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Abstract

Simultaneous recordings from groups of neurons request to improve models. To switch
from single unit description to multivariate models describing the coding activity
of two or more neurons, we propose to use the copula notion. This mathematical
object catches the coupling properties and allows a mathematical description of the
dependencies between two or more random variables. Its use is here illustrated by
means of toy examples and further applications are discussed.

1 Introduction

Data from simultaneous recording of groups of neurons allow to detect the existence of
precise temporal relations in sequences of spike intervals, referred to as ‘spatiotemporal
patterns’ and brain theories emphazise the role of temporal coding. Several experimental
and theoretical observations support the hypothesis of the existence of dynamical cell
assemblies as organizational principle of higher brain activity ([1, 3, 26, 12, 28, 27]). The
cell assembly is formed by a population of neurons that spontaneously organizes on the
basis of a sequence of input patterns of spikes and reproduces the same spatio-temporal
activity whenever the same input pattern is presented ([2, 14]). Moreover, syntony of firing,
i.e. correlated activity of firing at variable coarse grain time scales (cf. [9]), suggests that
the same neuron might participate to distinct cell assemblies following the kind of brain
process associated to the coding schema enabled by the “ignition” of the cell assembly
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itself. For a brief but deep analysis of features and problems involved in neural coding
and spike trains relationships see for example [24].

Mathematical models of single neuronal units are used to help the understanding of
neuronal coding mechanisms and it exists a large literature on this topic. Hogkin and
Huxley type models and leaky integrate–and–fire stochastic models are typical examples
of single neuron spiking activity models, for a review see for example [25, 23]. On the
contrary there have been few attemps to develop mathematical models to describe small
or large neuronal networks and the existing results are mainly of simulation type. Cross-
correlation histograms are a precious support to the study of relationships between neurons
and hence to the analysis of multivariate models, but they photograph a mean behavior
and can lose part of the information. It seems of interest to develop alternative methods
to keep into account the complete bivariate or multivariate behavior avoiding to lose
information in the averaging procedure. The use of the entire information contained in
the spike train becomes useful both from the statistical and model point of view. Hence we
focus here on a methodology capable of capturing the structure of dependencies between
random variables.

Multivariate models are an investigation topic also in areas different from neurosciences
such as financial markets models, cf. for example [15]. In that context copulas are a
mathematical tool largely used to study dependency properties. In this paper we propose
to mutuate this approach to study multiple spike trains dependencies. Compared to
the joint distribution approach or correlation-based approach, a copula model is a more
convenient tool in studying the dependence structure. In statistics, a copula is a function
that connects the marginal distributions to restore the joint distribution and different
copula functions represent different dependence structures between variables (cf. [20]).
In a copula model, the primary task is to choose an appropriate copula function and
a corresponding estimation procedure. Marginal distributions play a role as nuisance
functions. This reorientation seems perfect to investigate spatio temporal patterns in
spike trains. Indeed non significative patterns can be thought as random patterns arising
from the fortuite merging of the marginals while significative ones should be related with
the dependency structure determined by common inputs to the neurons.

Despite their diffusion in market models copulas have not yet been used in neuroscience
context and the only exception is an insufficiently underlined paper by Jenison and Reale
[16]. However many applications of the copula notion in neuroscience could be made.
Indeed they are a good mathematical tool to develop models but they can also be used
for statistical studies of data or to simulate specific dependencies structures to understand
causes that can generate significative patterns.

The paper is organized as follows. In Section 2 we review some basic concepts about
copulas while in Section 3 we introduce the basic ideas for the use of copulas in neu-
rosciences and we use two toy models for the coupling of two neurons to illustrate the
usefulness of the method. We postpone to future papers other applications of the copula
notion to real data analysis or to the simulation of specific dependency structure for count-
ing processes. By means of the proposed toy models we also show how some dependency
structure can become unobservable using cross correlograms while they are visible with
the copula approach.
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2 Copula definition and first properties

To define a copula we first consider k uniform random variables U1,..., Uk on [0, 1]×...×[0, 1]
that are assumed not necessarily independent but related through their joint distribution
function as

C (u1, ..., uk) = P (U1 ≤ u1, ...Uk ≤ uk) . (2.1)

The function C is called ”copula”. Consider now k ≥ 2 arbitrary marginal distribution
functions F1 (x1) , ...Fk (xk), then it is easy to check that the function

C [F1 (x1) , ...Fk (xk)] = F (x1, ..., xk) , (2.2)

defines a multivariate distribution function with marginals F1 (x1) , ..., Fk (xk). Sklar esta-
bilished that also the converse is true, indeed he proved that any multivariate distribution
function F can be written in the form of Equation (2.2). Hence any joint distribution
function admits a copula representation. Sklar’s theorem also claims that if the marginal
distributions are continuous then there is a unique copula representation.

