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3 Dipartimento di Matematica, Università di Torino, Via Carlo Alberto, 10, I-10123 Torino, Italy

Key words Non-quasianalytic weight function; pseudodifferential operators; linear partial differential opera-
tors; wave front set; propagation of singularities
MSC (2000) Primary: 46F05, 35A18, 35A21

We prove the following inclusion

WF∗(u) ⊂WF∗(Pu) ∪ Σ, u ∈ E ′∗(Ω),

where WF∗ denotes the non–quasianalytic Beurling or Roumieu wave front set, Ω is an open subset of Rn, P
is a linear partial differential operator with suitable ultradifferentiable coefficients, and Σ is the characteristic
set of P . The proof relies on some techniques developed in the study of pseudodifferential operators in the
Beurling setting. Some applications are also investigated.

Copyright line will be provided by the publisher

1 Introduction

The ultradifferentiable functions are intermediate classes between real analytic and C∞ functions. Depending on
their topological structure they can be classified as classes of Beurling or of Roumieu type. Moreover, according
to the Denjoy-Carleman theorem the ultradifferentiable functions can also be classified in quasianalytic and non-
quasianalytic classes, where, roughly speaking, the quasianalytic ones are functions whose Fourier transform has
a stronger decay at infinity. We refer to [2, 19, 17, 10] for the different ways to introduce these classes and to
[8] for an exhaustive comparison between them. We emphasize that the Gevrey classes are particular cases of
non-quasianalytic ultradifferentiable functions of Roumieu type.

We establish some basic results on propagation of singularities for solutions of linear partial differential oper-
ators with coefficients in certain smooth classes, in a wider setting than the one of classical distributions or, even,
ultradistributions of Gevrey type, and from the micro-local point of view, i.e., via wave front sets. The notion of
wave front set was introduced by Hörmader in 1970 to simplify the study of the propagation of singularities of
(ultra)distribution solutions of linear partial differential operators.

It is known that partial differential operators with ultradifferentiable coefficients, or even pseudodifferential
operators of ultradifferentiable type, reduce in most cases the singular support and the wave front set of ultradis-
tributions, [1, 3, 4, 5, 14, 16, 17, 18, 22, 23]. The main aim of this paper is to prove a suitable converse result,
more precisely, we prove that if P = P (x,D) is a linear partial differential operator with ultradifferentiable
coefficients on Ω ⊂ RN then the following inclusion holds

WFω(u) ⊂WFω(Pu) ∪ Σ, (1.1)

for all ultradistributions with compact support u ∈ E ′ω(Ω), where Σ is the characteristic manifold of P , i.e., the
set where the principal symbol of P vanishes. We cover both Beurling and Roumieu cases in inclusion (1.1).
The analogous inclusion for the C∞-wave front set and classical distributions was proved by Hörmander [16].

∗ Corresponding author: D. Jornet e-mail: djornet@mat.upv.es, Phone:+34 963 877 000, Fax: +34 963 879 494

Copyright line will be provided by the publisher



2 A. Albanese et al: Wave front sets. . .

Actually, Hörmander [17] (see also Kato [18]) established the validity of inclusion (1.1) also for wave front sets
of classical distributions in the setting of certain quasianalytic (and non-quasianalytic) classes of Roumieu type
including the spaces of real analytic functions. On the other hand, the present authors extended (1.1) for wave
front sets of classical distributions to the Beurling and Roumieu cases at the same time in [1] when the weight
functions (quasianalytic or not) and the corresponding spaces of ultradifferentiable functions are considered from
the point of view of Braun, Meise and Taylor [10]. We point out that results of this type are a powerful tool in
the study of the problem of iterates from a micro-local point of view (see, for example, [3, 4, 5, 23]). Here we
mainly deal with non-quasianalytic classes of Beurling type in the sense of Braun, Meise and Taylor [10], and we
prove inclusion (1.1) for ultradistributions of Beurling (and of Roumieu) type with compact support. Since the
growth of the Fourier transform of compactly supported ultradistributions of Beurling (or even Roumieu) type is
rather different to the one of classical distributions, we cannot use here the techniques of Hörmander [17], as we
did in [1]. Thus, we need to follow a different approach. Precisely, we use some techniques coming from the
theory of pseudodifferential operators of Beurling type and infinite order developed in [13, 14]; observe that in
non-quasianalytic classes the use of test functions is allowed and hence, the machinery of [13, 14] can be used.
We obtain first the Beurling case. Then, using [14, Proposition 2], a comparison between Beurling and Roumieu
wave front sets (such a comparison has been recently extended in [1] also to cover the case of quasianalytic
weight functions; see Proposition 2.6 for details), we obtain immediately the corresponding Roumieu version of
inclusion (1.1). Because of the topology, in the Beurling case we need to take the coefficients of the operator
P in a smaller class. This is not the case in the Roumieu setting. In both cases we need weight functions that
are equivalent to sub-additive weight functions. An extension to classical properly supported pseudodifferential
operators of the inclusion (1.1) is also obtained. Finally, we mention that the different properties that we prove
on pseudodifferential operators are obtained, as in [14], avoiding the difficult techniques of wave front sets of
kernels (as it is usual in the literature; see for example, [22, Section 3.4] or [16, Chapter VIII]). An application to
the study of wave front sets of solutions of partial differential operators is provided.

2 Notation and preliminaries

In this section we recall the definition of ultradifferentiable classes and ultradistributions of Beurling and Roumieu
type, as well as the definition and some needed results concerning wave front sets.

Throughout this article | · | denotes the euclidian norm on Rn or Cn.
Definition 2.1 A non-quasianalytic weight function is an increasing continuous function ω : [0,∞[→ [0,∞[

with the following properties:

(α) there exists L ≥ 0 such that ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0,

(β)
∫∞
1

ω(t)
t2 dt <∞,

(γ) log(t) = o(ω(t)) as t tends to∞,

(δ) ϕ : t→ ω(et) is convex.
A weight function ω is equivalent to a sub-additive weight if, and only if, the following property holds:

(α0) ∃D > 0 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 : ω(λt) ≤ λDω(t).

For a weight function ω we define ω̃ : C → [0,∞[ by ω̃(z) := ω(|z|) and again denote this function by ω.
The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is given by

ϕ∗(s) := sup{st− ϕ(t), t ≥ 0}.

There is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗ has only non-negative values, it is
convex and ϕ∗(t)/t is increasing and tends to∞ as t→∞ and ϕ∗∗ = ϕ.

Example 2.2 The following are examples of non-quasianalytic weight functions (eventually after a change
on the interval [0, δ] for a suitable δ > 0):

(1) ω(t) = tα, 0 < α < 1;
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(2) ω(t) = (log(1 + t))β , β > 1;

(3) ω(t) = t (log(e+ t))−β , β > 1;

Definition 2.3 Let ω be a weight function. For an open set Ω ⊂ RN we let

E(ω)(Ω) := {f ∈ C∞(Ω) :‖ f ‖K,λ<∞, for every K ⊂⊂ Ω and everyλ > 0},

and
E{ω}(Ω) := {f ∈ C∞(Ω) : for every K ⊂⊂ Ω there exists

λ > 0 such that ‖ f ‖K,λ<∞},

where

‖ f ‖K,λ:= sup
x∈K

sup
α∈NN0

|f (α)(x)|exp
(
−λϕ∗

(
|α|
λ

))
.

