, discarding the first 1000 sweeps as burn-in. As for A, the prior process is centered at A0(t)=�0t
with �0 = 0.165 and we take c(t) = m exp(−�0t) with m = 1, 10, 20, corresponding to three different degrees of prior beliefs.
For each choice of m we compute credible intervals for P1(t∗) and P2(t∗) based on highest posterior density. Finally, we derive
confidence intervals under the semiparametricmodel (1) based on the limiting normality of Corollary 2 and the plug-in estimates
for the asymptotic variance in (12). For comparison purposes, we also report interval estimation for the fully nonparametric case,
where the cumulative CSHs are estimated via the Nelson–Aalen estimators, see ABGK Section IV.4.1.

In Table 1, we report the empirical frequentist coverage probability of the 95% interval estimates of P1(t∗) and P2(t∗) based
on 1000 independent samples for each method (Bayesian with m = 1, 10, 20, semiparametric and nonparametric) and for each
sample size (n = 30, 50, 100, 200, 500). Note that the performance of the Bayesian intervals increases for increasing sample size
and decreasing concentration parameterm. A small coverage is associatedwith a bigm because the initial guess on the cumulative
overall hazard, i.e. A0, is different from the true one: the expected lifetime corresponding to A0 is approximately twice as big
as E(T1 ∧ T2). As n increases, the data rule out the “wrong” prior guess more and more. The Bayesian intervals work well for all
sample sizes for the least informative prior specification, which corresponds tom= 1: they attain coverage probabilities close to
the nominal level and consistent with the ones of semiparametric estimation. The coverage of intervals based on nonparametric
estimation is generally superior, although one has to consider that the Bayesian intervals suffer from the specification of the prior
beliefs on A. Moreover, the nonparametric intervals show a better coverage than the semiparametric ones, which might be due
to the approximation involved in the derivation of the asymptotic variance via the functional delta method.

7. Proofs of results in Sections 2 and 4

7.1. Proof of Theorem 1

Result (9) is standard in survival analysis and holds under Conditions (A) and (B), see ABGK Section IV.1. Asymptotic normality
of �̂n is derived using convex analysis in the spirit of Hjort and Pollard (1994). To this aim, the following lemma is essential.
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Lemma 1. Denote by Ej the index set for failures of the j-th type, Ej = {i : di = j, i = 1, . . . ,n} and indicate by �j the j-th block of �, i.e.
�j = (�j1,�j2)

t, j= 1, . . . , k− 1 and �k = (0, 0)t. If for any � ∈ R2k−2 there exists a triplet (i, j,h)with j,h ∈ 1, . . . , k, j � h, i ∈ Ej such that

(�h1 − �j1) + ti(�h2 − �j2) >0

then the MLE �̂n exists and is unique. Moreover, the log-likelihood has limit −∞ at infinity and is strictly concave.

Proof. The log-likelihood �n(�) in (8) can be written as

�n(�) = −
∑
j� k

∑
i∈Ej

log

⎧⎨⎩∑
l� k

exp[(�l1 − �j1) + ti(�l2 − �j2)]

⎫⎬⎭ .

Then, existence and uniqueness of the MLE is implied by the overlap of observed failure times, see Albert and Anderson (1984).
The condition of overlap has a simple geometric interpretation when k = 2, that is the two sets of observations {ti, i ∈ E1} and
{ti, i ∈ E2} cannot be separated by any value on the time axis. �

We now proceed with the proof of (10). Consider the following Taylor expansion of log pk(t,�) around �tr:

log pk(t,�tr) − log pk(t,�tr + x) = e(t,�tr)
tx + 1

2 x
tV(t,�tr)x + 1

6v(x, t,�∗),

for �∗ such that |�∗ − �tr|� |x| and v(x, t,�) =∑
j� k pj(t,�){[zj(t) − e(t,�)]tx}3. A bound for v(x, t,�) can be found with techniques

similar to those used by Hjort and Pollard (1994, Lemma A2). In fact, it can be shown that |v(x, t,�)|�64(t2 + 1)3/2|x|3 regardless
of the value of �.

