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Entire extensions and exponential decay for

semilinear elliptic equations

Marco Cappiello a, Todor Gramchev b and Luigi Rodino c

Abstract

We consider semilinear partial differential equations in Rn of the form∑
|α|
m +

|β|
k ≤1

cαβx
βDα

xu = F (u)

where k and m are given positive integers. Relevant examples are semilinear
Schrödinger equations

−∆u+ V (x)u = F (u)

where the potential V (x) is given by an elliptic polynomial. We propose tech-
niques, based on anisotropic generalizations of the global ellipticity condition
of M. Shubin and multiparameter Picard type schemes in spaces of entire func-
tions, which lead to new results for entire extensions and asymptotic behaviour
of the solutions. Namely we study solutions (eigenfunctions and homoclinics) in
the framework of the Gelfand-Shilov spaces Sµν (Rn). Critical thresholds are iden-
tified for the indices µ and ν, corresponding to analytic regularity and asymp-
totic decay, respectively. In the one-dimensional case −u′′ + V (x)u = F (u) our
results for linear equations link up with those given by the classical asymp-
totic theory and by the theory of ODE in the complex domain, whereas for
homoclinics new phenomena concerning analytic extensions are described.

2000 Mathematical Subject Classification: Primary 35B65, Secondary 35B40.

1 Introduction and main results

In this paper we study the exponential decay and the holomorphic extensions of
the solutions to semilinear equations of the form Pu = F (u) globally defined in Rn,
where the linear term P is an anisotropic globally elliptic partial differential ope-
rator with polynomial coefficients, cf. Shubin [23], Helffer [15], Boggiatto, Buzano
and Rodino [3]. Such class of operators generalize the Schrödinger operators with
elliptic polynomial potentials

H = −∆ + V (x), x ∈ Rn. (1.1)

To introduce the reader to our results and to the function spaces used in the follow-
ing, let us consider (1.1) in the one-dimensional case

Hu = −u′′(x) + (a0x
2h + a1x

2h−1 + . . .+ a2h)u(x), x ∈ R, (1.2)
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where h is a positive integer, aj ∈ C, j = 0, 1, . . . , 2h, and

a0 6∈ R− ∪ {0}. (1.3)

Note the study of the asymptotic behaviour of the solutions of

−u′′(x) + (a0x
2h + a1x

2h−1 + . . .+ a2h)u(x) = 0 (1.4)

for x → ∞ is a classical subject and interesting “per se” in the asymptotic theory
of linear ODEs (we cite some fundamental works: Sibuya [24], [25], Szegö [26],
Wasov [28], see also Mascarello and Rodino [17], Chapter 7). For the solutions
u ∈ L2(R) of (1.4), the theory of the asymptotic integration implies that u decays
like exp(−ε|x|h+1), ε > 0, for x→∞. Main issue in the following will be to combine
this information on the decay with the one on the regularity. Namely, it will follow
from our results that such solutions, extending to entire functions u(z) in the complex
domain, satisfy for some A > 0, ε > 0 an estimate of the form

|∂αz u(z)| ≤ A|α|+1(α!)h/(h+1)e−ε|z|
h+1

(1.5)

for z in a conic neighborhood of the real axis in C. Such estimates, with term
(α!)h/(h+1) for α-derivatives, are optimal and, as far as we know, new in literature.
They apply to a number of special functions appearing as solutions of (1.4), see
Section 5. It is interesting to observe that our global ellipticity condition (1.3)
for (1.2) corresponds to a dichotomy exponential growth/decay for the solutions of
(1.4), see Section 5 for a more precise description in terms of asymptotic theory.
By a rotation in the complex plane, this property transfers to straight lines in the
complex plane, provided global ellipticity is preserved.

The estimates (1.5) lead in a natural way to the idea that the appropriate func-
tional framework, to study the holomorphic extensions and the decay on infinity
simultaneously, is given by the Gelfand-Shilov spaces of type S (cf. the classical
book of Gelfand and Shilov [12], see also Mityagin [18], Pilipovic [19]). We recall
that f ∈ Sµν (Rn), µ > 0, ν > 0, µ + ν ≥ 1, iff f ∈ C∞(Rn) and there exist A > 0,
ε > 0 such that

|∂αx f(x)| ≤ A|α|+1(α!)µe−ε|x|
1/ν

(1.6)

for all x ∈ Rn, α ∈ Zn+ or, equivalently, one can find C > 0 such that

sup
x∈Rn

|xβ∂αx f(x)| ≤ C |α|+|β|+1(α!)µ(β!)ν , α, β ∈ Zn+. (1.7)

The bounds (1.6), (1.7) with µ < 1 grant that f extends to Cn as an entire function
with uniform estimates, see [12] for precise statements. So for example (1.5) reads
as u ∈ Sh/(h+1)

1/(h+1) (R).
Concerning recent applications of Gelfand-Shilov spaces, we mention that for travel-
ing (solitary) wave solutions to dispersive and dissipative equations, the Sµν -regula-
rity with index µ = 1, joint to exponential decay, i.e. ν = 1, was recently studied by
Bona and Li [4], Bondareva and Shubin [5], Biagioni and Gramchev [2], Gramchev
[13], Cappiello, Gramchev and Rodino [8].
Let us now go back to the initial model, i.e. the Schrödinger operator (1.1) in Rn.
We assume that

V (x) = V0(x) +R(x), x ∈ Rn, (1.8)
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where V0(x) is a homogeneous elliptic polynomial with complex coefficients of degree
2h. Generalizing the condition (1.3) of the one-dimensional case, we set

V0(x) 6∈ R− ∪ {0}, x ∈ Rn \ 0, (1.9)

while R(x) is a polynomial of degree at most 2h− 1 (i.e. anisotropic generalizations
of the multidimensional harmonic oscillator −∆ + |x|2 appearing in Quantum Me-
chanics). It is known that super-exponential decay estimates of type exp[−ε|x|h+1],
ε > 0, hold also for second order partial differential equations, under the assumptions
(1.8), (1.9). The main interest here comes historically from Quantum Mechanics,
where the exponential decay of eigenfunctions has been intensively studied, see for
instance Agmon [1], Hislop and Sigal [16], Rabinovich [22], Buzano [6] and the
references quoted therein. We also mention Davies [10], Davies and Simon [11] and
the recent works of Rabier [20], Rabier and Stuart [21].
It is natural to discuss the validity of the bound (1.5), i.e. the information u ∈
S
h/(h+1)
1/(h+1) in the n-dimensional case. To this end, further generalizing to higher order

linear operators, we first study the Sµν -regularity of eigenfunctions to anisotropic
Shubin type partial differential operators in Rn

P =
∑

|α|
m

+
|β|
k
≤1

cαβx
βDα

x , (1.10)

where k and m are positive integers. Here we use the standard notation Dα
x =

(−i)|α|∂αx . We assume that P is anisotropic (m, k)-globally elliptic, namely, there
exist C > 0 and R > 0 such that∣∣∣∣∣∣∣

∑
|α|
m

+
|β|
k
≤1

cαβx
βξα

∣∣∣∣∣∣∣ ≥ C(|x|2k + |ξ|2m)1/2, |x|+ |ξ| ≥ R. (1.11)

Note that the operator H in (1.1), (1.2) satisfies (1.11) for m = 2, k = 2h under the
assumptions (1.8), (1.9). Anisotropic global ellipticity in the previous sense implies
both local regularity and asymptotic decay of the solutions, namely we have the
following basic result (see [3]): Pu = f ∈ S(Rn) for u ∈ S ′(Rn) implies actually
u ∈ S(Rn). In this paper we want to improve this result focusing on the regularity
of P in the Gelfand-Shilov classes Sµν (Rn). Namely we shall prove the following
theorem.

Theorem 1.1. Assume that P in (1.10) is (m, k)-globally elliptic, i.e. (1.11) is
satisfied. If u ∈ S ′(Rn) is a solution of Pu = f ∈ Sµν (Rn), with

µ ≥ µcr :=
k

k +m
, ν ≥ νcr :=

m

k +m
, (1.12)

then also u ∈ Sµν (Rn).In particular, Pu = 0, u ∈ S ′(Rn), implies u ∈ Sk/(k+m)
m/(k+m)(R

n).

