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Abstract

Environmental systems often involve phenomena that are continuous functions not only of time, but also of other independent
variables, such as space coordinates. Typical examples are transportation phenomena of mass or energy, such as heat transmission
and/or exchange, humidity diffusion or concentration distributions. These systems are intrinsically distributed parameter systems

whose description usually requires the introduction of partial differential equations (PDE). Therefore, their modelling can be quite
complex, both for what concerns the model construction and its identification. Indeed, a typical approach for the simulation of such
systems is the use of finite elements techniques. However, this kind of description usually involves a huge number of parameters and

requires time-consuming computations while not being suited for identification. For this reason, such models are generally not
suitable for control purposes. In many cases, however, the involved phenomena depend on the independent (space) variables in
a smooth way, and for fixed values of the independent variables, input–output relations can be satisfactorily represented by linear

time-invariant models. In such conditions, a possible alternative to PDE consists in representing the physical system with a Linear
Parameter Varying (LPV) model whose parameters are functions of the independent variables. The advantage of this approach is the
relatively simple model obtained, which is directly suitable for control purposes and can be easily identified from input–output data
by means of classical techniques. Moreover, optimal identification schemes can be derived for such models, allowing the

optimization of the number of measurements. This can be particularly useful in several environmental applications for which the
cost of measurements represents a severe constraint.

In this paper, the derivation of LPV models for the representation of distributed phenomena in environmental systems is

discussed, and the issue of model uncertainty is addressed. In particular, it is shown that the derived models are linear in the
parameters, and therefore classical methods for handling uncertainty are directly applicable. The proposed approach is illustrated by
means of a simulated and a practical example concerning soil disinfestation by solarization.
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1. Introduction

In environmental and agricultural sciences, complex
systems need often to be described with mathematical
models. The development of model structures adequate
for practical use is carried out with different approaches,
depending on the goals of the modelling process as well
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as on the available information. Therefore, at one
extreme, large simulation models based on the best
available knowledge on the involved processes are
developed. Such models are often too complex to be
satisfactorily identified from experimental data and too
detailed to be suitable for control needs. At the other
extreme, simple low order input–output ‘‘black box’’
models are derived processing available data with no or
little use of a priori knowledge on the involved process.
Alternatives and drawbacks of these approaches are
nicely discussed in a recent paper by Young and Chotai
(2001).

It is well accepted that models to be used in control
applications need to be simple and robust to uncertain-
ties; nevertheless, the possibility to incorporate in the
model construction some knowledge on the involved
process is a desirable feature. Also, the possibility to
state a correspondence between the model behavior, its
parameters and the physical nature of the real system is
often seen as a great advantage.

Most part of environmental and agricultural pro-
cesses are intrinsically distributed parameter systems,
and their behavior is therefore naturally described by
partial differential equations (PDE) that, besides being
function of time, depend also on spatial coordinates.
Possible examples are given by processes in which mass
or energy transport phenomena occur. The resulting
models are infinite dimensional state models and are, in
general, difficult to be identified and managed, even in
the simple linear case. Moreover, in many cases,
parameter values are separately obtained from specific
laboratory tests and not from direct measurements on
the system, see for instance, Wu et al. (1996).

Indeed, applying finite-elements techniques it is
possible to approximate such models by equivalent finite
state models driven by ordinary differential equations in
which the infinite number of states is replaced by a large
number of states. Finite-elements models are usually
presented in discrete-time form to be implemented on
digital computers and their large number of states
increases with the required accuracy in approximating
the original infinite dimensional system. The resulting
model is therefore suitable for batch simulations but is
far too complex for control purposes.

In control engineering practice, when focus is on
input–output relations to be used for control design,
high dimensional systems are commonly approximated
with low order linear time-invariant (LTI) models. The
case of distributed parameter systems regarded as
systems with a ‘‘large number of states’’ is not an
exception. Hence, low order approximating models can
be derived for distributed parameter systems. It is also
possible to add some physical interpretation to the
different parameters and features of the approximated
model. For example, some of its time constants could be
regarded as diffusion constants or transport time
constants between the input and the output of the
distributed parameter real system. Simplified time-
invariant linear parameter models however lose any
information about the spatial structure of the original
system and cannot account for it although they can be
satisfactory from an input–output point of view.

