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Abstract

We consider a sample {Tn}1<n<N of i.i.d. times and we interpret each item
as the first passage time (FPT) of a diffusion process through a constant boun-
dary. The problem is to estimate the parameters characterizing the underlying
diffusion process through the experimentally observable FPT’s. Recently in [8]
and [9] closed form estimators have been proposed for neurobiological applica-
tions. Here we study the asymptotic properties (consistency and asymptotic
normality) of the class of moment type estimators for parameters of diffusion
processes like those in [8] and [9]. Further, to make our results useful for appli-
cation instances we establish upper bounds for the rate of convergence of the
empirical distribution of each estimator to the normal density. Applications are
also considered by means of simulated experiments in a neurobiological context.
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1 Introduction

In a variety of different fields in applied mathematics like biology, social sciences,
reliability, survival analysis, mathematical finance, etc... one may think of a sequence
{Tn}1<n<N of independent and identically distributed random variables as a sample
of first passage times (FPT’s) of a diffusion process through a given boundary (cfr.
for instance [29] and references given therein). The underlying stochastic process of
interest is then a one-dimensional diffusion process X = {X(t); t ≥ 0}. Starting
the process X at a non-random value X(0) = x0, it describes a latent unobserved
dynamics that leads to some observable event when X(t) reaches a constant boundary
S, or threshold. The time of such event can be defined as the random variable

T = inf {t > 0 : X(t) ≥ S; X(0) = x0} , (1)

which denotes the FPT of the process X trough the threshold S.
Then, the experimentally observable data are the FPT’s of the underlying stochas-

tic process. In many application instances the problem arises to identify the unknown
parameters of the diffusion process from the FPT observations {Tn}0<n<N .

The main difficulty with many realistic diffusion processes is that despite their
conceptual simplicity, the functional form of the FPT probability density function
(pdf) is in general not known, except for some special cases. We consider here the
examples of the Ornstein-Uhlenbeck and of the Feller processes, whose applications
as underlying processes in FPT models are well known (see e.g. [26], [27], [32], [1],
[20]). Their first-passage time pdf can be evaluated only by numerical or asymptotical
methods and simulation techniques and hence standard statistical inference such as
maximum likelihood or Bayes estimation cannot be applied. Recently, some attempts
to solve the estimation problem for diffusion parameters from FPT data have been
proposed in the neurobiological context (cf. [17], [23], [8], [9], [10]). Only for the
estimators given in [8] and [9] closed expressions were evaluated but their qualitative
and asymptotic behavior was illustrated only by means of simulation examples.

Our primary goal in the present paper is to study from an analytic point of
view the asymptotic properties (consistency and asymptotic normality) of a class of
moment type estimators for parameters of diffusion processes defined in analogy with
those in [8] and [9]. Since our results are of asymptotic type the next step considered
in this paper concerns upper bounds for the rate of convergence of the empirical
distribution of each estimator to the normal density.

The paper is organized as follows. In Section 2, the problem is formulated by
recalling the necessary background on diffusion processes and introducing the class
of moment estimators that will be needed. In Section 3 the asymptotic properties
of the moment type estimators introduced for the parameters of a diffusion process
observed only at times corresponding to FPT’s are proved. In Section 4 we determine
the size of the samples that guarantees an acceptable error when one substitutes the
empirical distribution of the estimators with the normal one. In Section 5 we illustrate
the theorems of Section 4 by means of two examples: the Ornstein-Uhlenbeck and the
Feller processes. There we apply our asymptotic results to the moment estimators
introduced in [8] and [9]. In Section 6 the accuracy of the moment type estimators and
the appropriateness of analytical approximations to the normal density are discussed
within the framework of neurobiological applications.
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2 Problem formulation

We are concerned with one-dimensional diffusion processes X = {X(t), t ≥ 0} that
satisfy a linear stochastic differential equation (SDE) of the type:

dX(t) = a(X(t); Θ)dt + b(X(t); Θ)dW (t); X(0) = x0, (2)

where W = {W (t), t ≥ 0} is the standard Wiener process and a(·) and b(·), called
respectively drift and infinitesimal variance of the process X, are real functions of their
argument obeying to mild assumptions. Here Θ represents the vector of parameters
θi, i = 1, .., m characterizing the process X(t). We indicate as I the diffusion interval
of the process X.

Closed form expressions for the pdf of the random variable T defined in (1) for
the process X(t) solution to (2) are known only for a few particular instances that
are often of scarce interest for applications.

We are interested in the estimation of the parameters that characterize the diffu-
sion process X and that appear in the drift a(·) and in the infinitesimal variance b(·).
The expressions for the first and the second order moments of the FPT distribution
are usually either unknown or known only in a rather complicated form, making a
direct application of the moment type estimation procedure hard in the cases of in-
terest (cf. [29]). However under suitable hypothesis a method that generalizes that
proposed in [8] and [9] to other diffusion processes, possibly using different types of
functionals, can be introduced .

Consider a specific diffusion process X and let T be its FPT random variable.
Let us suppose that two smooth functions f1(T ) and f2(T ) exist such that their first
moments E[f1(T )] and E[f2(T )] can be evaluated in a closed form as functions of the
parameters characterizing the process. Appropriate conditions must also be imposed
to ensure that |E[f1(T )]| < +∞ and |E[f2(T )]| < +∞.

Relying on the sample (T1, T2, ..., Tn), where Ti, i = 1, ..., n are i.i.d. random
variables distributed as the first passage time T , one can estimate E[f1(T )] and
E[f2(T )] through

Z1,n =
1

n

n∑
i=1

f1(Ti), Z2,n =
1

n

n∑
i=1

f2(Ti). (3)

respectively.
Aim of this work is the estimation of the vector of parameters Θ in the case

where m = 2, i.e. for Θ = (θ1, θ2)
T (here T denotes transposition). We assume

that the threshold S and all the other parameters are known from different types of
direct measurements. We use the closed expressions of E[f1(T )] and of E[f2(T )] to

determine the moment type estimators Θ̂1,n and Θ̂2,n of θ1 and θ2 respectively.

Remark 1 Cases where the number of parameters to be estimated is greater than 2
could also be considered by introducing additional functions fi(T ), i > 2, and corre-
sponding closed form expressions for the moments E[fi(T )], i > 2. Since this gen-
eralizations are theoretically simple but may imply further computations and heavier
notations we limit ourselves to the case of m = 2.
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3 The asymptotic behavior of the estimators

We consider a probability space on which a parameterized family of probability mea-
sures is given: (

Ω,F , {PΘ, Θ ∈ Ψ}) , Ψ ⊆ R2.