Note that eq. (2.2) defines different multivariate distributions if marginals are changed.
Otherwise, the coupling structure does not change with marginal distributions, while it
varies if the copula function is changed. The copula is invariant under increasing and con-
tinuous transformations, i.e. it is scale free, hence avoiding the assumption that dimensions
of the marginals are independent.

The joint study of several spike trains requests the use of multivariate distributions.
An extensive literature in statistics deals with nonnormal multivariate distributions; see,
for example [19, 18]. Many multivariate distributions have been developed as extensions
of univariate distributions, examples being the bivariate Pareto, bivariate gamma, and so
on. These types of distributions have a set of disadvantages: i) each bivariate family is
built with respect to specific marginal distributions whose change implies the rebuilding
of a new bivariate family, ii) extensions to more than just the bivariate case are often
unhandy, and iii) the parameters characterizing the dependency between the components
appear both in the marginal distributions and in the joint distribution. A technique to
construct multivariate distributions that overcomes these difficulties is based on copula
functions.

The word copula comes from Latin where it refers to a connection and is used in
linguistics to refer to a proposition that links a subject to a predicate. In statistics litera-
ture, the idea of copulas arose as early as the 19th century in the context of the search of
non-normality in multivariate cases. The word “copula” was first used in a mathematical
sense by Sklar (1959) who defined it, provided some fundamental properties and proved
the fundamental theorem which bears his name. Mathematically a copula is a function
which joins or “couples” a multivariate distribution function (i.e. the distribution of two
or more random variables) to its one-dimensional marginal distribution functions. A use-
ful property of copulas is that they are scale free. Indeed, as Fisher (1997) notes in the
Encyclopedia of Statistical Sciences, “Copulas [are] of interest to statisticians for two main
reasons: first, as a way of studying scale-free measures of dependence; and secondly, as
a starting point for constructing families of bivariate distributions, ...”. In probability
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theory, copulas functions are used to couple marginal distributions to form flexible multi-
variate distribution functions.

The simplest example of copula, in the bivariate case, is the independent copula which
is defined as C(u, v) = uv, (u, v) ∈ [0, 1] × [0, 1]. More complex copula functions usually
contain one or more parameters, which are also called association parameters. If only one
parameter appears in a copula function, this parameter usually reflects the strength of the
dependence. Consider for example the following copula function,

Cθ(u, v) = uv exp(−θ ln u ln v), θ ∈ (0, 1], (u, v) ∈ [0, 1] × [0, 1]. (2.3)

For θ = 0 it reduces to the independent copula. A continuous copula C(u, v) can also be
characterized through its probability density function, given by

c (u, v) =
∂C (u, v)

∂u∂v
. (2.4)

For example, the independent copula has probability density function c (u, v) = 1, (u, v) ∈
[0, 1]× [0, 1], i.e. the dependence is flat on [0, 1]× [0, 1]. In Fig. 1 we compare the bivariate
densities when marginals are independent with the case of dependence corresponding to
the copula (2.3). Different couples of marginals are considered in this figure.
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Figure 1: Joint density functions for a couple of random variables (X,Y ) (panels a,b,d,e)
and density functions of the corresponding copulas (panels c,f). In panels a and b, the
marginal distributions are two Exponential random variables of parameter 1 and two
standard Gaussian random variables respectively. The marginals are coupled by the copula
function in eq. (2.3), whose density is represented in panel c, for θ = 1. In panels d and
e, the same marginal distributions as in panels a and b respectively are coupled with the
independent copula, whose density is represented in panel f.

Working with copula models has important advantages compared to joint distribu-
tions. Indeed it is more flexible in applications, since, when the scatter of the data does
not fit any known family of joint distributions, it may be difficult to specify the joint
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distribution. Using copulas, we can first estimate the marginal distributions and then
estimate the copula. This two step approach allows the use of single neuron models for
the marginal spike activity description. Furthermore in a copula model approach the de-
pendence function is explicitly expressed and this allows to relate directly the effect of an
input on the network to the copula structure. Despite Sklar’s theorem that guarantees
the existence of the copula function it is not always easy to identify the copula. Various
methods exist both from model and statistical point of view (cf. [20, 17]), but we will not
focus on the mathematical details which are out of the scope of this paper.

