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Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta 
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Abstract 

Twelve basidiomycetes were investigated for their ability to degrade 13 industrial dyes and to treat four model wastewaters from textile 

and tannery industry, defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of 

the contained dyes. The best degradation yields were recorded for one strain of Bjerkandera adusta able to completely decolourise 

most of the dyes and to decolourise and detoxify three simulated wastewaters, showing a significant physiological versatility which is 

very useful for application purposes. The effects of different nutrient sources were investigated in order to optimize the yields of 

decolourisation and detoxification. Manganese-peroxidase and manganese-independent peroxidase were the only recorded enzymatic 

activities. In order to evaluate its true bioremediation potential, this strain was packed in a fixed-bed bioreactor, for treatment of large 

volumes of a real wastewater. The fungus resulted effective during 10 cycles of decolourisation, remaining active for a very long period, 

in non-sterile conditions. 

 

1. Introduction 

The implementation of strict legislation in many countries, combined with the awareness of the 

negative environmental impact of dyestuffs, has resulted in recent years in an increasing number 

of environmental researches for the development of processes that can effectively treat textile 

effluents. White-rot fungi have proved to be the microorganisms most efficient in degrading 

synthetic dyes (Kaushik and Malik, 2009). Their extracellular enzymatic system, which is involved 

in lignin degradation, consists mainly of oxidative enzymes like laccases (Lac), lignin peroxidases 

(LiP) and manganese-peroxidases (MnP). Recently, another type of peroxidase with a 

manganese-independent activity (MiP) and named versatile peroxidase (VP), sharing the catalytic 

properties of LiP and MnP, was described in several species of the 

genera Pleurotus and Bjerkandera ( Mohorcic et al., 2009) and was demonstrated effective against 

a wide range of industrial dyes ( Tinoco et al., 2007). 

The literature is replete with reports demonstrating the excellent capacity of fungi to degrade dyes. 

Their potential so far, however, has not yet found a real application, mainly because of the difficulty 

in selecting organisms capable of growing and degrading in the very variable and restrictive 

conditions of the textile industry wastewaters. Actually, textile effluents are one of the most difficult-

to-treat wastewaters on account of the considerable amount of suspended solids and of the 

massive presence of dyes, salts, additives, detergents and surfactants. They exhibit large 

fluctuations in terms of quantities and pollution load, pH and temperature depending upon 

customer orders, types of manufactured textile materials and production schedules (Hai et al., 

2007 and Vanhulle et al., 2008). 

Most of the screenings have been performed on single model dyes at low concentrations, but 

these conditions are poorly predictive of the actual decolourisation efficiency of real effluents in 

which dyes are usually present as a mix and often in quite high concentrations. Moreover, model 

dyes biotransformation cannot always be extrapolated to industrial dyes (Lucas et al., 2008). 
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In addition, most of the research studies on dyes degradation are conducted at Erlenmeyer scale. 

Nevertheless, before an industrial application can be implemented, fungal bioreactors which can 

be operated under industrial conditions, using real wastewaters must be developed (Blanquez et 

al., 2008). Some works have been published about dyes biodegradation by white-rot fungi in 

bioreactor, under conditions similar to those used at laboratory scale using Erlenmeyer flasks, 

without optimization for further application at full-scale (Mielgo et al., 2002, Rodriguez Couto et al., 

2004, Romero et al., 2006 and Zhang et al., 1999). Very few papers related to the continuous 

treatment, under non-sterile conditions, of real industrial textile wastewaters in bioreactor by white-

rot fungi were found (Blanquez et al., 2008). 

Another critical point is the evaluation of the detoxification after fungal treatment, a parameter that 

is often not taken into account, even if it is a prerequisite to hypothesize a real application in the 

treatment of coloured wastewaters. Actually, decolourisation does not imply that the resulting 

molecules are less toxic than the parent ones. On the contrary, it has been shown that anaerobic 

degradation leads to reduction and cleavage of the azo-bonds of dyes derived from benzidine and 

the formation of potentially carcinogenic aromatic amines (Oliveira et al., 2007). 