The proof of Theorem 1.1 will be given in the next Section 3. We address
to Section 5 for a simple alternative proof in the one-dimensional case by means
of asymptotic theory, and some examples of solutions. In the ODE case see also
Gramchev and Popivanov [14] for related results. From (1.6), cf. [12], one easily
deduces the following result in the complex domain, which we refer to eigenfunctions
of P (if P is (m, k)-globally elliptic, also P − λ, λ ∈ C, is (m, k)-globally elliptic).
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Proposition 1.2. Under the previous assumptions on P, if u ∈ S ′(Rn) is a solution
of Pu = λu, for some λ ∈ C, then u extends to an entire function on Cn and, for
suitable constants ε > 0, γ > 0 and C > 0

|∂αz u(z)| ≤ C |α|+1(α!)µcre−ε|z|
1/νcr

, z ∈ Cn, |Imz| < γ|Rez|, α ∈ Zn+. (1.13)

Notice that for m = 2, k = 2h, (1.13) gives the estimates (1.5).
The proof of Theorem 1.1 will provide also precise bounds for the constant ε in
(1.13), which does not depend on compact perturbations of P .

We pass now to semilinear equations. With respect to the linear case, we shall
require in addition that the spectrum σ(P ) of P in L2(Rn) does not coincide with
the whole complex plane. This assumption is not necessary in the linear case as
we can read in the proof of Theorem 1.1. Concerning the nonlinear term, we shall
assume that F (u) is of the form

F (u) =
d∑
`=2

F`u
`, F` ∈ C, (1.14)

Hence we shall consider the equation

Pu =
∑

|α|
m

+
|β|
k
≤1

cαβx
βDα

xu = F (u) + f, (1.15)

where f is given, f = 0 or f ∈ Sµν (Rn), µ ≥ µcr, ν ≥ νcr. In Section 4 we shall prove
the following theorem.

Theorem 1.3. Let P of the form (1.10) satisfy (1.11) and assume that σ(P ) 6= C;
let F (u) be as in (1.14) and let f ∈ Sµν (Rn), µ ≥ µcr = k

k+m , ν ≥ νcr = m
k+m . Let

s > n/2 and let u ∈ Hs(Rn) be a solution of (1.15). Then

u ∈ Smax{1,µ}
ν (Rn). (1.16)

In particular, if f = 0 we obtain that any solution u ∈ Hs(Rn) of (1.15) belongs to
S1
νcr(R

n), that is, we have for positive constants C and ε:

|∂βxu(x)| ≤ C |β|+1β!e−ε|x|
1/νcr

, x ∈ Rn. (1.17)

The key point in Theorem 1.3, that we want to emphasize, is that in the
semilinear case we still have super-exponential decay of order 1/νcr, however in
view of (1.17) the extension to the complex domain u(z) is analytic in a strip
{z ∈ Cn : |Imz| < T} for some T > 0, not entire in general.

As we shall see in Section 4, our method allows to treat, at least for particular
models, more general nonlinear terms than (1.14). Namely, we give a generalization
of Theorem 1.3 for Schrödinger operators H defined by (1.1), (1.8), with V0(x) > 0
for x ∈ Rn \ 0 and R(x) polynomial of degree at most 2h− 1 with real coefficients.
We shall allow for H a more general nonlinear term of the form

F (x, u,∇u) =
∑

2≤`+|γ|≤d

F`,γ(x)u`(∇u)γ , (1.18)

with F`,γ(x) polynomials in x such that

F`,γ(x) = F`,γ ∈ C if γ 6= 0, and deg(F`,0(x)) ≤ h. (1.19)

We will obtain the following result.
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Theorem 1.4. Let H be the operator defined by (1.1), (1.8), with V0(x) > 0 for
x ∈ Rn \ 0 and R(x) real-valued and let f ∈ Sµν (Rn) for some µ ≥ µcr = h

h+1 , ν ≥
νcr = 1

h+1 . Then, if u ∈ Hs+1(Rn), s > n/2, is a solution of the equation

Hu = f + F (x, u,∇u), (1.20)

with F as in (1.18), (1.19), then u ∈ Smax{1,µ}
ν (Rn).

Theorem 1.3 in the particular case k = m, i.e. µ = ν, and Theorem 1.4 in the
case V0(x) = |x|2 were already in [7]. With respect to [7], we follow here a different
approach in the proofs, taking advantage of the next Proposition 2.4, joined with
inductive estimates.

It is worth, in conclusion, to return to the one-dimensional equation (1.4) in the
semilinear version

−u′′ + (a0x
2h + a1x

2h−1 + . . .+ a2h)u = F (x, u, u′)

under the preceding assumptions on the coefficients aj and the nonlinearity F. We
have from Theorem 1.4 that every solution u ∈ Hs+1(R), s > 1/2, extends to a
holomorphic function u(z) in the strip {z ∈ C : |Imz| < T} satisfying there

|∂αz u(z)| ≤ A|α|+1α!e−ε|z|
h+1

,

for suitable positive constants A, T, ε. With respect to (1.5), entire extension is lost
in general. We shall test this on a simple example in Section 5. The same example
exhibits a solution with algebraic growth. This contraddicts in the semilinear case
the dichotomy exponential growth/decay from the asymptotic theory.

2 Preliminaries

In this section we illustrate some basic properties of anisotropic globally elliptic ope-
rators of the form (1.10) and recall some equivalent formulations of the ellipticity
condition (1.11). Moreover we prove that the Fourier transformation preserves the
global ellipticity. This property will be crucial in the next sections to derive decay
estimates for the solutions of (1.15). Finally we recall some recent characterization
of Gelfand-Shilov spaces Sµν (Rn) that will be instrumental in the proofs of our results
in the next sections.
To place the operator (1.10) in the general theory of anisotropic operators, cf. [3],
we recall that the Newton polyhedron of P is defined as the convex hull of the set
A ∪ {(0, 0)}, where

A = {(α, β) ∈ Z2n
+ :
|α|
m

+
|β|
k
≤ 1 and cαβ 6= 0}.

We can also define the principal part of P as follows.

Definition 2.1. Let P be defined by (1.10) for some positive integers k,m. We
define the principal symbol pm,k(x, ξ) of P as the function

pm,k(x, ξ) =
∑

|α|
m

+
|β|
k

=1

cαβx
βξα. (2.1)
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The global ellipticity condition (1.11) can be easily reformulated as follows, cf.
[3].

Proposition 2.2. Let P be an operator of the form (1.10). Then (1.11) holds if
and only if

pm,k(x, ξ) 6= 0 for all (x, ξ) 6= (0, 0). (2.2)

We now describe the action of the Fourier transformation on the operator (1.10).

Proposition 2.3. Let P be an operator of the form (1.10) and let u ∈ S(Rn). Then

P̂ u = Qû

where Q is an operator of the form

Q =
∑

|ρ|
k

+
|σ|
m
≤1

aρσy
σDρ

y . (2.3)

Moreover, P is (m, k)-globally elliptic if and only if Q is (k,m)-globally elliptic, i.e.
the following estimate holds true for some positive constants C ′, R′:∣∣∣∣∣∣∣

∑
|ρ|
k

+
|σ|
m
≤1

aρσy
σηρ

∣∣∣∣∣∣∣ ≥ C ′(|y|2m + |η|2k)1/2 for |y|+ |η| ≥ R′ > 0. (2.4)

Proof. Applying the standard properties of the Fourier transform and Leibniz for-
mula we can compute as follows

P̂ u(ξ) =
∑

|α|
m

+
|β|
k
≤1

cαβ ̂(xβDα
xu)(ξ)

=
∑

|α|
m

+
|β|
k
≤1

cαβD
β
x(ξαû(ξ))

=
∑

|α|
m

+
|β|
k
≤1

cαβ
∑
γ≤α
γ≤β

(
β

γ

)
α!

(α− γ)!
ξα−γDβ−γ

ξ û(ξ)

= Qû(ξ),

where

Q =
∑

|α|
m

+
|β|
k
≤1

cαβ
∑
γ≤α
γ≤β

(
β

γ

)
α!

(α− γ)!
yα−γDβ−γ

y (2.5)

and we observe that |α−γ|m + |β−γ|
k ≤ 1 in (2.5). The first part of the proposition is

proved. Moreover we notice from (2.5) that the principal symbol of Q is given by

qk,m(y, η) =
∑

|ρ|
k

+
|σ|
m

=1

cσρy
σηρ = pm,k(η, y) for all (y, η) ∈ R2n.

Then we can conclude the proof applying Proposition 2.2.
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To derive our estimates in Gelfand-Shilov classes, in the sequel we shall take
advantage of a nice characterization of the space Sµν (Rn) given by Chung, Chung
and Kim [9] showing that it is sufficient to check (1.7) for α = 0 and, separately, for
β = 0. Moreover the space Sµν (Rn) is also characterized via the Fourier transform.
We recall this result in detail since it will be largely used in the next sections.