3 Copulas in neurosciences

The long lasting interaction between mathematics and neurosciences has allowed the for-
mulation of a variety of models for single neuron coding activity. Depending upon the
grade of detail included in the mathematical description, the proposed models can range
from phenomenological ones, like leaky integrate–and–fire type models, to detailed bio-
physical ones, like Hodgkin and Huxley models. The theoretical study of these models
and their variant has occupied mathematicians for a couple of decades since seventies
and has request strong mathematical efforts. Nowadays specific numerical techniques and
analytical results for single neuron activity models are available. Single neuron models
were developed when the experimental techniques allowed the recording only from a single
neuron. The variety of results on input–output relationships descending from the use of
these models has then maintained their interest for scientists.

Since more than two decades have been developed multielectrodes that, with an in-
creasing level of technology, allow to record simultaneously from two or more neurons. The
necessity then arises to formulate models for networks and to analyze data coming from
the activity of two or more neurons. This implies two main directions for the research:

1. the development of suitable statistical methods;
2. the development of multivariate mathematical models.
As far as the first topic is concerned the typical approach consists in using crosscorrel-

ograms. This method has allowed important progresses in the study of temporal patterns
but does not suggest specific rules to build models, being difficult its reading in terms
of cause effect features that go beyond the basic ones such as excitation, inhibition and
independency. The second topic is largely considered in the literature where small and
large network have been considered with different methods. Unfortunately the largest part
of these models renounce the analytical approach and make use of simulation algorithms
or to computer science approaches.

Use of copulas could open new research direction both on statistical and model view
point.

1. Statistical methods

Given experimental data simultaneously recorded from two or more neurons it may be
interesting to determine the copula that fits the data. This corresponds to look for the
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copula coupling two or more point processes and is a subject of statistical investigation
implying many mathematical open questions (cf. for example [17, 22, 6, 8, 21]).

A first step of the study should consider a simpler frame. In many single neuron
models one focus on the time, when an action potential is elicited and the collection of
spikes intertimes is studied as a sample from independent identically distributed random
variables. In this frame, one could investigate the dependency between T1, ..., Tk where k

is the number of neurons recorded. This implies the study of the collected data recovering
their marginal distribution, i.e. the distribution of each Ti, i = 1, ..., k , and the copula
structure catching their multivariate dependency. Statistical methods to select the right
copula and to estimate its parameters are discussed in [7, 11, 10] while in [30] one can find
instruction for R code software to use copulas for fitting data.

Limiting the attention to the coupling of times until the first spike of different neurons,
we can use scatterplots of the copula to argue particular dependencies and to hypothesize
the copula expression. Then, the estimation of different association indexes, such as the
correlation coefficient ρ, or the Kendall’s τ or the Spearman’s ρ can give hints on the
estimation of the parameters of the copula (for a precise definition of the cited measures
of dependence see for example [20]).

An extensive study on data should be performed to recognize the copulas that can fit
different experimental instances, in the hope to recognize some law in the coupling pro-
cedure that could allow to make hypothesis on the mechanisms generating the different
shapes. This approach requests the availability of a large quantity of recordings of station-
ary spike trains and may open some practical problems besides to the mathematical ones.
We postpone the study on recorded data to a future paper.while here we limit ourself to
the use best fit statistical tests to analyse simulated data.

1. Modeling approach

Statistics can help to understand observed features on neural networks, suggesting how
to fit experimental data to determine a statistical model. When the statistical model can
be related with special cause effect features it also helps to understand the rules governing
the phenomenon. Alternatively one can have a partial phenomenological knowledge of
the physical laws governing the network connections. In these cases one can formulate a
mathematical model catching the rules governing the phenomenon. When one studies the
coupling between spike times of different neurons in simultaneous activity one can argue
the type of connections between neurons and use this information to formulate models.
A similar approach was fruitful of consequences in single neuron leaky integrate and fire
models. After the pioneering work [13], that was partly motivated by statistical evidences,
an enormous literature has appeared on possible features that had to be inserted in a
”good” model (spontaneous membrane potential decay, presence of reversal potentials,
refractory period) and on the consequences of each new variation (see [5] for a review
on the subject). Working in analogy with those models we should focus on the sources
of coupling between neurons to determine a copula catching the dependency structure.
Hence coupling models and marginal behaviors are inserted in the model. Eventually,
marginals can be described by means of standard models for single neuron activity. This
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approach should help to distinguish random patterns, related to marginal distributions,
from significant ones, related to the coupling effect.