The purpose of this study was the selection of fungal strains useful in the treatment of coloured 

wastewaters. The decolourisation efficiency of 12 basidiomycetes against 13 commercially 

important industrial dyes was investigated in solid conditions. The seven best strains were studied 

in greater detail, in liquid conditions, investigating the decolourisation activity towards simulated 

effluents that mimicked the real ones for pH, concentration of dyes, additives and salts. A very 

promising strain of Bjerkandera adustawas then cultured under specific conditions in order to 

optimize its degradation yield and two ecotoxicity tests were performed in order to estimate the 

evolution of toxicity due to the fungal treatment. Finally, this strain was packed in a fixed-bed 

bioreactor, for treatment of large volumes of a real wastewater, starting a first scale-up of a 

bioremediation process. 

2. Methods 

2.1. Dyes and effluents 

Thirteen industrial dyes (Table 1) kindly provided by Town End (Leeds, UK) plc. were selected 

because representative of different structural dye types (comprising mono-, di-, polyazoic, stilbene 

and anthraquinonic chromophores) and commercially important, with a wide range of applications 

across the textile and tannery industries. They are of technical grade and dye molecules constitute 

the 30–90% of the total weight. The dyes were tested individually in solid conditions and mixed 

together in four simulated wastewaters, designed to mime effluents produced during cotton, wool 

or leather dyeing processes (Table 1) and already used to study the applicability of fungi in 

wastewater treatments (Prigione et al., 2008 and Faraco et al., 2009). In addition to the dyes, these 

simulated wastewaters mimic the industrial ones also for the presence of different salts, often in 

high concentrations, and for the pH values. The simulated wastewaters, previously developed by 

the industrial partners of the EC FP6 Project SOPHIED (NMP2-CT-2004-505899), were used 

under the permission of the SOPHIED Consortium. All the simulated wastewaters were sterilised 

by tyndallization (three 1 h cycles at 60 °C with 24 h interval between cycles at room temperature). 
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The real effluent (OMO) was kindly provided by Tintoria Pollone, Biella (Italy). It was sampled by 

the homogenisation tank in which were collected the 3 days discharges of processing and dyeing 

of wool, cotton, acrylic and polyester (containing acid, direct, reactive and disperse dyes in different 

concentrations). The initial pH was 9.3. 

2.2. Organisms 

Ten white-rot fungi, one brown-rot fungus (Gloeophyllum odoratum) and an unidentified 

basidiomycetes have been selected from previous experiments for their degradation capability 

towards industrial dyes (Casieri, 2005 and Anastasi et al., 2009b). The strains, listed in Table 2, 

belong to eight species ascribable to different families 

(Meruliaceae, Phanerochaetaceae, Pleurotaceae, Polyporaceae); they are lignicolous saprotrophs 

isolated both from carpophores and compost. The fungi are preserved at the Mycotheca 

Universitatis Taurinensis Collection (MUT, University of Turin, Department of Plant Biology) on 

malt extract agar at 4 °C. 
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2.3. Dye decolourisation on agar plate 

Fungi were inoculated as an agar plug (5 mm of diameter), taken from the edge of an actively 

growing colony, in the middle of Petri dishes (5 cm of diameter) containing 10 ml of two solid media 

(GLY and GHY), with different C:N ratios (250 and 10, respectively), supplemented with dyes at a 

final concentration of 500 ppm. GLY and GHY contained 0.152 and 3.18 g l−1 respectively of yeast 

extract, 18 g l−1 agar, 10 g l−1glucose, 2 g l−1 KH2PO4, 0.5 g l−1 MgSO4·7H2O, 0.1 g l−1 CaCl2·2H2O, 

0.01 g l−1 biotin, 0.01 g l−1 thiamine, 10 ml l−1 mineral stock solution. The mineral stock solution 

contained for 100 ml of distilled water, 0.05 g MnSO4·5H2O, 0.1 g NaCl, 0.01 g FeSO4·7H2O, 

0.01 g CoCl2·6H2O, 0.01 g ZnSO4·7H2O, 0.001 g CuSO4·5H2O, 0.001 g AlK(SO4)2, 0.001 g H3BO3, 

0.001 g NaMoO4·2H2O (Leung and Pointing, 2002). 