When distributed parameter systems are modelled for
monitoring or control purposes, simple input–output
models are indeed convenient, but some information
about the spatial structures of the system should be
possibly preserved. In fact, although in practice the
system is usually operated applying specific inputs and
measuring corresponding outputs at some particular
points of the system volume, nevertheless monitoring
and/or control may concern the whole relevant volume
of the distributed parameter system and are not
restricted to only one or a few pairs of input–output
points.

Hence, some simplified model structure that still
preserves some information about the spatial structure
of the system is needed. Such structure can be provided
by Linear Parameter Varying (LPV) models consisting
of a linear lumped parameter model in which the
parameters are not constant, but are functions of an
extra, possibly vector valued, variable x that can be
regarded as an input determining the ‘‘operating
condition’’ of the model (Rugh and Shamma, 2000;
Shamma and Xiong, 1999). The basic idea is the same
used for many years in gain-scheduling controllers, see
e.g. Leith and Leithead (2000). By selecting the operating
condition x to be the spatial coordinate of the inputs
and/or outputs of the system some information about
the spatial structure can be directly included in the
simplified model and hence used to derive results valid
throughout the system volume. It should be remarked,
however, that such a model remains basically an input–
output model, able to describe the forced response of the
system. Therefore, it is not suited for replacing the
infinite dimensional model driven by partial differential
equations (or its finite element approximation) when one
is interested in simulating the internal behavior of the
distributed parameter system.

In this paper, we discuss the use of LPV models for
describing distributed parameter systems when informa-
tion about the spatial structure of the system is needed.
In Section 2, the notation and the main ideas of this
approach are developed. Different ways for handling
errors and uncertainties using the proposed modelling
structure are discussed in Section 3. Section 4 reports
a simulated example relative to the determination of the
temperature in a bar plunged at its extremes in two
fluids at different temperatures. In Section 5, the case of
soil temperature prediction during a disinfestation pro-
cess by solarization is discussed and the proposed
techniques are applied to real data. Finally in Section
6 conclusions are drawn.
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2. LPV approximation of distributed parameter

systems

Consider a distributed parameter system subject to an
input signal u(t). We are interested in the prediction of
the forced response of a distributed variable y(t; x) to
the input signal u(t) for any time t and spatial coordinate
x. The input is assumed to be concentrated, that is
acting at a single spatial point. To this extent we
introduce the approximating discrete-time model re-
ported in Fig. 1. This model consists of the cascade of
a delay block and an LPV model. Both the delay and the
LPV parameters are function of x. For the study of such
LPV systems with parameter-dependent delays the
interested reader should refer to Wu and Grigoriadis
(2001).

The delay block takes into account transport delays
in the process and is defined as follows

~uðk;xÞZq�DðxÞuðkÞ; ð1Þ

where D(x) is an unknown function to be estimated and
q�1 is the usual unit time shift operator.

The LPV model can have any convenient linear
parameter structure in which however the parameters
are assumed to be given functions of the spatial
coordinate x. In the following, we will adopt an
autoregressive dynamic structure with exogenous input
(ARX) that is quite general and is described by

A
�
q�1;x

�
yðk;xÞZB

�
q�1;x

�
~uðkÞCeðkÞ; ð2Þ

where e(k) takes into account measurement and
modelling errors while the regressors A(q�1; x) and
B(q�1; x) are defined as

A
�
q�1;x

�
Z1Ca1ðxÞq�1Ca2ðxÞq�2C/CanaðxÞq�na

Bðq�1; xÞZb0ðxÞCb1ðxÞq�1Cb2ðxÞq�2C/CbnbðxÞq�nb

(3)

The parameters ai(x), iZ 1,.,na, and bi(x), iZ 0,.,nb,
are continuous functions of the coordinate x.

To fully characterize this model, that will be referred
to as LPV-ARX(na, nb) the functional dependence of the
parameters ai(x) and bi(x) on coordinate x must be
specified. Possible choices may be polynomials, radial
basis functions, splines or other linear combinations of

Delay

x

u(k) u(k) y(k;x)
LPV

model

~

Fig. 1. LPV approximating model for single input distributed

parameter systems.
given functions of x. The whole model can then be
identified with a two step approach.

� Step 1: A set of n different suitable values of x,
{x1,x2,.,xn} is chosen. For any xj, jZ 1,.,n, a set
of input–output data is collected. From this data set,
an LTI model with the same structure of the LPV
model is identified. In this way, n distinct LTI-
ARX(na, nb) models are obtained, one for each xj.
Therefore, the parameters of the j-th model depend
on the value xj used for data set derivation, ai(xj),
iZ 1,.,na, bi(xj), iZ 0,.,nb.