Copulas can catch the dependencies between two or more random variables and models
for groups of neurons could be built in perfectly analogy with models of two or three neu-
rons. Having in our mind the simple illustration of the methodology and of its power we
limit ourself to the discussion of two toys examples. These examples do not pretend any
realism but they are simple enough to illustrate the importance of copulas to researchers
without a strong mathematical background. Extensions to larger dimensions can intro-
duce further mathematical difficulties, that should be solved, but conceptually should not
change the approach.

3.1 Two neurons coupled by a third one

A

B C

B C

time [ms] time [ms]

Figure 2: Two neurons, B and C, both receiving the same inputs from neuron A.

Let us consider a small network composed by three neurons, A, B and C, as illustrated
in Fig. 2. Let TA, TB and TC be the times of firing of units A, B and C respectively,
in the absence of connections between the three units. Let A be excitatory for both
neurons B and C, so that an action potential generated by neuron A makes both B and
C fire simultaneously. Hence, in the presence of connections between the elements of the
network, the firing times of B and C are

τB = min(TA, TB),

τC = min(TA, TC). (3.1)

For simplicity let us assume that TA, TB and TC are exponentially distributed with param-
eters λA, λB , λC respectively. In this case simple computations (cf. Appendix 1) show that
the spiking times of neuron B and C, (τB , τC), are coupled through the copula function

C (u, v) = min
(

(1 − u)1−α(1 − v), (1 − v)1−β(1 − u)
)

+ u + v − 1, (3.2)

where α = λA

λB+λA
and β = λA

λC+λA
. The survival copula for (τB , τC) is the well known

Marshall-Olkin copula, cf. [20]. Fig. 3 illustrates the probability density function of the
copula (3) and Fig. 4 shows the corresponding scatterplots of the joint variables (τB, τC).
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Figure 3: Density function of the copula (3.2) for λB = λC = 20 ev/s and λA = 1 ev/s
(panel a), λA = 100 ev/s (panel b).
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Figure 4: Scatter plot of the couple (τB , τC), with joint distribution given by the copula
(3.2), for λB = λC = 20 ev/s and λA = 1 ev/s (left panel), λA = 100 ev/s (right panel).
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The coupling effect of neuron A is illustrated by the presence of a large number of points on
the diagonal line of Fig. 4–right panel. Indeed these points correspond to the synchronous
firing of neurons B and C, induced by A.

The model above introduced is very simple and gives only the joint distribution of
the interpike intervals (τB , τC). In order to get the two spike trains, given the interspike
intervals (ISIs), we should build the corresponding sequence of successive spikes events.
The most natural method to do it is to paste one after the other the ISIs generated with
distributions τB and τC . However, this method definitely destroys the coupling between
the two spike trains. Indeed, the coupling between the ISIs of cells B and C joins together
two inter-times, but if the coupled ISIs are separated by other spikes (and constructing
the spike train it could happen due to the relative delays gradually accumulated), the
dependency is lost. In other words we could say that the coupling of (τB , τC) is a first-
order dependency and it hides when the coupled spikes are separated becoming higher-
order intervals (see for example Fig. 5, left panel).

The simplest choice which preserves the coupling between B and C is to build the
spike trains pasting the joint realizations of (τB , τC) one after the other, as shown in Fig.
5, right panel.

τ 1

B
τ 2

B
τ 3

B

τ 1

C
τ 2

C
τ 3

C

Spike 

train

cell B

Spike 

train

cell C

resetting times

Spike 

train

cell B

Spike 

train

cell C

τ 1

B
τ 2

B
τ 3

B

τ 1

C
τ 2

C
τ 3

C

Figure 5: Resetting procedure to build the spike train from the random variable (τB, τC).
The system is reset after the generation of the couple of spikes, from B and from C.

Let us remark that this model is quite unrealistic but it is simple enough to show some
features of the association property in the two time series. The law used to model this
network and to generate the time series guarantees the presence of a dependence between
the ISIs of neurons B and C. The copula in eq. (3.2) captures the dependency between
the spikes of neurons B and C and this dependency is maintained in the subsequent spikes
of the two neurons.

The coupling is catched also by the cross-correlation histograms shown in Fig. 6.
From there we deduce that cells B and C, with high probability, fire simultaneously, but
no suggestions about the modeled network that could produce such an output is given.
Furthermore the observed dependency cannot be used to build the bivariate distribution
of (τB, τC) without the aid of the copula notion.