The experiment was performed in triplicate. Plates were incubated at 25 °C, and after 3, 7 and 

14 days, decolourisation was measured. Since the fungal colonies determined a widespread loss 

of dye over the whole surface of the plate, it was not possible to measure the extent of a halo of 

discolouration. Four degradation classes were assigned in function of an increasing 

decolourisation (0 = no decolourisation; 1 = light decolourisation; 2 = medium decolourisation; 

3 = complete decolourisation). 

2.4. Wastewater decolourisation in liquid systems 

The best seven strains selected from the previous experiment were inoculated as described above 

in 100 ml flasks containing 30 ml of GHY. The flasks were incubated in agitated conditions 

(130 rpm) at 28 °C. After 7 days, the culture broths were replaced with 30 ml of the four 

wastewaters. Each trial was performed in triplicate. The visible absorbance spectrum (from 360 to 

790 nm) of the effluent was acquired daily for one week using a spectrophotometer (Amersham 

Biosciences Ultrospec 3300 Pro). The decolourisation percentage (DP) was calculated as the 
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extent of decrease of the spectrum area (the integral of the absorbance spectrum), with respect to 

that of the abiotic control. Significance of differences (p ⩽ 0.05) among DP values at the end of the 

experiment was calculated by the Mann–Whitney test (SYSTAT 10, SPSS Inc. 2000). 

2.5. Optimization of wastewater decolourisation in liquid systems 

In order to improve its decolourisation yield, B. adusta MUT 2295, the best strain from the previous 

experiment, was inoculated as described above in the wastewaters in the presence and in the 

absence of glucose and yeast extract in the proportion of GHY and GLY. The decolourisation 

percentage (DP) was monitored daily for one week together with the enzyme activities according to 

the following protocols. At the end of the experiments the evolution of toxicity was measured by 

means of two ecotoxicity tests described below. 

2.6. Fixed-bed bioreactor configuration and operation conditions 

Six stainless steel sponges were used as immobilisation supports. The sponges were autoclaved 

at 121 °C for 20 min, embedded with a GHY solution mixed with agar at a concentration of 

7 g l−1 and colonized by B. adusta MUT 2295 for 10 days. The bioreactor consisted of a glass 

column (30 cm in height and 4 cm in diameter) packed with the colonized sponges. The column 

was connected to a bottle containing the wastewater kept circulating at a constant 10 ml min−1 by a 

peristaltic pump (Model SP311 VELP, Milan). Air was supplied in a continuous way. The bioreactor 

was kept at room temperature (about 20 °C). Periodically, 1 ml of wastewater was withdrawn from 

the system for DP and enzyme activities monitoring. The system was active for more than 70 days 

during which 6 cycles of decolourisation of W1 (300 ml each) and 4 cycles of OMO (1 cycle of 

300 ml and 2 of 1 l) were conducted. Every 2 cycles of W1 a phase of conditioning was conducted 

replacing the wastewater with GHY. No conditioning was carried out between the cycles of the 

wastewater OMO. 

2.7. Enzymes assays 

Lac activity was assayed at 25 °C using 2.2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) 

(ABTS) as substrate (Niku-Paavola et al., 1988). MiP and MnP activities were measured at 25 °C 

using DMAB/MBTH (3-dimethylaminobenzoic acid/3-methyl-2-benzothiazolinone hydrazone 

hydrochloride) as substrates (Vyas et al., 1994). LiP activity was assayed at 35 °C using veratryl 

alcohol as substrate (Tien and Kirk, 1983). All the enzyme activities were expressed in 

International Units (IU), where one unit is defined as the amount of enzyme that oxidize 1 μmole of 

substrate in 1 min. 

