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ANITA: A Narrative Interpretation of Taxonomies for their
Adaptation to Text Collections

ABSTRACT
Taxonomies and concept hierarchies embody formalized knowl-
edge and define aggregations between concepts/categories in
a given domain, facilitating the organization of the data and
making the contents easily accessible to the users. Since
taxonomies have significant roles in the data annotation,
search and navigation, they are often carefully engineered.
However, especially in dynamically evolving domains such
as news, they do not necessarily reflect the content knowl-
edge. Moreover, when the user’s interests are highly focused,
available taxonomies –which are often designed for broad
coverage of concepts in a given application domain– may
fail to reflect details within the users foci of interest. Thus,
in this paper, we ask and answer, in the positive, the fol-
lowing question: “is there a feasible approach to efficiently
and effectively adapt a given taxonomy to a usage context
defined by a corpus of documents?”. In particular, we recog-
nize that the primary role of a taxonomy is to describe or
narrate the natural relationships between concepts in a given
document corpus. Therefore, a corpus-aware adaptation of
a taxonomy should essentially distill the structure of the ex-
isting taxonomy by appropriately segmenting and, if needed,
summarizing this narrative relative to the content of the cor-
pus. Based on this key observation, we propose A Narrative
Interpretation of Taxonomies for their Adaptation (ANITA)
for re-structuring existing taxonomies to varying application
contexts and we evaluate the proposed scheme using differ-
ent text collections.

1. INTRODUCTION
While there are many strategies for organizing text doc-

uments, hierarchical categorization –usually implemented
through a pre-determined taxonomical structure– is often
the preferred choice. In a taxonomy-based information or-
ganization, each category in the hierarchy can index text
documents that are relevant to it, facilitating the user in
the navigation and access to the available contents. Unfor-
tunately, given a set of text documents, it is not easy to find
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the appropriate categorization that best describes the con-
tents. In fact the available taxonomies are usually designed
for broad coverage of concepts in a considered domain, fail-
ing to reflect important details (within the users foci of inter-
est) expressed by the considered data set. Indeed, especially
in dynamically evolving domains, the available taxonomies
could not necessarily reflect the content knowledge.

In this paper we introduce a new method for distilling
a taxonomical domain categorization from an existing one,
based on a given set of text documents that have to be rep-
resented and indexed by it.

For this purpose, we recognize that the primary role of a
taxonomy is to describe or narrate the natural relationships
between concepts in a given domain to its users. Therefore,
a contextually relevant adaptation of a taxonomy should es-
sentially distill and manipulate the structure of the existing
taxonomy by appropriately segmenting and, if needed, sum-
marizing this narrative relative to the documents in a given
corpus. Based on this key observation, we propose A Nar-
rative Interpretation for Taxonomy Adaptation (ANITA), a
novel taxonomy distillation approach for adapting existing
taxonomies to varying application contexts. The specific
contributions of this paper are as follows:

• A narrative view of taxonomies: we view a taxonomy as a
discourse that is describing the relationships between con-
cepts/categories in a given domain. Thus, as described in
Section 3.1, we transform a given taxonomy into a narra-
tive.

• Corpus-driven reinterpretation of the narrative: Given a
context defined by the considered corpus of text docu-
ments, this narrative is re-interpreted and re-structured
(Section 3.2) based on a statistical analysis of terms and
structural analysis of the taxonomy.

• Segmentation of the narrative: This narrative is then an-
alyzed and segmented based on a narrative-development
analysis, highlighting where the narrative significantly
drifts from one concept-topic to another (Section 3.3).

• Re-construction (or distillation) of an adapted taxonomy
based on the segmentation results: The resulting narrative
segments (each describing a group of concepts/categories
that collectively act as a single topic) are re-organized into
a hierarchical structure, linking each concept-segment to
others that are structurally related to it (Section 3.4).

