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Abstract. Following the basic prescriptions of the relativistic Tsallis’ non-extensive thermostatistics, we
investigate from a phenomenological point of view the relevance of non-extensive statistical effects on
relativistic heavy-ion collisions observable, such as rapidity spectra of net proton production, transverse
momentum distributions and transverse momentum fluctuations. Moreover, we study the nuclear and the
subnuclear equation of state, investigating the critical densities of a phase transition to a hadron-quark-
gluon mixed phase by requiring the Gibbs conditions on the global conservation of the electric and the
baryon charges. The relevance of small deviations from the standard extensive statistics is studied in the
context of intermediate and high energy heavy-ion collisions.

PACS. 25.75.-q Relativistic heavy-ion collisions – 25.75.Nq Quark deconfinement, quark-gluon plasma
production, and phase transitions – 05.90.+m Other topics in statistical physics, thermodynamics, and
nonlinear dynamical systems

1 Introduction

It is common opinion that hadrons dissociate into a plasma
of their elementary constituents, quarks and gluons (QGP),
at density several times the nuclear matter density and/or
at temperature above few hundreds MeV, which is the crit-
ical temperature Tc of the transition from the QGP phase
to the hadronic gas phase and viceversa. Such a QGP is
expected to have occurred in the early stages of the Uni-
verse and can be found in dense and hot stars, neutron
stars, nucleus-nucleus high energy collisions where heavy
ions are accelerated to relativistic energies [1]. After colli-
sion, a fireball is created which may realize the conditions
of the QGP. The plasma then expands, cools, freezes-out
into hadrons, photons, leptons that are detected and an-
alyzed [2].

Since the interactions among quarks and gluons be-
come weak at small distance or high energy, we could ex-
pect that QGP is a weakly interacting plasma, which can
be described by perturbative QCD. However, this is rigor-
ously true only at very high temperature (T > Tc) while at
the order of the critical temperature and in the hadroniza-
tion phase there are strong non-perturbative QCD effects.

In the literature, an ordinary plasma is usually char-
acterized by the value of the plasma parameter Γ [3]

Γ =
〈U〉
〈T 〉 , (1)

defined as the ratio between potential energy 〈U〉 versus
kinetic energy 〈T 〉. When Γ ≪ 1, one has a dilute weakly

interacting gas; the Debye screening length λD is much
greater than the average interparticle distance r0 and a
large number of particles is contained in the Debye sphere.
Binary collisions induced by screened forces produce, in
the classical case, the standard Maxwell-Boltzmann ve-
locity distribution. If Γ ≈ 0.1÷ 1, then λD ≈ r0, and it is
not possible to clearly separate individual and collective
degrees of freedom: this situation refers to a weakly in-
teracting, non-ideal plasma. Finally, if Γ ≥ 1, the plasma
is strongly interacting, Coulomb interaction and quantum
effects dominate and determine the structure of the sys-
tem.

The quark-gluon plasma close to the critical temper-
ature is a strongly interacting system. In fact, following
Ref.[4,5], the color-Coulomb coupling parameter of the
QGP is defined, in analogy with the one of the classical
plasma, as

Γ ≈ C
g2

4πr0 T
, (2)

where C = 4/3 or 3 is the Casimir invariant for the quarks
or gluons, respectively; for typical temperatures attained
in relativistic heavy ion collisions, T ≃ 200 MeV, αs =
g2/(4π) = 0.2÷0.5, and r0 ≃ n−1/3 ≃ 0.5 fm (n being the
particle density for an ideal gas of 2 quark flavors in QGP).
Consequently, one obtains Γ ≃ 1.5 − 5 and the plasma
can be considered to be in a non-ideal liquid phase [5,6].
Furthermore, during the hadronization, non-perturbative,
confining QCD effects are important, hence: i) near the
critical temperature Tc, the effective quark mass is mq ≈ T
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and n < r >3≈ nλ3
D ≃ 1; ii) the mean field approximation

of the plasma is no longer correct and memory effects are
not negligible.

In these conditions, the generated QGP does not sat-
isfy anymore the basic assumptions (BBGKY hierarchy)
of a kinetic equation (Boltzmann or Fokker-Planck equa-
tion) which describes a system toward the equilibrium.
Indeed, near the phase transition the interaction range is
much larger than the Debye screening length and a small
number of partons is contained in the Debye sphere [4,6].
Therefore, the collision time is not much smaller than the
mean time between collisions and the interaction is not
local. The binary collisions approximation is not satisfied,
memory effects and long–range color interactions give rise
to the presence of non–Markovian processes in the kinetic
equation, thus affecting the thermalization process toward
equilibrium as well as the standard equilibrium distribu-
tion.

In the last years, there has been an increasing evi-
dence that the generalized non-extensive statistical me-
chanics, proposed by Tsallis [7,8,9] and characterized by
a power-law stationary particle distribution, can be con-
sidered as a basis for a theoretical framework appropriate
to incorporate, at least to some extent and without going
into microscopic dynamical description, long-range inter-
actions, long-range microscopic memories and/or fractal
space-time constraints. A considerable variety of physical
issues show a quantitative agreement between experimen-
tal data and theoretical analyses based on Tsallis’ ther-
mostatistics. In particular, there is a growing interest to
high energy physics applications of non-extensive statistics
[10,11,12,13,14,15]. Several authors outline the possibil-
ity that experimental observations in relativistic heavy-
ion collisions can reflect non-extensive statistical mechan-
ics effects during the early stage of the collisions and the
thermalization evolution of the system [4,16,17,18,19,20].