Even if very simple, the model above introduced is more adequate to deal with the
problem than it seems at first sight. Indeed the hypothesis of independent Exponential
distribution of the marginal firing times TA, TB and TC in the absence of connections,
could be replaced with any other probability distribution, getting similar results as before
for the distribution in the presence of connections between the cells A, B and C as given
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Figure 6: Cross-correlation histograms of the spike trains of cells B (trigger) and C (fol-
lower), for λB = λC = 20 ev/s and λA = 1 ev/s (panel a), λA = 100 ev/s (panel b). Note
that the vertical axes in the two panels have different ranges.

in Fig. 2. Given that TA, TB and TC , in the absence of any connection, are independent
and identically distributed (and this is quite weak and natural assumption), the copula
that joins (τB , τC) is again given by equation (3.2), with parameters α = β = 0.5. This
claim can be proved both theoretically (but for simplicity we omit here the calculations)
and statistically, performing the goodness of fit test illustrated for example in [10, 4].
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Figure 7: Scatter plot of the couple (τB, τC), with Inverse Gaussian marginal distributions,
with parameters (common to the three identical marginal distribution in the absence of
connections) µ = 0.2 mVms−1, S = 10 mV, x0 = 0 mV and σ2 = 20 mV2ms−1 (left
panel), σ2 = 1 mV2ms−1 (right panel).

For example let us consider TA, TB and TC independent identical Inverse Gaussian
(IG) random variables. Let us recall that the IG is the ISI distribution of a neuron
modeled as a perfect integrator, with drift µ, diffusion coefficient σ2, threshold S and
resetting potential x0 as will be considered later in eq. (3.3). In Fig. 7 are illustrated the
scatterplot of the joint variables (τB, τC) given by the expressions (3.1) for two different
choices of the parameters. Even if the patterns of plotted points can be recognized as very
different with respect to the ones given in Fig. 4 where the marginal times TA, TB and
TC were Exponentially distributed, the copula that joins them is again given by equation
(3.2) (in both cases the statistical test for the goodness of fit gives p–value ¿ 0.5).

We would like to stress that this result means that even if the marginal distributions,
and hence the joint distributions, are changed the copula is the same, meaning that it
describes the deep structure of the dependency rid of the marginal behaviors. Hence
finding the copula that fits real data gives informations on the dependency between he
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registered units and may suggest a model of the network that could produce the sampled
spike trains.

3.2 Two neurons subject to the same random input

Let us consider two neurons, D and E, modeled as perfect integrators, i.e. the membrane
potentials V D

t and V E
t respectively are given by the stochastic differential equations

dV D
t = µDdt + σDdW D

t , (3.3)

dV E
t = µEdt + σEdW E

t , (3.4)

with V D
0 = V E

0 = 0 mV, σD and σE positive (σ2
E is measured as mV2ms−1) and W D

t and
W E

t are two independent Brownian motions. The parameters µD and µE are called drift
terms and can be interpreted as the intensity of the external inputs arriving to the neuron,
while σD and σE are called diffusion coefficients and accounts for the variability of the
incoming inputs. In this model, when the membrane potential attains a threshold value
S, the neuron releases a spike and the membrane potential is reset to its resting value, V D

0

and V E
0 respectively. Hence the ISIs correspond to the subsequent first passage times TD

and TE (FPT) of the membrane potential processes through the threshold S. For a review
see for example [25]. It is well known that the mean and variance of the ISI distribution
are:

E(TD) =
S

µD
, Var(TD) =

Sσ2
D

µ3
D

, (3.5)

and completely similar equations hold for neuron E.

D E

D E

time [ms] time [ms]

Figure 8: Neurons D and E receive the same input signal.

We consider here a generalization of this model where the two neurons D and E are
subject to the same random input term, as in Fig. 8. Since the post-synaptic potentials
arriving to a neuron have large variability and fluctuations in time, the hypothesis that
the input parameter is a random variable is quite natural. However it seems reasonable
to assume that neurons included in the same network could share the same inputs. Hence
µD and µE are no more considered constant parameters, but a random variable that
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we suppose exponentially distributed with parameter λ. Notice that larger values of λ

imply smaller mean values for the drift parameter and hence larger mean interspike times
E(TD) = E(TE). The presence of the common input determines a coupling between spike
times of the two neurons, as illustrated in Fig. 9. Both scatter plots show a high density
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Figure 9: Scatter plot of the couple (TD, TE), for S = 10 mV , σ2
D = σ2

E = 1 mV2ms−1

and λ = 5 (left panel), λ = 10 (right panel).

of events around the diagonal line, TD = TE, but as λ increases, and hence the mean
interspike intervals becomes larger, the pattern of points increases its variability. This
feature is related to the increased value of Var(TD) and Var(TE), cf eq. (3.5). Analytical
computations can be performed only in a very specific instance but a statistical study
of the joint ISI distribution shows that the resulting copula is well fitted by the Gumbel
copula (cf. [20]).