The space E(ω)(Ω) is Fréchet and nuclear, while E{ω}(Ω) is a projective limit of an inductive limits of Banach
spaces. The elements of E(ω)(Ω) (resp. E{ω}(Ω)) are called ultradifferentiable functions of Beurling type (resp.
Roumieu type) in Ω. When ω(t) = td, d < 1, the corresponding Roumieu class E{ω}(Ω) is the Gevrey class
with exponent 1/d. Writing ∗ for (ω) or {ω} we denote by D∗(K) = E∗(Ω) ∩ D(K) if K is a compact set.
We define D∗(Ω) = indnD∗(Kn), where (Kn) is any compact exhaustion of Ω. Its dual is denoted by D′(ω)(Ω)
(resp. D′{ω}(Ω)) and it is called the space of the ultradistributions of Beurling (resp. Roumieu) type on Ω. Since
D(ω)(Ω) ⊂ D{ω}(Ω) and the inclusion is continuous and has dense range, D′{ω}(Ω) can be identified with a
subset of D′(ω)(Ω). The corresponding spaces of ultradistributions of Beurling and Roumieu type with compact
support E ′∗(Ω) (i.e., E ′∗(Ω) is the strong dual of E∗(Ω)) can be considered as well.

Given an ultradistribution u ∈ D′∗(Ω) we define the ∗-singular support of u, denoted by sing∗ suppu, as the
complementary in Ω of the biggest open set U ⊂ Ω satisfying u|U ∈ E∗(U).

Definition 2.4 Let ω be a weight function and (x0, ξ0) ∈ Ω× (RN \ {0}).

(i) If u ∈ D′(ω)(Ω), we define the wave front set WF(ω)(u) of u to be the complement in Ω × (RN \ {0})
of the set of points (x0, ξ0) such that there exist ϕ ∈ D(ω)(Ω), ϕ ≡ 1 in a neighborhood of x0, a conic
neighborhood Γ of ξ0, and a sequence {Cn} of positive constants satisfying

|ϕ̂u(ξ)| ≤ Cn exp(−nω(ξ))

for every ξ ∈ Γ and n ∈ N.

(ii) If u ∈ D′{ω}(Ω), we define the wave front set WF{ω}(u) of u to be the complement in Ω × (RN \ {0})
of the set of points (x0, ξ0) such that there exist ϕ ∈ D{ω}(Ω), ϕ ≡ 1 in a neighborhood of x0, a conic
neighborhood Γ of ξ0, and two constants C, ε > 0 satisfying

|ϕ̂u(ξ)| ≤ C exp(−εω(ξ))

for every ξ ∈ Γ.

Remark 2.5 The following elementary properties are well known (see for example [15]). Let Ω be an open
subset in RN . Then:

(a) Given two weight functions ω and σ such that ω(t) = O(σ(t)) as t tends to infinity, we have the following
continuous inclusions

E(σ)(Ω) ⊂ E(ω)(Ω), E{σ}(Ω) ⊂ E{ω}(Ω).

(b) If, in addition, ω(t) = o(σ(t)) as t tends to infinity, we have the following continuous inclusion:

E{σ}(Ω) ⊂ E(ω)(Ω).
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4 A. Albanese et al: Wave front sets. . .

(c) If ω(t1/r) = o(σ(t)) as t tends to infinity for some constant 0 < r ≤ 1, then for all λ, µ > 0 there exists
Cλ,µ > 0 such that for all j ∈ N0, we have

λϕ∗σ
( j
λ

)
≤ Cλ,µ + rµϕ∗ω

( j
µ

)
,

where ϕ∗σ and ϕ∗ω are the Young conjugate functions corresponding to the weight functions σ and ω.

We recall some known facts concerning wave front sets (cf., for example, [14]). We observe that if ω and σ
are weight functions satisfying ω = O(σ) then

WF(ω)(u) ⊂WF(σ)(u)

for every u ∈ D′(ω)(Ω) ⊂ D′(σ)(Ω), and this inclusion is in general strict.
The Roumieu wave front set can be expressed in terms of Beurling wave front sets in the following way (see

[1] for a version with quasianalytic weight functions and classical distributions).
Proposition 2.6 ([14],[1]) Let us consider u ∈ E ′{ω}(Ω). Then there exists a weight function σ0 = o(ω) such

that u ∈ E ′(σ0)
(Ω) and we have

WF{ω}(u) =
⋃
σ∈S

WF(σ)(u)

for S = {σ weight function: σ0 ≤ σ = o(ω)}.
Analogously to the C∞ case the following result holds.
Theorem 2.7 Let us consider u ∈ D′(ω)(Ω). Then the projection of WF(ω)(u) on the first variable is the

(ω)-singular support of u.
We now recall the definition of Beurling pseudodifferential operators.
Definition 2.8 ([13]) Let Ω be an open set in RN , 0 ≤ δ < ρ ≤ 1, d := ρ− δ, and assume that ω(t) = o(td)

as t → ∞. An amplitude in Sm,ωρ,δ (Ω) is a function a(x, y, ξ) in C∞(Ω× Ω× RN ) such that for every compact
set Q ⊂ Ω× Ω there are R ≥ 1 and a sequence Cn > 0, n ∈ N, with

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ Cne(ρ−δ)nϕ

∗(|β|/n)e(ρ−δ)nϕ
∗(|α+γ|/n)emω(ξ)|ξ||α+γ|δ−|β|ρ, (2.1)

for every n ∈ N, (x, y) ∈ Q, and ξ with log( |ξ|R ) ≥ n
|β|ϕ

∗( |β|n ).

If we replace e(ρ−δ)nϕ
∗(|β|/n) in the formula (2.1) by the constant β!B|β| for some B > 0 that depends only

on Q and on the amplitude, then the corresponding class is written as ASm,ωρ,δ (Ω). Since ω(t) = o(td) with
d := ρ − δ, it follows that ASm,ωρ,δ (Ω) ⊂ Sm,ωρ,δ (Ω) (see [13]). An amplitude in ASm,ωρ,δ (Ω) is said to be of finite
order if it satisfies the inequality (2.1) with (1 + |ξ|)m instead of emω(ξ).

In the case a(x, y, ξ) = p(x, ξ), the function p(x, ξ) is usually called symbol. The definition of amplitude
given in [13] is slightly different from the one given here, but it is equivalent due to the convexity of ϕ∗.

We recall from [13] that every amplitude a(x, y, ξ) in Sm,ωρ,δ (Ω) defines a continuous and linear operator
A : D(ω)(Ω) −→ E(ω)(Ω) given by the iterated integral

(Af)(x) =
∫ (∫

a(x, y, ξ)ei(x−y)ξf(y) dy
)
dξ, f ∈ D(ω)(Ω).