Proposition 2.4. Let µ > 0, ν > 0 with µ + ν ≥ 1 and let f ∈ C∞(Rn). Then the
following conditions are equivalent:
i) f ∈ Sµν (Rn);
ii) There exist positive constants Ao, Bo and Co such that

sup
x∈Rn

|∂αx f(x)| ≤ CoA|α|o (α!)µ and sup
x∈Rn

|xβf(x)| ≤ CoB|β|o (β!)ν

for all α, β ∈ Zn+;
iii) There exist positive constants A1, B1 and C1 such that

sup
x∈Rn

|xβf(x)| ≤ C1A
|β|
1 (β!)ν and sup

ξ∈Rn
|ξαf̂(ξ)| ≤ C1B

|α|
1 (α!)µ

for all α, β ∈ Zn+;
iv) There exist positive constants A2, B2 and C2 such that

sup
x∈Rn

|∂αx f(x)| ≤ C2A
|α|
2 (α!)µ and sup

ξ∈Rn
|∂βξ f̂(ξ)| ≤ C2B

|β|
2 (β!)ν

for all α, β ∈ Zn+.

3 Linear estimates

In this section we prove regularity and decay estimates for the solutions of the linear
equation Pu = f . Although the approach will be essentially the same as for the
general equation (1.15), we prefer to treat the linear case separately for two reasons.
The first is that for F = 0 in (1.15) the results hold under weaker assumptions
on P and on the a priori regularity of the solution. The second, more important,
reason is that in the linear case we are able to prove a stronger regularity for the
solution as we already claimed in the Introduction. Let us start from the study of
the Gevrey-analytic regularity of the solutions. To this end we need to introduce
suitable scales of Sobolev norms.

Let µ ≥ µcr = k
k+m . For fixed ε > 0, s ≥ 0 we define the norm

u {s,µ;ε} =
∑
α∈Zn+

ε|α|

|α|µ|α|
‖∂αxu‖s

and the corresponding partial sum

Es,µ;ε
N [u] =

∑
|α|≤N

ε|α|

|α|µ|α|
‖∂αxu‖s,

where ‖ · ‖s denotes the standard norm in the Sobolev space Hs(Rn). By Stirling
formula and Sobolev embedding estimates it easily follows that if a function u in

7



C∞(Rn) is such that u {s,µ;ε} < +∞ for some ε > 0, s ≥ 0, then u satisfies the
global estimate

sup
α∈Zn+

C−|α|(α!)−µ sup
x∈Rn

|∂αxu(x)| < +∞. (3.1)

for some positive constant C.
Let us now consider the equation Pu = f, where P is an operator of the form

(1.10) satisfying (1.11). Assume that we can find λ ∈ C \ σ(P ). Since also P − λ
satisfies (1.11), then by the results in [3], the linear operator

(P − λ)−1 ◦ xq∂px : Hs(Rn) 7→ Hs(Rn) (3.2)

is continuous for any p, q ∈ Zn+ with |p|m + |q|
k ≤ 1 and for every s ≥ 0. Differentiating

and introducing commutators in the equation Pu = f , we get for every α ∈ Zn+ :

P (∂αxu) = ∂αx f − [∂αx , P ]u.

Then for λ /∈ σ(P ) we obtain

(P − λ)(∂αxu) = ∂αx f − λ∂αxu− [∂αx , P ]u. (3.3)

Fixed ε > 0, µ ≥ µcr, we can now multiply both members of (3.3) by ε|α|

|α|µ|α| and
invert P − λ. We get

ε|α|

|α|µ|α|
∂αxu =

ε|α|

|α|µ|α|
(P − λ)−1(∂αx f)− λ ε|α|

|α|µ|α|
(P − λ)−1(∂αxu)

− ε|α|

|α|µ|α|
(P − λ)−1[∂αx , P ]u. (3.4)

Finally, taking Hs-norms and summing up for |α| ≤ N, we obtain

Es,µ;ε
N [u] ≤

∑
|α|≤N

ε|α|

|α|µ|α|
∥∥(P − λ)−1(∂αx f)

∥∥
s

+ |λ|
∑
|α|≤N

ε|α|

|α|µ|α|
∥∥(P − λ)−1(∂αxu)

∥∥
s

+
∑
|α|≤N

ε|α|

|α|µ|α|
∥∥(P − λ)−1([∂αx , P ]u)

∥∥
s
. (3.5)

We will prove the following result.

Theorem 3.1. Let P in (1.10) satisfy (1.11) and assume that σ(P ) 6= C. Let
moreover f ∈ S(Rn) such that f {0,µ;ε′} < +∞ for some µ ≥ µcr, ε

′ > 0. If
u ∈ S ′(Rn) is a solution of the equation Pu = f, then u ∈ S(Rn) and there exists
ε ∈ (0, ε′] such that u {0,µ;ε} < +∞. In particular, u satisfies (3.1) for some
positive constant C.

To prove the theorem we need to estimate the three terms in the right-hand side
of (3.5) for s = 0 uniformly with respect to N . The most delicate term is the one
containing commutators which must be written in a suitable form in order to get a
sharp critical value for the regularity index µ. To treat it, we need some preliminary
steps.
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Lemma 3.2. Let % ∈]0, 1[, r > 0 and let b be a positive integer. Then

t%b ≤ rtb + (1− %)
(%
r

)%/(1−%)
, t ≥ 0. (3.6)

Proof. Clearly we can assume b = 1, setting tb = z. Define g(z) = z% − rz, z ≥ 0.
Since g′(z) = %z%−1 − r = 0 iff z = z%,r = (%/r)1/(1−%) we readily obtain that

sup
z≥0

g(z) = g(z%,r) =
(%
r

)%/(1−%)
− r

(%
r

)1/(1−%)
= (1− %)

(%
r

)%/(1−%)
.

The proof is complete.

Using Lemma 3.2 we can prove a crucial estimate.

Lemma 3.3. Let µ > 0, k,m be positive integers and let α, γ ∈ Zn+ such that
αj ≥ 2γj(m+k)

k > 0 for some j ∈ {1, . . . , n} and let µ > 0. Then for every r > 0, η ≥ 0
we have

ηαj−γj
m+k
k

|α|µ(αj−γj
m+k
k )
≤ r ηαj

|α|µαj
+ r

1−
αjk

γj(m+k) . (3.7)

Proof. We can write
ηαj−γj

m+k
k

|α|µ(αj−γj
m+k
k )

=
(

η

|α|µ

)%αj
where % = 1 − γj(m+k)

αjk
∈ (0, 1). With this choice of % we have 1 − % = γj(m+k)

αjk
and

%
1−% = αjk

γj(m+k) − 1. Then applying Lemma 3.2 with t = η
|α|µ and b = αj , we obtain

that for any r > 0 :

ηαj−γj
m+k
k

|α|µ(αj−γj
m+k
k )

≤ r
ηαj

|α|µαj
+
γj(m+ k)

αjk
r
−

αjk

γj(m+k)
+1
(

1− γj(m+ k)
αjk

) αjk

γj(m+k)
−1

= r
ηαj

|α|µαj
+
γj(m+ k)

αjk

r
−

αjk

γj(m+k)
+1(

1− γj(m+k)
αjk

) (1− γj(m+ k)
αjk

) αjk

γj(m+k)

≤ r
ηαj

|α|µαj
+ sup
A≥2

[
1

A− 1

(
1− 1

A

)A]
· r1−

αjk

γj(m+k)

≤ r
ηαj

|α|µαj
+ r

1−
αjk

γj(m+k) .

The lemma is proved.

The following result is a straightforward consequence of Leibniz formula.

Lemma 3.4. Let α, ρ, σ ∈ Zn+ and let k,m be positive integers. Then the following
identity holds:

[∂αx , x
σ∂ρx]u =

∑
0 6=γ≤α
γ≤σ

α!
(α− γ)!

(
σ

γ

)
xσ−γ(∂α+ρ−γ

x u)

=
∑

0 6=γ≤α
γ≤σ

α!
(α− γ)!

(
σ

γ

)
xσ−γ∂ρx∂̃

+(∂α−γx ∂̃−u) (3.8)
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where ∂̃± = ∂̃±α,γ,k,m are the Fourier multipliers defined by the symbols

n∏
j=1

αj>2γj
k+m
k

|ξj |±γjm/k. (3.9)

To estimate the commutator, we use now the assumption µ ≥ µcr.

Lemma 3.5. Let P satisfy the assumptions of Theorem 3.1 and assume that λ ∈
C \ σ(P ).Then for every u ∈ S(Rn) and for every s ≥ 0 there exist Cs > 0, ε > 0
such that∑

2n(k+m)≤|α|≤N

ε|α|

|α|µ|α|
∥∥(P − λ)−1[∂αx , P ]u

∥∥
s
≤ Cs

(
rEs,µ;ε

N [u] + ‖u‖s+k+2m

)
. (3.10)

for every integer N ≥ 2n(k + m), for every r > 0 and for some ε > 0 independent
of N.