Using this model we generate two spike trains with the same resetting procedure pro-
posed in the previous Section, cf. Fig. 5. We plot the corresponding cross-correlation
histograms in Fig. 10. The cross-correlation histograms recognize the coupling between
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Figure 10: Cross-correlation histograms of the spike trains of cells D (trigger) and E

(follower), for S = 10mV , σ2
D = σ2

E = 1 mV2ms−1 and λ = 5 (panel a), λ = 10 (panel b).

the two spike trains when λ is small enough (Fig. 10–a), while the peak around lag zero is
not statistically significant when λ increases, cf. Fig. 10–b. This fact illustrates a deeper
ability of copulas in recognizing eventually weak dependencies and suggests to introduce
the use of copulas in data analysis in order to recover dependencies that could be hidden
using crosscorrelograms.

Moreover we would stress that once the copula is estimated from data, it may give
a hint of the modeled interactions between cells that could produce the registered data.
Hence, it appears that copulas are a useful tool both to describe the dependency identified
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from data and to suggest a most probable model of interaction between the units involved
in the analysis.

4 Conclusions

An alternative approach to the study of coupling of two or more neurons is proposed by
suggesting the use of the notion of copula. Advantages of this approach are illustrated
by means of unrefined examples that do not pretend any realism but allow to show some
difficulties related with the use of crosscorrelograms. This is a preliminary work on the
subject and future works should consider more sophisticated models. In particular cou-
pling of counting processes through copulas seems a direction that should be investigated
although the available mathematical results on this topic seem not yet well suited to be
applied to neurosciences. Furthermore a statistical study of simultaneously recorded data,
devoted to the recognition of the copula fitting the data, could give some light on the cou-
pling mechanisms governing the network suggesting the most probable model that gives
the registered data. Finally, we would like to suggest the use of copulas for the simulation
of large networks, according to an agent based approach (cf. [29]). This should allow
the study of long term association properties and eventually of macroscopic features of
a large network. Copulas seem particularly well suited for this goal since methods exist
for recursive generation that allow to move from coupling of two objects to coupling of a
larger number of objects.

Appendix

Let TA, TB and TC be independent Exponential random variables of parameters λA, λB

and λC respectively. Let τB = min(TA, TB) and τC = min(TA, TC). The goal is to find the
copula function C such that

C(FB(x), FC(y)) = H(x, y) (4.1)

where FB and FC are the marginal distribution functions of τB and τC , and H is the joint
distribution function of the couple (τB, τC).

Let us denote the joint survival function as H̄(x, y) = P(τB > x, τC > y). Hence we
have

H̄(x, y) = P(min(TA, TB) > x,min(TA, TC) > y) (4.2)

= P(TA > x, TB > x, TA > y, TC > y)

= P(TB > x, TC > y, TA > max(x, y))

= P(TB > x)P(TC > y)P(TA > max(x, y))

= exp[−(λBx + λCy + λA max(x, y))].
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The marginal survival function F̄B is given by

F̄B(x) = P(min(TA, TB) > x)

= P(TA > x, TB > x)

= exp[−(λA + λB)x],

and analogously F̄C(y) = P(min(TA, TC) > y) = exp[−(λA + λB)y]. Hence, being
max(x, y) = x + y − min(x, y), eq. (4.2) can be rewritten as

H̄(x, y) = F̄B(x)F̄C (y) exp(λA min(x, y))

= F̄B(x)F̄C (y)min(eλAx, eλAy)

= F̄B(x)F̄C (y)min(F̄B(x)−λA/λB+λA , F̄C(x)−λA/λC+λA).

It follows that the survival copula function, defined as C̄(F̄B(x), F̄C (y)) = H̄(x, y), is given
by

C̄(u, v) = uv min(u−α, v−β),

where α = λA

λA+λB
and β = λA

λA+λC
. Given that the relation between the survival copula

and the copula functions is given by

C(1 − u, 1 − v) = C̄(u, v) − u − v + 1,

we finally get that

C(u, v) = min
(

(1 − u)1−α(1 − v), (1 − v)1−β(1 − u)
)

+ u + v − 1.
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