2.8. Ecotoxicity tests and COD determination 

Evolution of toxicity before and after treatment (IV cycle) of the real OMO effluent was evaluated by 

means of the test on Vibrio fischeri according to the method UNI EN ISO 11348-3:2001. The 

luminescence of the bacteria was measured after 5, 15 and 30 min exposure to samples at 15 °C, 

utilizing Microtox® (Microtox Model 500; Microbics Corp., USA). Correction for colour, which might 

have an impact on the luminescent measurements, was performed on all samples according to the 

MicrotoxOmni™ manual. Toxicity was expressed as toxicological units (TU) calculated as 

100/EC50, where EC50 is the pollutant effective concentration that provokes a response 

corresponding to the half of the maximum toxic effect. 



 

 

 6 

Due to the strong colour interference the V. fischeri test wasn’t applicable on the simulated 

wastewaters (W1–W4); hence we used two other ecotoxicity tests described below that, although 

very time consuming and with more complex operating conditions and elaborations, do not suffer 

the colour interference. 

The Lemna minor L. (duckweed) ecotoxicity test was applied according to the standard ISO/WD 

20079 to measure the toxicity of the simulated wastewaters before and after the treatment in batch 

with B. adustaMUT 2295. Due to the limited sample volume available the method was miniaturized 

after statistical control. The test was performed in 25 ml glass beakers in a working volume of 

15 ml and with a sample dilution of 1:15 (ISO 2001). Toxicity was expressed as growth inhibition 

(Iμi) on frond number or dry weight calculated as follows: Iμi = [(μc − μi)/μc]. 100, where μ (average 

growth rate) = (ln Nt − N0)/Tn; Nt is the value of the observed parameter (frond number or dry 

weight) at time t; N0 is the value of the same parameter at time 0; Tn is the period of time between 

time 0 and t; μc is the average growth rate of the control; μi is the average growth rate of the 

sample. 

Toxicity of the simulated wastewaters was also evaluated, before and after the fungal treatment, by 

means of a phytotoxicity test on Cucumis sativus L. seeds according to the method UNICHIM N. 

1651 (2003). The germination index (GI) was calculated as a percentage of number of germinated 

seeds and root length values in the samples respect to the control (set up with distilled water 

instead of samples) according to the formula: GI = (Gs × Ls)/(Gc × Lc) × 100, where Gs is the 

mean number of germinated seeds in the sample, Ls is the mean root length of the sample, Gc is 

the mean number of germinated seeds in the control, Lc is the mean root length of the control. 

Significance of the increase or decrease of toxicity values before and after fungal treatment 

(p ⩽ 0.05) was calculated by the Mann–Whitney test (SYSTAT 10, SPSS Inc. 2000). 

Determination of the chemical oxygen demand (COD) with the dichromate method was performed 

before and after treatment of OMO effluent (IV cycle) using HACH (COD High range vials) 

apparatus (HACH LANGE, S.r.l. Milan–Italy) according to the manufacture’s instructions. A 

calibration curve was obtained using HACH COD standard solution (800 mg l−1 of O2). Appropriate 

dilutions of each sample were assayed. 

3. Results and discussion 

3.1. Dyes decolourisation on agar plate 

The screening on solid substrate made it possible to identify seven fungi (B. adusta MUT 2295, 

MUT 3060, MUT 2843, Trametes versicolor MUT 2473, G. odoratum MUT 2294, Phlebia 

radiata MUT 2300, Pleurotus ostreatus MUT 2976) with promising degradation capacity against 

different industrial dyes, at high concentrations ( Table 2). The best degradation yields were 

recorded for the three strains of B. adusta, able to completely decolourise (class 3) most of the 

dyes and in both culture conditions. The physiological versatility of these strains, already 

demonstrated in a previous study on other industrial dyes ( Casieri, 2005 and Anastasi et al., 