The operator A is called pseudodifferential operator of (ω) class and type (ρ, δ). In the case a(x, y, ξ) = p(x, ξ),
the corresponding pseudodifferential operator P := P (x,D) : D(ω)(Ω) → E(ω)(Ω) can be written in terms of
Fourier transforms in the following way

P (x,D)f =
∫
p(x, ξ)eixξ f̂(ξ) dξ , f ∈ D(ω)(Ω).

Several examples of amplitudes, symbols, and the corresponding operators in this setting can be found in [13,
Example 2.11, Proposition 2.12]. In particular, in [13] the following result has been proved.

Copyright line will be provided by the publisher
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Theorem 2.9 ([13]) The pseudodifferential operator A associated to the amplitude a(x, y, ξ) in Sm,ωρ,δ (Ω)
admits a unique continuous and linear extension

Ã : E ′(ω)(Ω) −→ D′(ω)(Ω) .

An important property is that pseudodifferential operators defined by amplitudes are (ω)-pseudolocal, i.e.,
they shrink the (ω)-singular support.

Theorem 2.10 ([13]) Let A : E ′(ω)(Ω) −→ D′(ω)(Ω) be the pseudodifferential operator associated to the
amplitude a(x, y, ξ) in Sm,ωρ,δ (Ω). Then

sing(ω) supp (Aµ) ⊆ sing(ω) supp (µ),

for every µ ∈ E ′(ω)(Ω).

More recently, in [14] it was proved that pseudodifferential operators defined by symbols are (ω)-micro-
pseudolocal, i.e., they also shrink the (ω)-wave front set. The proof in [14] does not use the machinery of wave
front sets for kernels, but it relies on some L2 techniques.

Theorem 2.11 ([14]) Let P (x,D) : E ′(ω)(Ω) → D′(ω)(Ω) be a pseudodifferential operator of class (ω) and
type (ρ, δ) given by a symbol in Sm,ωρ,δ (Ω). Then

WF(ω)

(
P (x,D)u

)
⊂WF(ω)(u) (2.2)

for every u ∈ E ′(ω)(Ω).

For each ` ∈ N, we set

E`(RN ) =
{
f ∈ C∞(RN ) : |f |` := sup

x∈RN
sup
α∈NN0

∣∣f (α)(x)
∣∣ exp

(
− `ϕ∗(|α|/`)

)
< +∞

}
, (2.3)

where ϕ∗ is the Young conjugate corresponding to the weight function ω.
Let G(z) ∈ H(CN ) be an entire function such that log |G(z)| = O(ω(z)) when |z| tends to infinity. Then, the

continuous and linear convolution operator G(D) : D′(ω)(R
N )→ D′(ω)(R

N ) defined by

(
G(D)f

)
(x) =

∑
α∈NN0

i|α|
G(α)(0)
α!

f (α)(x),

is called (ω)-ultradifferential operator.
Now, we can recall the following extension of Komatsu’s second structure theorem for ultradistributions due

to Braun [9] (see also Langenbruch [20]).
Theorem 2.12 Given an ultradistribution with compact support µ ∈ E ′(ω)(R

N ) and ` ∈ N, there exist an
elliptic (ω)-ultradifferential operator G(D) and a function f ∈ E`(RN ) such that

µ = G(D)f.

3 Micro-local symbolic calculus and wave front sets

We begin stating (and proving) some auxiliary definitions and results.
Proposition 3.1 Given an amplitude a(x, y, ξ) in Sm,ωρ,δ (Ω), a test function ϕ ∈ D(ω)(Ω), a compact set K in

Ω, n ∈ N and A > 0, there exist Cn > 0 and a constant Ã such that for |η| ≤ A|ξ| and y ∈ K the following
inequality is satisfied ∣∣∣∣Dα

y

∫
eixξa(x, y, η)ϕ(x)dx

∣∣∣∣ ≤ Cn|ϕ|n emω(η)+log(Ãξ)

en(ρ−δ)ω(Ãξ)
enϕ

∗(|α|/n),

where |ϕ|n is defined according to (2.3).
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6 A. Albanese et al: Wave front sets. . .

P r o o f. The proof follows first by integrating by parts with respect to x and then proceeding as in [14, Propo-
sition 4].

Definition 3.2 Let a(x, y, ξ) be an amplitude in Sm,ωρ,δ (Ω). The pseudodifferential operator A associated to
a(x, y, ξ) is said to be (ω)-micro-regularizing in Ω× Γ0 for some open cone Γ0 ⊂ RN if

(Ω× Γ0) ∩WF(ω)(Au) = ∅ for all u ∈ E ′(ω)(Ω).

In the next result we give a sufficient condition for a pseudodifferential operatorA to be (ω)-micro-regularizing.
Theorem 3.3 Let a(x, y, ξ) be an amplitude in Sm,ωρ,δ (Ω). If a = 0 in Ω × Ω × Γ0 for some open cone

Γ0 ⊂ RN , then the pseudodifferential operator A associated to a(x, y, ξ) is (ω)-micro-regularizing in Ω× Γ0.

P r o o f. We fix an ultradistribution u ∈ E ′(ω)(Ω) and ` ∈ N. By Theorem 2.12 we can find f ∈ E`(RN ) and
an elliptic (ω)−ultradifferential operator G(D) such that u = G(D)f in Ω.

We observe that if G(D) is given by the entire function G(z) =
∑
α aαz

α, then G(D)f =
∑
α i
|α|aαf

(α) in
D′(ω)(Ω).

We now fix a test function χ ∈ D(ω)(Ω) equal to 1 in a neighborhood of suppu. Then we have Au =∑
α i
|α|aαA(χf (α)) weakly in D′(ω)(Ω) as, for every ϕ ∈ D(ω)(Ω),

〈Au,ϕ〉 = 〈u,Atϕ〉 = 〈u, χAtϕ〉 = 〈
∑
α

i|α|aαf
(α), χAtϕ〉 =

=
∑
α

i|α|aα〈χf (α), Atϕ〉 =
∑
α

i|α|aα〈A(χf (α)), ϕ〉.

Since E(ω)(Ω) is a Fréchet-Montel space, it follows that (ϕAu)̂ (ξ) =
∑
α i
|α|aα

(
ϕA(χf (α))

)
(̂ξ) uniformly

on the compacts subsets of RN for every ϕ ∈ D(ω)(Ω) (see [10, 21]). So, to conclude the proof, it suffices to
estimate each one of the terms

(
ϕA(χf (α))

)
(̂ξ) for ξ in an appropriate cone and an arbitrary fixed function

ϕ ∈ D(ω)(Ω), and then to sum in α. In order to do this, we first show, for ξ in a certain cone, that(
ϕA(χf (α))

)
(̂ξ) =

∫∫
e−iyησ(y, ξ, η)χ(y)f (α)(y)dydη, (3.1)

where σ(y, ξ, η) =
∫
eix(η−ξ)a(x, y, η)ϕ(x)dx.