For our purposes, we consider the subset Ψ = {Θ : |E[fi(T )]| < +∞, i = 1, 2}.
Let (T1, T2, ..., Tn) be a sample of FPT observations of a diffusion process X

solution to (2) and defined on (Ω,F ,P0), where P0 denotes the probability measure

corresponding to the couple Θ0 = (θ
(0)
1 , θ

(0)
2 ) ∈ Ψ.

We suppose that there exist two real-valued continuous functions g(x) and h(x, y),
defined for any real numbers x, y for which g(x) < +∞ and h(x, y) < +∞, such that

θ1 = g(E[f1(T )]) and θ2 = h(E[f1(T )], E[f2(T )]), (4)

for any Θ = (θ1, θ2)
T ∈ Ψ. We study the asymptotic properties for estimators of the

following form:
Θ̂1,n = g(Z1,n) and Θ̂2,n = h(Z1,n, Z2,n) (5)

for any n ≥ 1.
The sequences {Θ̂1,n}n≥1 and {Θ̂2,n}n≥1 verify the classical asymptotic properties

of this class of moment estimators. We recall here the ones we use in the sequel.
When Θ = Θ0:

1. As n →∞, the Weak Law of Large Numbers states that

Z1,n
P0−→ E[f1(T )], Z2,n

P0−→ E[f2(T )]. (6)

Here and later
P0−→ denotes convergence in P0-probability.

2. From the Central Limit Theorem the sequences of random variables {Z1,n}n≥1

and {Z2,n}n≥1 satisfy

√
n (Z1,n − E[f1(T )])

D−→ N(0, V ar(f1(T )),

√
n (Z2,n − E[f2(T )])

D−→ N(0, V ar(f2(T )),

(7)

as n → ∞. Here and later
D−→ denotes convergence in distribution under P0

while N(a, b) denotes the normal distribution with mean a and variance b.

In the following whenever necessary to prove the asymptotic properties of the
estimators Θ̂1,n and Θ̂2,n we also hypothesize the existence of closed form expressions
for higher moments of the functions f1(T ) and f2(T ), E[fn

i (T )] with i = 1, 2; n >
1. In each case the conditions of finiteness of the absolute value of the involved
expectations is assumed to be fulfilled.

We introduce the notation

(ξ1, ξ2)
T = (E[f1(T )], E[f2(T )])T (8)
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and

Σ =

(
V ar(f1(T )) Cov(f1(T ), f2(T ))

Cov(f1(T ), f2(T )) V ar(f2(T ))

)
. (9)

In the sequel we also need the following functions:

v(θ1, θ2) = (g′(E[f1(T )]))2 V ar(f1(T )) > 0, (10)

where g′ denotes differentiation of order 1 with respect to the argument and

q(θ1, θ2) = ∇h(ξ1, ξ2)
′ Σ∇h(ξ1, ξ2)

=

(
∂h

∂ξ1

)2

V ar(f1(T )) +

(
∂h

∂ξ2

)2

V ar(f2(T )) + 2
∂h

∂ξ1

∂h

∂ξ2

Cov(f1(T ), f2(T )),

(11)
where ∇h(ξ1, ξ2) is the gradient vector of h in (ξ1, ξ2)

T , defined in (8), with compo-

nents
∂

∂ξ1

h(ξ1, ξ2) and
∂

∂ξ2

h(ξ1, ξ2).

It holds:

Lemma 1 Let Θ0 = (θ
(0)
1 , θ

(0)
2 )T ∈ Ψ denote the parameter values of the diffusion

process X and consider the sequences {Θ̂1,n}n≥1 and {Θ̂2,n}n≥1 of their moment type
estimators defined in (5).

Let the functions g(x) and h(x, y) defined in (4) be continuously differentiable
and assume that g has first order derivative different from zero.

The sequences {Θ̂1,n}n≥1 and {Θ̂2,n}n≥1 satisfy the following properties:

Consistency: as n →∞

Θ̂1,n
P0−→ θ

(0)
1 , Θ̂2,n

P0−→ θ
(0)
2 . (12)

Asymptotic normality: as n →∞,

√
n (Θ̂1,n − θ

(0)
1 )

D−→ N(0, v(θ
(0)
1 , θ

(0)
2 )), (13)

where v has been defined in (10), and

√
n (Θ̂2,n − θ

(0)
2 )

D−→ N(0, q(θ
(0)
1 , θ

(0)
2 )), (14)

where q has been defined in (11), provided q(θ
(0)
1 , θ

(0)
2 ) > 0.

Proof. The consistency property immediately follows from (6) and classical
properties of convergence in probability using (4) and (5).

As far as the asymptotic normality is concerned, we apply the Delta Method (see
e.g. [4, Theorem 5.5.24]) to the sequence of random variables

√
n (g(Z1,n)− g(E[f1(T )])) =

√
n (Θ̂1,n − θ

(0)
1 ), n ≥ 1, (15)

and its multivariate version (cfr. [4, Theorem 5.5.28]) to the sequence of random
variables √

n (h(Z1,n, Z2,n)− h(ξ1, ξ2)) =
√

n (Θ̂2,n − θ
(0)
2 ), n ≥ 1. (16)
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Due to the convergence result (7) we can apply the univariate Delta Method
to the sequence (15) since g is a differentiable function and its first-order derivative
is different from zero. Expression (13) immediately follows from the use of Delta
Method with asymptotic variance given by (10).

Since under the hypothesis (5) the estimator Θ̂2,n is expressed as a function h of
the random vector (Z1,n, Z2,n)T , application of the Multivariate Delta Method to the
sequence of random variables (16) leads to (14) with asymptotic variance given by (11)

provided q(θ
(0)
1 , θ

(0)
2 ) > 0. 2

4 Upper bounds for the rate of convergence

Let us firstly consider the estimator Θ̂1,n. We define the random variables

Sn :=

√
n (Θ̂1,n − θ

(0)
1 )√

v(θ
(0)
1 , θ

(0)
2 )

, n ≥ 1. (17)

Furthermore let Gn be the distribution function of Sn.
In the following we denote as Φ the standard normal distribution function. It

holds:

Theorem 1 Suppose the hypothesis of Lemma 1 hold. Assume moreover that the
function g has continuous second-order derivative with respect to its argument. Then,
for any εn > 0

sup
x
|Gn(x)− Φ(x)| ≤ εn +

cE[|f1(T )− E[f1(T )]|3]
V ar(f1(T ))

3
2
√

n
+

V ar(f1(T ))
1
2 E[|Bn|]

2 |g′(E(f1(T )))| εn

√
n

(18)

with {Bn}n≥1 a sequence of random variables such that

Bn := g′′(ζn)

(√
n (Z1,n − E[f1(T )])√

V ar(f1(T ))

)2

, n ≥ 1 (19)

where ζn is a random point inside the interval (Z1,n, E(f1(T ))).
Furthermore

lim
n

E[|Bn|] = |g′′(E(f1(T )))|.