Proof. Let α ∈ Zn+ with |α| ≥ 2n(k +m). By Lemma 3.4 we can write

(P − λ)−1[∂αx , P ]u =
∑

|ρ|
m

+
|σ|
k
≤1

cρσ(P − λ)−1 ([∂αx , x
σ]∂ρxu)

=
∑

|ρ|
m

+
|σ|
k
≤1

cρσ
∑

0 6=γ≤α
γ≤σ

α!
(α− γ)!

(
σ

γ

)
×

×(P − λ)−1 ◦ xσ−γ∂ρx∂̃+
(
∂α−γx ∂̃−u

)
(3.11)

with ∂̃± defined as in (3.9). At this point, observe that the operator (P − λ)−1 ◦
xσ−γ∂ρx∂̃+ is bounded from Hs(Rn) into itself for every s ≥ 0 uniformly with respect
to α, cf. [3]. Then, since |γ| ≤ |σ| ≤ k in (3.11), we obtain

1
|α|µ|α|

‖(P − λ)−1[∂αx , P ]u‖s ≤ Cs
1

|α|µ|α|
∑

0 6=γ≤α
|γ|≤k

n∏
i=1

αγii · ‖∂
α−γ
x ∂̃−u‖s

for some positive constant Cs independent of α. Now, since |α| ≥ 2n(k + m), we
surely have αj ≥ 2k+mk γj for some j ∈ {1, . . . , n}. Moreover we can write

‖∂α−γx ∂̃−u‖s =

∥∥∥∥∥∥∥∥∥〈ξ〉
s

n∏
j=1

αj>2γj
k+m
k

|ξj |αj−γj
k+m
k ·

n∏
h=1

αh≤2γh
k+m
k

|ξh|αh−γh û

∥∥∥∥∥∥∥∥∥ , (3.12)

where we denote by ‖ · ‖ the norm in L2(Rn). On the other hand, for every µ ≥
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µcr = k
k+m , we have

∏n
i=1 αi

γi

|α|µ|α|
≤


n∏
j=1

αj>2γj
k+m
k

|α|µ(αj−γj/µcr)

|α|µαj−γj
· 1
|α|µ(αj−γj/µcr)

 ·
n∏
h=1

αh≤2γh
k+m
k

αγhh
|α|µ(αh−γh)

≤ C


n∏
j=1

αj>2γj
k+m
k

1
|α|µ(αj−γj/µcr)

 ·
n∏
h=1

αh≤2γh
k+m
k

1
|α|µ(αh−γh)

. (3.13)

Now, for every j ∈ {1, . . . , n} such that αj > 2γj k+mk we can apply Lemma 3.3 with
η = |ξj | and we obtain that for every r ∈ (0, 1)

∏n
i=1 α

γi
i

|α|µ|α|
‖∂α−γx ∂̃−u‖s ≤

∥∥∥∥∥∥∥∥∥〈ξ〉
s

n∏
j=1

αj>2γj
k+m
k

r
|ξj |αj
|α|µαj

·
n∏
h=1

αh≤2γh
k+m
k

|ξh|αh−γh
|α|µ(αh−γh)

û

∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥〈ξ〉
s

n∏
h=1

αh≤2γh
k+m
k

|ξh|αh−γh
|α|µ(αh−γh)

û

∥∥∥∥∥∥∥∥∥ (3.14)

Choosing ε < 1, summing over |α| and observing that

∑
2n(k+m)≤|α|≤N

ε|α|

∥∥∥∥∥∥∥∥∥〈ξ〉
s

n∏
h=1

αh≤2γh
k+m
k

|ξh|αh−γh
|α|µ(αh−γh)

û

∥∥∥∥∥∥∥∥∥
≤ Cs‖u‖s+k+2m

∑
2n(k+m)≤|α|≤N

ε|α| ≤ C ′s‖u‖s+k+2m

for some constant C ′s > 0 independent of N, we finally deduce the estimate (3.10).

Proof of Theorem 3.1. By Corollary 8.1 in [3] we already know that u ∈ S(Rn).
To prove that u {0,µ;ε} < +∞ we start from (3.5) for s = 0. Obviously, we have

∑
|α|≤N

ε|α|

|α|µ|α|
∥∥(P − λ)−1(∂αx f)

∥∥ ≤ C f {0,µ;ε′} < +∞ (3.15)

for every ε ≤ ε′. Concerning the second term, for every α ∈ Zn+, α 6= 0 there exists j =
jα ∈ {1, . . . , n} such that αj > 0. Writing (P −λ)−1(∂αxu) = (P −λ)−1◦∂xj (∂

α−ej
x u),

by (3.2) the operator (P − λ)−1 ◦ ∂xj maps continuously L2(Rn) into itself. Then
we obtain

|λ|
∑
|α|≤N

ε|α|

|α|µ|α|
∥∥(P − λ)−1(∂αxu)

∥∥ ≤ C(‖u‖+ εE0,µ;ε
N−1[u]). (3.16)
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The last term in (3.5) can be estimated applying Lemma 3.5. Then, choosing ε
sufficiently small, there exists C > 0 such that for every r ∈ (0, 1) the following
estimate holds:

E0,µ;ε
N [u] ≤ C

 f {0,µ;ε′} + εE0,µ;ε
N−1[u] + rE0,µ;ε

N [u] +
∑

|α|<2n(k+m)

‖∂αxu‖

 ,

Taking now r < C−1 we obtain

E0,µ;ε
N [u] ≤ C

1− rC

 f {0,µ;ε′} + εE0,µ;ε
N−1[u] +

∑
|α|<2n(k+m)

‖∂αxu‖

 .

Iterating this estimate and possibly shrinking ε, we conclude that E0,µ;ε
N [u] is boun-

ded with respect to N , hence u {0,µ;ε} < +∞.

Let us now study the decay of the solutions of Pu = f. Fixed ν ≥ νcr = m
k+m ,

δ > 0, s ≥ 0 we define the norm

u s,ν;δ =
∑
β∈Zn+

δ|β|

|β|ν|β|
‖xβu‖s.

Using Sobolev embedding theorems it is easy to show that if u s,ν;δ < +∞ for
some δ > 0, s > n/2, then

sup
β∈Zn+

C−|β|(β!)ν sup
x∈Rn

|xβu(x)| < +∞ (3.17)

for some positive constant C. Hence

sup
x∈Rn

eA|x|
1/ν |u(x)| < +∞ (3.18)

for some positive constant A.

We have the following result.

Theorem 3.6. Let P in (1.10) satisfy the assumptions of Theorem 3.1 and let
f ∈ S(Rn) such that f 0,ν;δ′ < +∞ for some ν ≥ νcr, δ

′ > 0. If u ∈ S ′(Rn) is
a solution of the equation Pu = f, then u ∈ S(Rn) and there exist δ ∈ (0, δ′] and
s > n/2 such that u s,ν;δ < +∞. In particular, u satisfies (3.18) for some A > 0.

Proof. As before, we know from [3] that u ∈ S(Rn). Applying the Fourier transform
to both members of Pu = f and taking into account Proposition 2.3, we are reduced
to study the equation Qû = f̂ , where Q is (k,m)-globally elliptic and its symbol
satisfies an estimate of the form (2.4). Moreover, if σ(P ) 6= C, then also σ(Q) 6= C.
Finally, the assumption on f and Parseval identity imply that f̂ {0,ν;δ′} < +∞.

Then, interchanging k and m, we can apply Theorem 3.1 to the equation Qû = f̂
and we obtain that û {0,ν;δ} < +∞ for some δ ∈]0, δ′]. Possibly shrinking δ this
implies that û {s,ν;δ} < +∞ for some integer s > n/2. But this is equivalent to
say that u s,ν;δ < +∞. The theorem is then proved.
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Remark 1. We observe that in the proof of Lemma 3.5 and Theorem 3.1 the pa-
rameter ε > 0 for which u 0,µ;ε < +∞ can be chosen independent of u. The same
holds for the parameter δ in Theorem 3.6. As a consequence of this fact our result
on pointwise decay estimates (3.18) can be reformulated more precisely as follows:
there exists a constant A > 0 such that (3.18) holds for every solution u ∈ S ′(Rn)
of the equation Pu = f.

Using Theorems 3.1 and 3.6 we can easily prove Theorem 1.1.