The result of the above process is a contextually-relevant
adapted taxonomy, where details are highlighted where they



��������������	 
���� ������������� �������	 �����	������� ��������	 ������ ��� ��	
(a) Original taxonomy (and its narrative partitions)

Nuclear & 
Electromagnetism & 

Physics

Biology

Science

Energy

unclassified

Toxicol. Medic.

unclassified

Optics Mechan.

unclassified

Environment

(b) Re-constructed (or distilled) taxonomy

Figure 1: Adaptation of a DMOZ taxonomy frag-
ment about “science”: (a) the original taxonomy is
partitioned through narrative-based interpretation,
based on available content (NSF data set described
in Section 4) and (b) the partitions are used to cre-
ate a concise taxonomy reflecting the content.

matter and suppressed where they do not support the cur-
rent context. Suppressed categories are attached to the rele-
vant category of the adapted taxonomy as un-classified con-
cepts (Figure 1). In Section 4, we evaluate the proposed
scheme using text collections.

2. RELATED WORK
In order to adapt/summarize hierarchical structures to

represent the available contents, various hierarchical clus-
tering methods have been proposed. There are two major
approaches for hierarchical clustering: agglomerative clus-
tering and divisive clustering. In [1], the centroids of each
class are used as the initial seeds and then a projected clus-
tering method is applied to build the hierarchy. In [12] a
linear discriminant projection is applied to the data first
and then the hierarchical clustering method UPGMA [7] is
exploited to generate a binary tree. [15] applies a divisive
hierarchical clustering: authors generate a taxonomy with
each node associated with a list of the categories. [5] asso-
ciates word distribution conditioned on classes to each node:
the method uses a variance of the EM algorithm to cluster
nodes. Similarly, [19] presents a method in which concepts
are probabilistically modelled. The probabilistic classes are
organized in hierarchies by relying on the KL divergence
measure between the probability distributions associated to
the concepts.

A successful approach for organizing web query results
based on available web structure is topic distillation [11].
The basic idea in topic-distillation is to consider the struc-
ture of the Web and propagate scores between pages in a
way to organize topic spaces in terms of smaller sets of au-
thoritative pages. Moreover, given a query, other methods
propagate the term frequency values between neighboring
pages [18] or the relevance score itself between web pages
connected with hyperlinks [20]. In a text environment, a
concept taxonomy can be also used to flexibly describe a

user/group’s interests with varying granularity. [21] ad-
dresses the problem of how to adapt a topic taxonomy in
order to reflect the change of a group’s interest to achieve
dynamic group profiling.

Summarization of a text stream relies on the analysis of
the evolution of the arguments expressed by the sequence
of sentences. In document summarization, summary sen-
tences are typically arranged in the same order that they
were found in the full document, although [8] reports that
human summarizers do sometimes change the original order.
The task of ordering sentences to obtain a meaningful nar-
rative in a way that reflects a given context has also been
extensively investigated in the text and discourse generation
literature [13, 14, 6].

3. NARRATIVE-DRIVEN TAXONOMY
ADAPTATION PROCESS

Given a taxonomy H (also called hierarchy in the paper)
with n nodes (concepts or categories in the paper), our goal
is to create an adapted taxonomy H ′, based on a given con-
text defined by a corpus of text documents. As described be-
fore, ANITA consists of four steps. In this section, we present
the details of each of these steps.

3.1 Step I: Narrative View of a Taxonomy
As we mentioned in the introduction, the given taxonomy

H is transformed into a narrative which captures the struc-
tural relationships of concepts/categories in the taxonomy.
Note that, whereas a taxonomy is a hierarchy of concept
nodes, a narrative is a sequence of sentences. Therefore, in
order to create a narrative corresponding to the taxonomy,
we need to achieve two goals: (a) we need to map concept-
nodes of the input taxonomy into “concept-sentences” and
(b) we need to pick an appropriate ordering of these concept-
sentences.

3.1.1 Step Ia. Mapping from the Concept-Nodes to
“Concept-Sentences”

What we refer to as“concept-sentences”above is not natu-
ral language sentences, but concept-vectors obtained by an-
alyzing the hierarchical structure of the given taxonomy. In-
tuitively, these concept-vectors can be thought of as being
analogous to keyword vectors commonly used in representing
documents in IR systems.