Proof. Consider the Taylor expansion of g(Z1,n) around ξ1 = E[f1(T )] up to the
second-order term. From Taylor’s formula with Lagrange remainder, we obtain

g(Z1,n) = g(ξ1) + g′(ξ1) (Z1,n − ξ1) +
g′′(ζn)

2
(Z1,n − ξ1)

2.

Multiplying both sides by

√
n√

v(θ
(0)
1 , θ

(0)
2 )

we obtain

√
n (g(Z1,n)− g(ξ1))√

v(θ
(0)
1 , θ

(0)
2 )

=
g′(ξ1)

√
n (Z1,n − ξ1)√

v(θ
(0)
1 , θ

(0)
2 )

+
g′′(ζn)

√
n (Z1,n − ξ1)

2

2

√
v(θ

(0)
1 , θ

(0)
2 )

,

6



which can be rewritten as
Sn = Tn + Rn

where from (10)

Tn :=
g′(ξ1)

√
n (Z1,n − ξ1)√

v(θ
(0)
1 , θ

(0)
2 )

=

√
n (Z1,n − ξ1)√
V ar(f1(T ))

and

Rn :=
g′′(ζn)

√
n (Z1,n − ξ1)

2

2

√
v(θ

(0)
1 , θ

(0)
2 )

.

¿From Lemma 1 of [22], for any sequence εn > 0 and x ∈ R we have

|Gn(x)− Φ(x)| ≤ εn + sup
x
|P(Tn ≤ x)− Φ(x)|+ P(|Rn| ≥ εn). (20)

Due to the convergence property (7) the classical Berry-Esseen bound (see e.g.
[30, Theorem, Ch.3, §11.]) can be employed for Tn, so for the second term on the
r.h.s. of (20) we have

sup
x
|P(Tn ≤ x)− Φ(x)| ≤ cE[|f1(T )− ξ1|3]

V ar(f1(T ))
3
2
√

n
. (21)

Here c is an absolute constant (the current best estimate is c = 0.7975).
Moreover, for the third term on the r.h.s. of (20) by Markov inequality and by

(10) we get:

P(|Rn| ≥ εn) ≤ E[|Rn|]
εn

=

V ar(f1(T ))
1
2 E

[
|g′′(ζn)|

(√
n (Z1,n−ξ1)√
V ar(f1(T ))

)2
]

2 |g′(E(f1(T )))| εn

√
n

(22)

where the last equality comes from (10).
Taking into account (19), (22) can be rewritten as

P(|Rn| ≥ εn) ≤ V ar(f1(T ))
1
2 E[|Bn|]

2 |g′(E(f1(T )))| εn

√
n

. (23)

To determine the asymptotic value of E[|Bn|] we apply the Slutsky theorem (cfr.
for instance [4, Th. 5.5.17]) to the terms in the product on the r.h.s. of (19). As far
as the first term is concerned the convergence property (6) implies that

g′′(ζ)
P0−→n→∞ g′′(ξ1).

Furthermore, for the second term from the convergence property (7) it follows

(√
n (Z1,n − ξ1)√
V ar(f1(T ))

)2

D−→n→∞ χ2(1).

Hence
Bn

D−→n→∞ g′′(ξ1) χ2(1)
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and then
lim

n
E[|Bn|] = |g′′(E(f1(T )))|.

2

A similar argument can now be used to establish a bound for the rate of conver-
gence of the finite sample distribution function of the estimator Θ̂2,n to the normal
one. We define the random variables

Vn =

√
n (Θ̂2,n − θ2)√
q(θ

(0)
1 , θ

(0)
2 )

, n ≥ 1, (24)

and denote as Qn the distribution function of Vn.
We further introduce the random variables

Yi =
∂

∂ξ1

h(ξ1, ξ2) (f1(Ti)− ξ1) +
∂

∂ξ2

h(ξ1, ξ2) (f2(Ti)− ξ2), i = 1, . . . , n, (25)

where h and (ξ1, ξ2)
T have been defined in (4) and (8) respectively. They are i.i.d.

random variables with zero mean and variance equal to q(θ
(0)
1 , θ

(0)
2 ).

We can now state the following

Theorem 2 Suppose the hypothesis of Lemma 1 hold. Assume moreover that the
function h has continuous second-order derivatives with respect to its arguments.
Then, for any εn > 0

sup
x
|Qn(x)− Φ(x)| ≤ εn +

cE[|Y1|3]
q(θ

(0)
1 , θ

(0)
2 )

3
2
√

n
+

E[|Dn|]
2

√
q(θ

(0)
1 , θ

(0)
2 ) εn

√
n

, (26)

where the random variable Y1 has been defined in (25) and {Dn}n≥1 is a sequence of
random variables such that

Dn := n (Zn − ξ)T Hh(ζ1,n, ζ2,n) (Zn − ξ), n ≥ 1 (27)

where Hh(ζ1,n, ζ2,n) denotes the Hessian matrix of h computed in (ζ1,n, ζ2,n)T with ζ1,n

and ζ2,n random points inside the intervals (Z1,n, ξ1) and (Z2,n, ξ2), respectively.
Moreover, as n →∞

E[|Dn|] ≤
∣∣∣∣

∂2

∂2ξ1

h(ξ1, ξ2)

∣∣∣∣ V ar(f1(T )) +

+ 2

∣∣∣∣
∂2

∂ξ1∂ξ2

h(ξ1, ξ2)

∣∣∣∣
√

V ar(f1(T ))V ar(f2(T )) +

∣∣∣∣
∂2

∂2ξ2

h(ξ1, ξ2)

∣∣∣∣ V ar(f2(T )).