The aim of this paper is, in the light of the recent devel-
opments, to critically review our principal results obtained
in the context of high energy heavy-ion collisions and to
gain a new deeper insight on the nuclear equation of state
and hadron-quark gluon mixed phase in the framework of
non-extensive thermostatistics.

The paper is organized as follows. We start in Sec.
II with a short reminder on the relativistic non-extensive
thermodynamics. In Sec. III, we review the phenomeno-
logical studies on rapidity distribution of the net proton
production; Sec. IV and in Sec. V are devoted to transverse
observables by studying the transverse momentum dis-
tribution and the related transverse momentum fluctua-
tions. In Sec. VI we investigate the effects of non-extensive
thermostatistics on hadronic and quark-gluon equation of
state; afterwards, we study the formation of hadron-quark
mixed phase on the basis of the Gibbs condition in which
both baryon and isospin charge are preserved.

2 Relativistic non-extensive thermodynamics

In order to study from a phenomenological point of view
experimental observable in relativistic heavy-ion collisions,

in this Section we present the basic macroscopic thermo-
dynamic variables and kinetic theory in the language of
the non-extensive relativistic kinetic theory.

Let us start by introducing the particle four-flow in the
phase space as [21]

Nµ(x) =
1

Zq

∫

d3p

p0
pµ f(x, p) , (3)

and the energy-momentum flow as

T µν(x) =
1

Zq

∫

d3p

p0
pµpν f q(x, p) , (4)

where we have set h̄ = c = 1, x ≡ xµ = (t,x), p ≡ pµ =

(p0,p), p0 =
√

p2 + m2 being the relativistic energy and
f(x, p) the particle distribution function. The four-vector
Nµ = (n, j) represents the probability density n = n(x)
(which is normalized to unity) and the probability flow
j = j(x). The energy-momentum tensor contains the nor-
malized q-mean expectation value of the energy density,
as well as the energy flow, the momentum and the mo-
mentum flow per particle. Its expression follows directly
from the definition of the mean q-expectation value in non-
extensive statistics [8]; for this reason T µν it is given in
terms of f q(x, p).

On the basis of the above definitions, one can show that
it is possible to obtain a generalized non-linear relativistic
Boltzmann equation [21]

pµ∂µ [f(x, p)]
q

= Cq(x, p) , (5)

where the function Cq(x, p) implicitly defines a generalized
non-extensive collision term

Cq(x, p) =
1

2

∫

d3p1

p0
1

d3p′

p′0
d3p′1

p′01

{

hq[f
′, f ′

1]W (p′, p′1|p, p1)

−hq[f, f1]W (p, p1|p′, p′1)
}

. (6)

Here W (p, p1|p′, p′1) is the transition rate between a two-
particle state with initial four-momenta p and p1 and a
final state with four-momenta p′ and p′1; hq[f, f1] is the
q-correlation function relative to two particles in the same
space-time position but with different four-momenta p
and p1, respectively. Such a transport equation conserves
the probability normalization (number of particles) and is
consistent with the energy-momentum conservation laws
in the framework of the normalized q-mean expectation
value. Moreover, the collision term contains a generalized
expression of the molecular chaos and for q > 0 implies the
validity of a generalized H-theorem, if the following, non-
extensive, local four-density entropy is assumed (hencefor-
ward we shall set Boltzmann constant k

B
to unity)

Sµ
q (x) = −

∫

d3p

p0
pµf [(x, p)]q[lnq f(x, p) − 1] , (7)

where we have used the definition lnq x = (x1−q − 1)/(1−
q), the inverse function of the Tsallis’ q-exponential func-
tion

eq(x) = [1 + (1 − q)x]1/(1−q) , (8)
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which satisfies the property eq(lnq x) = x.
The above expression is written in a covariant form, in

fact Sµ
q = (S0

q , Si
q), with i = 1, 2, 3, correctly transforms

as a four-vector under Lorentz transformations [21], where
S0

q is the standard expression of the Tsallis non-extensive

local entropy density and Si
q is the Tsallis entropy flow.

Note that for q → 1, Eq.(7) reduces to the well known
four-flow entropy expression [22].

At equilibrium, the solution of the above Boltzmann
equation is a relativistic Tsallis-like (power law) distribu-
tion and can be written as

feq(p) =
1

Zq

[

1 − (1 − q)
pµUµ

T

]1/(1−q)

, (9)

where Uµ is the hydrodynamic four-velocity [22] and feq

depends only on the momentum in the absence of an ex-
ternal field. At this stage, T is a free parameter and only in
the derivation of the equation of state it will be identified
with the physical temperature.

We are able now to evaluate explicitly all other thermo-
dynamic variables and provide a complete macroscopic de-
scription of a relativistic system at the equilibrium. Con-
sidering the decomposition of the energy-momentum ten-
sor: T µν = ǫ UµUν −P ∆µν , where ǫ is the energy density,
P the pressure and ∆µν = gµν − UµUν , the equilibrium
pressure can be calculated as

P = −1

3
T µν∆µν = − 1

3 Zq

∫

d3p

p0
pµpν∆µνf q

eq(p) . (10)

Setting τ = p0/T and z = m/T , the above integral can be
expressed as

P =
4π

Zq
m2 T 2 K2(q, z) , (11)

where we have introduced the q-modified Bessel function
of the second kind as follows

Kn(q, z) =
2nn!

(2n)!

