
30 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Comparing Metaheuristic Algorithms for the SONET Network Design Problems

Published version:

DOI:10.1007/s10732-005-6998-7

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/55619 since 2015-12-11T15:33:07Z

This is an author version of the contribution published on:

R. Aringhieri and M. Dell’Amico.

Comparing Metaheuristic Algorithms for the SONET Network Design
Problems.

Journal of Heuristics, 11(1):35-57, january 2005.

DOI: 10.1007/s10732-005-6998-7

The definitive version is available at:

http://link.springer.com/article/10.1007%2Fs10732-005-6998-7

http://link.springer.com/article/10.1007%2Fs10732-005-6998-7

Comparing Metaheuristic Algorithms for Sonet
Network Design Problems

Roberto Aringhieri
DTI, University of Milan

Via Bramante 65, 26013 Crema - Italy

Mauro Dell’Amico∗

DISMI, University of Modena and Reggio Emilia

Viale A. Allegri 13, 42100 Reggio Emilia - Italy

Second revision - November 12, 2004

Abstract

This paper considers two problems that arise in the design of opti-
cal telecommunication networks when a ring-based topology is adopted,
namely the SONET Ring Assignment Problem and the Intraring Syn-
chronous Optical Network Design Problem. We show that these two net-
work topology problems correspond to graph partitioning problems with
capacity constraints: the first is a vertex partitioning problem, while the
latter is an edge partitioning problem. We consider solution methods for
both problems, based on metaheuristic algorithms. We first describe vari-
able objective functions that depend on the transition from one solution to
a neighboring one, then we apply several diversification and intensification
techniques including Path Relinking, eXploring Tabu Search and Scatter
Search. Finally we propose a diversification method based on the use of
multiple neighborhoods. A set of extensive computational results is used to
compare the behaviour of the proposed methods and objective functions.
Keywords: Metaheuristics, SONET ring, Optical Networks, Graph Par-
titioning

1 Introduction

In the last ten years the widespread adoption of internet technology and its
integration into the international communications infrastructure has drastically

∗corresponding author, email: dellamico@unimore.it

1

changed the communications landscape. In these years the number of users of
internet-based applications has exponentially increased and new sophisticated
applications have been introduced. As a consequence the request for transmission
capacity, or bandwidth, has greatly increased.

Fiber optics are the current technological solution allowing for the fast trans-
mission of large quantities of data through telecommunication networks. Several
communications can be transmitted at the same time on the same fiber through
multiplexing techniques (namely the Wavelength Division Multiplexing). The
current standard for optical networks is denoted as SONET (Synchronous Opti-
cal NETwork) and it is concerned with a ring-based topology. More specifically,
each customer is connected to one or more rings and the entire network is made
up of a collection of such rings. The choice of assigning a customer to a single
ring or to multiple rings, and the way the rings are connected, determine different
designing issues.

Each customer uses an add-drop-multiplexer (ADM) to send/receive trans-
missions to/from a ring. The ADMs are associated with the nodes of the rings.
Each node has exactly two links connecting it to its two neighboring nodes on
the ring. The links have duplicated fibers to allow a bidirectional transmission.
When a failure occurs on a link (i, j) the ring topology is used to recover this
failure by transmitting the traffic originally sent on the link on the surviving part
of the ring. Hence, the capacity of any link of a bidirectional ring, say B, has to
accommodate the bandwidth request for the transmission toward all other nodes.

In this paper we consider two basic designing techniques determining different
network topologies, and we propose optimization algorithms for each of them.

local
ring

ADM

local
ring

local
ring

Customers

federal
ring

DXC

Figure 1: A SONET network with DXC

In the first topology the customers set is partitioned into subsets, each of
which is associated with a local ring. The local rings are connected to a wider ring
called federal ring used to transit the inter-ring traffic. Each node of the federal

2

ring is assigned a digital cross connector (DXC), i.e., a special device allowing
two different rings to exchange transmissions. Since a DXC is the most costly
network component, a topology with the smallest number of rings is preferred. An
example of such a topology is depicted in Figure 1. The optimization problem
associated with this topology consists of minimizing the number of rings (i.e.,
the total number of DXCs) in such a way that: i) each customer is connected
to exactly one ring; and ii) the maximum capacity of each ring is bound by
the common value B. This problem is usually called SONET Ring Assignment
Problem (srap) with capacity constraint.

ring
3

ADM

ring
1

ring 2

1
2

3

4

56

7

8

9

10

11

Customers

Figure 2: A SONET network without DXC

When the network has to connect customers located in a restricted area, a
second topology is possible. Each ring is designed in such a way that it transports
only the traffic among its own customers. To satisfy this requirement it may be
necessary that a single customer is connected to more than one ring. In Figure
2 we suppose that customers 8 and 9 have to communicate with customers 1, 2,
and 10; hence, they have to be connected both to ring 1 and ring 3. Customer 3
has to be connected to ring 1 and ring 2, whereas customer 7 has to be connected
to all three rings. This topology generally uses more ADMs than the first one,
but no DXC at all is required. Hence, the total cost of the second network could
be lower than that of the first one.

The optimization problem associated with the second topology consists of
minimizing the total number of ADMs in such a way that: i) each pair of cus-
tomers needing to communicate with each other has to be connected to the same
ring; ii) the maximum capacity of each ring is bounded by the common value B.
This problem is called Intraring Synchronous Optical Network Design Problem
(idp).

The above problems are known to beNP-hard (see [8,9] for details and proofs).
The aim of this paper is to provide and compare several algorithms for solving

3

srap and idp. These algorithms are based on Tabu Search and Scatter Search
methodologies (see e.g. [4, 6, 12] for a general introduction to these topics) and
exploit different intensification and diversification techniques. Moreover, we will
introduce a variable objective function driving the search from unfeasible to feasi-
ble solutions, and a diversification technique based on the strategic use of multi-
ple neighborhoods. This work extends the seminal ideas introduced by Aringhieri,
Dell’Amico and Grasselli [1] for the solution of srap, and applies them to idp.

The paper is organized as follows: In Section 2 we introduce graph theory
models for the two problems, while previous works on srap and idp are briefly
resumed in Section 3. The basic ingredients for developing Local Search al-
gorithms are introduced in Section 4, different intensification and diversification
strategies are then described in Section 5, and Section 6 reports extensive compu-
tational results comparing the various approaches on benchmark instances, both
from the literature and new ones proposed in this study. Section 7 concludes the
work.

2 Models

In this section a model based on graph theory is proposed for each problem.