Proof. Consider the Taylor expansion of h(Z1,n, Z2,n) around the vector (ξ1, ξ2)
T

defined in (8) up to the second-order term. From Taylor’s formula with Lagrange
remainder, we obtain

h(Z1,n, Z2,n) = h(ξ1, ξ2) +∇h(ξ1, ξ2)
T (Zn − ξ) +

1

2
(Zn − ξ)T Hh(ζ1,n, ζ2,n) (Zn − ξ),

8



where Hh(ζ1,n, ζ2) denotes the Hessian matrix of h computed in (ζ1,n, ζ2,n)T and (Zn−
ξ) = (Z1,n − ξ1, Z2,n − ξ2)

T . By rearranging the terms we can write

√
n (h(Z1,n, Z2,n)− h(ξ1, ξ2))√

q(θ
(0)
1 , θ

(0)
2 )

=

√
n∇h(ξ1, ξ2)

T (Zn − ξ)√
q(θ

(0)
1 , θ

(0)
2 )

+

√
n (Zn − ξ)T Hh(ζ1,n, ζ2,n) (Zn − ξ)

2

√
q(θ

(0)
1 , θ

(0)
2 )

or, equivalently, from (16)
Vn = Tn + Rn,

where, using (25),

Tn :=

√
n∇h(ξ1, ξ2)

T (Zn − ξ)√
q(θ

(0)
1 , θ

(0)
2 )

=

√
n√

q(θ
(0)
1 , θ

(0)
2 )

1

n

n∑
i=1

Yi,

and

Rn :=

√
n (Zn − ξ)T Hh(ζ1,n, ζ2,n) (Zn − ξ)

2

√
q(θ

(0)
1 , θ

(0)
2 )

Applying the classical Berry-Esseen bound to Tn =
1√

n q(θ
(0)
1 , θ

(0)
2 )

n∑
i=1

Yi it fol-

lows that

sup
x
|P(Tn ≤ x)− Φ(x)| ≤ cE[|Y1|3]

q(θ
(0)
1 , θ

(0)
2 )

3
2
√

n
. (28)

Furthermore, by Markov inequality

P(|Rn| ≥ εn) ≤ E[|Rn|]
εn

=
E[n |(Zn − ξ)T Hh(ζ1,n, ζ2,n) (Zn − ξ)|]

2

√
q(θ

(0)
1 , θ

(0)
2 ) εn

√
n

. (29)

Taking into account (27), (29) can be rewritten as

P(|Rn| ≥ εn) ≤ E[|Dn|]
2

√
q(θ

(0)
1 , θ

(0)
2 ) εn

√
n

. (30)

Then (20), (28) and (30) lead to the uniform upper bound for |Qn(x) − Φ(x)|
given in (26).

Now we can apply a procedure similar to that used in Theorem 2 to prove that
E[|Bn|] in (18) is bounded when n →∞ to show that

E[|Dn|] ≤
∣∣∣∣

∂2

∂2ξ1

h(ξ1, ξ2)

∣∣∣∣ V ar(f1(T )) +

+ 2

∣∣∣∣
∂2

∂ξ1∂ξ2

h(ξ1, ξ2)

∣∣∣∣
√

V ar(f1(T ))V ar(f2(T )) +

∣∣∣∣
∂2

∂2ξ2

h(ξ1, ξ2)

∣∣∣∣ V ar(f2(T ))

as n →∞. 2
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Remark 2 Theorems 1 and 2 give a uniform error bound of order

εn + n−1/2 + (εn

√
n)−1,

as n →∞, no matter how we choose the sequence {εn} in (18) and (26), respectively.

5 Examples

We consider here in particular the problem of parameter estimation for the Ornstein-
Uhlenbeck and the Feller processes, whose applications as underlying processes in
first-passage time models are well known: in biology as models for neuronal activity
(see e.g. [26], [27], [21], [32]), in survival analysis (see [1]), in different areas of
mathematical finance (see [20] and the references therein, [19], [25]). As we shall see
in the following, both of them are fully described by five parameters: µ, σ, b, S, x0.

Their first-passage time pdf can be evaluated only by numerical or asymptotic
methods ([2], [13], [14], [24], [29]) and simulation techniques (cfr. [15], [16]). As far
as the problem of parameter estimation is concerned, Inoue et al. [17] proposed to
evaluate the parameters (µ, σ) of the Ornstein-Uhlenbeck process in terms of 1st and
2nd moments of the FPT distribution, but this method involves heavy computational
efforts due to the complexity of the expressions for these moments. Mullowney and
Iyengar [23] implemented a numerical method for inverting the Laplace transform of
the Ornstein-Uhlenbeck process FPT pdf and numerically computed the maximum
likelihood estimates for three parameters expressed as functions of the five model
parameters. In Ditlevsen and Ditlevsen [7] (see also Ditlevsen and Lánský [10]) an
integral equation estimation method (applicable to all one-dimensional diffusions with
known transition density) is proposed to numerically estimate the parameters (µ, σ)
when samples of the first passage times through a given threshold are available. In
the works of Ditlevsen and Lánský [8, 9], moment type estimators of (µ, σ) are derived
in the supra-threshold regime.

The Theorems in Section 4 can be employed to determine the properties of the
estimators proposed in [8] and [9].

5.1 The Ornstein-Uhlenbeck process

The diffusion process X = {X(t), t ≥ 0} that satisfies the following linear stochastic
differential equation (SDE):

dX(t) = (µ− bX(t))dt + σdW (t); X(0) = x0, (31)

where (µ, b, σ) ∈ R×R+×R+ are constants, and W = {W (t), t ≥ 0} is the standard
Wiener process is referred to as the Ornstein-Uhlenbeck (OU) process, also known in
mathematical finance as the Vasicek model (see e.g., [31, Section 4.4]). The diffusion
interval is I ≡ R and the conditional density of X given the initial value X(0) = x0

is normal (see e.g., [26, Ch.4]) with mean and variance given by

E[X(t)|X(0) = x0] =
µ

b
+

(
x0 − µ

b

)
e−b t,

V ar[X(t)|X(0) = x0] =
σ2

2 b
(1− e−2 b t).

10



Note that in (31) the diffusion term is constant.
We limit ourselves to the estimation problem for the parameters µ and σ since in

the application context the parameters S and b can often be determined in a direct
way independently from the sample while one can fix x0 = 0 without affecting the
generality of the model.