We fix ξ0 ∈ Γ0. We will estimate |Dα
y σ(y, ξ, η)| when y ∈ suppχ, η ∈ RN and ξ is in a neighborhood Γ′0 of

ξ0 such that Γ′0 ⊂⊂ Γ0. For η ∈ Γ0, a(x, y, η) = 0 by hypothesis, and for η /∈ Γ0 and ξ ∈ Γ′0 we can find λ > 0
with |ξ − η| ≥ λ(|ξ|+ |η|). By the Proposition 3.1, for every n, s ∈ N,

|Dα
y σ(y, ξ, η)| ≤ Csn|ϕ|sn

emω(η)+log(Ã|ξ−η|)

esn(ρ−δ)ω(Ã(ξ−η))
esnϕ

∗(|α|/(sn)), (3.2)

where Cns and Ã are suitable positive constants depending only on n, s and λ. Since snϕ∗(|α|/(sn)) ≤
nϕ∗(|α|/n), we obtain (changing s ∈ N and the constant Csn if necessary), for ξ ∈ Γ′0 and η /∈ Γ0,

|Dα
y σ(y, ξ, η)| ≤ C̃sne−snω(η)−snω(ξ)enϕ

∗(|α|/n) (3.3)

This implies that the equality (3.1) is satisfied for all η ∈ RN and ξ ∈ Γ′0.
Integrating by parts with respect to y in (3.1) and using that |η||α1| ≤ enϕ

∗(|α1|/n)enω(η), we obtain, for s
sufficiently large,∣∣∣(ϕA(χf (α))

)
(̂ξ)
∣∣∣ =

=

∣∣∣∣∣ ∑
α1+α2+α3=α

(
α

α1, α2, α3

)∫∫
e−iyη(−iη)α1∂α2

y σ(y, ξ, η)χ(α3)(y)f(y)dydη

∣∣∣∣∣ ≤
≤ m(suppχ)Dsne

−snω(ξ)3|α|enϕ
∗(|α|/n)

∫
e−(s−1)nω(η)dη,
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where m(·) denotes the Lebesgue measure. We know from the properties of G(z) that there exists k ∈ N such
that |aα| ≤ eke−kϕ

∗(|α|/k) for each α. So, taking n = L2k in the last inequalities, we obtain, for ξ ∈ Γ′0 and s
large enough,

|(ϕAu) (̂ξ)| ≤
∑
α

|aα|
∣∣∣(ϕA(χf (α))

)
(̂ξ)
∣∣∣ ≤

≤ e−sω(ξ)D̃sk

∑
α

|aα|3|α|eL
2kϕ∗(|α|/(L2k)) ≤

≤ Ekse
−sω(ξ)

∑
α

(3/e2)|α|.

The proof is now complete.

In order to study the propagation of singularities, we introduce a micro-local version of the symbolic calculus
for pseudo-differential operators as follows. We consider neighborhoods of the type Λ = U×U×Γ or Λ = U×Γ
whereU is a relatively compact open set of RN and Γ is an open cone in RN \{0}. We fix also Λ∗ = U∗×U∗×Γ∗

as a set of the same type (or Λ∗ = U∗ × Γ∗) such that U ⊂ U∗ and Γ ∩ SN−1 ⊂ Γ∗. This notation will be used
throughout the rest of the section.

Definition 3.4 Let 0 ≤ δ < ρ ≤ 1, d := ρ − δ, and assume that ω(t) = o(td) as t → ∞. We denote by
MSm,ωρ,δ (Λ) the space of all amplitudes a(x, y, ξ) ∈ C∞(Λ∗), where Λ = U × U × Γ and Λ∗ = U∗ × U∗ × Γ∗

are as in the notation above, with Γ ⊂⊂ Γ∗, satisfying the following condition: there are R ≥ 1, B ≥ 1 and a
sequence Cn > 0, n ∈ N, with the property

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ CnB|β|β!e(ρ−δ)nϕ

∗(
|α+γ|
n )emω(ξ)|ξ||α+γ|δ−|β|ρ (3.4)

for every n ∈ N, (x, y, ξ) ∈ Λ∗, with log( |ξ|R ) ≥ n
|β|ϕ

∗( |β|n ).

If a(x, y, ξ) = p(x, ξ), we have a similar definition for symbols, and we anyway write that p(x, ξ) ∈
MSm,ωρ,δ (Λ).

We want now to construct pseudodifferential operators for such type of symbols and amplitudes. So, we
assume ω(t) = o(tr), 0 < r ≤ 1, ρ ≤ r. Moreover, we take ψ(ξ) ∈ E{tr}(RN ) such that ψ ≡ 1 in a
neighborhood of Γ, and suppψ ⊂ Γ∗ for large |ξ|, satisfying

|Dβψ(ξ)| ≤ Dn
B|β|β!
|ξ|r|β|

(3.5)

for log( |ξ|R ) ≥ n
|β|ϕ

∗( |β|n ) (we refer to [13, Example 2.11.(2)] for a description of ϕ∗ω(t) when the corresponding
weight function is a Gevrey weight of type ω(t) = tr, 0 < r ≤ 1, and also to [22]). For a weight σ with
ω(t1/d) = o(σ(t)), we also fix φ ∈ D{σ}(U∗) with φ ≡ 1 in a neighborhood of U . Finally, we set for p(x, ξ) ∈
MSm,ωρ,δ (Λ),

P (x,D)f(x) =
∫
eixξφ(x)p(x, ξ)ψ(ξ)(φf )̂ (ξ)dξ, (3.6)

and more generally for a(x, y, ξ) ∈MSm,ωρ,δ (Λ),

(
Af
)
(x) =

∫∫
ei(x−y)ξφ(x)a(x, y, ξ)ψ(ξ)φ(y)f(y)dydξ. (3.7)

The following lemma explains why we select φ and ψ is this a way, and it will be useful in the following
results.

Lemma 3.5 Let Ω be an open subset of RN with U∗ ⊂ Ω. If the amplitude a(x, y, ξ) is in MSm,ωρ,δ (Λ), then
the function b(x, y, ξ) = φ(x)φ(y)a(x, y, ξ)ψ(ξ) is an amplitude in ASm,ωρ,δ (Ω).
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P r o o f. Since U∗ ⊂ Ω and φ ∈ D{σ}(Ω), in view of Remark 2.5, for each n ∈ N there is En > 0 such that

sup
x∈RN

|Dαφ(x)| ≤ Ene(ρ−δ)nϕ
∗
ω(
|α|
n ). (3.8)

We write ϕ∗ω = ϕ∗, and Q = suppφ. Then, using equations (3.4) and (3.5), the convexity of ϕ∗, and the fact
that

∑
α1≤α

(
α
α1

)
≤ 2|α|, we obtain, for x, y ∈ Q and n ∈ N,

|Dα
xD

γ
yD

β
ξ b(x, y, ξ)|

≤
∑
α1≤α

∑
β1≤β

∑
γ1≤γ

(
α

α1

)(
β

β1

)(
γ

γ1

)∣∣Dα1φ(x)Dγ1φ(y)Dβ1ψ(ξ)Dα−α1
x Dγ−γ1

y Dβ−β1
ξ a(x, y, ξ)

∣∣
≤ CnE2

nDn2|α+γ|e(ρ−δ)nϕ
∗(
|α+γ|
n ) ·

∑
β1≤β

(
β

β1

)
β!B|β||ξ|δ|α+γ|−ρ|β−β1|−r|β1|,

for ξ ∈ RN with log( |ξ|R ) ≥ n
|β|ϕ

∗( |β|n ). An application of [13, Lemma 1.3.(2)] and the fact that ρ ≤ r concludes
the proof.