Consider a set of n customers and a symmetric traffic matrix [duv] (u, v =
1, . . . , n, u 6= v) where each entry gives the amount of traffic between customer
u and v. We consider an undirected graph G = (V,E) where the node set V
contains one node for each customer and the edge set E has an edge [u, v] for
each pair of customers u, v such that duv > 0 (remind that duv = dvu, due to the

symmetry of the traffic matrix). Given a subset of edges Ẽ ⊂ E, let V (Ẽ) ⊆ V

be the set of terminal nodes of the edges in Ẽ.

Problems srap and idp correspond to two different partitioning of the above
graph, subject to capacity constraints. In particular, srap involves a node par-
titioning, whereas idp, an edge partitioning (the state of the art algorithms for
such partitioning problems are those presented in [8, 9]).

srap partitioning problem

Given a partition of V into k subsets V1, V2, . . . Vk, the corresponding srap net-
work is obtained by defining k local rings and a federal ring, as follows. All the
customers of subset Vi are associated to the i-th local ring by means of |vi| ADMs,
while the federal ring uses a DXC to connect each local ring. So the resulting
network uses n ADMs and k DXCs.

Solving srap corresponds to finding the partition V1, . . . Vk minimizing k, and

4

such that
∑

u∈Vi

∑

v∈V
v 6=u

duv ≤ B, i = 1, . . . , k (1)

k−1∑

i=1

k∑

j=i+1

∑

u∈Vi

∑

v∈Vj

duv ≤ B (2)

Constraints (1) impose that the total traffic on each ring i, that is, the sum of
the traffic internal to i plus the traffic from i to the other rings, does not exceed
the bound B. Constraint (2) impose that the total traffic on the federal ring is
not larger than the bound B.

idp partitioning problem

Given a partition of E into k subsets E1, E2, . . . Ek, the corresponding idp net-
work can be obtained by defining k rings and connecting each customer of
V (Ei) to the i-th ring by means of an ADM. The resulting network uses ϕ =∑k

i=1 |V (Ei)| ADM and no DXC.
Solving idp corresponds to finding the partition E1, . . . Ek minimizing ϕ and

such that
∑

[u,v]∈Ei

duv ≤ B, i = 1, . . . , k (3)

Constraints (3) assure that the traffic inside each ring does not exceed the bound
B.

We now introduce some notation necessary to simplify the presentation. Given
a subset of edges Ẽ ⊆ E, we denote with d(Ẽ) the sum of the weights of the edges

of Ẽ (i.e. d(Ẽ) =
∑

[u,v]∈Ẽ duv). Given two disjoint subsets of nodes V1 ⊂ V ,

V2 ⊂ V (V1 ∩ V2 = ∅), let δ(V1, V2) = {[u, v] ∈ E : u ∈ V1, v ∈ V2} denote the set
of edges in the cut separating V1 from V2. If V1 = {u} and V2 = V \ {u}, we use
δ(u) instead of δ({u}, V \ {u}). We will use the operator argmax{f(S)} (resp.
argmin{f(S)}) to return the argument of the element of set S determining the
maximum (minimum) value of function f . We assume that argmax{∅} returns
a null value. Finally, we will call feasible a ring that satisfies constraints (1) or
(3), for srap or idp, respectively.

3 Results from the Literature

Problem srap has been recently investigated by Goldschmidt, Laugier and Olin-
ick [9]. It has been shown that the problem is NP-hard and three greedy ap-
proaches, namely the edge-based, the cut-based and the node-based heuristics

5

have been proposed. The first two algorithms start their computation by assign-
ing each node to a different ring and iteratively reduce the value of k by merging
two rings, provided that the resulting ring is feasible. In the edge-based approach,
the two rings connected by the maximum weight edge are first merged, while the
rings corresponding to the pair Vi, Vj maximising the weight of the cut (Vi, Vj)
are first chosen in the cut-based approach. Note that both methods may have
different behavior if different tie break rules are used.

The third algorithm receives as input a tentative value k and it randomly
assigns a node to each of the k rings. The approach disregards the capacity
constraint and iteratively assigns the remaining n− k nodes as follows. First the
ring Vi with current largest unused capacity is selected, then the unassigned node
u maximising the weight of the cut δ({u}, Vi) is assigned to Vi. The algorithm
is run ten times decreasing the value of k by one when a feasible solution is
obtained.

The authors have tested the three greedy algorithms on a set of 160 benchmark
instances with n ranging from 15 to 50 and density of the graph ranging from 5%
to 72%. They first run the edge-based and cut-based heuristics, then the smallest
k value obtained is used as input for the node-based heuristic. This procedure is
repeated ten times by randomly breaking ties for the first two algorithms. When
the best solution is feasible and k is larger than the simple lower bound

klb =

⌈
n−1∑

u=1

n∑

v=u+1

duv/B

⌉
(4)

an attempt to prove its optimality by means of CPLEX c© is made.
Aringhieri, Dell’Amico and Grasselli [1] attach srap with metaheuristic algo-

rithms mainly based on Tabu Search. The authors introduce an objective func-
tion that depends on the current search status, and use a strategic oscillation
obtained through the swap of two neighborhoods. Comparisons among different
diversification strategies applied to the benchmark instances proposed in [9] are
presented: all the resulting algorithms perform better than those proposed in [9]
when the same computing time is given to all algorithms.

Goldschmidt, Hochbaum, Levin and Olinick [8] consider the special case of idp
in which all edges are given the same weight. They show that this problem, hence
the more general idp, are NP-hard. Two linear-time approximation algorithms
with fixed performance guarantee are also presented.

Lee, Sherali, Han and Kim [14] study idp with the additional constraint that
the number of ADMs in each ring must not exceed a given bound, say R. They
formulate the problem as a mixed-integer programming model, develop a branch-
and-cut algorithm, and introduce an effective heuristic procedure, called LSHK in
the sequel. The authors present computational experiments on 20 test instances
with n ranging from 15 to 25 and density from 12% to 29%. The running times of
the exact approach are high: 1504 seconds of a Pentium processor at 200 MHz, on

6

average. The heuristic LSHK defines an initial solution by constructing one ring
at a time, as follows: The subset of edges corresponding to the current ring r is
initialized by choosing a node u with maximum degree, with respect to the edges
not yet considered, and then adding to r the edge [u, v] such that v has maximum
degree. The subset Er is iteratively increased by appropriately selecting a node
w such that all edges in δ(w, V (Er)) can be feasibly assigned to it. This solution
is then improved through local search by moving one edge at a time from one
ring to another.

Laguna [11] considers a problem that mixes the two designing techniques.
Similar to problem idp, each customer may be connected to one or more rings,
but it is not required that two customers u, v with duv > 0 are connected to the
same ring. The network may therefore need to transmit some inter-ring traffic.
Unlike srap, the technology used to connect the rings is not specified, so an ap-
proximation of the corresponding cost, proportional to the traffic amount, is used.
The resulting objective function includes both the ADMs cost and the estimated
cost of the inter-ring traffic. Laguna introduces a mixed-integer model for the
problem and describes a simple short-term memory Tabu Search to select integer
variables configurations. The objective function corresponding to a selection is
evaluated through the simplex algorithm.