Let us consider the first-passage time of the OU process through a constant
boundary S. No closed form for the pdf gT (t) of T for the OU process is known for
an arbitrary value of S. An explicit expression exists only in the specific case where
S = µ/b (cfr. [28],[3]):

gT (t) =
2 b

3
2 (S − x0) e2 b t

√
πσ2 (e2 b t − 1)3

exp

(−b (S − x0)
2

σ2 (e2 b t − 1)

)
.

The Laplace transform of T is explicitly known and its expression, when S, x0 > 0,
is given by (cfr. [28, formula (1a),(1b)])

E[e−α T ] =





e
b (x0−µ/b)2

2 σ2

e
b (S−µ/b)2

2 σ2

· D−α/b (−(x0 − µ/b)
√

2 b/σ2)

D−α/b (−(S − µ/b)
√

2 b/σ2)
, S > x0;

e
b (x0−µ/b)2

2 σ2

e
b (S−µ/b)2

2 σ2

· D−α/b ((x0 − µ/b)
√

2 b/σ2)

D−α/b ((S − µ/b)
√

2 b/σ2)
, S < x0,

(32)

for any α > 0, where Dλ(·) is the parabolic cylinder function (cf. [11]). Due to the
presence of a ratio of parabolic cylinder functions, the inverse Laplace transform can
not be obtained in closed form. Hence the pdf of T is known only through numerical
methods or asymptotically ([2], [14], [24], [29]) and simulation techniques (cfr. [15],
[16]). This prevents from a direct use of the maximum likelihood method to obtain
estimators of the parameters considered. Choosing as functionals f1(T ) = e−T and
f2(T ) = e−2T respectively use of Theorems 1 and 2 could be done. However the heavy
constraints required for the finiteness of the moments (32) with α = 1, 2 discourage
this approach.

Ditlevsen in [6, Theorem 1] proved that the result (32) can be extended to the
case where α < 0. In particular, moments of the type E[eb λ T ] with λ > 0 can be
explicitly computed by using Doob optional stopping theorem on a suitably defined
martingale when λ is a positive integer k ≥ 1. This requests the fulfillment of specific
conditions on the asymptotic mean and the asymptotic variance of the OU process
to ensure that E[eb λ T ] < +∞. The first four moments of eb T have been computed in
[6]. The first moment

E[eb T ] =
µ/b

µ/b− S
, (33)

exists finite provided
µ

b
> S, (34)

while the second one

E[e2 b T ] =
2(µ/b)2 − σ2/b

2(µ/b− S)2 − σ2/b
, (35)

exists finite provided
µ

b
> S;

σ2

2 b
< (µ/b− S)2. (36)

11



Furthermore

E[e3 b T ] =
2(µ/b)2 − 3σ2/b

2(µ/b− S)2 − 3σ2/b
E[eb T ], (37)

exists finite provided
µ

b
> S;

σ2

2 b
<

(µ/b− S)2

3
, (38)

while

E[e4 b T ] =
(2(µ/b)2 − 3σ2/b)2 − 6(σ2/b)2

(2(µ/b− S)2 − 3σ2/b)2 − 6(σ2/b)2
, (39)

exists finite provided
µ

b
> S;

σ2

2 b
<

(µ/b− S)2

3 +
√

6
. (40)

By identifying the functions f1(T ) and f2(T ) introduced in Section 2 respectively
with eb T and e2 b T and the parameter vector Θ = (θ1, θ2)

T with (µ, σ)T ∈ Ψ =
{Θ : condition (36) holds}, Ψ ⊆ R×R+, moment type estimators µ̂n and σ̂2

n can be
computed making use of the expressions (33) and (35) and of the sample estimators

Z1,n =
1

n

n∑
i=1

eb Ti , Z2,n =
1

n

n∑
i=1

e2 b Ti , n ≥ 1. (41)

In this way one gets (cf. [8]):

Θ1,n = µ̂n = b S · Z1,n

Z1,n − 1
, Θ2,n = σ̂2

n = 2 b S2 · Z2,n − Z2
1,n

(Z2,n − 1)(Z1,n − 1)2
, (42)

for any n ≥ 1.

Let Θ0 = (µ0, σ0)
T ∈ Ψ denotes the parameter value of the OU process.

Consistency and asymptotic normality

The consistency of the estimators (42) follows from Lemma 1 in Section 3 by
choosing

g(x) = b S · x

x− 1
, h(x, y) = 2 b S2 · y − x2

(y − 1)(x− 1)2
. (43)

Furthermore the conditions in Lemma 1 for the asymptotic normality of the
sequence {µ̂n}n≥1 are satisfied since g in (43) is continuously differentiable with

g′(E[eb T ]) = −(µ/b− S)2

S/b
6= 0,

and
v(µ0, σ0) = (g′(E[eb T ]))2 V ar(eb T ) > 0.

As far as the sequence {σ̂2
n}n≥1 of estimators for the parameter σ2

0 is concerned,
Lemma 1 can be applied since the function h in (43) is continuously differentiable.

The asymptotic normality thus holds with asymptotic variance

12



q(µ0, σ0) = ∇h(ξ1, ξ2)
T Σ∇h(ξ1, ξ2)

=

(
∂h

∂ξ1

)2

V ar(eb T ) +

(
∂h

∂ξ2

)2

V ar(e2 b T ) + 2
∂h

∂ξ1

∂h

∂ξ2

Cov(eb T , e2 b T )

(44)
provided q(µ0, σ0) > 0 and (40) holds. Here

Σ =

(
V ar(eb T ) Cov(eb T , e2 b T )

Cov(eb T , e2 b T ) V ar(e2 b T )

)
(45)

is the covariance matrix of the random vector (ξ1, ξ2)
T = (eb T , e2b T )T while the com-

ponents of the gradient vector of h in (ξ1, ξ2)
T are

∂

∂ξ1

h(ξ1, ξ2) = 4 b S2 · ξ1 − ξ2

(ξ2 − 1)(ξ1 − 1)3
;

∂

∂ξ2

h(ξ1, ξ2) = 2 b S2 · ξ1 + 1

(ξ2 − 1)2(ξ1 − 1)
.