Proof of Theorem 1.1. We can assume without loss of generality that P is self-
adjoint; otherwise we can apply the L2-adjoint P ? of P to both sides of Pu = f
and reduce to the equation Su = g where S = P ?P is (m, k)-elliptic and self-adjoint
and g = P ?f ∈ Sµν (Rn) if f ∈ Sµν (Rn), cf. [12]. Hence in particular the condition
σ(P ) 6= C is fulfilled. Moreover, since f ∈ Sµν (Rn) with µ ≥ µcr, ν ≥ νcr, then it
satisfies the assumptions of both Theorems 3.1 and 3.6. Therefore if u ∈ S ′(Rn)
is a solution of Pu = f , then u satisfies both (3.1) and (3.18). Hence by ii) of
Proposition 2.4, we have u ∈ Sµν (Rn).

4 Nonlinear estimates

In this section we consider the general semilinear equation (1.15). Without loss of
generality we can assume that F (u) = u` for some ` ∈ Z, ` ≥ 2, cf. (1.14). As in the
previous section, we first discuss the Gevrey-analytic regularity of the solutions. We
begin to prove that the solutions belong to S(Rn) as in the linear case. However, as
standard in the nonlinear case, we have now to require an initial regularity of u.

Lemma 4.1. Let P in (1.10) satisfy (1.11) and assume that there exists λ ∈ C\σ(P ).
Let u ∈ Hs(Rn), s > n/2 be a solution of the equation (1.15) with F as in (1.14)
and f ∈ S(Rn). Then xσ∂ρxu ∈ Hs(Rn) for any ρ, σ ∈ Zn+.

Proof. We argue by induction on |ρ+ σ|. We first show that ∂xju ∈ Hs(Rn) for any
j ∈ {1, . . . , n}. From (1.15), introducing commutators, we get

(P − λ)(∂xju) = ∂xjf −
∑

|α|
m +

|β|
k
≤1

βj 6=0

cαββjx
β−ej∂αxu− λ∂xju+ ∂xj (u

`).

Inverting P − λ and passing to Sobolev norms, it follows that

‖∂xju‖s ≤ ‖(P − λ)−1(∂xjf)‖s +
∑

|α|
m +

|β|
k
≤1

βj 6=0

|cαβ| · βj · ‖(P − λ)−1(xβ−ej∂αxu)‖s

+|λ| · ‖(P − λ)−1(∂xju)‖s + ‖(P − λ)−1(∂xj (u
`))‖s. (4.1)

Clearly ‖(P−λ)−1(∂xjf)‖s < +∞ since f ∈ S(Rn). Moreover, by (3.2) the operators
(P−λ)−1◦xβ−ej∂αx and (P−λ)−1◦∂xj are bounded from Hs(Rn) into itself, then also
the second and the third term in the right-hand side of (4.1) are finite. Concerning
the nonlinear term, arguing as before and applying Schauder’s lemma, we get

‖(P − λ)−1(∂xj (u
`))‖s ≤ Cs‖u`‖s ≤ C ′s‖u‖`s < +∞.
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Hence ∂xju ∈ Hs(Rn). Arguing similarly, it is easy to prove that xku ∈ Hs(Rn) for
any k ∈ {1, . . . , n}, then the lemma is true for |ρ+ σ| = 1. For |ρ+ σ| > 1, arguing
as before we have

‖xσ∂ρxu‖s ≤ ‖(P − λ)−1(xσ∂ρxf)‖s + |λ| · ‖(P − λ)−1(xσ∂ρxu)‖s
+

∑
|α|
m

+
|β|
k
≤1

|cαβ| · ‖(P − λ)−1([xβ∂αx , x
σ∂ρx]u‖s

+‖(P − λ)−1(xσ∂ρx(u`))‖s. (4.2)

The first term in the right-hand side of (4.2) is clearly finite. Assume for example
that σj > 0 for some j ∈ {1, . . . , n}. Then by (3.2) we have

|λ| · ‖(P −λ)−1(xσ∂ρxu)‖s = |λ| · ‖(P −λ)−1(xjxσ−ej∂ρxu)‖s ≤ Cs‖xσ−ej∂ρxu‖s < +∞

by the inductive assumption. Concerning the third term, we can use the commutator
identity

[xσ∂ρx, x
β∂αx ]u = xσ∂ρx(xβ∂αxu)− xβ∂αx (xσ∂ρxu)

=
′∑

δ≤ρ
δ≤β

ρ!
(ρ− δ)!

(
β

δ

) ′∑
γ≤σ
γ≤α

σ!
(σ − γ)!

(
α

γ

)
(−1)|γ| ×

×xβ−δ∂α−γx (xσ−γ∂ρ−δx u),

where
′∑ ′∑

means that |γ|+|δ| > 0. Then by (3.2) and by the inductive assumptions
we get that ∑

|α|
m

+
|β|
k
≤1

|cαβ| · ‖(P − λ)−1([xβ∂αx , x
σ∂ρx]u)‖s < +∞.

For the last term in (4.2) we can argue similarly.

Theorem 4.2. Let P in (1.10) be (m, k)-globally elliptic, i.e. it satisfies (1.11), and
assume that there exists λ ∈ C \ σ(P ). Let u ∈ Hs(Rn), s > n/2 be a solution of the
equation (1.15) where F is of the form (1.14) and f ∈ S(Rn) with f {s,µ;ε′} < +∞
for some µ ≥ µcr, ε

′ > 0. Then there exists ε ∈]0, ε′] such that u {s,µ̃;ε} < +∞,
where µ̃ = max{µ, 1}.

Lemma 4.3. Let P satisfy the assumptions of Theorem 4.2. Then for every µ ≥
1, s > n/2, there exists a constant C ′s > 0 such that for any ε > 0, N ∈ Z+ :

∑
|α|≤N

ε|α|

|α|µ|α|
∥∥∥(P − λ)−1(∂αxu

`)
∥∥∥
s
≤ C ′s

(
‖u‖`s + ε(Es,µ;ε

N−1[u])`
)
. (4.3)

Proof. For every α ∈ Zn+, α 6= 0, there exists j = jα ∈ {1, . . . , n} such that αj > 0.
Then, writing (P − λ)−1 ◦ ∂αx = (P − λ)−1 ◦ ∂xj ◦ ∂

α−ej
x and applying (3.2) we get

∑
06=|α|≤N

ε|α|

|α|µ|α|
∥∥∥(P − λ)−1(∂αx (u`))

∥∥∥
s
≤ Csε

∑
06=|α|≤N

ε|α|−1

|α|µ|α|
‖∂α−ejx (u`)‖s.
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We now apply Leibniz rule which gives

∂
α−ej
x (u`) =

∑
α1+...+α`=α−ej

(α− ej)!
α1! . . . α`!

∂α1
x u · . . . · ∂α`x u

and observe that for µ ≥ 1, we have the estimate

1
|α|µ|α|

(α− ej)!
α1! · . . . · α`!

≤
∏̀
ρ=1

1
|αρ|µ|αρ|

.

Hence, applying Schauder’s lemma we easily obtain (4.3).

Proof of Theorem 4.2. Arguing as for the linear case, we can write, for every
ε > 0, N ∈ Z+ :

Es,µ̃;ε
N [u] ≤

∑
|α|≤N

ε|α|

|α|µ̃|α|
∥∥(P − λ)−1(∂αx f)

∥∥
s

+ |λ|
∑
|α|≤N

ε|α|

|α|µ̃|α|
∥∥(P − λ)−1(∂αxu)

∥∥
s

+
∑
|α|≤N

ε|α|

|α|µ̃|α|
∥∥(P − λ)−1([∂αx , P ]u)

∥∥
s

+
∑
|α|≤N

ε|α|

|α|µ̃|α|
∥∥∥(P − λ)−1(∂αx (u`))

∥∥∥
s
. (4.4)

The first two terms in the right-hand side of (4.4) can be estimated as in the proof
of Theorem 3.1. The estimate of the term containing commutators is easier than in
the linear case, because the case µ̃ < 1 is now excluded. In fact, we can write

(P − λ)−1([∂αx , P ]u) =
∑

|ρ|
m

+
|σ|
k
≤1

cρσ
∑

0 6=γ≤α
γ≤σ

α!
(α− γ)!

(
σ

γ

)
(P − λ)−1 ◦ xσ−γ∂ρx

(
∂α−γx u

)
.

Since µ̃ ≥ 1 we have

1
|α|µ̃|α|

α!
(α− γ)!

≤ |α|
|γ|

|α|µ̃|γ|
· 1
|α− γ|µ̃|α−γ|

≤ 1
|α− γ|µ̃|α−γ|

.