4 Basic Local Search Elements

In this section we introduce the main ingredients necessary to implement Local
Search algorithms for srap and idp. In particular we will describe: (a) simple
procedures to compute a starting solution; (b) neighborhoods; (c) data structures
needed to efficiently implement the search of the neighborhood; and, (d) a simple
tabu list.

4.1 Starting solution

A solution of srap can be computed with the three greedy methods introduced
in Goldschmidt, Laugier and Olinick [9] (see Section 3). Another possibility is
to start the Local Search from the very simple solution obtained by assigning
each node to a different ring. Note that this solution is certainly unfeasible, since
all the traffic is routed through the federal ring. However, the Local Search can
easily reconduct the solution to a feasible one, as shown in our computational
experiments (see Section 6).

Consider now problem idp. An immediate method from the literature for
finding a feasible solution is Algorithm LSHK given in [14] applied with R = n.
The approximation procedures presented in Goldschmidt, Hochbaum, Levin and
Olinick [8], instead, have been designed for the unweighted case and cannot be
adapted to our problem.

7

We now introduce four new heuristic procedures for solving idp, that, in
some cases, have better performances than the methods we described in the
previous section. The new algorithms are particularly useful when used together
with the other methods from the literature to find a good starting solution for
a local search method. The first two methods are derived from the Best-Fit
Decreasing (BFD) and Next-Fit (NF) procedures for the Bin Packing Problem
(see e.g. Martello and Toth [15]). Our implementation of BFD considers one edge
at a time, ordered by non-increasing weights, and assigns it to the ring having
the smallest residual capacity so that the feasibility of the ring is preserved. If
no assignment is possible a new ring is initialized containing the current edge
only. Our NF procedure considers the edges sorted by non-decreasing weight and
assigns the current edge to the current ring if possible, otherwise the ring is no
longer considered and a new ring is initialized with the current edge.

The third method is based on the idea that good solutions should have very
dense rings to save ADMs. A ring might even be a clique of graph G. Our

Algorithm 1 Clique-BF
U := E; r := 0;
while (U 6= ∅) do

heuristically find a clique C ⊂ U such that d(C) ≤ B;
let j := argmin{B − d(Ei)− d(C) : i = 1, . . . , r, B − d(Ei)− d(C) ≥ 0};
if (j = null) then r := r + 1; j := r end if;
Ej := Ej ∪ C; U := U \ C

end while

procedure Clique-BF (see Algorithm 1) uses a constructive greedy heuristic to
iteratively select a clique of unassigned edges with total traffic not larger than
B. All the demands of the clique are assigned to a single ring that minimizes the
residual capacity while preserving the feasiblity, if possible, otherwise to a new
ring. Note that in any non trivial instance max{duv} < B, hence at any iteration
it is always possible to identify a clique that can be feasibly assigned to the same
ring. This clique might even contain a single edge. Our last heuristic procedure,
called Cycle-BF, is similar to Clique-BF, but it relaxes the requirement of finding
a complete clique. More specifically, at each iteration instead of looking for a
complete subgraph we look for a (small) cycle with as many cords as possible. To
do this we use a modified Dijkstra’s shortest path algorithm. When a new node u
enters the shortest path tree, the algorithm looks for a possible edges [u, v] with
v being an already labeled node. If such an edge exists we consider the cycle
made by [u, v] and by the two paths from the root to u and to v, respectively.
If the traffic on the cycle is smaller than or equal to B we add the cycle to the
appropriate ring and we also add to the ring all the possible cords, in a greedy
fashion. If the traffic on the cycle is larger than B we continue the search with
the remaining edges of δ(u) and finally we continue to grow the tree. Note that
unlike Clique-BF, there is not guarantee that Cycle-BF will find a cycle that can

8

be entirely assigned to a ring. Hence this method could terminate with a partial
solution that we will complete in a greedy way by adding one edge at a time as
in BFD.

4.2 Neighborhoods

Given a solution of a generic partitioning problem, two basic neighborhoods can
be obtained by implementing either of the following rules: (a) move an object
from a subset to another, or (b) swap two objects assigned to two different subsets.

Following the above rule (a), Aringhieri, Dell’Amico and Grasselli [1] pro-
posed, for problem srap, a neighborhood consisting of moving a node from one
ring to another (including a new one), under the requirement that the receiving
ring is assigned a total traffic not greater than B. In this paper we propose
an extension of this neighborhood obtained by allowing to construct unfeasible
solutions. The same kind of neighborhood can be used for idp: a neighboring
solution is obtained by moving an edge from a ring to another, disregarding the
feasibility or unfeasibility of the resulting solution. We will refer to this neighbor-
hood, both for srap and idp, as neighborhood N1. If we denote with r (< |V |)
an upper bound on the maximum number of rings in an optimal solution, then
the complete exploration of N1 requires O(r|V |) time.

The general neighborhood, say Nb, determined by a complete application of
rule (b) requires considering all the possible pairs of objects to be swapped, hence
O(|V |2) time is necessary to explore it. Here we propose a second neighborhood,
called N2, that is the union of N1 with a restricted version of the above general
neighborhood. As for N1 we start by moving an object (node or edge, depending
on the problem) from a subset, S1, to another subset, S2. If the resulting solution
is feasible we are done; otherwise, we try to move an object previously assigned
to S2 back to subset S1. The resulting solution is considered a possible candidate
even if it turns out to be unfeasible. The worst case time complexity of N2 is
the same of Nb, but, on average, exploring N2 is computationally convenient.
Therefore we adopted N2 for our experiments.

4.3 Data structures

To speed up the search of the best solution in the two neighborhoods we need to
use some appropriate data structures.

The edge set E is stored as a forward star and an array WeightStar is
used to store the total weight of the edges emanating from each node u (i.e.,
WeightStar(u) = d(δ(u)) for all u ∈ V).

Let again r be an upper bound on the maximum number of rings in an optimal
solution. For both problems we use an array RingLoad(r), for r = 1, . . . , r to
store the total traffic on the ring. For srap, RingLoad(r) =

∑
u∈Vr

∑
v 6=u duv,

whereas for idp, RingLoad(r) = d(Er). For each pair u, r, with u ∈ V and

9

r = {1, . . . , r} we store the total weight of the edges in Er ∩ δ(u), and the
cardinality of set Er ∩ δ(u) in matrices WeightRing and CardRing. Table 4.3
summarizes the above definitions.