1

zn

∫ ∞

z

dτ(τ2 − z2)n−1/2
(

e−τ
q

)q
, (12)

and eq(x) is the q-modified exponential defined in Eq.(8).
Similarly, the energy density ǫ can be obtained from

the following expression

ǫ = T µνUµUν =
1

Zq

∫

d3p

p0
(pµUµ)2f q

eq(p) , (13)

and, after performing the integration, it can be cast into
the compact expression:

ǫ =
4π

Zq
m4

[

3
K2(q, z)

z2
+

K1(q, z)

z

]

. (14)

Thus the energy per particle e = ǫ/n is

e = 3 T + m
K1(q, z)

K2(q, z)
, (15)

which has the same structure of the relativistic expression
obtained in the framework of the equilibrium Boltzmann-
Gibbs statistics [22].

It is also interesting to consider the ratio ǫ/p, a quan-
tity often considered in lattice calculations as an indicator
for the phase transition [23]:

ǫ

P
= 3

(

1 +
z

3

K1(q, z)

K2(q, z)

)

, (16)

which tends to the Stefan-Boltzmann limit 3 in the limit
of very large temperatures.

In the non-relativistic limit (p ≪ 1) the energy per
particle reduces to the well-known expression

e ≃ m +
3

2
T , (17)

and no explicit q-dependence is left over.
Hence from the above results it appears that, in search-

ing for the relevance of non-extensive statistical effects,
both microscopic observable, such as particle distribution,
correlation functions, fluctuations of thermodynamical vari-
ables, and macroscopic variables, such as energy density
or pressure, can be affected by the deformation parameter
q.

In this context, it appears relevant to observe that,
in Ref. [15] non-extensive Boltzmann equation has been
studied and proposed for describing the hadronization of
quark matter. Moreover, starting from the above general-
ized relativistic kinetic equations, in Ref.[19] the authors
have recently formulated a non-extensive hydrodynamic
model for multiparticle production processes in relativis-
tic heavy-ion collisions. These works represent an impor-
tant bridge for a close connection between a microscopic
non-extensive model and experimental observable.

Finally, let us remind the reader that for a system of
particles in a degenerate regime the above classical distri-
bution function (9) has to be modified by including the
fermion and boson quantum statistical prescriptions. For
a dilute gas of particles and/or for small deviations from
the standard extensive statistics (q ≈ 1) the equilibrium
distribution function, in the grand canonical ensemble, can
be written as [24]

nq(k, µ) =
1

[1 + (q − 1)(E(k) − µ)/T ]1/(q−1) ± 1
, (18)

where the sign + stands for fermions and − for bosons:
hence all previous results can be easily extended to the
case of quantum statistical mechanics.

3 Rapidity distributions

Recent results for net-proton rapidity spectra in central
Au+Au collisions at the highest RHIC energy of

√
sNN=

200 GeV [25] show an unexpectedly large rapidity density
at midrapidity in comparison with analogous spectra at
lower energy at SPS [26] and AGS [27]. As outlined from
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different authors, such spectra can reflect non-equilibrium
effects even if the energy dependence of the rapidity spec-
tra is not very well understood [25,28].

In this Section we are going to discuss from a phe-
nomenological point of view the relevance of non-extensive
statistical mechanics and anomalous diffusion in a power
law Fokker-Planck kinetic equation which describes the
non-equilibrium evolution of the rapidity spectra of net
proton yield. Let us recall, in this context, that simi-
lar approaches have been considered in the past to ana-
lyze transverse momentum distributions, power law spec-
tra at large p⊥ and two-particle Bose-Einstein correlation
functions in terms of various non-conventional extensions
of the Boltzmann-Gibbs thermostatistics [16,18,29]. Rel-
evant results have been also obtained by Wolschin [30,31,
32] within a three-component relativistic diffusion model.

In order to study the rapidity spectra, it is conve-
nient to separate the kinetic variables into their trans-
verse and longitudinal components, the latter being re-

lated to the rapidity y = tanh−1
(

p‖/
√

m2 + p2
)

. If we

assume that the particle distribution function f(y, m⊥, t),

at fixed transverse mass m⊥ =
√

m2 + p2
⊥, is not appre-

ciably influenced by the transverse dynamics (which is
considered in thermal equilibrium), the non-linear Fokker-
Planck equation in the rapidity space y can be written as
[33]

∂

∂t
[f(y, m⊥, t)] =

∂

∂y

[

J(y, m⊥)[f(y, m⊥, t)] +

D
∂

∂y
[f(y, m⊥, t)]µ

]

, (19)

where D and J are the diffusion and drift coefficients,
respectively, while µ is a generic, real exponent.

Tsallis and Bukman [34] have shown that, for linear
drift, the time dependent solution of the above equation is
a Tsallis distribution with µ = 2−q and that a value of q 6=
1 implies anomalous diffusion, i.e., [y(t) − yM (t)]2 scales
like tα, with α = 2/(3− q). For q < 1, the above equation
implies anomalous sub-diffusion, while for q > 1, we have
a super-diffusion process in the rapidity space. Let us ob-
serve that, at variance with our approach, if one assumes
a Fokker-Planck equation with fractional derivatives, in
the framework of the so-called continuous time random
(Lévy) walk models, anomalous diffusion processes can be
also realized [35,36,37].