Next, Lemma 1 implies that, under Condition (C), for a sufficiently large sample size the sequence of functions Cn(x)= �n(�tr +
x/

√
n) − �n(�tr) is strictly concave in x with maximum in zero and can be written as

Cn(x) = Hn(�)tx − 1
2 x

t�n(�tr)x − 1
6 rn(x,�∗), (17)

where

Hn(t) = n−1/2
∑
j� k

∫ t

0
[zj(s) − e(s,�tr)] dNj(s), (18)

�n(�) = n−1
∫ �

0
V(t,�) dN·(t), (19)

rn(x,�∗) = n−3/2
∫ �

0
v(x, t,�∗) dN·(t), (20)

and �∗ such that |�∗ − �tr|� |x|. By the methods set forth in Section 1 of Hjort and Pollard (1994), convergence in (10) is implied
by: (i) rn(x,�∗)→p 0 for any �∗ such that |�∗ − �tr|� |x|, (ii) Hn(�) → dN(0,�) and (iii) �n(�tr)→p �.

As for (i), rn(x,�∗) is bounded by
∫ �
0 64(t2 + 1)3/2|x|3n−3/2 dN·(t), which is Op(n−1/2) by Condition (B) and an application of

Lenglart's inequality. As for the proof of (ii) and (iii), we make use of convergence theory for counting processes. The martingale
decomposition in (5) leads to

Hn(�) = n−1/2
∑
j� k

∫ �

0
[zj(t) − e(t,�tr)] dMj(t), (21)

�n(�tr) = n−1
∫ �

0
V(t,�tr)Y(t)�tr(t) dt + n−1

∑
j� k

∫ �

0
V(t,�tr) dMj(t), (22)

whereM·(t)=∑
j� k Mj(t). As for the convergence in distribution in (ii), note that {Hn(t), t ∈ [0, �]} is a martingale so we can apply

Rebolledo's central limit theorem. The Lindeberg-type condition

n−1
∑
j� k

∫ �

0
|zj(t) − e(t,�tr)|2 I{n−1/2|zj(t) − e(t,�tr)|��}Y(t)pj(t,�tr)�tr(t) dt→p 0

is satisfied because the indicator goes to zero for large n. It is easy to see that

〈Hn〉(�) = n−1
∑
j� k

∫ �

0
[zj(t) − e(t,�tr)]

⊗2Y(t)pj(t,�tr)�tr(t) dt→p �,
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which completes the proof of (ii). As for the convergence in probability in (iii), the first term in (22) converges to � by Condition
(A) and the boundedness of the integrand. The latter follows from Condition (B) and a bound on V(t,�tr) similar to the one used for
v(x, t,�). The second term in (22) is Op(n−1/2), which can be proved by combining Lenglart's inequality, the formula of stochastic
integration with respect to martingales and Condition (B). This proves (iii).

Finally, the asymptotic independence of Ân and �̂n is easily verified by writing
√
n(̂�n − �tr) = �−1Hn(�) + op(1) and

√
n[̂An(t) − Atr(t)] = √

n
∫ t

0
I{Y(s) >0}Y(s)−1 dM·(s) + op(1).

It can be shown that Hn(t) is component-wise orthogonal with respect to the first term on the right-hand side. The proof is then
complete.

7.2. Proof of (16) in Theorem 2

By reasoning as in Theorem 1.4.2 of Ghosh and Ramamoorthi (2003), the convergence in (16) is implied by∫
R2k−2

|gn(x) − (x)�(�tr)|dx→p 0, (23)

where gn(x)= exp{�n (̂�n + x/
√
n)− �n (̂�n)}�(̂�n + x/

√
n) and (x)= exp{−xt�x/2}. From this point on, we follow slightly different

techniques as we borrow from the results on the conditional log-likelihood �n(�) previously obtained.
Proof of (23) goes along with the decomposition∫

R2k−2
|gn(x) − (x)�(�tr)|dx�

∫
|x|�K

|gn(x) − (x)�(�tr)|dx+
∫
K<|x|<�√

n
gn(x) dx+

∫
|x|��

√
n
gn(x) dx +

∫
|x|>K

(x)�(�tr) dx.