We will see that the pseudodifferential operators defined in cones have similar properties to the standard ones.
We will check first that a pseudodifferential operator corresponding to a standard amplitude shrinks the (ω)-
wave front set when the operator acts on relatively compact open subsets. For this, we recall from [13, Example
2.11.(4)] that if Ω is an open set of RN then a continuous linear operator T : D(ω)(Ω) → E(ω)(Ω) admiting a
continuous and linear extension T̃ : E ′(ω)(Ω) → E(ω)(Ω) is called (ω)-smoothing operator. These operators are
exactly the integral operators defined by kernels in E(ω)(Ω× Ω).

Lemma 3.6 Let Ω be a relatively compact open subset of RN . Let a(x, y, ξ) ∈ Sm,ωρ,δ (Ω) be given. Then, the
corresponding pseudodifferential operator A : E ′(ω)(Ω)→ D′(ω)(Ω) shrinks the (ω)-wave front set, that is,

WF(ω)(Au) ⊂WF(ω)(u),

for every u ∈ E ′(ω)(Ω).

P r o o f. The restriction of A to D(ω)(Ω), by [13, Theorem 3.13], can be decomposed as the sum A = P +R,
where P is a pseudodifferential operator given by a symbol in Sm,ωρ,δ (Ω) and R : E ′(ω)(Ω) → E(ω)(Ω) is a (ω)-
smoothing operator. Since the extension of A to E ′(ω)(Ω) is unique, we have that A = P + R also in E ′(ω)(Ω).
Now, it suffices to apply Theorem 2.11 to conclude.

We observe that in the following result we do not use techniques of wave front set of kernels, as it usual in the
literature for such type of results.

Theorem 3.7 Let Ω be an open subset of RN with U∗ ⊂ Ω. ThenA in (3.7) satisfies the following properties:

(i) A is a properly supported linear continuous map from D(ω)(Ω) to D(ω)(Ω), and admits a continuous and
linear extension from D′(ω)(Ω) to D′(ω)(Ω).

(ii) A shrinks the (ω)-wave front set in Ω. In particular, it shrinks also the (ω)-singular support in Ω.

P r o o f. We first observe that ã(x, y, ξ) = a(x, y, ξ)ψ(ξ) defines an amplitude in ASm,ωρ,δ (U∗) by the prop-
erties of ψ (see Lemma 3.5). Moreover, the map A is the composition B ◦ T ◦ B, where B is the multiplica-
tion operator by the fixed test function φ, and T is the pseudodifferential operator associated to the amplitude
ã(x, y, ξ) = a(x, y, ξ)ψ(ξ) in U∗ × U∗ × RN .

Suppose that suppφ ⊂ Ω1 ⊂ U∗, being Ω1 a relatively compact open subset of Ω. Then the multiplication
operator by φmapsD′(ω)(Ω) into E ′(ω)(Ω1) continuously and hence, the operatorA can be viewed as the following
composition of continuous and linear operators

D′(ω)(Ω) B−→ E ′(ω)(Ω1) T−→ D′(ω)(Ω1) B−→ E ′(ω)(Ω),
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where we use the fact that T can also be extended as a linear and continuous operator from E ′(ω)(Ω1) toD′(ω)(Ω1)
as we have the natural inclusion D(ω)(Ω1) ⊂ D(ω)(Ω) (Theorem 2.9). The last arrow follows from the fact
that the restriction mapping E(ω)(Ω) → E(ω)(Ω1) is continuous and hence, the inclusion E ′(ω)(Ω1) ⊂ E ′(ω)(Ω) is
continuous. Then, A is linear and continuous operator acting from D′(ω)(Ω) to D′(ω)(Ω). Similarly, we can prove
that A is also linear and continuous operator from D(ω)(Ω) to D(ω)(Ω). Consequently, A is properly supported.
Then property (i) is proved. By Lemma 3.6, all the operators involved, even the last inclusion, shrink the (ω)-
wave front set. An application of Theorem 2.7 gives the same conclusion for (ω)-singular supports, which proves
(ii) and concludes the proof.

The next proposition shows that the action of A does not depend on the choice of ψ and φ.
Proposition 3.8 Let ψ′, φ′ denote other functions with the properties of ψ, φ after Definition 3.4, and let A′

the corresponding operator defined according to (3.7). Then the map A−A′ is (ω)-micro-regularizing in Λ.

P r o o f. Lemma 3.5 shows that the functions

b(x, y, ξ) = φ(x)φ(y)a(x, y, ξ)ψ(ξ)

and
b′(x, y, ξ) = φ′(x)φ′(y)a(x, y, ξ)ψ′(ξ)

are amplitudes in ASm,ωρ,δ (Ω) corresponding to the operators A and A′, respectively. Since ω(t) = o(td), d =
ρ − δ, these amplitudes are also in Sm,ωρ,δ (Ω). On the other hand, b(x, y, ξ) − b′(x, y, ξ) = 0 in Λ. Therefore, to
conclude the proof we only have to apply Theorem 3.3.

Now, we can develop a micro-local symbolic calculus for this type of operators, that will allow us to construct
parametrices in this setting (see also [13, 3.1]).

Definition 3.9 We denote byFMSm,ωρ,δ (Λ) the set of all formal sums
∑
j∈N0

aj(x, y, ξ) such that aj(x, y, ξ) ∈
C∞(Λ∗), with Λ and Λ∗ defined as in Definition 3.4, and there are R,B ≥ 1 and a sequence Cn > 0, n ∈ N, of
constants satisfying∣∣Dα

xD
γ
yD

β
ξ aj(x, y, ξ)

∣∣
≤ CnB|β|β!e(ρ−δ)nϕ

∗((|α+γ|+j)/n)emω(ξ)|ξ||α+γ|δ−|β|ρ−(ρ−δ)j

for every j ∈ N0, (x, y, ξ) ∈ Λ∗ with log(|ξ|/R) ≥ n
|β|+jϕ

∗( |β|+j
n

)
.

In a similar way we define the equivalence between formal sums, and, as a particular case, between symbols
and formal sums, via a natural identification between symbols and formal sums.

Definition 3.10 Two formal sums
∑
aj and

∑
bj in FMSm,ωρ,δ (Λ) are said to be equivalent, and we write∑

j≥0 aj ∼
∑
j≥0 bj , if for Λ and Λ∗ defined as in Definition 3.4 there are R,B ≥ 1 and two sequences Cn > 0

and Nn > 0, n ∈ N, of constants satisfying∣∣∣Dα
xD

γ
yD

β
ξ

∑
j<M

(aj − bj)(x, y, ξ)
∣∣∣

≤ CnB|β|β!e(ρ−δ)nϕ
∗((|α+γ|+M)/n)emω(ξ)|ξ||α+γ|δ−|β|ρ−(ρ−δ)M

for every (x, y, ξ) ∈ Λ∗, M ≥ Nn, with log(|ξ|/R) ≥ n
|β|+Mϕ∗

( |β|+M
n

)
.