� Step 2: The n different values of the same parameter
(e.g. ai(xj)) in the n distinct LTI-ARX(na,nb) models
derived in Step 1 are used to identify the functions
(e.g. a(x)) that relate the corresponding parameters
of the single LTI-ARX model to the spatial co-
ordinate x. These functions may be for instance
polynomials or splines. In such a way, LPV
parameters are obtained suitably interpolating the
parameters of the n LTI-ARX models.

With the resulting LPV model, forecast and control
of the output y(k; x) can be performed for any value of
x, even different from those used in the identification
stage. A similar approach was recently presented in
(Coca and Billings, 2002) where the distributed param-
eter system is approximated with a linear combination
of splines weighted with dynamically-varying coeffi-
cients.

3. Uncertainty and error analysis

The presented modelling and identification proce-
dure, that approximates distributed parameter systems
described by partial differential equations with LPV
models, leads to point estimates that are convenient for
control design. However an error analysis to examine
the reliability of the identified model and evidence
possible problems is mandatory.

First notice that the LPV-ARX model results to be
linear in its parameters whenever the functions ai(x),
iZ 1,.,na and bi(x), iZ 0,.,nb are described using
generalized polynomials such as B-splines, that is

aiðxÞZ
Xns
jZ1

ai;j4jðxÞ

biðxÞZ
Xns
jZ1

bi;j4jðxÞ;

where 4j(x), jZ 1,.,ns are linear independent continu-
ous functions. In this case, relation (2) rewrites
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yðk;xÞZ
Xna
iZ1

Xns
jZ1

ai;j4jðxÞyðk� i;xÞ

C
Xnb
iZ0

Xns
jZ1

bi;j4jðxÞ~uðk� iÞCeðkÞ ð4Þ

where ai,j, iZ 1,.,na, jZ 1,.,ns and bi,j, iZ 0,.,nb,
jZ 1,.,ns are the parameters to be actually estimated.
These parameters can be collected in a single parameter
vector

q˛Rm; mZnsðnaCnbÞ;

so that relation (4) can be rewritten as a linear regression
model

yðkÞZFqCeðkÞ:

Indeed, as the model is linear in q, different techniques
are directly applicable for estimating the parameters and
their uncertainties. These techniques mainly depend on
the different error assumptions. More specifically, if the
error e(k) is assumed to be gaussian, it is possible to
estimate the parameter-error covariance easily, see for
instance Ljung (1987), although this has recognised
limitations when the model structure is poor.

A different approach assumes the measurement error
e(k) to be unknown but bounded, see for instance
Milanese et al. (1996). That is, e(k) is assumed to belong
to a membership set

UeZfe : jeðkÞj%EðkÞ; ckg; ð5Þ

where E(k) is a known bounding function. With this set
membership error assumption, the identification of the
parameters consists in finding the set D of all parameters
consistent with the model (4), the measurements y and
the errors e. The corresponding parameter admissible set
D can be expressed as

DZfq˛Rm : yZFqCe; e˛Ueg: ð6Þ

Then, using the techniques described in Milanese et al.
(1996), upper and lower bounds on the model param-
eters ai,j, bi,j can be derived.

In the next sections, we present a simulated and a real-
world example, showing how the approach proposed in
this paper can be efficiently applied. In the examples
presented, the error noise was assumed to be gaussian,
and the lumped LTI-ARX models used in Step 1 of the
LPV identification procedure were identified using the
MATLAB Identification Toolbox (Ljung, 1994).

4. LPV approximation: a simulated case

In this section we present the simple problem of non-
steady thermal conduction in a one dimensional body.
We consider the case of an aluminium bar of length
lZ 100 cm plunged at its extremes into two fluids at
different temperatures. We assume the temperature T(t;
x), x ˛ [0, l], to be the output and the temperature TF1(t)
of the first fluid to be the input. The temperature TF2(t)
of the second fluid is assumed to be constant.

Let the body be initially at a uniform temperature T0.
The general conduction equation, for uniform and
isotropic materials with no internal heat generation, is
driven by the following partial differential equation, see
for instance (Chapman, 1984),

1

a

vTðt;xÞ
vt

Z
v2Tðt;xÞ

vx2
ð7Þ

that is associated with the following initial and
boundary conditions

Tð0;xÞZT0; c x˛½0; l�

�k

�
vTðt;xÞ

vx

�
xZ0

ZhðTðt;xÞ �TF1ðtÞÞxZ0 c tO0

�k

�
vTðt;xÞ

vx

�
xZl

ZhðTðt;xÞ �TF2ðtÞÞxZl c tO0;

where kZ 204 W/m�K is the thermal conductivity of
aluminium, hZ 0.562 W/m2�K is the thermal conduc-
tance of the two fluids and aZ 8.41810�5 m2/s is the
thermal diffusivity.