Given a taxonomy, we associate a concept-vector to each
concept in the underlying hierarchy using the CP/CV struc-
tural encoding scheme proposed in [10]. Given a taxonomy
H(C, E) with n = |C| concepts, [10] represents each node in
the hierarchy as an n-dimensional vector of related concepts.
More specifically, authors introduce a concept propagation
(CP) scheme, which relies on the structural relationships be-
tween concepts implied by the hierarchy, to annotate each
concept-node with a concept-vector (CV). Each vector en-
codes the structural relationship between this node and all
the other nodes in the hierarchy.

CP/CV is a spreading activation [2] like algorithm, where
before the propagation process starts, the concept-vector
corresponding to ci is initialized by setting the weight corre-
sponding to the concept ci to 1 and all others to 0. Then, the
vectors are propagated (as in spreading activation) between
parent/child concepts, but taking into account the struc-
tural distance between them. This propagation process is
repeated until all concepts are informed of all the others.
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~cvtoxicology 0.006 0.0003 0.0003 0.165 0 0 0 0.806 0.023
~cvmedicine 0.006 0.0003 0.0003 0.165 0 0 0 0.023 0.806
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Figure 2: (a) A portion of taxonomy about science and (b) the corresponding concept vectors obtained by
the CP/CV process. In this paper, we treat each row as a “concept-sentence” where the weights reflect the
contribution of the node- (or column-labels) to the description of concept represented by each row

Consider, for example, the taxonomy fragment (contain-
ing nine concept nodes) presented in Figure 2(a). CP/CV
maps each concept into a 9-dimensional vector (Figure 2(b)).
For example, the root is represented by the vector

〈0.450, 0.169, 0.141, 0.158, 0.018, 0.018, 0.018, 0.021, 0.021〉,
in which the first component (the one associated to the tag
“science”), dominates over the others that contribute to the
definition of the concepts. The second, third and fourth
components reflect the weight of “math”, “physics” and “bi-
ology” respectively in the semantic characterization of “sci-
ence”, while the remaining components represent the weights
of the three descendants of “math” and of the two descen-
dants of“biology”. [10] showed that the semantic similarities
of the concepts can be computed using the cosine similar-
ities of the concept vectors and such that similarity mea-
surements are quite in line with the human judgments of
similarities. In a sense, each concept-vector can be thought
of as a sentence which describes the given concept in terms
of its relationships to the other concepts in the hierarchy.
Notice that, all concept-sentences are formed by the same
terms (the labels of the concepts), but the weights associated
to each term are different from concept-sentence to concept
sentence.

3.1.2 Step Ib. Ordering the “Concept-Sentences”
into a Narrative

After the vector-based encoding of the concept-sentences,
the next step in narrative creation is ordering these sentences
(therefore the nodes in the original hierarchy) in an order
representing the structure of the taxonomy.

Ancestor-Descendent Ordering.
In this paper we consider and evaluate three different

narrative orders: the pre-order traversal, the parenthetical
traversal and the post-order traversal of the taxonomy.

• Pre-order Traversal of the Taxonomy. A hierarchy (es-
pecially a concept hierarchy) is structured in a way
that the most general concept is used as the root of
the hierarchy and the most specific ones are the leaves.
In a sense, each node provides more specialized knowl-
edge within the context defined by all its ancestors. We
leverage this aspect by defining a narrative in which
the sentences associated to the nodes of the taxonomy
are read in pre-order; i.e., each concept sentence is im-
mediately followed by its detailed description in terms
of its specializations.

• Post-order Traversal of the Taxonomy. This traversal
of the tree generates a narrative in which the different

concepts are presented bottom-up: after presenting the
most specific concepts, their super-concept is narrated.
Any super-concept presented after the narration of its
children can be seen as summarizing the description of
its sub-concepts.

• Parenthetical Traversal of the Taxonomy. Intuitively,
the parenthetical traversal is analogous to a narrative
where each passage is presented with an introduction
and goes in details until a general conclusion. In par-
enthetical traversal of the tree, each parent node is vis-
ited twice, representing the general introduction to the
argument that the children specialize and their conclu-
sion.