Then we directly obtain∑
|α|≤N

ε|α|

|α|µ̃|α|
∥∥(P − λ)−1([∂αx , P ]u)

∥∥
s
≤ CsεEs,µ̃;ε

N−1[u].

The last term can be estimated applying Lemma 4.3. Finally we get

Es,µ̃;ε
N [u] ≤ Cs

(
‖u‖s + ‖u‖`s + f {s,µ;ε′} + εEs,µ̃;ε

N−1[u] + ε
(
Es,µ̃;ε
N−1[u]

)`)
,

and for ε sufficiently small we can iterate this estimate obtaining that sup
N∈Z+

Es,µ̃;ε
N [u]

< +∞. This concludes the proof.

To prove the decay properties for the solutions of (1.15), we can argue as in the
previous section. Applying the Fourier transformation to (1.15) we obtain the new
equation

Qû = f̂ + F̂ (u), (4.5)

where Q is (k,m)-globally elliptic.
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Theorem 4.4. Let P satisfy the assumptions of Theorem 4.2 and let u ∈ Hs(Rn),
s > n/2 be a solution of (1.15), where F is of the form (1.14) and f ∈ S(Rn) with
f s,ν;δ′ < +∞ for some ν ≥ νcr, δ

′ > 0. Then there exists δ ∈ (0, δ′] such that
u s,ν;δ < +∞.

Lemma 4.5. Let Q be (k,m)-globally elliptic with σ(Q) 6= C and let u ∈ S(Rn).
Then, fixed λ ∈ C \ σ(Q), s > n/2, δ > 0, ν ≥ νcr there exists C > 0 such that

∑
|α|≤N

δ|α|

|α|ν|α|
∥∥∥(Q− λ)−1(∂αξ û`)

∥∥∥
s
≤ C

(
‖û‖`s + δ‖u‖`−1

s · Es,ν;δN−1[û]
)
. (4.6)

for every N ∈ Z+.

Proof. If αj 6= 0 for some j ∈ {1, . . . , n}, then we have that (Q − λ)−1(∂αξ (û`)) =

(Q − λ)−1(∂ξj∂
α−ej
x (û`)). Moreover, since the linear operator (Q − λ)−1 ◦ ∂ξj is

continuous from Hs(Rn) to Hs(Rn), we obtain

∑
06=|α|≤N

ε|α|

|α|ν|α|
‖(Q− λ)−1(∂αξ (u`))‖s ≤ Csε

∑
06=|α|≤N

ε|α|−1

|α|ν|α|
‖∂α−ejξ û`‖s.

Now, using standard properties of the Fourier transform and Sobolev embedding
estimates we obtain

‖∂α−ejξ û`‖s = ‖(∂α−ejξ û) ∗ û`−1‖s

=
(∫

Rn
〈η〉2s

∣∣∣Fξ→η (∂α−ejξ û ∗ û`−1
)

(η)
∣∣∣2 dη)1/2

=

(∫
Rn
〈η〉2s

∣∣∣∣∂̂α−ejη û(η)
∣∣∣∣2 · ∣∣∣u`−1(η)

∣∣∣2 dη)1/2

≤ Cs‖u‖`−1
s · ‖∂α−ejξ û‖s.

The lemma is then proved.

Proof of Theorem 4.4. First of all, by Lemma 4.1, it follows that u ∈ S(Rn).
As in the proof of Theorem 3.6 it is sufficient to show that there exists δ > 0 such
that û {s,ν;δ} <∞. Starting from (4.5) and taking λ ∈ C \ σ(Q), we get, for every
α ∈ Zn+ :

∂αξ û = (Q− λ)−1(∂αξ f̂)− λ(Q− λ)−1(∂αξ û)− (Q− λ)−1[Q, ∂αξ ]û+ (Q− λ)−1(∂αξ û`).

We can now apply Lemma 3.5 and Lemma 4.5. We obtain that there exists C > 0
independent of N such that the following estimate holds true:

Es,ν;δN [û] ≤ C

1− rC

 f̂ {s,ν;δ′} + δEs,ν;δN−1[û] + δ‖u‖`−1
s · Es,ν;δN−1[û] +

∑
|α|<2n(k+m)

‖∂αξ û‖s


for every r with 0 < r < C−1 and for some δ ∈]0, δ′]. Iterating the last estimate and
possibly shrinking δ we obtain that û {s,ν;δ} < +∞. We leave the details to the
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reader.

Arguing as in the previous section, the proof of Theorem 1.3 is a direct conse-
quence of Theorems 4.2 and 4.4 combined with Proposition 2.4.

We conclude this section giving the proof of Theorem 1.4. As for the equation
(1.15), we prove separately regularity and decay estimates, but for the linear part of
the equation the estimates are the same proved before. To conclude we only need to
give estimates for the new nonlinear term coming from (1.18), (1.19). That is what
we do in the next lemmas.

Lemma 4.6. Let H be as in Theorem 1.4 and let λ ∈ C \ σ(H). Then, for every
µ ≥ 1, s > n/2, ε ∈ (0, 1), `,N ∈ Z+, ` ≥ 2, q, γ ∈ Zn+, |q| ≤ h, and for every
u ∈ Hs+1(Rn) there exist positive constants Cs, C ′s such that the following estimates
hold: ∑

|α|≤N

ε|α|

|α|µ|α|
‖(H − λ)−1(∂αx (xqu`))‖s ≤ Cs

(
‖u‖`s + ε(Es,µ;ε

N−1[u])`
)

; (4.7)

∑
|α|≤N

ε|α|

|α|µ|α|
‖(H − λ)−1(∂αx (u`(∇u)γ))‖s ≤ C ′s

(
‖u‖`+|γ|s+1 + ε(Es,µ;ε

N−1[u])`+|γ|
)
. (4.8)

Proof. We start by proving (4.7). Fixed α 6= 0, let j = jα ∈ {1, . . . , n} such that
αj > 0. We have

∂αx (xqu`) = xq∂xj∂
α−ej
x (u`) +

∑
α′≤α

06=α′≤q

(
α

α′

)
q!

(q − α′)!
xq−α

′
∂α−α

′
x (u`).

Observe that (3.2) with m = 2, k = 2h implies that the operators (H − λ)−1 ◦ xq∂xj
and (H − λ)−1 ◦ xq−α′ are bounded from Hs(Rn) to Hs(Rn) since |q| ≤ h. Then,
arguing as in the proof of Lemma 4.3, we easily obtain (4.7). Concerning (4.8), for
|α| ≥ 2, we can write (H − λ)−1 ◦ ∂αx = (H − λ)−1 ◦ ∂xi∂xj ◦ ∂

α−ei−ej
x for some

i, j ∈ {1, . . . , n} and apply (3.2), then∑
2≤|α|≤N

ε|α|

|α|µ|α|
‖(H − λ)−1(∂αx (u`(∇u)γ))‖s ≤ C ′s

∑
2≤|α|≤N

ε|α|

|α|µ|α|
‖∂α−ei−ejx (u`(∇u)γ)‖s

≤ C ′sε(E
s,µ;ε
N−2[u])`(Es,µ;ε

N−1[u])|γ|

≤ C ′sε(E
s,µ;ε
N−1[u])`+|γ|.

Then we get (4.8).

Repeating readily the steps of the proof of Theorem 4.2 with the aid of Lemma
4.6, we can easily prove that if f ∈ S(Rn) with f {s,µ;ε′} < +∞ for some µ ≥
µcr, s > n/2, ε′ > 0, and u ∈ Hs+1(Rn) is a solution of (1.20), then u {s,µ̃;ε} < +∞
for some ε ∈ (0, ε′], with µ̃ = max{1, µ}.
To prove decay estimates for (1.20) we apply the Fourier transform to both sides of
(1.20). We obtain the new equation

Ĥû = f̂ + ̂F (x, u,∇u), (4.9)
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where
Ĥ = Q(D) + |ξ|2,

Q(D) being an elliptic operator with constant coefficients of order 2h. To prove
regularity estimates for û, we need the following lemma.

Lemma 4.7. Let Ĥ be the operator defined by (4.9) and let λ ∈ C \ σ(Ĥ). Then,
for every ν ≥ νcr, s > n/2, ε ∈ (0, 1), `,N ∈ Z+, q, γ ∈ Zn+, with |q| ≤ h and
` + |γ| ≥ 2 and for every u ∈ Hs+1(Rn) there exist positive constants Cs, C ′s such
that the following estimates hold:

∑
|α|≤N

ε|α|

|α|ν|α|
‖(Ĥ − λ)−1(∂αξ (x̂qu`))‖s ≤ Cs

(
‖û‖`s + ε‖u‖`−1

s · Es,ν;εN−1[û]
)

; (4.10)

∑
|α|≤N

ε|α|

|α|ν|α|
‖(Ĥ − λ)−1(∂αξ ( ̂u`(∇u)γ))‖s ≤ C ′s

(
‖û‖`+|γ|s+1 + ε‖u‖`+|γ|−1

s+1 · Es,ν;εN−1[û]
)
.