Let us observe that the choice of the diffusion and the
drift coefficients plays a crucial rôle in the solution of
the above non-linear Fokker-Planck equation (19). Such
a choice influences the time evolution of the system and
its equilibrium distribution. By imposing the validity of
the Einstein relation for Brownian particles, we can gen-
eralize to the relativistic case the standard expressions of
diffusion and drift coefficients as follows

D = γ T , J(y, m⊥) = γ m⊥ sinh(y) ≡ γ p‖ , (20)

where p‖ is the longitudinal momentum, T is the temper-
ature and γ is a common constant. Let us remark that

Fig. 1. Rapidity spectra for net proton production (p − p) at
RHIC (Au+Au at

√
sNN = 200 GeV, BRAHMS data), SPS

(Pb+Pb at
√

sNN = 17.3 GeV, NA49 data) and AGS (Au+Au
at

√
sNN = 5 GeV, E802, E877, E917).

the above definition of the diffusion and drift coefficients
appears as the natural generalization to the relativistic
Brownian case in the rapidity space. The drift coefficient
which is linear in the longitudinal momentum p‖ becomes
non-linear in the rapidity coordinate.

It is easy to see that the above coefficients give us
the Boltzmann stationary distribution in the linear case
(q = µ = 1), while the equilibrium solution feq(y, m⊥)
of Eq.(19), with µ = 2 − q, is a Tsallis-like (power-law)
distribution with the relativistic energy E = m⊥ cosh(y)

feq(y, m⊥) ∝
[

1 − (1 − q)m⊥ cosh(y)/T
]1/(1−q)

. (21)

The rapidity distribution at fixed time can be obtained
out of equilibrium by means of numerical integration of
Eq.(19) with delta function initial conditions depending
upon the value of the experimental projectile rapidities
and by means of numerical integration over the transverse
mass m⊥

dN

dy
(y, t) = c

∫ ∞

m

m2
⊥ cosh(y) f(y, m⊥, t) dm⊥ , (22)

where m is the mass of the considered particles and c is
a normalization constant, fixed by comparison with the
experimental data. The calculated rapidity spectra will
ultimately depend on two parameters: the “interaction”
time τint = m γ t and the non-extensive parameter q.

It is important to note that, as we will see in the next
Section by studying the transverse mass spectrum, dy-
namical collective interactions are intrinsically involved in
the generalized non-extensive statistical mechanics and,
in a purely thermal source, a generalized q-blue shift fac-
tor (strictly related to the presence of longitudinal flow)
appears. In this context, it is worth mentioning that col-
lective transverse flow effects in the framework of a non-
extensive statistical mechanics have been investigated in
Ref. [16] as well.

In Fig. 1, we report the rapidity distribution obtained
from Eq. (22) (full line) for the net proton production
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Fig. 2. Time evolution of the rapidity spectra at fixed value
of q = 1.235, obtained for SPS data. The data can be well
reproduced only for this value of q and for the corresponding
value of τint = 0.84.

(p − p) compared with the experimental data of RHIC
(Au+Au at

√
sNN = 200 GeV, [25]), SPS (Pb+Pb at√

sNN = 17.3 GeV, [26]) and AGS (Au+Au at
√

sNN = 5
GeV, [27]). The parameters employed for the three curves
are: q = 1.485 with τint = 0.47 for RHIC, q = 1.235
with τint = 0.84 for SPS and q = 1.09 with τint = 0.95 for
AGS, respectively. Let us notice that the value τint = 0.47
is compatible with the equilibration time extracted from
a hydro-description of the RHIC data: this partly justifies
the present use of near-equilibrium distributions.

We also remark that, although q and τint appear, in
principle, as independent parameters, in fitting the data
they are not. We can see that in the non-linear case only
(q 6= 1) there exists indeed one (and only one) finite time
τint for which the obtained rapidity spectrum well repro-
duces the broad experimental shape. On the contrary, for
q = 1, no value of τint can be found, which allows to re-
produce the data. Evidence for this feature is shown in
Fig. 2, where the time evolution of the rapidity spectra is
reported at the fixed value q = 1.235, the one employed
for the SPS experiment, and different values of τint: only
for τint = 0.84 a good agreement with the experimental
data is obtained. Moreover, for different values of q we do
not find a corresponding value of the τint parameter which
allows us to reproduce the selected data.

We obtain a remarkable agreement with the experi-
mental data by increasing the value of the non-linear de-
formation parameter q as the beam energy increases. At
AGS energy, the non-extensive statistical effects are negli-
gible and the spectrum is well reproduced within the stan-
dard quasi-equilibrium linear approach. At SPS energy,
non-equilibrium effects and non-linear evolution become
remarkable (q = 1.235) and such effects are even more
evident for the very broad RHIC spectra (q = 1.485).

From a phenomenological point of view, we can inter-
pret the larger value of the parameter q and the shorter
τint needed to fit the RHIC data, as a signal of non-
linear anomalous (super) diffusion. As confirmed by recent
microscopic calculations [5,6], strongly coupled non-ideal
plasma is generated at energy densities corresponding to

Fig. 3. Rapidity spectra for net proton production expected
at LHC for the extrapolated value of q = 1.68 and different
interaction times τint.

the order of the critical phase transition temperature and
in such a regime we find, in our macroscopic approach,
strong deviations from the standard thermostatistics. At
much higher energy, such as the LHC (Large Hadron Col-
lider - CERN Laboratory) one, we can foresee a minor
relevance of such non-ideal effects since the considerable
expected energy density is far above the critical one. Nev-
ertheless we can guess, on the basis of a linear extrapola-
tion of the q-value versus the beam rapidity, that a suitable
q-value for LHC will be q = 1.68. Accordingly we show in
Fig. 3 the expected net-proton distributions, evaluated at
different τint ≤ 0.4.