Proposition 3.11 Consider p(x, ξ) ∈ MSm,ωρ,δ (Λ) and assume that p(x, ξ) ∼ 0 in FMSm,ωρ,δ (Λ). Then the
operator P (x,D) defined as in (3.6) after Definition 3.4 is (ω)-micro-regularizing in Λ.

P r o o f. We choose φ, ψ as in the definition (3.6). Proceeding as in the proof of Lemma 3.5 we can see that
the symbol p̃(x, ξ) = φ(x)p(x, ξ)ψ(ξ) in ASm,ωρ,δ (Ω) is equivalent to 0 as a formal sum in FASm,ωρ,δ (Ω) (see [13,
Definition 3.1] for the definition of the class FASm,ωρ,δ (Ω)). By [13, Theorem 3.5], the corresponding operator
P̃ (x,D) is (ω)-smoothing in Ω. But P (x,D) = P̃ (x,D)− (P (x,D)− P̃ (x,D)) is the sum of a (ω)-smoothing
operator in Ω and a (ω)-micro-regularizing operator in Λ by Proposition 3.8, which gives the conclusion.
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The proof of the following two results is similar. In particular, we assume that ω(t) = o(td), for d ≤ ρ − δ,
d < 1, and that Ω is a relatively compact open set.

Theorem 3.12 Let a(x, y, ξ) ∈ MSm,ωρ,δ (Λ) be given and let A be defined as in (3.7). Let p(x, ξ) ∈
MSm,ωρ,δ (Λ) with p ∼

∑
j≥0 pj , where

pj(x, ξ) =
∑
|α|=j

(α!)−1∂αξ D
α
y a(x, y, ξ)|y=x.

If P = P (x,D) is given as in (3.6), then the map T = A− P is (ω)-micro-regularizing in Λ.

P r o o f. We consider the amplitude ã(x, y, ξ) = φ(x)φ(y)a(x, y, ξ)ψ(ξ) in ASm,ωρ,δ (Ω) and define p̃j(x, ξ) =∑
|α|=j(α!)−1∂αξ D

α
y ã(x, y, ξ)|y=x. By [13, Theorem 3.13] we obtain a pseudodifferential operator P̃ with sym-

bol p̃ ∼
∑
j≥0 p̃j , such that if Ã is the pseudodifferential operator associated to ã, then T̃ = Ã − P̃ is (ω)-

smoothing in Ω. Since T − T̃ is (ω)-micro-regularizing in Λ, we deduce that T is also (ω)-micro-regularizing in
Λ.

The formal sum p ◦ q can be also defined (see [13, Definition 3.15]) and the following result holds.

Theorem 3.13 Consider p(x, ξ), q(x, ξ) ∈ MSm,ωρ,δ (Λ) and let P = P (x,D), Q = Q(x,D) be defined
according to (3.6). Then P ◦Q = R + T , where T is (ω)-micro-regularizing in Λ and R = R(x,D) is defined
as in (3.6) for r(x, ξ) ∈MS2m,ω

ρ,δ (Λ) with r(x, ξ) ∼ (2π)Np(x, ξ) ◦ q(x, ξ) in FMS2m,ω
ρ,δ (Λ).

P r o o f. It suffices to proceed as in Theorem 3.12 and apply [13, Theorem 3.18].

We can now state and prove a sufficient condition for a linear partial differential operator to be (ω)-micro-
hypoelliptic at some point (x0, ξ0) ∈ Ω × (RN \ {0}), via the construction of a micro-local parametrix. In this
case we assume that σ is a weight function satisfying property (α0) (see after Definition 2.1), and then σ turns to
be equivalent to a sub-additive weight function.

Theorem 3.14 Let Ω be a relatively compact open subset of RN , and 0 ≤ δ < ρ ≤ 1, ω a weight function
and σ a weight function satisfying (α0) such that ω(t1/(ρ−δ)) = o(σ(t)) as t → ∞. Let P = P (x,D) be a
partial differential operator with symbol p(x, ξ) ∈ ASm,ωρ,δ (Ω). Let U be a neighborhood of x0 in Ω and Γ an
open conic neighborhood of ξ0 6= 0. Assume there exist some other neighborhoods U∗, Γ∗ as in Definition 3.4,
with U∗ ⊂ Ω, and constants A,C > 0 and n ∈ N such that

|p(x, ξ)| ≥ 1
A
e−mω(ξ) for x ∈ U∗, ξ ∈ Γ∗, |ξ| > A, (3.9)

|Dα
xD

β
ξ p(x, ξ)| ≤ C

|α|+|β|β!e
1
nϕ
∗
σ(|α|n)|p(x, ξ)|(1 + |ξ|)δ|α|−ρ|β| (3.10)

for all (α, β) 6= 0, x ∈ U∗, ξ ∈ Γ∗, |ξ| > A. Then there is a properly supported map Q with kernel in
D′(ω)(Ω × Ω) such that Q is (ω)-micro-pseudolocal in Ω and Q ◦ P = I + T , where I is the identity operator
and T is (ω)-micro-regularizing in Λ = U × Γ. In particular, the following holds

Λ ∩WF(ω)(Pu) = Λ ∩WF(ω)(u) for all u ∈ E ′(ω)(Ω).

P r o o f. Arguing as in the proof of [12, Theorem 3.4] we can construct q(x, ξ) ∈ MSm,ωρ,δ (Λ) such that
q ◦ p ∼ 1 in FMSm,ωρ,δ (Λ). So, we can define Q = Q(x,D) according to (3.6) using the symbol q(x, ξ).
By Theorem 3.13 we deduce ( 1

(2π)N
Q) ◦ P = R + T , where T is (ω)-micro-regularizing in Λ. Moreover, if

R = R(x,D) is the pseudodifferential operator defined by r(x, ξ) ∈ MSm,ωρ,δ (Λ), we have r(x, ξ) − 1 ∼ 0 in
FMSm,ωρ,δ (Λ). An application of Proposition 3.11 gives the conclusion.

Since linear partial differential operators always shrink the support, we can now obtain the main result of the
paper for arbitrary open sets.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 11

Theorem 3.15 Let Ω be an arbitrary open set in RN , ω and σ be two weight functions such that ω(t) =
o(σ(t)) as t tends to infinity and σ satisfies property (α0). Let P = P (x,D) =

∑
|α|≤m aα(x)Dα be a linear

partial differential operator with coefficients in E{σ}(Ω). Then we have

WF(ω)(u) ⊂WF(ω)(Pu) ∪ Σ,

for all u ∈ E ′(ω)(Ω), where Σ is the characteristic manifold of the principal symbol of P .