When a suitable input (temperature of the first fluid)
TF1

(t) is applied to the system, the simulation of the
system of relation (7) allows the temperature output T(t;
x) in any section x of the bar to be derived. Such
simulation has been performed in this paper by numer-
ical integration using the implicit scheme described in
(Jaluria and Torrace, 1986) and (Sewell, 1988).

If a specific section at xZ x* is considered, the
input–output behavior can be approximated with
a time-invariant lumped parameter model derived with
any suitable criterion, see e.g. (Ljung, 1987).

The derived LTI model accounts quite well for the
temperature in x* also for input signals different from
the one used for identification. However, the obtained
results do not give any information about the temper-
ature in any other section different from x*. Therefore,
whenever the goal is to monitor or to control the
temperature in any section of the bar, the use of this LTI
model is inadequate.

To represent with a simplified model the considered
distributed parameter process still preserving some
information about the spatial structure of the system,
a LPV-ARX model is then constructed.

It is assumed that the process can be well represented
by a LPV-ARX(3,3) model whose seven parameters
ai(x) iZ 1,.,3 and bi(x) iZ 0,.,3 are function of the x
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spatial variable representing the position of the section
in which the output is located. The functions relating the
parameters to the x variable are assumed to be cubic
splines obtained interpolating the parameters of four
ARX(3,3) LTI models. These are identified using
{TF1(t), T(t; x)} data with x at the four values {10 cm,
30 cm, 50 cm, 70 cm}, obtained by integrating the
partial different equation (Eq. (7)).

Using the resulting LPV-ARX(3,3) model, the
temperatures in other three sections xZ {20 cm,
40 cm, 60 cm} not used for identification are then
computed when the input is a square wave with varying
period. Fig. 2 shows the simulation of the identified LPV
model at the three sections xZ {20 cm, 40 cm, 60 cm}
(dotted lines), together with the temperatures T(t; x)
computed in the same sections integrating, again, the
partial differential equation (Eq. (7)) (solid line). As it
can be seen the approximation is quite good and
supports the use of such LPV models for keeping spatial
information. Indeed, the LPV model output tracks are
faster than the distributed parameter system outputs.

Considering the whole range of parameter variations,
the obtained LPV model allows the temperature in all
the sections of the bar to be monitored. Therefore,
a SISO robust controller can be designed that, handling
all the possible parameter values, guarantees specifica-
tions on the whole volume.

5. LPV approximation: a real case

In this section, we present an agricultural application
that is quite close to the previously simulated process. In
intensive agriculture the continuous exploitation of the
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the output of the corresponding identified LPV model.
soil with the same crop leads to the development of weed
seeds, nematodes and plant pathogens. It is therefore
necessary to periodically treat the soil in order to kill
these undesired agents (Mulder, 1979).

Soil solarization is a procedure used for controlling
a wide spectrum of soilborne pathogens and weeds
(Katan and DeVay, 1991; Stapleton, 2000). It is
performed mulching tilled and irrigated soil with trans-
parent polyethylene sheeting. Soil mulching can be done
with a continuous film covering on the whole plot
applied either manually or by laying separate strips
which are melded together, depending on the technology
available. The soil is heated by solar irradiation and
soilborne pests are killed due to physical and biological
processes.

Here temperature monitoring and prediction is of
interest for soil disinfestation. The measured data
{u(t),y(t; x)} used in this paper are relative to the solar
radiation (W/m�2) and the temperatures ( �C) at
different depths in the soil, respectively. The poly-
ethylene mulch was laid in August 2002 and removed in
September 2002. Data were collected during the
complete treatment period and then split into two
distinct identification and validation sets. Except for
a gradient of reduced effectiveness of solarization
toward the edge of the plastic mulch known as border
effect (Grinstein et al., 1995), the soil can be macro-
scopically approximated with an unbounded uniform
body. The only dimension that affects the system
behavior is the depth x at which temperature is
considered.