Denote the four integrals in the right-hand side by I1, I2, I3 and I4, respectively. Since I4 can be set as small as needed ( is concave
with maximum at 0) it is sufficient to find, for given � >0, two positive constants K and � such that Pr{Ij > �} → 0 for j = 1, 2, 3.

For I1 we use the third-order Taylor expansion

�n (̂�n + x/
√
n) − �n (̂�n) = − 1

2 x
t�n (̂�n)x − 1

6 rn(x,�∗), (24)

for �∗ such that |�∗ − �̂n|� |x|/√n. The remainder rn(x,�∗) is defined as in (20) and �n (̂�n) is defined accordingly to (19). Next, for
n(x) = exp{−xt�n (̂�n)x/2},

I1��(�tr)
∫

|x|�K
|n(x) − (x)|dx +

∫
|x|�K

|gn(x) − n(x)�(�tr)|dx.

The continuity of V(t,�) with respect to � and an application of Lenglart's inequality implies that�(̂�n)→p�, so that the first term
goes to zero. As for the second term, we have

|gn(x) − n(x)�(�tr)|�n(x)�(�tr)

[
(1 + �1) sup

|x|�K
| exp{−rn(x,�∗)} − 1| + �1

]
,

where �1=sup|x|�K |�(̂�n+x/
√
n)/�(�tr)−1|. Note that �1→p0 because of �(̂�n+x/

√
n)→p�(�tr) uniformly on |x|�K and the posi-

tivity of�(�tr).Moreover, reasoning as in the proof of Theorem1, one finds that, for anyK >0 and |x|�K, sup|x|�K | exp{−rn(x,�∗)}−
1|→p0. Since

∫
|x|�K n(x) dx is bounded in probability, we conclude that, for any K >0, Pr{I1 > �} → 0.

Regarding I2, we use the following bound for the third order term of the Taylor expansion in (24):

|rn(x,�∗)|��xtx
∫ �

0

32
3

(t2 + 1)3/2n−1 dN·(t),

where the integral on the right-hand side is a quantity bounded in probability (see Conditions (A) and (B) and use Lenglart's
inequality). Hence, there exists M>0 large enough such that Pr{|rn(x,�∗)| >�Mxtx} → 0. Next define (i) Bn = �n (̂�n) − � and
bn = (2k − 2)2 max

i,j=1,. . .,2k−2
|Bnij| such that xtBnx�bnxtx; (ii) � as the smallest eigenvalue of �, such that xt�x��xtx. Hence,

we have − 1
2 x

t�n (̂�n)x� − 1
2 (� − bn)xtx. Since � >0 (� is positive definite) and bn→p 0, for some �1 sufficiently small there exists

� = �(�,M, �1) such that � + �M/3 − �1 >0 and Pr{� − bn − 2�M< �1} → 0. Fix now � >0 and use expansion in (24) to get

Pr{I2 > �}� Pr

{
sup

|x|��
√
n
|�(̂�n + x/

√
n)/�(�tr)| >�2

}
+ Pr{|rn(x,�∗)| >�Mxtx}

+ Pr{bn >� + �M/3 − �1} + Pr
{∫

K<|x|<�√
n
e−�1xtx/2 dx >

�
�2�(�tr)

}
,
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where �2 = sup|x|�2�|�(�tr + x)/�(�tr)|. The first term on the right-hand side goes to zero because |̂�n − �tr|�2� eventually. Since
we have already shown that the second and the third terms go to zero in probability, it is sufficient to choose K large enough such
that

∫
|x|>K e−�1xtx/2 dx��/�2�(�tr). Then, there exist K,� >0 such that Pr{I2 > �} → 0.