4 Transverse momentum distributions

High transverse momentum particle production in hadronic
collisions results from the fragmentation of quarks and
gluons emerging from the initial scattering at large Q2,
therefore, hard processes in nucleus-nucleus collisions pro-
vide direct information on the early partonic phases of
the reaction and particle production at high transverse
momentum is sensitive to properties of the hot and dense
matter in the nuclear collisions. For this reason and for the
motivations reported in the Introduction, we expect that
the transverse momentum spectra will be sensibly affected
by non-extensive statistical effects.

The single particle spectrum can be expressed as an
integral over a freeze–out hypersurface Σf

E
d3N

d3p
=

dN

dy m⊥dm⊥dφ
=

g

(2π)3

∫

Σf

pµdσµ(x)f(x, p) ,

(23)
where g is the degeneracy factor and f(x, p) is the phase–
space distribution.

The transverse momentum distribution depends on the
phase-space distribution and usually an exponential shape
is employed to fit the experimental data. This shape is ob-
tained by assuming a purely thermal source with a Boltz-
mann distribution and the transverse momentum spec-
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trum can be expressed as

dN

m⊥dm⊥
= A m⊥K1 (z) , (24)

where z = m⊥/T , m⊥ =
√

p2
⊥ + m2, and K1 is the first

order modified Bessel function. In the asymptotic limit,
m⊥ ≫ T (z ≫ 1), the above expression gives rise to the
exponential shape

dN

m⊥dm⊥
= B

√
m⊥ e−z . (25)

High energy deviations from the exponential shape can be
taken into account by introducing a dynamical effect due
to collective transverse flow, also called blue-shift, with an
increase of the slope parameter T at large m⊥.

Let us consider a different point of view and argue that
the deviation from the Boltzmann slope at high p⊥ can be
ascribed to the presence of non-extensive statistical effects
in the steady state distribution of the particle gas. In this
framework, at the first order in (q−1) the transverse mass
spectrum can be written as [4]

dN

m⊥dm⊥
= C m⊥

{

K1 (z)

+
(q − 1)

8
z2 [3 K1(z) + K3(z)]

}

, (26)

where K3 is the modified Bessel function of the third or-
der. In the asymptotic limit, z ≫ 1, we have

dN

m⊥dm⊥
= D

√
m⊥ exp

(

−z +
q − 1

2
z2

)

, (27)

and we may obtain the generalized slope parameter or q-
blue shift (if q > 1)

Tq = T + (q − 1)m⊥ . (28)

Let us notice that the slope parameter depends on the
detected particle mass and it increases with the energy (if
q > 1) as it was observed in the experimental results [38].

In the same manner, the particle invariant yield at
midrapidity, for central collisions and in the framework
of non-extensive statistics, can be written in terms of the
equilibrium Tsallis-like distribution (9) as

d2N

2πp⊥dp⊥dy
= C m⊥

[

1 − (1 − q)
m⊥

T

]1/(1−q)

, (29)

where C is a normalization constant.
In Fig. 4, we report the experimental neutral pion invari-
ant yields in central Pb+Pb collisions at

√
sNN=17.3 GeV

(SPS) [39] and in central Au+Au collisions at
√

sNN=200
GeV (RHIC) [40] compared with the modified non-exten-
sive thermal distribution shape of Eq.(29). For Pb+Pb col-
lisions we have set the non-extensive parameter q = 1.038
with T=140 MeV and for Au+Au collisions q = 1.07 with
T=160 MeV. It is important to outline that, for consis-
tency, the same value extracted in the central Pb+Pb col-
lisions will be used in the next Section in the evaluation

Fig. 4. Experimental neutral pion invariant yields in cen-
tral Pb+Pb collisions at

√
sNN =17.3 GeV [39] and in cen-

tral Au+Au collisions at
√

sNN =200 GeV [40] compared with
the modified thermal distribution shape by using non-extensive
statistics (q = 1.038 for Pb+Pb and q = 1.07 for Au+Au col-
lisions.)

of the transverse momentum fluctuations at the same SPS
energy. Similar results have been obtained by reproducing
the experimental S+S transverse momentum distribution
(NA35 data [41]) in Ref. [4] and, always in the framework
of non–extensive statistics, in Ref.[10].

Let us observe that the values of the entropic q-parame-
ter, used in the fit of the transverse momentum distribu-
tions, are sensibly smaller than the ones extracted from
the rapidity spectra of the previous Section. The reason
of this remarkable difference lies in the completely dif-
ferent nature of the transverse and longitudinal observ-
ables. It is rather common opinion that the longitudinal
rapidity distribution is not appreciably influenced by the
transverse dynamics, which is considered in thermal equi-
librium. The other way round, rapidity spectra is affected
by non-equilibrium features and the dynamics of the inter-
actions, strongly related to the value of the q-parameter in
our macroscopic phenomenological approach, results sen-
sibly different.

5 Transverse momentum fluctuations

Gaździcki and Mrówczyński introduced the following quan-
tity [42,43]

Φp⊥
=

√

〈Z2
p⊥

〉
〈N〉 −

√

z2
p⊥

, (30)

where zp⊥
= p⊥−p⊥ and Zp⊥

=
∑N

i=1(p⊥i−p⊥i), N is the
multiplicity of particles produced in a single event. Non-
vanishing Φ implies effective correlations among particles
which alter the momentum distribution.