P r o o f. Since supp (Pu) ⊂ suppu and u is compactly supported, without loss of generality we can assume
that Ω is relatively compact. Let (x0, ξ0) /∈ Σ and pm(x, ξ) be the principal symbol of P . We fix neighborhoods
Λ = U × Γ, Λ∗ = U∗ × Γ∗ of (x0, ξ0) conic with respect to the second variable, with U∗ and Γ∗ satisfying the
conditions of Definition 3.4, and sufficiently small such that pm(x, ξ) 6= 0 in Λ∗.

Denote by p(x, ξ) the symbol of P . By homogeneity c|ξ|m ≤ |pm(x, ξ)| for (x, ξ) ∈ Λ∗ for some constant
c > 0 (U∗ is relatively compact). On the other hand, for some constants A,C > 0,

|p(x, ξ)− pm(x, ξ)| ≤ C(1 + |ξ|)m−1, (x, ξ) ∈ Λ∗, |ξ| > A,

thereby obtaining, if A is large enough,

c(1 + |ξ|)m/2 ≤ |p(x, ξ)|, (x, ξ) ∈ Λ∗, |ξ| > A, (3.11)

which proves (3.9) in Theorem 3.14. By hypothesis

|Dα
xD

β
ξ p(x, ξ)| ≤ Dβ!e

1
nϕ
∗
σ(|α|n)(1 + |ξ|)m−|β|, (3.12)

for x ∈ U∗ and ξ ∈ RN . Combining (3.11) and (3.12) we obtain (3.10) of Theorem 3.14 for (x, ξ) ∈ Λ∗ and
|ξ| > A. So, we can apply Theorem 3.14 for ρ = 1 and δ = 0 to obtain the existence of a micro-local parametrix
Q. Then, for every (x0, ξ0) /∈ Σ we find a neighborhood Λ of this point, conic with respect to the second variable,
such that

Λ ∩WF(ω)(Pu) = Λ ∩WF(ω)(u) for all u ∈ E ′(ω)(Ω),

which concludes the proof.

The Roumieu version of the result follows as a corollary. We observe that in this case we can avoid to take the
coefficients of P in a smaller class.

Corollary 3.16 Let Ω be an arbitrary open set in RN . Let ω be a weight function satisfying property (α0).
Let P = P (x,D) =

∑
|α|≤m aα(x)Dα be a linear partial differential operator with coefficients in E{ω}(Ω).

Then we have
WF{ω}(u) ⊂WF{ω}(Pu) ∪ Σ,

for all u ∈ E ′{ω}(Ω), where Σ is the characteristic manifold of the principal symbol of P .

P r o o f. In view of Proposition 2.6 there exists a weight function σ0 such that σ0 = o(ω), u ∈ E ′(σ0)
(Ω) and

WF{ω}(u) =
⋃
σ∈S

WF(σ)u (3.13)

for S = {σ weight function: σ0 ≤ σ = o(ω)}. Since u ∈ E ′(σ)(Ω) for all σ ∈ S, we can apply Theorem 3.15 to
obtain

WF(σ)(u) ⊂WF(σ)(Pu) ∪ Σ,

for all σ ∈ S. The conclusion follows directly from (3.13).
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Remark 3.17 We recall that a pseudodifferential operator P (x,D) with symbol in ASm,ωρ,δ (Ω) is said to be
classical if its symbol p(x, ξ) admits an asymptotic expansion of the kind

p(x, ξ) ∼
+∞∑
j=0

pm−j(x, ξ),

where pm−j(x, ξ) is positively homogeneous of order m − j with respect to ξ. The results of Theorem 3.15
and Corollary 3.16 continue to hold for classical properly supported pseudodifferential operators with symbol
in ASm,ωρ,δ (Ω), 0 ≤ δ < ρ ≤ 1. In fact, let us consider p(x, ξ) ∈ ASm,ωρ,δ (Ω). We observe at first that if the
corresponding pseudodifferential operator P (x,D) is classical then Σ is well defined. Moreover, since P (x,D)
is properly supported we have

P (x,D) : E ′(ω)(Ω)→ E ′(ω)(Ω). (3.14)

The proof of Theorem 3.14 holds for general pseudodifferential operators with symbol inASm,ωρ,δ (Ω). Concerning
Theorem 3.15, we have only to show that Ω can be assumed to be relatively compact, and then the proof works
in the same way. For every fixed u ∈ E ′(ω)(Ω), from (3.14) we have that also P (x,D)u has compact support and
hence, we can take Ω as a relatively compact open set containing both suppu and supp(P (x,D)u). Corollary
3.16 can then be deduced for pseudodifferential operators in analogous way from Theorem 3.15.

4 Some applications

The aim of this section is to give some applications of the results obtained in the paper. First, we obtain the
relation between ellipticity and hypoellipticity as an immediate consequence of Theorem 3.15. Let us consider
an elliptic linear partial differential operator P = P (x,D) satisfying the hypotheses of Theorem 3.15. Then the
characteristic set of P is empty and hence, we have

WF(ω)(u) ⊂WF(ω)(Pu)

for every u ∈ E ′(ω)(Ω). Since the opposite inclusion is also true, P then satisfies

WF(ω)(u) = WF(ω)(Pu)

for every u ∈ E ′(ω)(Ω). This means that P (x,D) is (ω)-micro-hypoelliptic and then (ω)-hypoelliptic, too, in
view of Theorem 2.7. The same conclusion holds in the Roumieu setting by using Corollary 3.16.

We want now to study the wave front set of the solutions for the following (non hypoelliptic) partial differential
operator of principal type in RN :

P =
∂

∂xN
.

We write ∗ for (ω) or {ω}. Observe that the characteristic set of P is

Σ = {(x, ξ) ∈ R2N : ξN = 0, ξ 6= 0}.

Moreover, we point out that u ∈ D′∗(RN ) is a solution of Pu = 0 if, and only if, u = v ⊗ 1 for some
v ∈ D′∗(RN−1), being 1 the function identically 1 in the xN -variable. Indeed, if u is of the form v ⊗ 1, then
∂

∂xN
(v ⊗ 1) = 0. On the other hand, if Pu = 0, then u satisfies τhu = u for every h = (0, . . . , 0, hN ), where

τhu denotes the h-translation of the distribution u (see, for example, [22]). From this fact, by an approximation
procedure, it is easy to conclude that u must be of the form v ⊗ 1, for some distribution v ∈ D′∗(RN−1).

Proposition 4.1 Let ω be a weight satisfying property (α0), and write, as usual, ∗ for (ω) or {ω}. Let
u ∈ E ′∗(RN ) be a solution of the equation Pu = 0. If (x, ξ) ∈ WF∗(u), then (x, ξ) ∈ Σ, and splitting
RN 3 x = (x′, xN ) = (x1, . . . , xN−1, xN ), we have that the straight line

L = {(x′, xN , ξ), xN ∈ R}

is contained in WF∗(u). Moreover, for every (x, ξ) ∈ Σ there exists a solution u ∈ E ′∗(RN ) of Pu = 0, whose
∗-wave front set is given by the straight line L.
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P r o o f. We will only deal with the Beurling case, as in the Roumieu case the result follows using the same
arguments and Corollary 3.16.