Temperatures were measured with a probe consti-
tuted by six thermocouple placed at depths xZ {15 mm,
40 mm, 65 mm, 90 mm, 115 mm, 140 mm}. The corre-
sponding data are reported in Fig. 3. In this case an
LPV-ARX(4,4) was considered for representing the
data. The parameter dependence from the depth x was
assumed once more to be represented by cubic splines
that have been derived from the data relative to
xZ {15 mm, 40 mm, 90 mm, 115 mm, 140 mm}. The
information relative to depth xZ 65 mm was left out in
the identification process.

Since the proposed approach aims at deriving a model
that enables to forecast the distributed parameter system
behavior at any point in space and in particular at those
points where measurements were not collected for
system identification, the validation procedure was
carried out comparing simulated model output data
with real data collected at a point (depth xZ 65 mm)
not used for identification. Moreover data sets used for
identification and for validation were collected at
different times to allow an even better validation. The
LPV-ARX(4,4) parameter values for xZ 65 mm have
been computed and the model simulated. Real and
simulated data are presented in Fig. 4 for a time interval
of 12 days. In Fig. 5 the difference between real and
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identification purposes. The information relative to depth xZ 65 mm was left out in the identification process.
simulated data (the error) is reported. The signals
reported in these plots present several important
features that may provide interesting information for
a better understanding of the experiment, suggesting
also possible future activity.
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� The measured signal presents in general one
maximum and one minimum peak a day. They are
related respectively to the heating during the day
and the cooling during the night. However in most
days there is an extra peak appearing at the cooling
time.
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� The error signal presents some evident periodicity.
� The error has usually a peak close to the peak values
of the measured signal.

The most important observation that follows from the
previous remarks is that the used input–output model
explains the data to a large extent, but does not account
for all the output behavior. In particular the extra peak
that is present almost every day during the cooling time
is not accounted for. The explanation that we can
suggest for this systematic error, reconsidering the whole
experimental setting, is related to the fact that measure-
ments have been obtained using thermocouple whose
cold joint is mainly associated with the data logger
collecting the data. Such device was located on the field,
covered by a small shelter, that, however perhaps did
not properly cover the equipment from direct sun rays
during the last hours of the day. It is therefore possible
that the temperature of the cold joint was affected by
direct sun rays at sunset. This could explain the peak in
the data signal during the cooling time. Moreover the
fact that in some days the phenomenon does not occur
could be simply motivated by the absence of direct sun
rays on the device in cloudy days. Unfortunately the
available weather record is not sufficient to validate this
hypothesis. The variation in temperature of the cold
joint could determine also the large errors occurring
close to the peaks of the data signal when the overall
temperature change could affect again the cold joint.
Indeed the assumed model input is the sun radiation
only that was measured through a proper transducer
that obviously could not account for the changes in
temperature of the cold joint. All the previous consid-
erations could also motivate the periodicity present in
the error signal.

It must be noted that the problems evidenced before
are related to the experimental setting therefore data
used for model identification and for model validation
are affected likewise. It follows therefore that the
minimization of the l2 norm of the interpolation error
that was used as criterion in the parameter identification
stage, is more convenient than the lN norm since this last
is far more sensitive to local errors.

6. Conclusions

This paper introduces a fairly new approach for
approximate modelling of intrinsically distributed pa-
rameter processes using Linear Parameter Varying
(LPV) models.

The use of LPV models allows the system to be
approximated with a lumped low order model that
however still keeps some information about the spatial
structure of the original system. In fact, the parameters
of the LPV model are assumed to be functions of the
relevant spatial coordinates that account for the
distributed parameter nature of the real process. In this
way the model, that remains intrinsically an input–
output model, can be used for monitoring and control
solutions that take into account the whole relevant
range of the spatial coordinates of the real process.

This kind of approach can be quite valuable in
environmental and agricultural applications where
distributed parameter processes such as those related
to the diffusion of substances and/or to the transmission
of heat are quite common. Simple models for such kind
of systems are needed for practical applications in which
computing time is usually constrained. Moreover, the
linear in the parameters structure presented in this paper
easily permit to find optimal identification procedures
that allow the system parameters to be derived with the
smallest possible uncertainty still using a moderate
amount of measurements, whose collection is usually
expensive in environmental applications.

Beside the above benefits, the proposed approach still
presents some problems. In particular, a study of the
modelling errors introduced by the procedure should be
carried on. Such errors are mainly related to the
approximation of a distributed parameter system with
a lumped parameter model and to the interpolation
process performed whenever outputs are computed for
locations different from the ones where measurements
were collected.
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