2009b), is a very useful feature for application, since industrial effluents usually contain a range of 

different dyes and have a very complex and variable composition ( Lucas et al., 2008). On the 

contrary, the need for specific cultivation conditions has so far represented a major limitation to the 

industrial application of fungi such as for example P. chrysosporium, for the treatment of coloured 

wastewater ( Faraco et al., 2009 and Yu et al., 2006). In our study, not only P. chrysosporium but 

in general most of the other fungi showed a higher decolourisation activity on GLY, the medium 
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with the lowest content of nitrogen ( Table 2). Actually, from the earliest studies on P. 

chrysosporium, it is known that the depletion of nitrogen triggers the production of the ligninolytic 

system ( Kaal et al., 1995) and, hence, the degrading potential of fungi. 

Another point of interest of this study is the use of industrial dyes. As recently highlighted by Lucas 

and colleagues (2008), verification of degradation against industrial dyes is essential. In fact the 

industrial dyes, although apparently similar to the model ones, differ from them in terms of purity of 

the chromophore, presence of auxiliary compounds and recalcitrance. In our study, the yellow dyes 

(AY49 and DrY106) were the most recalcitrant as also demonstrated by Faraco and colleagues 

(2009) for a yellow disperse dye (Disperse yellow 3). 

3.2. Wastewater decolourisation in liquid systems 

The screening in liquid allowed to verify the potential application of the seven fungi for wastewater 

treatments. As can be seen in Table 3, in the absence of any additional nutritive source, the two 

acid baths for the dyeing of wool (W1) and leather (W4) were extensively decolourised within few 

days, in particular byB. adusta MUT 2295 and MUT 3060. The absorption spectra of W1 and W4 at 

the end of the test were completely knocked down ( Fig. 1), indicating the effectiveness of the two 

strains towards all the dyes (including AY49 that was only partially degraded during the screening 

in solid). Biomasses at the end of the process were colourless, indicating the absence of 

adsorption phenomena. 
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Against the reactive wastewater (W2) all fungi determined, within the first day, only a 16–34% 

decrease of the absorbance spectrum, mainly due to biosorption phenomena (the absorbance 

spectra of the dyes did not present differences in shape and the fungal mycelia appeared strongly 

dyed). This can be ascribed to the very restrictive conditions of this wastewater (5000 ppm of dyes, 

pH 10 and 70 g l−1 of salt) that have hindered the growth and activity of fungi. 

The direct wastewater (W3) was significantly decolourised by the two strains of B. adusta MUT 

3060 and MUT 2295, the latter being able to determine a DP of 57%, corresponding to the removal 

of more than 1700 ppm of dye in 3 days. It is interesting to note that the two strains were able to 

preferentially remove different areas of the spectrum, and this is an important prerequisite for a 
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possible use in co-culture of the two strains in order to exploit their complementary effects ( Fig. 2). 

In particular, the strain MUT 3060 was able to remove a significant portion of the spectrum 

corresponding to the dye DrY106 which was not affected on solid substrate. 

 

On the whole the best results were obtained by the strain B. adusta MUT 2295, that displayed the 

highest decolourisation of three wastewaters in a very short time (1–2 days), in the absence of any 

additional nutrient source. Excellent degradation was also recorded for B. adusta MUT 3060 and P. 

ostreatus MUT 2976 which also worked extensively with W1, W3 and W4. 

3.3. Optimization of wastewater decolourisation in liquid systems by B. adusta MUT 2295 

According to the results of the previous experiment, where the fungus caused an almost complete 

degradation of the wastewater (W1 and W4), the addition of a nutrient source did not lead to a 

substantial improvement in the decolourisation yields (Table 4). On the contrary, for the other 

wastewaters, the addition of nutrients and, in the case of W2, the dilution to 1/3 and 1/5, 

substantially improved the degradation process, indicating that the higher the recalcitrance, more 

stringent the conditions for the growth and activity of the fungus become. In particular W2, despite 

the still high concentration of salts and dyes, was almost completely decolourised (up to 91% for 

W2 1/5). This finding is of significant impact considering that previous experiments on the same 

wastewater using high concentrations of purified enzymes (Faraco et al., 2009) had never led to a 

substantial degradation. 