Let u ∈ E ′(ω)(R
N ) be a solution of Pu = 0. Then by Theorem 3.15 we have

WF(ω)(u) ⊂ Σ,

and u = v ⊗ 1 for some v ∈ E ′(ω)(R
N−1). We claim that

WF(ω)(u) = {(x, ξ) ∈ Σ : (x′, ξ′) ∈WF(ω)(v)}. (4.1)

To prove (4.1) we proceed as follows.
Let us fix (x, ξ) ∈ Σ. If (x′, ξ

′
) /∈ WF(ω)(v), then, by Definition 2.4, there exists ϕ ∈ D(ω)(RN−1), ϕ ≡ 1

in a neighborhood of x′, and a conic neighborhood Γ′ of ξ
′

such that for every m ∈ N there exists a positive
constant Cm satisfying

|ϕ̂v(ξ′)| ≤ Cme−mω(ξ′)

for every ξ′ ∈ Γ′. Let χ ∈ D(ω)(R) be a function equal to 1 in a neighborhood I of xN . Let Γ be a conic
neighborhood of (ξ, 0) ((x, ξ) ∈ Σ, so we have ξN = 0) with Γ ∩ {ξN = 0} ⊂ Γ′. Then there exists a positive
constant c1 such that

|ξN | ≤ c1|ξ′|

in Γ. Then we obtain, for every m ∈ N,

|((ϕ⊗ χ)u)∧(ξ)| = |ϕ̂v(ξ′)χ̂(ξN )| ≤ C ′me−m(ω(ξ′)+ω(ξN )). (4.2)

Since ω satisfies the property (α0), we have ω(ξ) ≤ ω(|ξ′| + |ξN |) ≤ ω((1 + c1)|ξ′|) ≤ (1 + c1)Dω(ξ′) ≤
C(ω(ξ′) +ω(ξN )) for some positive constant C independent of ξ, and for every ξ ∈ Γ. Thus, by (4.2) we deduce
that for every m ∈ N there exists a constant C

′′

m > 0 such that

|((ϕ⊗ χ)u)∧(ξ)| ≤ C
′′

me
−mω(ξ),

for every ξ ∈ Γ. This means that (x, ξ) /∈WF(ω)(u). So, we have proved that

{(x, ξ) ∈ Σ : (x′, ξ′) ∈WF(ω)(v)} ⊂WF(ω)(u).

In order to obtain (4.1) we have now to prove the opposite inclusion, i.e., if (x, ξ) ∈ Σ and (x, ξ) /∈ WF(ω)(u)
then (x′, ξ

′
) /∈WF(ω)(v).

Let (x, ξ) /∈ WF(ω)(u). Then there exists φ ∈ D(ω)(RN ), φ ≡ 1 in a neighborhood U of x, and a conic
neighborhood Γ of ξ, such that for every m ∈ N there exists a positive constant Cm such that

|φ̂u(ξ)| ≤ Cme−mω(ξ)

for every ξ ∈ Γ. Without loss of generality, we can assume that φ(x) = φ1(x′)φ2(xN ), with φ̂2(0) 6= 0,
eventually by multiplying by a tensor product test function with support contained in U . Then, we have

|φ̂1v(ξ′)φ̂2(ξN )| ≤ Cme−mω(ξ)

for ξ ∈ Γ and hence,

|φ̂1v(ξ′)| ≤ Cm

|φ̂2(0)|
e−mω(ξ′),

for ξ′ ∈ Γ′ = Γ ∩ {ξN = 0}. It follows that (x′, ξ
′
) /∈WF(ω)(v). This concludes the proof of (4.1).

Applying (4.1), we immediately conclude that if (x, ξ) ∈ WF(ω)(u), u being a solution of Pu = 0, then
every point of the kind (x′, xN , ξ) with xN ∈ R belongs to WF(ω)(u), i.e., the straight line L is contained in
WF(ω)(u).
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Let us fix now (x, ξ) ∈ Σ. We want to construct a solution u ∈ E ′∗(RN ) of Pu = 0, ∗ = (ω) or {ω}, such that

WF∗(u) = {(x, ξ) ∈ RN × RN \ {0} : x = (x′, xN ), ξ = λξ, xN ∈ R, λ > 0}.

Since u = v ⊗ 1, by (4.1) it is enough to construct v ∈ E ′∗(RN−1) such that

WF∗(v) = {(x′, ξ′) ∈ RN−1 × RN−1 \ {0} : x′ = x′, ξ′ = λξ
′
, λ > 0}. (4.3)

We know from Example 1 in [14] that it is possible to construct ũ ∈ E ′(ω)(R) whose Beurling wave front set
is given by {0} × (0,+∞). The same construction holds for the Roumieu case, and can be easily extended to
dimension greater than 1. Therefore, there exists ṽ ∈ E ′∗(RN−1) satisfying

WF∗(ṽ) = {(x′, ξ′) ∈ RN−1 × RN−1 \ {0} : x′ = 0, ξ′ = (0, . . . , 0, ξN−1), ξN−1 > 0}.

By a linear change of variable and a translation we then find v satisfying (4.3).

Observe that an analogous result holds for the equation Pu = f , where we can take for example f ∈
C∞(RN ). Indeed, every solution of Pu = f can be written as

u(x) = u0(x) +
∫ xN

0

f(x′, t) dt, x = (x′, xN ) ∈ RN ,

where u0 is some solution of Pu = 0. If (x, ξ) ∈ Σ and (x, ξ) /∈ WF∗(f), then (x, ξ) ∈ WF∗(u) implies that
(x′, xN , ξ) ∈ WF∗(u) for xN in a suitable interval I containing xN . In fact, if (x, ξ) /∈ WF∗(f) then there
exists a neighborhood U of (x, ξ) with empty intersection with WF∗(f). Consequently, in a neighborhood of x,
the wave front set of u is determined by the wave front set of u0.

Acknowledgements The research of the second author was partially supported by MEC and FEDER, Project MTM2007-
62643, and MEC, Project MTM2007-30904-E, and Conselleria d’Educació de la GVA, Ajuda complementaria ACOMP
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[16] L. Hörmander, The Analysis of Linear Partial Differential Operators I (Springer, Berlin, 1983).
[17] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic

coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971).
[18] M. Kato, Some results on potential scattering, Proc. Internat. Conf. on Functional Analysis and Related topics (Tokyo,

1969), 91–94 (Univ. of Tokyo Press, Tokyo, 1970).
[19] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Tokyo Sec. IA 20, 25–105

(1973).
[20] M. Langenbruch, Continuation of Gevrey regularity for solutions of partial differential operators, In: “Functional Anal-

ysis” (Proceedings of the First International Workshop held at Trier University 1994), 249–280 (Walter de Gruyter,
1996).

[21] R. Meise, D. Vogt, Introduction to Functional Analysis (Oxford Univ. Press, Oxford, 1997).
[22] L. Rodino, Linear Partial Differential Operators in Gevrey Spaces (World Scientific Pub., 1993).
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