Distance-Preserving Sibling Ordering.
While pre-order, parenthetical, and post-order traversal of

the tree help us decide in which order ancestors and descen-
dants are to be considered, they do not help us choose the
order in which the siblings in the hierarchy are to be concate-
nated, in the narrative. Let us consider a node c0 with m
children {c1, c2 · · · cm}. Our primary goal is to ensure that
the siblings are ordered in a way that preserves the similar-
ities – or dissimilarities – among these m concepts (as well
as their parent c0). For this purpose, we first compute the
cosine dissimilarity matrix M based on the concept-vectors
corresponding to all m + 1 concepts (the parent and the m
children); in other words,

M [i][j] = 1− cos( ~cvci , ~cvcj )

We then use a distance-preserving embedding technique
to map these concepts onto a one-dimensional ordering.
In particular, without loss of generality, we use multi-
dimensional scaling (MDS [22]), to embed the concepts onto
a 1-dimensional order. MDS works as follows: given as in-
puts (1) a set of N objects, (2) a matrix of size N × N
containing pairwise distance values and (3) the desired di-
mensionality k, MDS tries to map each object into a point
in the k-dimensional space in such a way that a stress value,
defined as

stress =

√∑
i,j(d

′
i,j − di,j)2∑
i,j d2

i,j

,

where di,j is the actual distance between two objects oi

and oj and d′i,j is the distance between the corresponding
points in the resulting k-dimensional space, is minimized.
Therefore, by providing as input N = m + 1 input concepts
and k = 1 target dimension, the resulting order of concepts
would preserve the semantic ordering between the concepts
as best as possible.



Notice that, due to the special nature of the node c0 (it
is the parent), we need to make a minor modification in
the MDS algorithm: in particular, we constrain the stress
minimization process in a way that forces the position of c0

at the beginning of the list. This way, the resulting order
of the children concepts will reflect the concept similarities
with respect to the position of the parent concept in the
narrative.

One difficulty with narrative ordering approach is that in
many cases the hierarchy itself is not sufficiently informa-
tive to order the siblings. For example, if we look at the
concept vectors (Figure 2(b)) related to the children of the
concept node“biology” (“medicine”and“toxicology”), we can
see that the hierarchy does not impose a true order between
these two siblings. To cope with this, we leverage the in-
formation provided by the text corpus to order the siblings
most effectively and distinguish among them in the consid-
ered corpus.

3.2 Step II: Re-interpretation of the Narrative
based on the Context

The first step in re-interpreting the narrative based on
the context defined by the corpus of text documents is to
find which documents are associated to which concepts in
the taxonomy. Thus, the corpus D, with p = |D| text doc-
uments, is analyzed and a representative keyword vector is
generated for each document. As usual, the keyword ex-
traction includes a preliminary phase of stop word elimina-
tion and stemming. The weight associated to each stemmed
term is computed in the augmented normalized term fre-
quency form [17]. For the tth document, a document vector
~dvt = {wt,1, wt,2, ..., wi,v} is defined, where v is the size of
the vocabulary in D, 1 ≤ t ≤ p, and wt,u is the normal-
ized term frequency of the uth vocabulary term in the tth

document. Then, for each taxonomy (if we need to consider
more than a single categorization), the classification pro-
cess takes as input the set of CP/CV vectors associated to
hierarchy elements (already computed for constructing the
narrative) and the set of document vectors associated to the
corpus; therefore, as in most IR systems, it associates each
document to the few best matching concepts.

Next we search for the most contextually relevant key-
words corresponding to each concept. More specifically, we
compute the degree of matching between the given concept
ci and a keyword kj , which occurs in the associated docu-
ments, by treating the set of the associated documents Aci

as positive evidence of relationship between kj and ci within
the given context. Similarly, we treat the documents con-
taining the same keyword, but not belonging to the set Aci ,
as negative evidence against the relationship between ci and
kj . Intuitively, this is analogous to treating (a) the concept
vector corresponding to the concept ci as a query and (b)
the set of associated documents as relevance feedback on the
results of this query. Thus, given a concept ci and the cor-
responding set of associated documents, Aci , we identify a
weight wi,j for each keyword kj using a probabilistic feed-
back approach [16].

At the end of this process, we merge both information
(concept vector and relevant keywords) in a new extended
vector ~evci , which describes the same concept in terms of
both other concepts as well as contextually relevant key-
words, thanks to their relevant keywords components. Con-
sequently, two sibling concepts ci and cj that are not prop-

erly differentiated within the taxonomy can now be differ-
entiated based on the context defined by the text corpus.
The sibling order imposed by the distance-preserving order-
ing (such as MDS) thus will be computed on these extended
vectors, to properly reflect the usage context.