(46)

Upper bounds for the rate of convergence

Let us consider the sequence {µ̂n}n≥1. Inequality (18) of Theorem 1 in Section 4
in the case of the OU process becomes:

sup
x
|Gn(x)− Φ(x)| ≤ εn +

cE[|eb T − µ0|3]
V ar(eb T )

3
2
√

n
+

V ar(eb T )
1
2 E[|Bn|]

2 |g′(E(eb T ))| εn

√
n

(47)

where the sequence of random variables Bn is defined as in (19).
Let us now consider the sequence {σ̂2

n}n≥1. Inequality (26) in Theorem 2 for the
case of the OU process becomes:

sup
x
|Qn(x)− Φ(x)| ≤ εn +

cE[|Y1|3]
q(µ0, σ2

0)
3
2
√

n
+

E[|Dn|]
2
√

q(µ0, σ2
0) εn

√
n

(48)

where the sequence of random variables Dn has been defined in (27) of Theorem 3.

The expressions of the partial derivatives
∂2

∂2ξ1

h(ξ1, ξ2),
∂2

∂2ξ2

h(ξ1, ξ2) and
∂2

∂ξ1∂ξ2

h(ξ1, ξ2)

follow immediately from (46).

5.2 The Feller process

The second diffusion process we will be concerned is the so-called Feller process X =
{X(t), t ≥ 0}, solution of the following SDE:

dX(t) = (µ− bX(t))dt + σ
√

X(t) dW (t); X(0) = x0, (49)

where (µ, b, σ) ∈ R × R+ × R+ are constants. It has been proposed by Feller in
[12] as a model for population growth, and is well known in stochastic finance as

13



the Cox-Ingersoll-Ross (CIR) model (see [5], [31]). The diffusion interval is now
I = [0,∞). The nature of the lower boundary 0 depends on the relationship between
the parameters µ and σ2. We will assume throughout the paper that the condition
2µ ≥ σ2 holds. Under this condition, following Feller’s classification of boundaries
(see [18, Section 15.6]), the boundary 0 is entrance. In this case the boundary can
be reached from any other level, but once attained the process can no longer evolve
inside its interval of definition. The transition density of X given the initial value is
a non-central Chi-square distribution with mean and variance (see e.g., [31, Section
4.4] or [13])

E[X(t)|X(0) = x0] = x0 e−b t +
µ

b
(1− e−b t),

V ar[X(t)|X(0) = x0] =
y0 σ2

b
(e−b t − e−2 b t) +

µσ2

2 b2
(1− e−b t)2.

(50)

The stationary density of X, as t →∞, is the Gamma distribution with asymp-
totic mean µ/b and variance µσ2/2 b2.

The analytical form of the distribution of the first-passage time variable T defined
in (1) is not available, thus only numerical and simulation techniques ([29], [16]) or
approximation methods (cfr. [14], [24]) can be used.

Closed expressions of the first two moments of eb T have been computed in [9]. By
using suitable martingales from the conditional moments (50) and applying Doob’s
Optional Stopping Theorem (cfr. [9, Appendix]) one gets:

E[eb T ] =
µ/b− x0

µ/b− S
, (51)

which exists finite provided
µ

b
> S; (52)

E[e2 b T ] =
(µ/b− x0)

2 + σ2/b (µ/2b− x0)

(µ/b− S)2 + σ2/b (µ/2b− S)
, (53)

which exists finite provided

µ

b
> S;

σ2

2 b
<

(µ/b− S)

(
√

1 + 2µ
σ2 − 1)

. (54)

Here again suitable conditions on the asymptotic mean and variance of the Feller
process must be imposed to ensure that E[eb λ T ] < +∞, when λ is a positive integer.

Following the same procedure used in [9] it is possible to compute the third and
fourth conditional moments of eb T for the Feller process. In particular we obtained

E[e3 b T ] =
(µ/b− x0)[2(µ/b− x0)

2 + 6σ2/b(µ/b− x0)− 3µσ2/b2] + 3σ4/b3(µ/3b− x0)

(µ/b− S)[2(µ/b− S)2 + 6σ2/b(µ/b− S)− 3µσ2/b2] + 3σ4/b3(µ/3b− S)
,

(55)

which exists finite provided
µ

b
> S and the denominator is > 0, and

E[e4 b T ] =
[(µ/b− x0)

2 + 3σ2/b(µ/b− x0)− 3 µσ2/2b2]2 + σ4/b3(2µ + 3σ2)(µ/4b− x0)

[(µ/b− S)2 + 3σ2/b(µ/b− S)− 3 µσ2/2b2]2 + σ4/b3(2µ + 3σ2)(µ/4b− S)
,

(56)
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which exists finite provided
µ

b
> S and the denominator is > 0.

We identify the functions f1(T ) ≡ eb T and f2(T ) ≡ e2 b T and the parameter vector
Θ = (θ1, θ2)

T with (µ, σ)T ∈ Ψ = {Θ : condition (54) holds}, Ψ ⊆ R×R+. We hence
employ the sample estimators (41). In this way we get the following moment type
estimators for µ and σ2:

Θ̂1,n = µ̂n =
b (SZ1,n − x0)

Z1,n − 1
, (57)

Θ̂2,n = σ̂2
n =

2 b (S − x0)
2(Z2,n − Z2

1,n)

(Z1,n − 1) [2(Z1,n − 1)(SZ2,n − x0)− (SZ1,n − x0)(Z2,n − 1)]
, (58)

for any n ≥ 1. Note that the denominator of (58) corrects a misprint in expression
(25) of [9] introducing a factor (Z1,n − 1) in the denominator.

Let now Θ0 = (µ0, σ0)
T ∈ Ψ denote the parameter values of the Feller process

and consider the sequences {µ̂n}n≥1 and {σ̂2
n}n≥1 of the moment type estimators (57)

and (58).

Consistency and asymptotic normality

The consistency of the estimators (57) and (58) immediately follows from Lemma
1 in Section 3 by choosing respectively

g(x) =
b (Sx− x0)

x− 1
,

h(x, y) =
2 b (S − x0)

2 (y − x2)

(x− 1)[2(x− 1)(Sy − x0)− (Sx− x0)(y − 1)]
.

(59)

As far as the asymptotic normality is concerned, let us firstly consider the se-
quence {µ̂n}n≥1. The conditions in Lemma 1 for the asymptotic normality of the
estimator are satisfied since the function g in (59) is continuously differentiable with

g′(E[eb T ]) = −b (µ/b− S)2

S − x0

6= 0

and
v(µ0, σ0) = (g′(E[eb T ]))2 V ar(eb T ) > 0.