(4.11)

Proof. The proof of (4.10) is immediate. In fact, for every α ∈ Zn+, α 6= 0 we have:

‖(Ĥ − λ)−1(∂αξ (x̂qu`))‖s = ‖(Ĥ − λ)−1(∂q+ejξ ∂
α−ej
ξ û`)‖s ≤ Cs‖∂

α−ej
ξ û`‖s

and then we conclude as in the proof of Lemma 4.6. To prove (4.11), we observe
that if ` ≥ 1, we have for every α ∈ Zn+, α 6= 0 :

‖(Ĥ − λ)−1(∂αξ ( ̂u`(∇u)γ))‖s ≤ Cs‖∂
α−ej
ξ (û ∗ ( ̂u`−1(∇u)γ)‖s

≤ Cs‖∂
α−ej
ξ û‖s · ‖u`−1(∇u)γ‖s

≤ Cs‖∂
α−ej
ξ û‖s · ‖u‖`+|γ|−1

s+1 .

For ` = 0, |γ| ≥ 2, we can argue similarly. We leave the details to the reader.

With the aid of Lemma 4.7, arguing as in the proof of Theorem 4.4, we obtain
that if f ∈ S(Rn) is such that f s,ν;δ′ < +∞ for some s > n/2, ν ≥ νcr, δ

′ > 0,
and u ∈ Hs+1(Rn) is a solution of (1.20), then there exists δ ∈ (0, δ′] such that
u s,ν;δ < +∞. We conclude observing that under the assumptions of Theorem

1.4, we have both u {s,µ̃;ε} < +∞ and u s,ν;δ < +∞ for some positive ε, δ and
s > n/2. Combining these two estimates we easily obtain the proof of Theorem 1.4.

Remark 2. We observe that our method can be easily adapted to a larger class of
operators satisfying more general anisotropic estimates. Namely, fixed two multi-
indices k = (k1, . . . , kn), m = (m1, . . . ,mn), with kj > 0,mj > 0 for any j =
1, . . . , n, we can consider an operator of the form

P =
∑

(α,β)∈A

cαβx
βDα

x , cαβ ∈ C, (4.12)

where
A = {(α, β) ∈ Z2n

+ :
α1

m1
+ . . .+

αn
mn

+
β1

k1
+ . . .+

βn
kn
≤ 1}.
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The principal symbol pm,k(x, ξ) of P is defined by

pm,k(x, ξ) =
∑

(α,β)∈Ã

cαβx
βξα,

with
Ã = {(α, β) ∈ Z2n

+ :
α1

m1
+ . . .+

αn
mn

+
β1

k1
+ . . .+

βn
kn

= 1}.

The operator P in (4.12) is said to be (m, k)-globally elliptic if∣∣∣∣∣∣
∑

(α,β)∈A

cαβx
βξα

∣∣∣∣∣∣ ≥
n∑
j=1

(|xj |kj + |ξj |mj ) for |x|+ |ξ| ≥ R (4.13)

for some positive constants C,R, or equivalently if

pm,k(x, ξ) 6= 0 for all (x, ξ) 6= (0, 0).

For this class it is natural to prove estimates in general Gelfand-Shilov classes de-
scribing the regularity and decay properties with respect to each variable separately.
We recall here the definition and refer the reader to [12] for a detailed presentation
of these spaces.

Definition 4.8. Let µ = (µ1, . . . , µn), ν = (ν1, . . . , νn) ∈ Rn, with µj > 0, νj > 0 for
all j = 1, . . . , n.We denote by Sµν (Rn) the space of all functions u ∈ C∞(Rn) such
that

sup
x∈Rn

|xβ∂αxu(x)| ≤ A|α|+|β|+1αα1µ1
1 · . . . · ααnµnn ββ1ν1

1 · . . . · ββnνnn

for some constant A > 0.

We notice that Proposition 2.4 has an obvious extension to this class, cf. [9]. The
assertion of Theorem 1.1 can be reformulated in this new framework as follows: if
P is an operator of the form (4.12) satisfying (4.13) and f ∈ Sµν (Rn) with µj ≥
kj

kj+mj
, νj ≥ mj

kj+mj
for any j = 1, . . . , n then every solution u ∈ S ′(Rn) of the

equation Pu = f actually belongs to Sµν (Rn). Similarly, for the semilinear equation
Pu = f +F (u) with F (u) as in (1.14), starting from a solution u ∈ Hs(Rn), we can
prove that u ∈ Sµ̃ν (Rn), where µ̃j = max{1, µj} for every j = 1, . . . , n. We leave the
details to the reader.

5 The one-dimensional case: examples

Fixing first attention on linear operators, we consider P as in (1.10) and pm,k(x, ξ)
as in (2.1):

P =
∑

α
m

+β
k
≤1

cαβx
βDα

x , (5.1)

pm,k(x, ξ) =
∑

α
m

+β
k
=1

cαβx
βξα, (5.2)
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where now x ∈ R, ξ ∈ R; we recall that Dx = −i ddx . Assume that P is (m, k)-globally
elliptic, i.e. in view of Proposition 2.2

pm,k(x, ξ) 6= 0 for all (x, ξ) 6= (0, 0). (5.3)

Consider then the algebraic equations

pm,k(±1, λ) =
∑

α
m

+β
k
=1

cαβ(±1)βλα, λ ∈ C.

In view of (5.3), the order of the equations is m and all the roots, counted with
multiplicity, λ±1 , . . . , λ

±
m satisfy the condition Imλ±j 6= 0. We may apply to P the

results of the asymptotic theory [14], [24], [28]; the following rough statements will
be sufficient for our purposes in the following.

Proposition 5.1. There exist two fundamental systems u+
1 , . . . , u

+
m and u−1 , . . . , u

−
m

of solutions of Pu = 0, of the form

u±j (x) = exp[iλ±j ν|x|
1/ν ]v±j (x), j = 1, . . . ,m, (5.4)

with ν = m/(k +m) and

|v±j (x)| ≤ C exp[δ|x|σ] for x ∈ R± (5.5)

for some σ < 1/ν and positive constants C and δ (in the case of a multiple root λ±j ,
any linear combination of the corresponding independent solutions u±j also satisfies
(5.4), (5.5)).

We begin by giving a cheap proof of Theorem 1.1 in the case of a homogeneous
ordinary differential equation.

Proposition 5.2. Let P be defined as in (5.1), (5.2), (5.3). Assume Pu = 0, u ∈
S ′(R); then u ∈ Sµν (R), with µ = k/(k +m), ν = m/(k +m).

Proof. Since (5.3) implies Imλ±j 6= 0 in (5.4) for all j = 1, . . . ,m, all the solutions
u±j in Proposition (5.1) have exponential growth, if Imλ±j < 0, or exponential decay
if Imλ±j > 0, in R±. On the other hand we know that a solution u ∈ S ′(R) of Pu = 0
belongs to S(R), hence u ∈ S(R+) and u ∈ S(R−). This implies that u is a linear
combination of the u+

j which have exponential decay in R+, and simultaneously
linear combination of the u−j with exponential decay in R−. Note in particular that,
if Imλ+

j < 0 for all j = 1, . . . ,m, or Imλ−j < 0 for all j = 1, . . . ,m, then non-trivial
solutions u ∈ S ′(R) cannot exist. Otherwise, from (5.4), (5.5) we have

|u(x)| ≤ Ce−δ|x|1/ν , x ∈ R, (5.6)

for any constant δ satisfying

0 < δ < min{νImλ±j : Imλ±j > 0}

and a suitable constant C depending on δ. We now use Proposition 2.3, namely for
every solution u ∈ S ′(R) of Pu = 0 we may write

P̂ u = Qû = 0
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where Q is now (k,m)-globally elliptic. We then apply to the ordinary differential
equation Qû = 0 the preceding arguments, exchanging the role of k and m. We
deduce

|û(ξ)| ≤ C ′e−δ′|ξ|1/µ , ξ ∈ R, (5.7)

for some C ′ > 0, δ′ > 0. According to [9], we may read (5.6) and (5.7) as

sup
x∈R
|xβu(x)| ≤ C1A

|β|
1 (β!)ν , sup

ξ∈R
|ξαû(ξ)| ≤ C1B

|α|
1 (α!)µ

for all α, β ∈ Z+ and suitable positive constants A1, B1, C1 independent of α, β. In
view of iii) of Proposition 2.4, these estimates give the conclusion u ∈ Sµν (R).