In the framework of non–extensive statistics and keep-
ing in mind that it preserves the whole mathematical
structure of the thermodynamical relations, it is easy to
show that the two terms in the right hand side of Eq.(30)
can be expressed in the following simple form

z2
p⊥

=
1

ρ

∫

d3p

(2π)3

(

p⊥ − p⊥

)2

〈n〉q , (31)
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and

〈Z2
p⊥

〉
〈N〉 =

1

ρ

∫

d3p

(2π)3

(

p⊥ − p⊥

)2

〈∆n2〉q , (32)

where

p⊥ =
1

ρ

∫

d3p

(2π)3
p⊥〈n〉q (33)

with

ρ =

∫

d3p

(2π)3
〈n〉q . (34)

In the above equations we have indicated with 〈n〉q the
following mean occupation number of bosons [24]

〈n〉q =
1

[1 + (q − 1)β(E − µ)]1/(q−1) − 1
, (35)

and with 〈∆n2〉q = 〈n2〉q − 〈n〉2q the generalized particle
fluctuations, given by

〈∆n2〉q ≡ 1

β

∂〈n〉q
∂µ

=
〈n〉q

1 + (q − 1)β(E − µ)
(1 ∓ 〈n〉q)

= 〈n〉qq (1 ∓ 〈n〉q)2−q. (36)

NA49 Collaboration has measured the correlation Φp⊥

of the pion transverse momentum (Pb+Pb at 158 A GeV)
[44] obtaining Φexp

p⊥
= (0.6±1) MeV. This value is the sum

of two contributions: Φst
p⊥

= (5±1.5) MeV, the measure of

the statistical two-particle correlation, and Φtt
p⊥

= (−4 ±
0.5) MeV, the anti-correlation from limitation in two-track
resolution.

Standard statistical calculations (q = 1) give [43] Φst
p⊥

=
24.7 MeV at T = 170 MeV, µ = 60 MeV. In the frame of
non–extensive statistics, for q = 1.038 (for consistency, the
same value extracted in the previous Section from neutral
pion invariant yield for central Pb+Pb collisions at the
same energy in consideration), we obtain the experimen-
tal (statistical) value: Φst

p⊥
= 5 MeV at T = 170 MeV and

µ = 60 MeV.
In Fig. 5, we show the partial contributions to the

quantity Φp⊥
, by using Eq.s (31) and (32), and by extend-

ing the integration over p⊥ to partial intervals ∆p⊥ =
0.5 GeV at T = 170 MeV and µ = 60 MeV. In the
standard statistics (dashed line), Φp⊥

is always positive
and vanishes in the p⊥-intervals above ≈ 1 GeV. In the
non-extensive statistics (solid line), instead, the fluctua-
tion measure Φp⊥

becomes negative for p⊥ larger than 0.5
GeV and becomes vanishingly small only in p⊥-intervals
above ∼ 3 GeV. If measured in separate p⊥ bins, such a
negative value of Φp⊥

at high p⊥ could be an evidence of
the presence of non-extensive regime in heavy-ions colli-
sions.

Finally, in this context it is important to outline that
a critical overview of the Φp⊥

measure of fluctuations and
correlations was given in Ref.s [45,46]. It was shown that
Φp⊥

measure is very sensitive to the constraints provided
by the energy-momentum conservation laws and to the ef-
fects of correlations. These effects should be carefully ac-
counted in the phenomenological studies related to event
by event analysis of data.

Fig. 5. The partial contributions to the correlation measure
Φp⊥

[MeV] in different p⊥ intervals. The dashed line refers
to standard statistical calculations with q = 1, the solid line
corresponds to q = 1.038.

6 Non-extensive nuclear equation of state

As partially discussed in the Introduction, hadronic mat-
ter is expected to undergo a phase transition into a decon-
fined phase of quarks and gluons at large densities and/or
high temperatures. However, the extraction of experimen-
tal information about the Equation of State (EOS) of mat-
ter at large densities and temperatures from the data of
intermediate and high energy heavy-ion collisions is very
complicated. Possible indirect indications of a softening of
the EOS at the energies reached at AGS have been dis-
cussed several times in the literature [47,48]. In particular,
a recent analysis [49] based on a 3-fluid dynamics simu-
lation suggests a progressive softening of the EOS tested
through heavy-ion collisions at energies ranging from 2A
GeV up to 8A GeV. On the other hand, the information
coming from experiments with heavy-ions at intermediate
and high energy collisions is that, for symmetric or nearly
symmetric nuclear matter, the critical density (at low tem-
peratures) appears to be considerably larger than nuclear
matter saturation density ρ0. Concerning non-symmetric
matter, general arguments based on Pauli principle sug-
gest that the critical density decreases with Z/A. There-
fore, the transition’s critical densities are expected to sen-
sibly depend on the isospin of the system [50]. Moreover,
the analysis of observations of neutron stars, which are
composed of β-stable matter for which Z/A ≤ 0.1, can
also provide hints on the structure of extremely asymmet-
ric matter at high density. No data on the quark decon-
finement transition are at the moment available for inter-
mediate values of Z/A. Recently, it has been proposed by
several groups to produce unstable neutron-rich beams at
intermediate energies. These new experiments can open
the possibility to explore in laboratory the isospin depen-
dence of the critical densities.

The aim of this Section is to study the behavior of
the nuclear equation of state at finite temperature and
baryon density and to explore the existence of a hadron-
quark mixed phase at a fixed value of Z/A. Furthermore,
from the above considerations, it appears reasonable that
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in regime of high density and temperature both hadron
and quark-gluon EOS can be sensibly affected by non-
extensive statistical effects [51]. The relevance of these ef-
fects on the relativistic hadronic equation of state has also
been recently point out in Ref. [52].