At this point the narrative is a sequence of sentences, each
including the information coming from the structural knowl-
edge (hierarchy) and the context knowledge (corpus of docu-
ments), defining a global discourse that covers all the topics
addressed by the content, according to the knowledge ex-
pressed by the taxonomy.

3.3 Step 3: Segmentation of the Narrative
In this step, we analyze the narrative obtained in the pre-

vious step to identify segments (or partitions) that are highly
correlated. The idea is that if, in the given corpus, two con-
cepts are highly correlated, they may not need two separate
nodes in the adapted taxonomy. In contrast, we can think
that, if there is a significant difference between two portions
of the narrative, then these two portions (or segments) do
necessitate different concepts in the resulting taxonomy.

In the literature, there are various techniques for segment-
ing a narrative into coherent units [4, 3, 9]. Textile [4, 3]
and Vectile [9] algorithms, for example, plot similarity scores
(based on lexical co-occurrence and distribution analysis) of
neighboring portions of the text. The dips (i.e., local min-
ima) in the resulting similarity curve correspond to regions
of the text where there is significant change in the content.
Therefore, these dips are identified as text segment bound-
aries.

In this paper, in order to partition the narrative
~ev1, ~ev2, . . . , ~evn into coherent segments, we use a similar
strategy. However, instead of searching for local minima of
similarities, we look for portions of the narrative where the
change is above a threshold:

1. Given the narrative (i.e., ordered sequence of extended
vectors), we first compare each pair of neighboring vec-
tors, ~evi and ~evi+1 (1 ≤ i ≤ n− 1) by computing their
dissimilarities:

∆i,i+1 = 1− cos( ~evi, ~evi+1)

2. The sequence of vectors is then analyzed for topic
drifting. We say that a topic drift occurs for a given
segment of the narrative when the degree of change
between its starting and ending points is above a
given threshold. If Segi,j denotes a segment from the
vector ~evi and ~evj , the corresponding degree of drift
is defined as drifti,j =

∑j−1
k=i ∆k,k+1.

A segment Si,j is said to be coherent if holds that
drifti,j < λmax, where λmax is the coherence thresh-
old.

The narrative is segmented in such a way that each seg-
ment is maximally coherent (i.e. no other segment contain-
ing it would be coherent). Note that the value of the thresh-
old λmax will determine the number of resulting segments.
If λmax ≈ 0, then the resulting segments will be as many
as the original nodes. On the other hand, if λmax ≈ 1, we
will obtain a few, large segments. Since the number of seg-
ments will determine the size of the adapted taxonomy, we
pick the value of λmax based on the target taxonomy size, k.



In particular, the value of λmax is iteratively adjusted using
binary search starting from 0.5, until the desired partition
cardinality is reached1.

At the end of the process, we obtain a set of segments, or
partitions, P = {P1, P2, · · · , Pk} that represents sequences
of coherent narrative components. Intuitively, each partition
Pi defines a sequence of concepts.

Notice that, the parenthetical traversal introduces each
parent concept twice; in this case, if a parent node is as-
sociated to two different partitions, it is removed from the
partition whose drift value (with respect to neighbour nodes
in the sequence) is higher.

3.4 Step 4: Taxonomy Distillation from the
Partitions

In order to construct the adapted taxonomy from the par-
titions created in the previous step, we need to re-attach the
partitions in the form of a tree structure. Furthermore, for
each partition, we need to pick a label that will be presented
to the user and will describe the concepts in the partition.

3.4.1 Partition Linking
The adapted taxonomy, H ′(C′, E′) with C′ = {c′1, . . . , c′k}

(where each node c′i represents the partition Pi) should pre-
serve the original structure of H(C, E) as much as possible.
Thus,

• The root of H ′ is croot (1 ≤ root ≤ k) such that the
corresponding partition Proot contains the root con-
cept of H.