As obvious byproduct of Proposition 5.2, we may recapture, in a particular case,
the celebrated non-triviality theorem of Gelfand and Shilov, cf. [12].

Proposition 5.3. Let µ > 0, ν > 0, µ + ν = 1. Assume that µ, ν ∈ Q. Then
Sµν (R) 6= {0}, i.e. there exists a non-trivial function u ∈ Sµν (R).

Proof. Consider the basic example of (2p, 2h)-globally elliptic operator in R

P = D2p
x + x2h. (5.8)

The spectrum of P is discrete, with eigenvalues λj → +∞ and eigenfunctions ϕj , j =
1, 2, . . . , forming a complete orthogonal system in L2(R), see [3]. Since also P −λj is
(2p, 2h)-globally elliptic, from Proposition 5.2 we have ϕj ∈ Sh/(h+p)p/(h+p) (R). It remains
then to observe that, for any given µ ∈ Q, 0 < µ < 1, we may write µ = h/(h + p)
for two positive integers h and p, and consequently ν = 1 − µ = p/(h + p). Hence
we read ϕj ∈ Sµν (R).

To see more explicit examples of functions in Sµν (R), we may address to similar
ordinary differential operators with polynomial coefficients. In particular, we recall,
cf. [17], [24] that the (2, 2h)-globally elliptic equation

(D2 + x2h − ρxh−1)u = 0 (5.9)

admits non-trivial solutions in L2(R), hence in Sh/(h+1)
1/(h+1) (R), for special values of the

parameter ρ, namely:

• When h is even, for ρ = 2(h+ 1)N + h+ 1, N ∈ Z, the solution is given in R+ by

u(x, ρ) = exp[−xh+1/(h+ 1)]Ψ
(

ρ+ h

2(h+ 1)
,

h

h+ 1
;
2xh+1

h+ 1

)
(5.10)

whose analytic extension coincides in R− with u(−x,−ρ). To be definite, we recall
the definition of the Tricomi function Ψ, cf. [27]:

Ψ(a, c;x) =
Γ(1− c)

Γ(a− c+ 1)
Φ(a, c;x) +

Γ(c− 1)
Γ(a)

x1−c · Φ(a− c+ 1, 2− c;x)

where the principal branch of x1−c is chosen and Φ is the hypergeometric confluent
function

Φ(a, c;x) =
∞∑
n=0

(a)n
(c)n

· x
n

n!
;
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as standard, for r ∈ R : (r)0 = 1, (r)n = r(r + 1) · . . . · (r + n− 1), n ≥ 1. We have

Ψ(a, c;x) ∼ x−a
∞∑
n=0

(
c− a− 1

n

)
(a)n
xn

for x→ +∞, (5.11)

which gives the expected exponential decay in (5.10).

• When h is odd, for ρ = −2(h + 1)N − h or else ρ = −2(h + 1)N − h− 2, N ∈ Z,
the solution in L2(R) of (5.9) is of the form

u(x, ρ) = exp[−xh+1/(h+ 1)]Pρ(x) (5.12)

where Pρ(x) is a polynomial, cf. [26].
On the expression (5.12) we may directly recognize that u ∈ S

h/(h+1)
1/(h+1) (R). It is

natural to question whether solutions of the type exponential-polynomial occur for
other (p, ph)-globally elliptic equations, when h is odd. For a detailed analysis of such
solutions we address to [17], Section 7.4. As an example in the opposite direction:
the (3, 3h)-globally elliptic equation

(D − ixh)(D + ixh)2u+ σxh−2u = 0,

with h odd, h ≥ 3, admits for some σ ∈ C solutions u ∈ S
h/(h+1)
1/(h+1) (R) which are

not of type (5.12), see [17], Section 7.3, for their explicit expression in terms of the
Meijer’s G-functions.

We pass now to consider nonlinear ordinary differential equations. We want to
test the sharpness of Theorem 1.3 and Theorem 1.4 on a one-dimensional model.
Generalizing the arguments in [7] we consider the equation

−u′′ + x2hu− hxh−1u = xhu` − `u′u`−1, x ∈ R, (5.13)

where h, ` ∈ Z+, ` > 1, h > 1, h odd. We notice that (5.13) corresponds to the
equation (1.20) for n = 1, V (x) = x2h−hxh−1 and F (x, u, u′) = xhu`−`u′u`−1, f = 0.
First of all we observe that (5.13) can be re-written as follows:(

d

dx
− xh

)
(u′ + xhu) =

(
d

dx
− xh

)
u`, x ∈ R. (5.14)

Then every solution u ∈ H2(Rn) of the Bernoulli equation

u′ + xhu = u`, x ∈ R, (5.15)

is also a solution of (5.14). We restrict our study to the solutions of (5.15). Fixing
u(0) = uo > 0, by standard arguments we obtain

u(x) = e−
xh+1

h+1

[
u1−`
o + (1− `)

∫ x

0
e−(`−1) t

h+1

h+1 dt

] 1
1−`

, (5.16)

or equivalently,

u(x) = e−
xh+1

h+1

[
λ+ (`− 1)

∫ +∞

x
e−(`−1) t

h+1

h+1 dt

] 1
1−`

, (5.17)
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with λ = u1−`
o + (1 − `)

∫ +∞
0 e−(`−1) t

h+1

h+1 dt. We notice from (5.16) that u is well

defined for x ≤ 0 and u(x) ∼ e−
xh+1

h+1 for x→ −∞. To analyze the global behaviour
of u on R, it is convenient to express it in terms of special functions.
To be definite, write

Γ(α) = γ(α, x) + Γ(α, x),

where

γ(α, x) =
∫ x

0
e−ttα−1dt, Γ(α, x) =

∫ +∞

x
e−ttα−1dt.

The function γ(α, x) is called the incomplete Gamma function, while Γ(α, x) is usual-
ly known as complementary incomplete Gamma function. We recall that Γ(α, x) =
xαe−xΨ(1, α+ 1, x); hence, in view of (5.11), for fixed α ∈ R and for x→ +∞, the
function Γ(α, x) has the following asymptotic expansion

Γ(α, x) ∼ e−xxα−1
+∞∑
n=0

(−1)n
(1− α)n
xn

, (5.18)

cf. [27]. By a change of variable it easily follows that

u(x) = e−
xh+1

h+1

[
λ+

(
h+ 1
`− 1

)− h
h+1

Γ
(

1
h+ 1

,
`− 1
h+ 1

xh+1

)] 1
1−`

, (5.19)

with λ = u1−`
o −

(
h+1
`−1

)− h
h+1 Γ

(
1

h+1

)
. We can distinguish three cases:

a) −
(
h+1
`−1

)− h
h+1 Γ

(
1

h+1

)
< λ < 0 : In this case, the solution blows up at the

point xo > 0 defined by the equation

λ = (1− `)
∫ +∞

xo

e−(`−1) t
h+1

h+1 dt,

cf. (5.17).

b) λ = 0 : The solution is well defined and analytic on R. Moreover, by (5.18),
(5.19), u(x) ∼ x

h
`−1 for x → +∞. Therefore u ∈ S ′(R), u /∈ S(R). Notice that this

does not contraddicts our results, since u /∈ Hs(R) for s > 1/2, hence the assump-
tions of Theorems 1.3, 1.4 are not fulfilled.

c) λ > 0 : Also in this case, by (5.17), the solution u is analytic on R. Moreover,

0 < u(x) < λ
1

1−` e−
xh+1

h+1 .

Now u ∈ H2(R) and Theorem 1.3 applies and gives the more precise information
u ∈ S1

1
h+1

(R). In particular, u admits a holomorphic extension u(z) on a strip of the

form {z ∈ C : |Imz| < T} for some T > 0. Nevertheless, the great Picard theorem
of complex analysis implies that u cannot admit an entire extension on C, since in
(5.17) for any fixed λ ∈ R, the equation

λ+ (`− 1)
∫ +∞

z
e−(`−1) t

h+1

h+1 dt = 0
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admits a solution zo, cf. [27]. Hence we cannot expect to obtain u ∈ Sµ1
h+1

(R) for

some µ < 1. Thanks to the representation (5.19), we can illustrate the three cases
a), b) and c) above on a MATLAB graphic for h = 3, ` = 2. In the figure below the
case λ < 0 corresponds to the choice u0 = 1, while the case λ > 0 is obtained by
choosing u0 = 1

2 . Finally for λ = 0 we have u(x) ∼ x3 for x→ +∞.

u

xx0

λ > 0

λ < 0 λ = 0
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