 

 

In the case of W2 and W3 it is also important to stress that the best yields of degradation were 

obtained in the presence of the lowest content of N (GLY), which was the only culture condition in 

which the fungus determined an almost complete degradation of even the most recalcitrant dyes, 

such as the reactive RY145 and RR195 and the direct DrY106. On the other hand, the higher 

content of N, both in presence and absence of the wastewaters, resulted in general in an increased 
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peroxidase activity (MnP) according to what has already been reported for B. adusta ( Kaal et al., 

1995 and Seker et al., 2008). MnP and MiP were the only recorded enzymatic activities during the 

decolourisation processes; Lac and LiP were never registered. 

The higher enzyme production was never coupled with a more efficient decolourisation. The 

absence of a clear correlation between the decolourisation and the enzyme activities is particularly 

evident in W2 1/5 and W3, where in the presence of GLY there was a better decolourisation with 

significantly lower values of enzyme activity, in particular MnP. This finding may be partly explained 

by the pH values during the process of decolourisation. The decolourisation, in fact, was higher 

when the fungus metabolism resulted in a lowering of pH values around 5, regardless of the values 

of enzyme activity. This pH value is close to the optimum for peroxidases, that would therefore be 

more active and effective. 

Other explanations of this apparent lack of correlation between decolourisation and enzyme 

production, already reported by other authors, could be: (1) the production by the fungus, in the 

different culture conditions, of enzyme isoforms with different affinity to the dyes and the substrates 

used in the reaction assays (Rabinovich et al., 2004), (2) the limited distribution of enzymes in the 

growth medium (Blánquez et al., 2004; Kuhad et al., 2004), (3) the rapid inactivation by proteolytic 

activity (Rabinovich et al., 2004). Moreover, in addition or alternative to a direct involvement, 

peroxidases may play an indirect role in the degradation process, starting a chain reaction that 

leads to the degradation of pollutants by generating free radicals which, in turn, can attack very 

recalcitrant molecules normally not directly attacked by enzymes (Anastasi et al., 2009a, Gavril et 

al., 2007 and Rabinovich et al., 2004). Finally, other enzymes (such as cytochrome P450 

monooxygenase) or other degradative mechanisms not tested in this study may have taken part in 

the degradation process (Rabinovich et al., 2004). 

The ecotoxicity tests also emphasized that the use of different culture conditions is important, not 

only to optimize the yields of decolourisation, but also and above all, to get a real wastewater 

detoxification. In the case of W1, W2 and W4 a significant reduction of toxicity (increase of GI and 

decrease of Ii) was almost exclusively observed in presence of GLY vs. both organisms ( Table 5). 

It is important to note that the fungal treatment led to a detoxification of the wastewaters within the 

threshold limit values of the Italian law (GI > 50 and Ii < 50 − Legislative Decree 152/2006) in three 

cases against C. sativus (W1, W1 GLY, W4 GLY) and in three cases against L. minor dry weight 

(W1 GLY, W2 1/3 GLY, W2 1/5 GLY). In contrast, the treatment of W3 never resulted in a 

reduction of toxicity and, in several cases, an increase in toxicity was even observed. The 

verification that the process of decolourisation corresponds to detoxification is a crucial step in 

order to indicate a real application. However, this aspect until now has been evaluated only in a 

limited number of studies ( Casieri et al., 2008, Gavril and Hodson, 2007, Hai et al., 2007, Husain, 

2006, Vandevivere et al., 1998 and Vanhulle et al., 2008) that, in some cases, showed an 

ineffective detoxification even in presence of an extensive decolourisation ( Hai et al., 

2007, Husain, 2006 and Vandevivere et al., 1998). The fact that the ecotoxicological tests are 

rarely carried out in wastewater treatment studies may be partly due to the absence of a specific 

legislation stating the most appropriate test to be applied in different situations and providing tools 

for unequivocal interpretation of data. Actually, as also shown by our own data, different organisms 

(or even several parameters within the same test, i.e. frond number and dry weight of L. 

minor against W2 1/3 GLY before fungal treatment) showed a different sensitivity to the same 

effluent. 