• Let us consider a pair, Pi and Pj , of partitions in P .
The decision on whether (and how) the correspond-
ing concept c′i and c′j should be connected is based on
the following analysis. Let Ei,j be the set of edges
in E linking any concept in Pi to any concept in Pj .
Similarly, let Ej,i be the set of edges in E linking any
concept in Pj to any concept in Pi. With the goal of
preserving to the best the structure of H, we measure
the cost of violating the structural constraints implied
by E in H, and we propose as our solution the adapted
taxonomy which minimizes such cost. The cost is de-
fined by cases.

– The cost of having the corresponding c′i as the
ancestor of c′j is the cost of the violations of the
constraints associated to the edges in Ej,i.

– Similarly, the cost of having c′j as the ancestor of
c′i is the cost of the violations of the constraints
associated to the edges in Ei,j .

– The cost of non directly connecting c′i and c′j is the
cost of the violations of the constraints associated
to the edges in Ei,j ∪ Ej,i.

Let e = 〈ci, cj〉 be an edge in H that connects two
different partitions Pi and Pj . The cost of breaking e,
cost(e), (i.e., the cost of the violation of the structural
constraints induced by e) is 1+dj , being dj the number
of descendants of cj in the H that also belong to Pj .

1Note that there can be cases in which the specific target
value cannot be reached within a predetermined number of
steps; in such a case we use the λmax value that leads to a
partition set closest to the targeted size.

Thus, the taxonomy H ′, minimizing the errors due to
structural constraint violations is constructed as fol-
lows:

1. create a complete weighted directed graph,
GP (VP , EP , wP ), of partitions, where

– VP = P ,

– EP is the set of edges between all pairs of
partitions, and

– wP (〈Pi, Pj〉) =
∑

e∈Ej,i
cost(e);

2. find a maximum spanning tree of GP rooted at
the partition Proot,

For example, let us re-consider the taxonomy fragment and
its partitions shown in Figure 1(a). In the adapted hierarchy
(Figure 1(b)), ANITA picks as root the partition containing
the root node (“science”). Then, the remaining two parti-
tions will be attached to it by analyzing the constraints given
by the broken edges. Note that the distillation process can
alter the structure of the hierarchy, since the relationship
among concepts could change from one domain to another
one. For example, in “terrorism”-related news articles, two
geographical concepts as “USA” and “Afghanistan” will re-
sult strongly related, while in an “economical” context they
can be very far from each other. Therefore, considering the
knowledge expressed by the domain expert in the original
taxonomy, ANITA tries to preserve the original relation-
ships among concepts, but alters the structure when there
is sufficient evidence in the corpus that a different structure
would reflect the content better.

3.4.2 Partition Labeling
In order to select a representative label for each partition

we need to analyze the obtained partition in the context of
the original structure. In order to pick a label for the node
c′i associated to Pi, we consider the structural relationships
in the original hierarchy H among the nodes in Pi. If there
is a concept ci ∈ Pi that dominates all the other nodes in
the partition (i.e., ∀cj ∈ Pi cj ¹ ci), then the label of ci is
selected as the label of c′i. If there is no such single node,
then the minimal set Di of nodes covering the partition Pi

(based on H) is found and the concatenation of the concept
labels in Di, is used as the partition label. An example can
be seen in Figure 1(b).

4. EVALUATION
In our experiments, we used two different data sets: a

corpus of news articles from New York Time data set 2

(containing 64,000 text entries with over 100,000 unique key-
words) and a set of scientific abstracts from National Science
Foundation3 (containing 49,000 article abstracts describing
NSF awards for basic research, with over 30,000 unique key-
words).

For each data set, we considered a corresponding do-
main taxonomy extracted from the DMOZ categorization4.
Specifically, we considered a taxonomy of science (with 72
nodes) which we contextualized in the domain of the NSF
abstracts, and geographical taxonomy (181 nodes), against
which we classified the articles from the New York Times.

2http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
3http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
4accessible at the link http://www.dmoz.org/



Note that, to experiment with different taxonomies for the
same domain, we selected different subsets of these origi-
nal taxonomies by randomly removing some of their nodes.
Specifically, we created a total of 18 distinct taxonomies for
each domain, obtained by removing anywhere between 10%
to 60% of the concepts the original DMOZ taxonomies. The
results reported in this section for each domain are averages
of the results for all the taxonomies.