As for I3, consider that∫
|x|��

√
n
gn(x) dx�nk−1 sup

|�−�̂n|��
exp{�n(�) − �n (̂�n)}.

The set {� : |�− �̂n|��} is eventually contained in {� : |�−�tr|��/2}. Therefore, by the concavity of �n(�), it suffices to prove that

nk−1 sup
|�−�tr|=�/2

exp{�n(�) − �n (̂�n)}→p 0. (25)

Reasoning as in the proof of Theorem 1, it is possible to show that n−1[�n(�) − �n(�tr)]→pd(�) uniformly on compact set, where
d(�) is a strictly concave function with maximum at �tr equal to zero. Finally, consistency of �̂n leads to

nk−1 sup
|�−�tr|=�/2

exp{�n(�) − �n (̂�n)}�nk−1 sup
|�−�tr|=�/2

exp{n[op(1) + d(�)]}.

Hence, (25) holds because nk−1end(�) → 0. We conclude that, for any �,� >0, Pr{I3 > �} → 0, and the proof is complete.

8. Treatment for general pj

As we have already pointed out, Eq. (2) corresponds to cause-specific conditional probabilities in the case of Gompertz-type
CSHs, see Eq. (3). Other forms for pj are equally plausible, e.g. one could start from a different parametric family of hazard rates.
This suggests a natural way to generalize (2), a convenient form being

⎧⎪⎨⎪⎩
pj(t,�) = e�(t,�j)pk(t,�), j = 1, . . . , k − 1,

pk(t,�) = 1

/{ ∑
h� k

e�(t,�h)

}
.

(26)

For simplicitywe keep �j as the two-dimensional vector (�j1,�j2), even if this limitation is not strictly necessary. In order to ensure
identifiability, we set �k to satisfy the constraint �(t,�k) = 1. This entails � to be a (2k − 2)-dimensional parameter. The function
�(t,�j) is assumed to be twice differentiable in �j. For example, starting with Weibull-type CSH, one can set �(t,�j) = log[�j1t

�j2 ],
�k1 = 1 and �k2 = 0.

The arguments set forth in the previous sections can be adapted to (26) without serious efforts. First note that both the part
regarding the overall hazard and the conditions for the prior distributions on A and � remain the same. We need to replace
Conditions (B) and (C) of Section 2 in order to make Theorems 1 and 2 hold, see Section 6. To this aim, we introduce some
additional notation for the first and second derivatives of �(t,�j) with respect to �:

zj(t,�) = �
��

�(t,�j) and Zj(t,�) = �2

����t �(t,�j).

We also redefine e(t,�) =∑
j� k zj(t,�)pj(t,�) and V(t,�) as

V(t,�) :=
∑
j� k

pj(t,�)
�

��t [zj(t,�) − e(t,�)] =
∑
j� k

pj(t,�)[zj(t,�) − e(t,�)]⊗2.

The equality is due to the fact that the terms involving Zj(t,�) cancel out. Finally, the information matrix � is still defined as
�=∫ �

0 V(t,�tr)y(t)�tr(t) dt. As for Condition (B), it is replaced by the assumption that, for any � >0 and for any � such that |�−�0| <�,

(B1′)
∫ �
0 (maxj� k |zj(t,�)|)4�tr(t) dt <∞;

(B2′)
∫ �
0 (maxj� k |Zj(t,�)h,i|)4�tr(t) dt <∞ for any h, i = 1, . . . , 2k − 2;

(B3′) {�(3)n,hil(�)} = Op(n), h, i, l,=1, . . . , 2k − 2,
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where, in (B3′), �(3)n (�) denotes the array of the third derivatives of the log-likelihood of �, now given by �n(�)=
∑

j� k
∫ �
0 [�(t,�j)+

log pk(t,�)] dNj(t). Condition (C) is replaced by

(C′) �n(�) is strictly concave in all its domain.