All these data structures expect CardRing are used to check efficiently the
feasibility (or unfeasibility) of a solution during the exploration of the neigh-
borhood. Matrix CardRing is used to evaluate the objective function. More
specifically, if CardRing(u, r) = 0, then no edge emanating from u has been
assigned to ring r, hence no ADM for customer u has to be installed on ring r.
On the contrary, if CardRing(u, r) > 0, then customer u requires a single ADM

on ring r, independently of the total number of edges in Êur. Hence the total
number of ADMs on a ring r is |{CardRing(u, r) > 0 : u ∈ Vr}|.

Table 1: Data structures for srap and idp

Name srap idp
WeightStar(u) d(δ(u)) –
RingLoad(r)

∑
u∈Vr

∑
v 6=u duv d(Er).

WeightRing(u, r) d(Er ∩ δ(u)) –
CardRing(u, r) – |Er ∩ δ(u)|

The updating of the above structure is done as follows:
srap

When a node u is moved from ring r to ring s, we have to subtract from
RingLoad(r) the total traffic going from u to all rings different from r, so we have
to compute RingLoad(r) = RingLoad(r)−(WeightStar(u)−WeightRing(u, r)).
Similarly, we have to update the traffic on each ring s 6= r computing RingLoad(s) =
RingLoad(s) + (WeightStar(u) −WeightRing(u, s)) (for more details see [1]).
Finally, WeightRing(i, r) and WeightRing(i, s) for i ∈ V \{u} have to be up-
dated by scanning the forward star of node u.

idp
Moving an edge [u, v] from ring r to ring s imposes the following calcula-

tions: RingLoad(r) = RingLoad(r) − d[u, v], RingLoad(s) = RingLoad(s) +
d[u, v], CardRing(ℓ, r) = CardRing(ℓ, r)− 1 for ℓ = u, v and CardRing(ℓ, s) =
CardRing(ℓ, s) + 1 for ℓ = u, v. Array WeightRing is updated as in srap.

4.4 Tabu lists

Short-term memory has been implemented by using two kinds of taboos. The
first one prevents a recently moved “object” (node or edge) to be moved again.
The second one is less restrictive: it prevents the return of an object into the ring
from which it was removed, but it allows the object to be inserted into another

10

ring. The moves blocked by the second taboo are a subset of the moves blocked
by the first one, hence the contemporary existence of the two taboos makes sense
only if the length of the list implementing the first one is strictly shorter than
the length of the list used for the second one.

The length of the two lists is dynamically adapted to the evolution of the
search by using the method proposed in [3]. When the trajectory in the solution
space enters a promising region the list lengths ℓi, i = 1, 2, are decreased to
intensify the search. On the contrary, when we encounter an unpromising region,
we increase the list lengths to speed up the leaving of this region. More precisely,
we define a starting tabu-tenure value starti (i = 1, 2), then when we detect an
improving phase (see below), we set:

ℓi = max(ℓi − 1,
1

2
starti), i = 1, 2,

whilst when we detect a worsening phase, we set

ℓi = min(ℓi + 1,
3

2
starti), i = 1, 2.

We define as improving phase a sequence (s1, s2, . . . , s∆ip) of ∆ip consecutive iter-
ations lowering the objective function value (i.e., z(s1) > z(s2) > · · · > z(s∆ip)),
whereas we call worsening phase a sequence of ∆wp consecutive iterations in
which the objective function value is not improved (i.e., z(s1) ≤ z(s2) ≤ · · · ≤
z(s∆ip)). Table 2 summarizes the values of the above parameters which we used
in our experiments.

Table 2: Parameters used for the adapting tabu list strategy

srap idp
param. list 1 list 2 list 1 list 2

starti 5 10 20 30
∆ip 5 5 5 5
∆wp 3 3 3 3

4.5 Objective functions

It is known that a good evaluation function of a metaheuristic algorithm should
capture, besides the value of the solution at hand, its “propensity” to lead to
high quality solutions. In particular for srap and idp, the simple value of the
objective function gives very poor information. Consider e.g. srap: there are
hundreds of solutions, feasible or not, that have the same number of rings but
very different loads of these rings.

11

Let z0 be a basic objective function counting the number of rings of a solution
for srap, and the total number of ADMs for idp. Moreover, let BN denote the
highest (bottleneck) load of a ring. We first defined and then tested the following
objective functions:

z1 = z0 +max{0, BN − B},

z2 = z1 +

{
α · Ringload(r) if the last move has created a new ring r,

0 otherwise

z3 = z0 ·B +BN

with α ≥ 1.
Before discussing the rational of the above functions it is worth recalling that

the number of rings in a solution of srap, or the number of ADMs in a solution
of idp, is much smaller than the load of a ring, hence z0 ≪ min(B,BN).

Function z1 minimizes the basic function z0 while penalizing the unfeasible
solutions (having BN > B). The idea embedded into z2 is to add a specific
penalty for moves that increase the number of rings. This penalty has been
chosen as α times the weight of the new ring created by moving a single node
or edge for srap or idp, respectively. Function z3 has been designed so that
solutions with small z0 are encouraged, while among solutions with the same
value of z0 the ones minimizing the bottleneck are preferred and the search is
driven from unfeasible solutions toward feasible ones. For srap, we set α to the
average number of nodes per ring , i.e., α = |V |B/d(E), whilst for idp, we set
α = 1.

The last objective function z4 we are going to introduce is an adapting tech-
nique that modifies the evaluation according to the status of the search. More
specifically, z4 is a variable objective function having different expressions for dif-
ferent transitions from the current status to the next status.

z4 =

z4a = z0B +BN(= z3) (a): from feasible to feasible

z4b = (z0 + 1)BN (b): from feasible to unfeasible

z4c = z0B (c): from unfeasible to feasible

z4d = βz0BN (d): from unfeasible to unfeasible

with β ≥ 2. This function has been designed to encourage transitions from
unfeasible to feasible solutions and, within the set of feasible solutions, to choose
those with smallest load.

In particular, note that an unfeasible solution has BN > B, hence z4b =
(z0 + 1)BN > (z0 + 1)B ≥ z4a. Moreover, z4a > z4c and βz0 ≥ z0 + 1, so the
following ordering holds:

z4d ≥ z4b > z4a > z4c. (5)

Parameter β has been set to |V |B/d(E) for srap and to 2 for idp.

12

5 Intensification and Diversification Strategies

The elements introduced in the previous section have been used to implement a
Basic Tabu Search, which we call BTS. In the next sections we consider general
frameworks aimed at improving the performance of a local search algorithm. In
particular, we address the following intensification/diversification methods: Path
Relinking, eXploring Tabu Search and Scatter Search. Then we propose a new
multi-neighborhood diversification technique.

5.1 Path Relinking

The first enhancing technique we tested is an implementation of the Path Re-
linking (PR) method [4, 7].