The scenario we are going to explore in this last Sec-
tion corresponds to the situation realized in experiments
at not too high energy. In this condition, only a small
fraction of strangeness can be produced and, therefore, we
limit ourselves to study the deconfinement transition from
nucleonic matter into up and down quark matter. In the
next two subsections, we will study the two corresponding
EOSs separately, on the basis on the previously reported
non-extensive relativistic thermodynamic relations. The
existence of the hadron-quark mixed phase will be studied
in the third subsection. This investigation may be helpful
also in view of the future experiments planned, e.g., at the
facility FAIR at GSI [53].

6.1 Non-extensive hadronic equation of state

Concerning the hadronic phase, we use a relativistic self-
consistent theory of nuclear matter in which nucleons in-
teract through the nuclear force mediated by the exchange
of virtual isoscalar and isovector mesons (σ, ω, ρ) [54]. On
the basis of the Eqs.(4), (10) and (13), the pressure and
the energy density can be written as

P =
∑

i=n,p

2

3

∫

d3k

(2π)3
k2

E⋆
i (k)

[nq
i (k, µ⋆

i ) + nq
i (k,−µ⋆

i )]

− 1

2
m2

σσ2 − 1

3
aσ3 − 1

4
bσ4 +

1

2
m2

ωω2
0 +

1

2
m2

ρρ
2
0, (37)

ǫ =
∑

i=n,p

2

∫

d3k

(2π)3
E⋆

i (k)[nq
i (k, µ⋆

i ) + nq
i (k,−µ⋆

i )]

+
1

2
m2

σσ2 +
1

3
aσ3 +

1

4
bσ4 +

1

2
m2

ωω2
0 +

1

2
m2

ρρ
2
0, (38)

where ni(k, µi) and ni(k,−µi) are the fermion particle and
antiparticle distribution (18). The nucleon effective energy

is defined as Ei
⋆ =

√

k2 + Mi
⋆2

, where Mi
⋆ = Mi − gσσ.

The effective chemical potentials µ⋆
i are given in terms of

the vector meson mean fields µ⋆
i = µi − gωω0 ∓ gρρ0 (−

proton, + neutron), where µi are the thermodynamical
chemical potentials µi = ∂ǫ/∂ρi. At zero temperature they

reduce to the Fermi energies µ⋆
i = E⋆

Fi ≡
√

k2
Fi + M⋆

i
2

and the non-extensive statistical effects disappear. The
isoscalar and isovector meson fields (σ, ω and ρ) are ob-
tained as a solution of the field equations in mean field ap-
proximation and the related couplings (gσ, gω and gρ) are
the free parameter of the model [54]. Finally, The baryon
density ρB is given by

ρB = 2
∑

i=n,p

∫

d3k

(2π)3
[ni(k, µ⋆

i ) − ni(k,−µ⋆
i )] . (39)

Note that statistical mechanics enters as an external
ingredient in the functional form of the ”free” particle

Fig. 6. Hadronic equation of state: pressure versus baryon
number density (in units of the nuclear saturation density ρ0)
for different values of q. In the figure T = 100 MeV and Z/A =
0.4.

distribution of Eq. (18). Since all the equations must be
solved in a self-consistent way, the presence of non-extensive
statistical effects in the particle distribution function in-
fluences the many-body interaction in the mean field self-
consistent solutions obtained for the meson fields.

In Fig. 6, we report the resulting hadronic EOS: pres-
sure as a function of the baryon number density for differ-
ent values of q. Since in the previous Sections we have phe-
nomenologically obtained values of q greater than unity,
we will concentrate our analysis to q > 1. The results are
plotted at the temperature T = 100 MeV, at fixed value of
Z/A = 0.4 and we have used the GM2 set of parameters
of Ref.[54]. The range of the considered baryon density
and the chosen values of the parameters correspond to a
physical situation which can be realized in the recently
proposed high energy heavy-ion collisions experiment at
GSI [55].

6.2 Non-extensive QGP equation of state

In the simple model of free quarks in a bag [56], the pres-
sure, energy density and baryon number density for a rel-
ativistic Fermi gas of quarks in the framework of non-
extensive statistics (see Eqs.(3), (4), (10) and (13)) can
be written, respectively, as

P =
∑

f=u,d

1

3

γf

2π2

∫ ∞

0

k
∂ǫf

∂k
[nq

f (k, µf ) + nq
f (k,−µf )]k2dk

−B, (40)

ǫ =
∑

f=u,d

γf

2π2

∫ ∞

0

ǫf [nq
f (k, µf ) + nq

f (k,−µf )]k2dk

+B, (41)

ρ =
∑

f=u,d

1

3

γf

2π2

∫ ∞

0

[nf (k, µf ) − nf (k,−µf )]k2dk , (42)
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Fig. 7. The same as in Fig. 6 for the case of the quark-gluon
equation of state.

where ǫf = (k2+m2
f )1/2 and nf (k, µf ), nf (k,−µf) are the

particle and antiparticle quark distributions. The quark
degeneracy for each flavor is γf = 6. Similar expressions
for the pressure and the energy density can be written for
the gluons treating them as a massless Bose gas with zero
chemical potential and degeneracy factor γg = 16. In this
subsection we are limiting our study to the two-flavor case
(f = u, d). As already remarked, this appears rather well
justified for the application to heavy ion collisions at rel-
ativistic (but not ultra-relativistic) energies, the fraction
of strangeness produced at these energies being small [58,
59].