The statement of Theorem 1 remains valid upon substitution of zj(t) with zj(t,�). As for the proof of the asymptotic normality
of �̂n, Condition (B1′) is sufficient for the convergence of Hn(�)→d N(0,�) whereas condition (B2′) guarantees that �n(�tr)→p �.
Condition (B3′) is needed for the remainder

rn(x,�) = 1√
n

2k−2∑
h,i,l=1

xhxixl
6

�
(3)
n,hil(�)/n

to be asymptotically negligible for � in a neighborhood of �tr. The asymptotic independence of Ân and �̂n follows from arguments
similar to those used in the proof of Theorem 1. We stress that, in general, one needs to check Condition (C′) case by case.

As for Theorem 2, asymptotic normality of the posterior distribution of � can be proved under Conditions (A), (B1′), (B2′),
(B3′) and (C′) with techniques similar to those used in Section 6.2. The steps which deserve attention are the following: (i)
the asymptotic negligibility of the remainder term rn(x,�) in a neighborhood of �̂n; (ii) the bound in probability of rn(x,�) in a√
n-neighborhood of �̂n; (iii) the consistency of the observed information matrix �(̂�n) and (iv) the pointwise convergence of

n−1[�n(�) − �n(�tr)] to a strictly concave function with maximum at �tr equal to zero. Condition (B3′) is involved in (i) and (ii),
whereas (iii) is dealt via Conditions (B1′) and (B2′) in conjunction with Lenglart's inequality. Finally, Condition (C′) is the key tool
for establishing (iv).

Remark 1. It is worth considering the subclass of models in (26) that arises when �(t,�j) has the following form:

�(t,�j) = exp{�j1 + �j2g(t)},

with g continuous. The same arguments used for model (2) apply if we replace the failure times T1, . . . , Tn with g(T1), . . . , g(Tn). In
fact, �(t,�j) has null derivatives of order greater than one and zj(t) has (1, g(t))

t in the j-th block and zeros elsewhere. Condition
(B) is replaced by assuming that

∫ �
0 [g(t)2 + 1]3�tr(t) dt <∞, whereas the strict concavity of �n(�) is assured by the overlap of the

transformed times g(T1), . . . , g(Tn). In particular, overlap of the original failure times is sufficient when g is a monotone function,
so that Condition (C) remains the same. Note that g(t) = log(t) corresponds to the Weibull case, implying that our results cover
this noteworthy case as well.

9. Concluding remarks

In the present paper we have investigated the BvM theorem for competing risks models under a semiparametric approach.
We have established the asymptotic normality of the posterior distribution of differentiable functionals of model parameters in
the theoretical framework of themultiplicative intensitymodel of Aalen. The semiparametric formulation induces a factorization
in the likelihood that simplifies the derivation of the large-sample distribution of (̂An, �̂n). Since we get independence in the
posterior distribution of A and �, the BvM theorem for any differentiable functionals follows from the BvM theorem for A and �
and an application of the functional delta method. We have shown how a convenient formulation of the semiparametric model
allows to exploit the good large-sample behavior of the beta process in order to derive BvM for functionals of interest without
severe efforts.

Model (1) is interesting since the cause-specific conditional probability pj is a primary result of estimation. Indeed, these
conditional probabilities are of direct statistical interest in many practical situations: a simultaneous plot of the pj's against time
might serve as a graphical device for describing the prevalence of risks, which is an important topic in competing risks models.
Futureworkwill focus on investigating the robustness of (2) and (26) tomodelmisspecification and on including covariate effects
in the cause-specific failure time distribution.

An alternative and fully nonparametric approach to the analysis of competing risks data might follow themethods set forth in
Huang and Louis (1998). The competing risks problem is a special case where survival times are associated with mark variables
which are not observed when the event is censored. Huang and Louis propose to estimate the joint distribution of survival times
and mark variables by using a cumulative mark-specific hazard function. A natural candidate for Bayesian estimation of this type
of models is represented by the family of spatial neutral to the right processes, recently introduced by James (2006). It will then
be of interest to develop Bayesian methods and study the asymptotic properties of the posterior distribution in this setting.
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