The basic idea in PR can be summarized as follows: select a set of moves,
determine the paths in the solution space joining pairs of them, and finally,
consider the solutions on these paths to continue the search.

In our tests we have considered two implementations of PR, embedding the
basic tabu search BTS. For both implementations the relinking is performed
when BTS has evaluated γ non improving solutions.

In the first approach, say PR1, we generate only the minimum length path
linking the current solution to the best one (called starting and guiding solution,
respectively, using the Path Relinking terminology). More specifically we deter-
mine the minimum set of moves, say MV , necessary to transform the current
solution into the best solution. We construct the new starting solution for TS by
applying |MV |/2 moves: each one is selected as the move that locally minimize
the objective function.

The second implementation, say PR2, we maintain a set ES of elite solution
and generate the minimum length paths that transform the current solution into
the elite ones (see [13]). Using the same technique as in PR1 (i.e., applying one
half of the moves of each path) we generate |ES| new possible starting points and
we select the best one. Set ES consists of the best ∆ES solutions encountered in
the search, where ∆ES is the second parameter of this method, besides γ.

5.2 eXploring Tabu Search

The basic idea of the eXploring Tabu Search method (XTS) introduced in [3]
is to use systematic jumps in the solution space based on long term memory
information.

More specifically, XTS maintains a list (called Second list), that stores some
of the second best solution of the explored neighborhoods. We say that a solution
is second best for a neighborhood if it has the second smallest value and it is not
selected to continue the search. Within each of these solutions it also stores all
the parameters and other elements (e.g., tabu lists) that determine the status of

13

the search at the moment in which the solution was evaluated. The Second list
is ordered by non-decreasing solution values and when the search seems to be not
profitable the current solution is abandoned and the first solution in the list, say
s2, is adopted within its associated parameters and elements. In this way the
search jumps backward to the point in which s2 was evaluated (but not chosen)
and continues with s2 instead of the best solution of that neighborhood. The use
of the second best solution of a neighborhood is well suited for problems with an
objective function with many flat regions, as srap and idp have. In these cases
the value of the objective function provides no information on the direction in
which the search should continue to reach the global optimum. A first attempt
to solve this problem was to introduce more sophisticated objective functions, as
done in Section 4.5. The use of jumps to equivalent or near-equivalent solutions
(the second-best solutions), proposed in the XTS framework, is another method
to overcome this difficulty.

A second idea from XTS is to adopt a strategic use of a complete restart of
the search. In this case one should provide a procedure that generates starting
solutions uniformly distributed in the solution space. Unfortunately, this task
is often as difficult as the original problem, hence a simple random restarting is
adopted. (For more details on the implementation of XTS the interested reader
is addressed to [2, 3]).

In [2] three methods are suggested to detect if XTS must jump to a solution
from the second list:

1. the tabu status prevents all the solutions in the current neighborhood from
being used;

2. the current objective function value has not been improved in the last imp
iterations;

3. the global best solution has not been improved from a given number of
iterations.

Three other methods are proposed to decide if recourse to a restart is necessary:

4. one of conditions 1-3 above indicates that it is necessary to jump to a
solution from the Second list, but the list is empty;

5. after a prefixed number of iterations, counted from the last global restart,
the value of the best solution found in these iterations is not close “enough”
to the value of the global best solution;

6. a jump to a Second best solution occurred for #Second times after the last
restart, without improving the best solution.

In order to simplify the parameters’ tuning in this work we reduced the criteria
used to control the strategy by adopting only conditions 1, 2, 4, and 6 above, all
of which need only the two parameters imp and #Second.

14

5.3 Scatter Search

In the Scatter Search (SS) methodology (see, e.g., [4] [5] [7] for a detailed treat-
ment) a small population of solutions, called Reference Set, evolves through com-
bination of its solutions. The combination must pursue two opposite objectives:
intensify the search in proximity of good solutions, and diversify the search to
explore a wide area. To do this the reference set is partitioned into two sets: the
subset of the high quality solutions (HQ) and the subset of the diverse solutions
(DV). We compute the diversity of two solutions as the number of nodes (resp.
edges) for srap (resp. idp) that are assigned to different rings in the two solu-
tions. Hence, the diversity function has integer values in [0, |V |] for srap, and in
[0, |E|] for idp.

Our implementation traces the general scheme proposed in [12]; here, we re-
port only the specific adaptation necessary for srap and idp.

Diversification Generation Method

The solutions included in the first Reference Set should be drawn from all the
regions of the solution space, so that they represent a significative sampling of
this space. We have decided to build a random set in which the relevant differ-
entiating element is the number of rings. We adopted the following strategies:
srap
Recall that we denote with klb the continuous lower bound value given in (4). We
generate a first set of q random solutions, where q was fixed to 4klb − 1 through
preliminary computational experiments. Each solution sh (h = 1, . . . , q) has ex-
actly h + 1 rings and is obtained by randomly assigning each node to one of the
rings. A second set of additional q solutions is then generated by perturbating
each of the first q solutions through a movement of each node to a ring chosen
with a uniformly random distribution. In practice each node has probability 1/h
to be moved to the h-th ring, including its current ring. Each of the starting so-
lutions is then optimized through a run of BTS with a limit of LSiter iterations.
The best RS solutions generated are selected to initialize the Reference Set.
idp
A set of 8klb − 1 starting solutions are generated as in srap, but assigning the
edges instead of the nodes (Again the number of solutions to be generated was
experimentally determined).

Solution Combination Method.

The solutions in the Reference Set are combined through an adaptation of the
classical scoring function for SS (see e.g. [7, 12] for details). Roughly speaking,
the idea is to consider a set S of solutions and the value of a variable, and to give
this value a score proportional to the times it appears in these solutions, weighted
with the objective function value. In detail, let z(s) denote the objective function
value of solution s and let xs

ir be a boolean variable associated with solution s

15

assuming value 1 iff node i (resp. edge i) for srap (resp. idp) is assigned to ring
r. The score for pair (i, r) is then

score(i, r) =

∑
s∈S z(s)x

s
ir∑

s∈S z(s)
(6)

We construct a new solution assigning each node i (resp. edge i) to the ring r∗

such that score(i, r∗) = maxr{score(i, r)}. To generate more solutions we adopt
a scheme similar to that described in [12]. At each phase of the algorithm we
select subsets S of the Reference Set with |S| = 2, . . . , 5. First we consider all
the 2-element subsets, then we iteratively add to each of these subsets the best
not included solution until we have 5-element subsets. Each subset is used to
generate a new solution.

Improvement Method.
The quality of any solution was improved by applying procedure BTS with

a limit of LSiter iterations. This limit was defined through some preliminary
computational experiment.