 

 

 11 

 

 

3.4. Textile effluent treatment in fixed-bed bioreactor 

The experiment with the fixed-bed bioreactor is a first scale-up for a bioremediation process. The 

fungus in fact, resulted effective during 10 cycles of decolourisation (up to 84% DP) of large 

volumes (5.1 l total) of a simulated and a real wastewater, remaining active for a very long period 

(70 days), in non-sterile conditions (Fig. 3). Furthermore, after treatment of OMO effluent (IV cycle) 

the COD (from 330 to 230 mg O2 l
−1) and the V. fischeri toxicity (from 4.6 to 1 TU) were effectively 

reduced, the latter parameter falling below the threshold limit values of the Italian law (Legislative 

Decree 152/2006). 
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A very important aspect to consider is the fact that generally the metabolic capacity of fungi 

decreases in the absence of sterile conditions, as demonstrated by Borchert and Libra (2001). In 

our case, the immobilized fungus confirmed its robustness remaining active during several cycles 

even in the presence of the microflora associated with the real dyeing wastewater. Certainly in 

these conditions is established a consortium responsible for the degradation in which it is no longer 

possible to define the actual contribution of the different organisms. Recently, some authors have 

emphasized that the very establishment of such consortia can determine overall good yields of 

decolourisation (Cetin and Donmez, 2006 and Saratale et al., 2009). 

As far as we know, this is one of the few studies in which large volumes of a real wastewater were 

treated in repeated batches. In fact, most of the studies, even using bioreactors, were conducted in 

conditions very different from the actual characteristics of industrial wastes, with single dyes at low 

concentration. Thus, for example, a fixed-bed bioreactor packed with Trametes pubescens was 

able to decolourise, for four successive cycles, 200 ml of a solution of the dye Reactive Black 5 at 

a concentration of 60 ppm (Enayatzamir et al., 2009) and Casieri and colleagues (2008) have 

shown the efficiency of degradation of our own strain of B. adusta (previously identified as T. 

pubescens) and a strain of P. ostreatus against successive cycles of solutions containing 200, 

1000 and 2000 ppm of one model and two industrial dyes. 

Another important aspect is that our system did not require any addition of nutrients during the four 

cycles of treatment of OMO, in which a growing trend of degradation was observed (from 45% to 

84%). In this regard it is particularly interesting a comparison with one of the few works on the 

treatment of a real wastewater, in a sterile bioreactor (Blanquez et al., 2008). In this study, T. 

versicolor was able to degrade 60% of a real wastewater in 15 days in a bioreactor continuously 

fed with glucose. The fact that in our case it was not necessary to intervene in the process by any 

dilution of the wastewater, the addition of nutrient sources or the control of chemical parameters, 
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such as pH, increases the chance of application of our system and confirms the robustness of this 

fungus. Indeed, a minor process control results in a significant cost reduction and a greater 

applicability. 

4. Conclusions 

This study opens new perspectives for the bioremediation of industrial effluents using white-rot 

fungi. In particular, B. adusta MUT 2295 was found able to survive and grow over a long period, in 

toxic and restrictive conditions and proved to be effective in the degradation and detoxification of a 

wide variety of wastewaters. The biotechnological potential of this strain was confirmed setting up 

a bioreactor which resulted effective in the treatment of a real industrial effluent, being active for a 

very long period, in absence of axenic conditions. No operational problems were detected, 

confirming the robustness and applicability of this system. 
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