Lemma 1 can be applied also to the sequence {σ̂2
n}n≥1 since the function h in

(59) is continuously differentiable.
The asymptotic normality thus holds with asymptotic variance

q(µ0, σ0) = ∇h(ξ1, ξ2)
T Σ∇h(ξ1, ξ2)

=

(
∂h

∂ξ1

)2

V ar(eb T ) +

(
∂h

∂ξ2

)2

V ar(e2 b T ) + 2
∂h

∂ξ1

∂h

∂ξ2

Cov(eb T , e2 b T ),

(60)
provided q(µ0, σ0) > 0, and the denominators in (55) and (56) are both > 0. Here
Σ is the covariance matrix defined in (45). The partial derivatives of the function h
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computed in (ξ1, ξ2)
T = (eb T , e2 b T )T are given by

∂

∂ξ1

h(ξ1, ξ2) = −2 b (S − x0)
2

{
ξ2
1 − 2ξ1 + ξ2

(ξ1 − 1)2 [2(ξ1 − 1)(Sξ2 − x0)− (Sξ1 − x0)(ξ2 − 1)]

+
(ξ2 − ξ2

1)[2(Sξ2 − x0)− S(ξ2 − 1)]

(ξ1 − 1)[2(ξ1 − 1)(Sξ2 − x0)− (Sξ1 − x0)(ξ2 − 1)]2

}
,

∂

∂ξ2

h(ξ1, ξ2) =
2 b (S − x0)

2(ξ1 − 1)(Sξ1 + x0)

[2(ξ1 − 1)(Sξ2 − x0)− (Sξ1 − x0)(ξ2 − 1)]2
.

(61)

Upper bounds for the rate of convergence

As far as the sequence {µ̂n}n≥1 is concerned, from Theorem 1 of Section 4 we
obtain the same uniform upper bound for |Gn(x)− Φ(x)| as in (47).

Analogously, for the sequence {σ̂2
n}n≥1 one gets from Theorem 2 of Section 4 the

same bound as in (48), where the required second order partial derivatives of h(ξ1, ξ2)
can be computed from (61).

6 Applications to neuronal models

One-dimensional diffusion processes X = {X(t), t ≥ 0} are often employed in neuro-
biological modeling literature to describe the time evolution of the membrane poten-
tial between two consecutive firings (or spikes) of a neuron. The values assumed by
the process X correspond to the differences between the physical value of the mem-
brane potential and a reference value x0 denoted as reference level. A spike or action
potential is elicited whenever X reaches for the first time a given threshold value S.
After a spike the potential is reset to its initial value, considered to coincide with the
resting level x0. The mathematical counterpart of the time between successive spikes
or interspike interval (ISI) is then the random variable first passage time T of the
process X defined in (1).

Different models can be considered depending on the assumptions about the
processing of incoming inputs to the neuron (cf. for instance [26], [32]). In particular
the OU process, known in this framework as the stochastic leaky integrate-and-fire
model, and the Feller process appear as good compromises between the computational
tractability and the realism of the neuronal models.

We should remark that within the framework of neurobiological applications the
parameter b appearing in the SDE’s (31) and (49) is identified with 1/τ , where τ > 0
is the membrane time constant and reflects spontaneous voltage decay in the absence
of neuronal input.

Note also that the five parameters on which the OU and the Feller process depend
can be divided in two groups: the intrinsic parameters τ , x0 and S, and the parameters
characterizing the net input, µ, and the variability around the mean, σ2. The first
ones pertain to the neuron irrespectively of the incoming input while the second
group depends on the signal impinging on the neuron and deeply influences its firing
behavior. Two firing regimes can be then distinguished for the model neuron. If the
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mean level µτ that the depolarization attains for t → ∞ exceeds S the neuron is in
the suprathreshold regime where the firing is rather regular. On the other hand if
µτ < S the cell is in the underthreshold regime where it could not fire in the absence
of the noise contribution. Due to the conditions required by (33) and (51) we will be
concerned here with the parameter estimation in the suprathreshold regime.

6.1 The OU process

To apply the results obtained in the previous Sections to the OU neuronal model
samples of FPT’s for the OU process were simulated by means of the methodology
proposed in ([15]). Following the most common lines in neuromodelling literature we
always chose S = 10 mV and τ = 10 ms, while the necessity to satisfy the constraints
of the existence of moments (33)-(39) and of the positivity of term (44) restricted the
choice for possible values of the other parameters. We considered the following three
sets of values for µ and σ2:

1. µ0 = 1.5 mV ms−1; σ2
0 = 0.8 mV 2ms−1;

2. µ0 = 1.25 mV ms−1; σ2
0 = 0.1 mV 2ms−1;

3. µ0 = 2 mV ms−1; σ2
0 = 2.5 mV 2ms−1.

We executed a series of M = 1000 simulations for each sample size chosen in
correspondence with each one of the three parameter sets: n = 100, 500, 1000, 4000.
For each simulation batch N = 10000 realizations of the FPT were obtained. In Table
1 we show the mean values of the estimators obtained:

µ̂n =
1

M

M∑
i=1

µ̂n,i; σ̂
2

n =
1

M

M∑
i=1

σ̂2
n,i (62)

together with the standard errors σµ̂n
, σ

σ̂
2
n

and the asymptotic standard errors σas
µ̂n

=√
v(µ0,σ0)

n
and σas

σ̂
2
n

=
√

q(µ0,σ0)
n

.

The estimates for the parameter µ always appear to be unbiased and with small
variance while the behavior of the estimator for the parameter σ2 is worse.

The small oscillations in the values of µ̂n as n increases are due to the compu-
tational imprecisions caused by the huge number of simulations run to obtain the
required samples of FPT’s.

To get a better insight into the goodness of the approximation of the distribution
of the estimators with the normal one as a function of the sample size employed we
show in Table 2 the upper bounds obtained by means of a suitable implementation
of formulae (47) and (48) respectively for n = 100 and n = 4000. Here Term 2 and

Term 3 refer to the terms of order n−1/2 and (εn

√
n)
−1

in such formulae respectively
(we chose εn = n−1/4).

Though the distribution of µ̂n appears to be better approximated by the normal
one for every sample size with respect to the distribution of σ̂2

n, it is however possible
to employ such approximation for the estimator of σ2 for sample sizes that do not
exceed some thousands. This is important in the field of neurobiological modeling
since available sample sizes of recorded ISIs cannot be greater. Moreover one can also
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remark that the lack of normality in the distribution of σ̂2
n reported in [8] was due to

the fact that the parameters chosen did not satisfy all the constraints quoted above.
To confirm these results we show in Fig. 1 the normal quantile plots corresponding

to the distribution of the estimators µ̂n and σ̂2
n in case 2. for n = 100 and n = 4000.