Not all the objective functions described in Section 4.5 can be used with the
Scatter Search approach. In particular we cannot use the functions based on the
concept of ‘move’. So we will use function z1 and the following version of z4

which includes z3 as a special case:

z4(s) =

{
z4a(s) = z0B +BN if the solution is feasible

z4d(s) = βz0BN otherwhise

Each new solution s̃ is inserted in the high quality set HQ if its objective
function value is better than that of the worst solution in HQ. On the other
hand, the new solution is inserted in Diverse (DV) set if its distance from the
‘closest’ solution in HQ is larger than the minimum distance between a solution
in DV and one in HQ. Formally, s̃ enter DV when

min
s∈HQ

D(s̃, s) > min
s′∈DV,s∈HQ

D(s′, s) (7)

5.4 Diversification by Multiple Neighborhoods

We propose a Diversification by Multiple Neighborhhods (DMN), using more
than one neighborhood to obtain a diversification in the search. More specifi-
cally, we mainly use neighborhood N2, but sometimes we adopt a second neigh-
borhood N3 (to be described later) for a few moves. The idea has some similarity
with the variable neighborhood search (V NS) method (see [10]), but in fact it
is very different from it in two fundamental aspects. First of all, V NS adopts
a new neighborhood when the current solution is a local optimum for the cur-
rent neighborhood, whereas DMN switches to the second neighborhood when

16

some indicator says that the search needs to be diversified. Moreover, each of
the neighborhoods used in V NS could be used alone in a local search method.
Instead, the fundamental characteristic of neighborhood N3 of DMN must be
to construct solutions very different from the current one, even infeasible ones.
Thus, N3 used alone in a local search method does not provide good, or even
feasible solutions.

N3 empties a ring by moving its elements (nodes or edges, for srap or idp,
respectively) to the other rings while disregarding the capacity constraint and
locally minimizing the objective function.

The indicator we used to devise the necessity of a switch from N2 to N3 is
a series of at least ∆DMN consecutive not improving iterations. Moreover, the
neighborhoods switch is performed only if the solution at hand is feasible.

Neighborhood N2 is immediately re-adopted after one transition with N3.
During the switch from N2 to N3 and again back to N2 we continue to keep and
update the tabu lists without performing any reset or re-initialization of these
lists.

We conclude by noting that DMN could be seen as a very specific implemen-
tation of a strategic oscillation (see, e.g., [6]) in which the critical level depends on
the evolution of the search and not on the quality of the solution, and the paths
in the region below and over the critical level are obtained with neighborhoods
N2 and N3, respectively.

6 Computational Results

The solution methods described in Section 5 have been coded into ANSI C and
tested on a Pentium III/1Ghz with 256 Megabytes of core memory running under
the Linux operating system. We have considered instances from the literature and
newly generated ones. For each instance we have solved both the corresponding
srap and idp problem.

6.1 Benchmark Instances

To test the algorithms we have used three sets of instances that we call GLO, AD
and LSHK. Set GLO has been introduced in [9] and consists of 160 instances
divided into two subsets of 80 instances:

• geometric instances representing natural cluster, that is, the fact that cus-
tomers mainly communicate more with their neighbors;

• random instances in which no preferred communication exists.

The traffic demand between two customers is drawn from a uniform random
variable and gives the number of T1 lines required to serve the estimated traffic

17

(a T1 line has a capacity of 1.544 Mbs). Both the geometric and the random
subsets have 40 low demand instances with traffic uniformly random in [3, 7] and
40 high demand instances with traffic in [11, 17]. The instances with low demand
are assigned a ring capacity B = 155 Mbs, whereas the high demand instances
have B = 622 Mbs. The graphs considered have |V | ∈ {15, 25, 30, 50}. For
each triplet (type, demand level, size) ten instances have been proposed therefore
giving a grand total of 160 instances.

We first tried to solve the srap problem on these instances by means of
CPLEX 8.0. Imposing a time limit of 3 · 105 seconds we were able to prove that
42 instances are unfeasible as well as to find a proven optimal solution for the
remaining 118 (note that Goldschmidt, Laugier and Olinick [9], using CPLEX
6.5 on a 300 Mhtz workstation left open the feasibility status of some instances).
For problem idp any instance is feasible (we could always assign each demand to
a different ring).

We obtained the second set AD by randomly modifying the 42 instances of
GLO that are unfeasible for problem srap. For each instance we first ran the
srap version of BTS for 1000 seconds, thus obtaining an unfeasible solution s,
then we randomly eliminated one traffic demand at a time until the total traffic
was reduced by a quantity greater or equal to the traffic exceeding value B in
the ring of s with maximum load. The resulting instance was inserted in set AD
only if it passed the following “hardness” test. We applied a simple Multistart
Local Search algorithm (MLS) consisting of randomly generating 105 starting
solutions and optimizing each of them through a Local Search method based on
neighborhood N2. We consider an instance “hard” if the best solution found by
MLS was worse than that found by CPLEX within a time limit of 1000 seconds.

The above procedure was repeated until 230 new hard and feasible instances
had been generated.

Finally, the last set of benchmark instances LSHK we considered was the one
proposed in [14], made up of 40 instances with |V | ∈ {15, 20, 25}, |E| ∈ {30, 35},
ring capacity B = 48 T1 lines and demands in [1, 30]. (For more details on the
structure of these instances see [14]).

Note that both set AD and LSHK are very difficult to solve to the optimum
with CPLEX: a 24 hour run for each instance was sufficient to solve only 12 out
of 270 of the srap instances. The idp instances were all solved for set LSHK.
So in our experiments we compare the results of the heuristic algorithms either
with the optimal solution, if available, or with the best solution provided by all
methods (our heuristics and CPLEX).

6.2 Comparing the Strategies

We now describe the results obtained for srap and idp on the above three
benchmark sets, by algorithms Basic Tabu Search (BTS, see Section 5), Path
Relinking (two implementations: PR1 and PR2, Section 5.1), eXploring Tabu

18

Table 3: Parameters used in the experiments

prob. PR1 PR2 XTS SS DMN
srap γ = 75 γ = 100 #Second = 10 RS = 20 ∆DMN = 100

∆ES = 15 imp = 20 LSiter = 20

idp γ = 75 γ = 50 #Second = 5 RS = 20 ∆DMN = 100
∆ES = 10 imp = 20 LSiter = 20

Search (XTS, Section 5.2), Scatter Search (SS, Section 5.3), and Diversification
by Multiple Neighborhoods (DMN , Section 5.4). For each algorithm we consider
the four objective functions of Section 4.5, but for SS we use the two functions
of Section 5.3.

A set of preliminary experiments were done to tune the parameters of the
algorithms, giving the values of Table 3. These values were then used for the
complete set of computational tests.