Since one has to employ the fermion (boson) non-exten-
sive distribution (18), the results are not analytical, even
in the massless quark approximation. Hence a numerical
evaluations of the integrals in Eq.s (40)–(42) must be per-
formed. A similar calculation, only for the quark-gluon
phase, was also performed in Ref.[57] by studying the
phase transition diagram.

In Fig. 7, we report the EOS for massless quarks u, d
and gluons, for different values of q. As in Fig. 6, the re-
sults are plotted at the temperature T = 100 MeV and at
a fixed value of Z/A = 0.4; the bag parameter is B1/4=170
MeV. In both figures 6 and 7 one can observe sizable ef-
fects in the behaviour of the EOS even for small devia-
tions from the standard statistics (the largest value of q
employed here is 1.2).

6.3 Mixed hadron-quark phase

In this subsection we investigate the hadron-quark phase
transition at finite temperature and baryon chemical po-
tential by means of the previous relativistic EOSs. Lattice
calculations predict a critical phase transition tempera-
ture Tc of about 170 MeV, corresponding to a critical en-
ergy density ǫc ≈ 1 GeV/fm3 [1]. In a theory with only
gluons and no quarks, the transition turns out to be of first
order. In nature, since the u and d quarks have a small
mass, while the strange quark has a somewhat larger mass,
the phase transition is predicted to be a smooth cross over.

However, since it occurs over a very narrow range of tem-
peratures, the transition, for several practical purposes,
can still be considered of first order. Indeed the lattice data
with 2 or 3 dynamical flavours are not precise enough to
unambigously control the difference between the two situ-
ations. Thus, by considering the deconfinement transition
at finite density as a the first order one, a mixed phase
can be formed, which is typically described using the two
separate equations of state, one for the hadronic and one
for the quark phase.

To describe the mixed phase we use the Gibbs formal-
ism, which in Ref. [60] has been applied to systems where
more than one conserved charge is present. In this con-
tribution we are studying the formation of a mixed phase
in which both baryon number and isospin charge are pre-
served. The main result of this formalism is that, at vari-
ance with the so-called Maxwell construction, the pressure
in the mixed phase is not constant and therefore the nu-
clear incompressibility does not vanish. It is important to
notice that from the viewpoint of Ehrenfest’s definition, a
phase transition with two conserved charges is considered,
in the literature, not of first, but of second order [61].

The structure of the mixed phase is obtained by im-
posing the Gibbs conditions for chemical potentials and
pressure and by requiring the global conservation of the
total baryon (B ) and isospin densities (I) in the hadronic
phase (H) and in the quark phase (Q)

µ
(H)
B = µ

(Q)
B ,

µ
(H)
I = µ

(Q)
I ,

P (H)(T, µ
(H)
B,I ) = P (Q)(T, µ

(Q)
B,I) ,

ρB = (1 − χ)ρH
B + χρQ

B ,

ρI = (1 − χ)ρH
I + χρQ

I . (43)

where χ is the fraction of quark matter in the mixed
phase. In this way we can obtain the binodal surface which
gives the phase coexistence region in the (T, ρB, ρI) space.
For a fixed value of the conserved charge ρI , related to
the proton fraction Z/A ≡ (1 + ρI/ρB)/2, we study the
boundaries of the mixed phase region in the (T, ρB) plane.
We are particularly interested in the lower baryon density
border, i.e. the critical/transition density ρcr, in order to
check the possibility of reaching such (T, ρcr, ρI) condi-
tions in a transient state during a heavy-ion collision at
relativistic energies.

In Fig. 8, we report the pressure versus baryon number
density (in unit of the nuclear saturation density ρ0) and,
in Fig. 9, the pressure as function of the energy density in
the mixed hadron-quark phase for different values of q. For
the hadronic phase we have used the so-called GM2 set of
parameters [54] and in the quark phase the bag parameter
is fixed to B1/4=170 MeV. The temperature is fixed at
T = 60 MeV and the proton fraction at Z/A=0.4, physical
values which are estimated to be realistic for high energy
heavy-ion collisions. The mixed hadron-quark phase starts
at ρ = 3.75 ρ0 for q = 1, at ρ = 3.31 ρ0 for q = 1.05 and
at ρ = 2.72 ρ0 for q = 1.1. It is important to observe that
for q = 1.1 it is also reached the second critical transition
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Fig. 8. Pressure versus baryon density in units of the nuclear
saturation density ρ0 in the mixed hadron-quark phase for dif-
ferent values of q. Note that for q = 1.1 the second transition
density, separating the mixed phase from the pure quark-gluon
matter, is reached.

Fig. 9. Pressure versus energy density in the mixed hadron-
quark phase for different values of q. As in the previous figure,
we note that for q = 1.1 the second phase transition to a pure
quark-gluon matter is reached.

density, separating the mixed phase from the pure quark-
gluon matter phase, at ρ = 4.29 ρ0 while for q = 1.05
the second critical density is reached at ρ = 5.0 ρ0 and at
ρ = 5.57 ρ0 for q = 1.

As a concluding remark we note that non-extensive
statistical effects become extremely relevant at large baryon
density and energy density, as the ones which can be reached
in high energy collisions experiments. This fact can be an
important ingredient in the realization of a hydrodynamic
model as well as to obtain a deeper microscopic connection
with the experimental observables.
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16. T.S. Biró, B. Müller, Phys. Lett. B 578 (2004) 78; T.S.
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