6.2 The Feller process

The model which is known in the theoretical neurobiological literature as Feller model
is characterized by the additional parameter VI < 0, which represents the inhibitory
reversal potential, with respect to the process described by means of (49). The
corresponding SDE is the following:

dX(t) = (µ− bX(t))dt + σ
√

X(t)− VI dW (t); X(0) = x0, (63)

and the diffusion interval is [VI ,∞]. While the value of the parameter VI can be ob-
tained by means of neurophysiological measurements, a simple linear transformation
changes the process X(t) defined in (63) into the process X(t) solution to (49). Using
the same simulation methodology for the simulation of FPT’s of diffusion processes
as for the OU model we obtained samples of ISI values for the Feller neuronal model
described by means of eq. (49). We chose here S = 20 mV, x0 = 10 mV and τ = 10
ms, while to satisfy the constraints required for the existence of (51)-(56) and of (60)
we selected the following three sets of values for µ and σ2:

1. µ0 = 4.0 mV ms−1; σ2
0 = 0.5 mV ms−1;

2. µ0 = 5.0 mV ms−1; σ2
0 = 1.0 mV ms−1;

3. µ0 = 4.5 mV ms−1; σ2
0 = 1.0 mV ms−1.

The simulations were executed with the same criteria as for the OU model. The
mean values of the estimators:

µ̂n =
1

M

M∑
i=1

µ̂n,i; σ̂
2

n =
1

M

M∑
i=1

σ̂2
n,i (64)

together with the corresponding standard errors and the asymptotic standard errors
are shown in Table 3.

Here again the estimates for the parameter µ appear always better then those for
σ2.

In Table 4 we show the results obtained by estimating (47) and (48) on the basis
of the simulated sample data respectively for n = 100 and n = 4000.

Also in the case of the Feller model the normal approximation for the distribution
of µ̂n appears to hold already for small sample sizes and such approximation holds
better for every sample size with respect to the analogous one for the distribution
of σ̂2

n. In this last case larger sample sizes have to be employed to get a good
approximation, however some proximity within the real distribution of the estimator
and the asymptotic normal one can be achieved already for samples of some thousands
of data.

A graphical confirmation of such behavior is given in Fig. 2 where normal quantile
plots corresponding respectively to the distribution of the estimator µ̂n and σ̂2

n in
case 3. for n = 100 and n = 4000 are shown.
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Case n µ̂n σµ̂n
σas

µ̂n
σ̂

2

n σ
σ̂

2
n

σas

σ̂
2
n

1 100 1.498 0.0295 0.0309 0.724 0.2095 0.7848
1 500 1.497 0.0137 0.0138 0.769 0.1423 0.3510
1 1000 1.495 0.0099 0.0098 0.778 0.1181 0.2482
1 4000 1.496 0.0048 0.0049 0.782 0.0639 0.1241

2 100 1.249 0.0086 0.0090 0.096 0.0232 0.0295
2 500 1.248 0.0039 0.0040 0.098 0.0122 0.0132
2 1000 1.248 0.0028 0.0029 0.098 0.0087 0.0093
2 4000 1.248 0.0015 0.0014 0.099 0.0043 0.0047

3 100 1.993 0.0644 0.0655 2.299 0.7056 1.3591
3 500 1.991 0.0282 0.0293 2.407 0.4377 0.6078
3 1000 1.989 0.0208 0.0207 2.426 0.2901 0.4298
3 4000 1.989 0.0108 0.0104 2.443 0.1825 0.2149

Table 1: Estimates for the OU process

Bounds for µ̂n Bounds for σ̂2
n

Case/n Term 2 Term 3 Total Term 2 Term 3 Total
1/100 0.3817 0.1952 0.8931 0.6828 0.3207 1.3197
1/4000 0.0604 0.0776 0.2637 0.1206 0.1740 0.4203

2/100 0.2235 0.1142 0.6539 0.6215 0.3835 1.3212
2/4000 0.0353 0.0454 0.2065 0.1193 0.2216 0.4666

3/100 0.3169 0.2070 0.8401 0.5752 0.3596 1.2510
3/4000 0.0501 0.0823 0.2582 0.0909 0.2377 0.4543

Table 2: Upper bounds for the estimators of µ and σ2
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Case n µ̂n σµ̂N
σas

µ̂n
σ̂

2

n σ
σ̂

2
n

σas

σ̂
2
n

1 100 3.981 0.1354 0.1414 0.467 0.1571 0.2244
1 500 3.976 0.0614 0.0632 0.481 0.0820 0.1003
1 1000 3.975 0.0453 0.0447 0.489 0.0667 0.0710
1 4000 3.975 0.0218 0.0224 0.487 0.0339 0.0355

2 100 4.955 0.2210 0.2283 0.926 0.2898 0.4047
2 500 4.943 0.1005 0.1021 0.944 0.1512 0.1810
2 1000 4.941 0.0697 0.0722 0.954 0.1194 0.1280
2 4000 4.940 0.0354 0.0104 0.953 0.0576 0.0640

3 100 4.461 0.2133 0.2137 0.903 0.3174 0.5726
3 500 4.443 0.0928 0.0956 0.953 0.2082 0.2561
3 1000 4.446 0.0675 0.0676 0.952 0.1524 0.1811
3 4000 4.444 0.0328 0.0338 0.957 0.0728 0.0905

Table 3: Estimates for the Feller process

Bounds for µ̂n Bounds for σ̂2
n

Case/n Term 2 Term 3 Total Term 2 Term 3 Total
1/100 0.3098 0.2236 0.8497 0.5312 0.4217 1.2691
1/4000 0.0490 0.0889 0.2636 0.0840 0.2886 0.4983

2/100 0.2869 0.2406 0.8438 0.6836 0.5529 1.5527
2/4000 0.0454 0.0957 0.2668 0.1051 0.4181 0.6489

3/100 0.3493 0.2703 0.9358 0.3214 0.5019 1.1395
3/4000 0.0552 0.1075 0.2885 0.0508 0.3407 0.5172

Table 4: Upper bounds for the estimators of µ and σ2
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Figure 1: Normal quantile plots for µ̂n and σ̂2
n, case 2., n = 100 (A1-A2) and

n = 4000 (B1-B2)
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Figure 2: Normal quantile plots for µ̂n and σ̂2
n, case 3., n = 100 (A1-A2) and

n = 4000 (B1-B2)
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