We gave a time limit of 5 seconds to each run of an algorithm, but we obviously
terminate if the current best solution found by an algorithm is equal to the simple
lower bound (4). Furthermore BTS is halted when all the moves in the current
neighborhood are tabu. Just observe that the 105 iterations of the Multistart
Local Search method used to prove the hardness of an instance of set AD require
one minute to solve an instance with 15 nodes and one hour to solve an instance
with 50 nodes.

Before discussing in detail the results of our experiments, we want to remark
the main average differences observed when solving srap and idp through local
search methods. In Figure 3 we plot the value of the current best solution ob-
tained by algorithm DMN with function z4 during a typical run. In particular
we used a graph with 25 nodes, taken from set GLO, that have been solved at the
optimum and we report the number of iterations performed, on the x axis, and
the number of rings in the best solution, on the y axis. The behaviour of these
two figures similarly applies to the other instances. We note that with srap the
algorithm iterates about 10 times more than with idp. But most important is
the fact that with srap the objective function value rapidly decreases down to
few units, then many iterations are necessary to reduce the value of one or two
units, so reaching the minimum. With idp instead we have a continuous (al-
most “linear”) decreasing of the number of rings until the minimum is reached.
Furthermore looking at the size of the solutions we see that idp has one order
of magnitude more rings than srap. These differences in the evolution of the
algorithm will lead to different behaviour of the objective functions we used to
drive the search. /4 /3

In Figures 4 and 5 we report the grand total of optimal/best solutions found
by the algorithms using the four objective functions (remind that the srap sets

19

 200 250 300 350

number of iterations

Comparing Objective Functions Behaviour

z3
z4

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0 5 10 15

b
e

s
t

v
a

lu
e

Comparing Objective Functions Behaviour

(a) (b)

Figure 3: Typical behaviour when solving srap and idp instances.

contain a grand total of 388 feasible instances, while the idp sets have 430 in-
stances. Further recall that objective functions z2 and z3 cannot be applied with
SS, see “Improvement Method” in Section 5.3).

We first try to derive some conclusions on the effect of the objective function
when solving srap (see Figure 4). We have already observed (see Section 4.5)
that z0, the natural objective function of the mathematical models (counting the
number of rings), is very flat for these problems. Indeed, many different solutions,
even feasible or unfeasible, may have the same number of rings. Our experiments
performed at the very beginning of this study immediately showed that adopting
z0 we have no information that can be used to guide the search. Thus functions
z1, . . . , z4 have been proposed to add information basing on the solution at hand
(z1 and z3) or on the last move performed (z2 and z4).

It immediately appears (see Figure 4) that, for problem srap, z3 provides
bad results with all methods, and, in particular, very bad results when used

20

0

50

100

150

200

250

300

350

400

z1 159 363 365 369 368 382

z2 136 345 346 335 0 372

z3 101 277 272 281 0 49

z4 154 355 354 355 373 383

BTS PR1 PR2 XTS SS DMN

Figure 4: Grand total for srap

with DMN . For problem idp, instead, z3 gives good performances (see Figure
5). A possible justification of this behaviour is that, due to numerical aspects,
z3 may prefer an unfeasible solution to a feasible one having one more ring.
(For a numerical example, consider an unfeasible solution su with r rings and
BN = B + δu, and a feasible solution sf with r + 1 rings and BN = B − δf .
Using z3 we have z3(su) = rB + B + δu < (r + 1)B + B − δf = z3(sf) provided
δu < B − δf . Using z1 we have instead z1(sf) = r + 1 < r + δu = z1(su) and
z1 prefers the feasible solution to the unfeasible one. Also function z4 prefers to
move to sf if the leaving solution is unfeasible. If instead the current solution is
feasible z4(sf) < z4(su) only in certain cases.) We have seen (see Figure 3(a))
that for srap it is relatively easy to find a good solution with few rings, but it is
then hard to find an optimal one. Hence starting from a good solution it is not
advantageous to move immediately to an unfeasible solution with one less ring
since it will be very difficult to re-conduct this solution to a feasible one with the
same number of rings. For srap, instead, it is more convenient to carefully look
for feasible solutions and move to a solution with less rings only if it is feasible.
For problem idp the picture changes. Indeed, we have an almost continuous
decrease of the number of rings during the evolution of the algorithm (see Figure
3(b)). So, when the aggressive function z3 selects an unfeasible solution with one
less ring, we have a number of chances to be able to convert this solution into a

21

0

50

100

150

200

250

300

350

400

z1 190 268 258 263 210 240

z2 244 341 357 312 0 386

z3 133 319 324 285 0 272

z4 296 359 339 323 241 396

BTS PR1 PR2 XTS SS DMN

Figure 5: Grand total for idp

feasible one with the same number of rings or even less rings.

We can conclude that function z3 is appropriate when we expect that finding
a good solution is almost difficult as finding an optimal one (i.e. the decrease of
the objective function is “linear” with the number of iterations). If instead it is
easy to find a good solution, but it is then hard to determine the optimal one z3

is not appropriate at all.

The three functions z1, z2 and z4 provide good results, for srap, but functions
z1 and z4 compete for the best performances. On idp, instead, the two best
functions are z2 and z4.

Looking at the algorithms we see that for srap the Basic Tabu Search is
certainly dominated by all the other methods, so proving that diversification
techniques enhance the performances of a metaheuristic method. The perfor-
mances of the two Path Relinking implementations are quite similar and close to
that of the eXploring Tabu Search. The Scatter Search slightly improves upon
the results of the previous algorithms, but the Diversification by Multiple Neigh-
borhhods is the most appropriate algorithm for the problem. We can conclude
that diversification is a fundamental tool for designing algorithms able to find
very good solutions for srap. There is no strong difference among the various
methods, but DMN , that can be seen as the most drastic diversification tech-

22

nique we presented, gives the better experimental results.
A slightly different behaviour of the algorithms can be observed for idp (see

Figure 5). First note that BTS has better performances here than when applied
to srap. However it is confirmed that diversification is an important tool for
metaheuristic algorithms, but for idp it does not provide performance improve-
ments so large as for srap. The worst algorithm is SS. This is mainly due to
the slow convergence of the method that needs to generate much more solution
than for srap before the number of rings significantly decreases (see again Figure
3(b)). With the given 5 second time limit the algorithm often terminates before
it has been able to construct a set of good quality solutions. We performed some
experiments by giving a large time limit to SS and observed a great improve in
the performances with results better than those of the Path Relinking an XTS
methods. The best overall results (396 out of 430) are still obtained by procedure
DMN with function z4.

Tables 4 and 5 report some detail of our experiments. For each benchmark
set, each algorithm and each objective function we give:

(i) in columns labeled ‘sec.’ the average running time in seconds over all the
instances of a set;

(ii) in columns labeled ‘opt.’ or ‘bst.’ the number of solutions with value equal
to the optimal one (provided by CPLEX), or to the best available solution
value (when CPLEX fails to prove the optimality).

Regarding the computing times one can see that almost all the algorithms are
very fast, with the only exception of SS that reaches the 5 seconds limit in some
srap instances and in all idp instances.

7 Conclusions

We have first described two techniques used in the design of telecommunication
networks when a ring-based topology is adopted. Both techniques can be modeled
through a graph and correspond, respectively, to a vertex partitioning problem
and to an edge partitioning problem, both with capacity constraints.

We have summarized the relevant literature and introduced basic elements for
building Local Search algorithms: neighborhoods, data structures to efficiently
explore the neighborhoods, tabu lists and objective functions. In particular, we
have described a new variable objective function that depends on the transition
from one solution to a neighboring one.

We have then discussed how to apply several diversification and intensification
techniques, including Path Relinking, eXploring Tabu Search and Scatter Search.
We have also proposed a novel diversification method that we call Diversification
by Multiple Neighborhoods.

23

Extensive computational results on existing and newly generated benchmark
instances show that the variable objective function in conjunction with the new
diversification method produce the best results for both problems.

Acknowledgments

This research was supported by Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR), Italy and by Consiglio Nazionale delle Ricerche (CNR), Italy.

References

[1] R. Aringhieri, M. Dell’Amico, and L. Grasselli. Solution of the sonet ring
assignment problem with capacity constraints. Technical Report 12, DISMI,
University of Modena and Reggio Emilia, 2001.

[2] M. Dell’Amico, A. Lodi, and F. Maffioli. Solution of the cumulative as-
signment problem with a well-structured tabu search method. Journal of
Heuristics, 5(2):123–143, 1999.

[3] M. Dell’Amico and M. Trubian. Solution of large weighted equicut problems.
European J. Oper. Res., 106(2-3):500–521, 1998.

[4] F. Glover. A template for scatter search and path relinking. In J.K. Hao,
E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Lecture Notes
in Computer Science, volume 1363, pages 13–54. 1997.

[5] F. Glover. Scatter search and path relinking. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Optimization, pages 297–316. McGraw Hill,
1999.

[6] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, 1997.

[7] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and
path relinking. Control and Cybernetics, 39(3):653–684, 2000.

[8] O. Goldschmidt, D. S. Hochbaum, A. Levin, and E. V. Olinick. The sonet
edge-partition problem. Networks, (41):13–23, 2003.

[9] O. Goldschmidt, A. Laugier, and E. V. Olinick. SONET/SDH ring assign-
ment with capacity contraints. Discrete Applied Mathematics, (129):99–128,
2003.

24

[10] P. Hansen and N. Mladenović. Variable neighborhood search. In P. M.
Pardalos and M. G. C. Resende, editors, Handbook of Applied Optimization.
Oxford Academic Press, 2001.

[11] M. Laguna. Clustering for the design of sonet rings in interoffice telecom-
munications. Management Science, 40(11):1533–1541, 1994.

[12] M. Laguna. Scatter search. In P. M. Pardalos and M. G. C. Resende, editors,
Handbook of Applied Optimization. Oxford Academic Press, 2001.

[13] M. Laguna, R. Mart́ı, and V. Campos. Intensification and diversification
with elite tabu search solutions for the linear ordering problem. Computers
Oper. Res., 26:1217–1230, 1999.

[14] Y. Lee, H. D. Sherali, J. Han, and S. Kim. A branch-and-cut algorithm for
solving an intraring synchronous optical network design problem. Networks,
35(3):223–232, 2000.

[15] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. Wiley, Chichester, 1990.

25

Table 4: Comparing the algorithms for srap
GLO (118 instances)

obj. BTS PR1 PR2 XTS SS DMN
func. sec. opt. sec. opt. sec. opt. sec. opt. sec. opt. sec. opt.

z1 0.10 98 0.17 102 0.24 105 0.29 106 1.79 111 0.09 117
z2 0.11 98 0.16 102 0.23 105 0.06 83 - - 0.09 118
z3 0.40 88 0.50 87 0.70 86 0.63 89 - - 0.01 6
z4 0.29 90 0.21 90 0.44 90 0.36 91 1.73 107 0.08 117

AD (230 instances)

obj. BTS PR1 PR2 XTS SS DMN
func. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst.

z1 0.06 35 0.31 225 0.36 224 0.33 227 4.63 220 0.29 226
z2 0.04 27 0.37 213 0.38 211 0.31 223 - - 0.28 222
z3 0.05 5 0.40 165 0.54 166 0.60 174 - - 0.62 35
z4 0.07 37 0.34 225 0.42 224 0.34 224 4.12 226 0.33 226

LSHK (40 instances)

obj. BTS PR1 PR2 XTS SS DMN
func. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst.

z1 0.11 26 0.25 36 0.23 36 0.26 36 3.88 37 0.30 39
z2 0.11 11 0.26 30 0.25 30 0.29 29 - - 0.29 32
z3 0.09 8 0.48 25 0.51 20 0.48 18 - - 0.60 8
z4 0.12 27 0.40 40 0.37 40 0.39 40 3.54 40 0.30 40

26

Table 5: Comparing the algorithms for idp
GLO (160 instances)

obj. BTS PR1 PR2 XTS SS DMN
func. sec. opt. sec. opt. sec. opt. sec. opt. sec. opt. sec. opt.

z1 0.51 65 0.42 81 0.36 93 0.75 101 4.96 84 0.35 66
z2 0.78 86 0.63 99 0.71 122 1.01 110 - - 0.58 131
z3 0.55 45 0.68 100 0.80 115 1.10 102 - - 0.53 78
z4 0.63 98 0.78 120 1.23 114 1.13 110 4.98 100 0.89 137

AD (230 instances)

obj. BTS PR1 PR2 XTS SS DMN
func. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst.

z1 0.65 123 0.31 183 0.44 161 0.78 161 4.99 96 0.37 172
z2 0.88 149 0.66 202 0.73 195 1.01 190 - - 0.63 215
z3 0.59 76 0.65 181 0.70 171 1.12 168 - - 0.54 175
z4 0.71 181 0.77 199 0.81 185 1.05 184 5.00 110 0.93 220

LSHK (40 instances)

obj. BTS PR1 PR2 XTS SS DMN
func. sec. opt. sec. opt. sec. opt. sec. opt. sec. opt. sec. opt.

z1 0.05 2 0.05 4 0.05 4 0.06 1 5.00 28 0.06 2
z2 0.42 9 0.13 40 0.13 40 0.14 12 - - 0.08 40
z3 0.22 12 0.11 38 0.11 38 0.14 15 - - 0.07 19
z4 0.29 17 0.22 40 0.22 40 0.62 29 4.89 25 0.18 39

27