4.1 Effectiveness Measures
In order to better understand the behavior of ANITA under

different settings and to compare its performance to other
algorithms on a concrete basis, we quantify the quality of
the adapted taxonomies using the following 4 measures:

1. Domain coverage: An important role of taxonomies in
many applications is to help provide search and access
to text documents. Therefore, it is essential that they
properly reflect the content of the corpus. Given a
corpus of documents D and a taxonomy H(C, E), the
coverage of D by H is the percentage of documents
in D that can be associated to at least one concept
in C using the process described in Section 3.2. The
higher the coverage, the more effective the taxonomy
in indexing the documents in D.

Let Aci ⊆ D be the set of documents associated to
the concept ci ∈ C. We define the domain coverage
measure as

cover(H, D) =

∣∣∣⋃ci∈C Aci

∣∣∣
|D| .

Note that the labels of some nodes in the adapted tax-
onomy may consists of the concatenation of multiple
labels from the original taxonomy. In the case of a
concatenated label, a document is considered a match
for the corresponding node as long as the keyword vec-
tor of the document matches the concept-vectors of at
least one of the constituent labels.

2. Redundancy : Note that it would be trivial to increase
the domain coverage simply by concatenating more
and mode labels. This would not result in a desirable
taxonomy. Therefore, it is important to quantify other
properties, such as the degree of discrimination of the
nodes of the hierarchy, along with domain coverage.

The redundancy measure, defined as

redundancy(H, D) =
|overlap(D, H)|∣∣∣⋃ci∈C Aci

∣∣∣
,

where overlap(D, H) returns the set of documents in
D associated to at least two concepts in H. Thus,
this formula quantifies the discrimination power of the
concepts in the resulting taxonomy, i.e, the degree of
overlapping in the sets of documents associated to dif-
ferent concepts. The lower the redundancy, the higher
the discrimination power, and thus the more effective
the taxonomy in helping search and access text docu-
ments.

3. Coherence: it measures the effectiveness of a taxonomy
with respect to the homogeneity of the documents cor-
responding to each individual node into the hierarchy.

Context: NSF Corpus
cover. redund. coher. Ltl

Pre-Order (dist. pres.) 0,123 0,551 0,106 1,724
Parenth. (dist. pres.) 0,128 0,510 0,097 1,681

Post-Order (dist. pres.) 0,128 0,530 0,088 1,702
Pre-Order (no dist.pres.) 0,128 0,725 0,046 1,423
Parenth. (no dist.pres.) 0,125 0,729 0,049 1,402

Post-Order (no dist.pres.) 0,128 0,736 0,053 1,463

Table 1: Impact of different narrative orders
Context: NYTimes Corpus

cover. redund. coher. Ltl
Pre-Order (dist. pres.) 0,752 0,634 0,082 2,289
Parenth. (dist. pres.) 0,759 0,573 0,081 2,2044

Post-Order (dist. pres.) 0,755 0,612 0,088 2,277
Pre-Order (no dist.pres) 0,755 0,792 0,063 2,0634
Parenth. (no dist.pres.) 0,758 0,789 0,068 1,966

Post-Order (no dist.pres.) 0,756 0,792 0,060 1,809

Table 2: Impact of different narrative orders

The higher the average intra-class mutual similarities
among documents, the more coherent the nodes of the
taxonomy:

coherence(H, D) =

∑
ci∈H

(∑
dk,dh∈Aci

cos( ~dk, ~dh)

|Aci |·|Aci |
)

|C| .

4. Label term-length: Finally, the label term-length mea-
sure simply reports the average number of labels in the
original taxonomy included in the labels of the adapted
hierarchy.

Given an initial taxonomy H(C, E) and its adapted
version H ′(C′, E′), let length(labelc′i , H, H ′) = l iff

label(c′i) = label(cj1), . . . , label(cjl), with cj1, . . . , cjl ∈
C. Then, label term-length is defined as

ltl(H, H ′) =

∑
c′i∈H′ length(labelc′i , H, H ′)

|C′| .

In the rest of the paper, we present experiment results
that rely on these four measures.

4.2 Impact of the Narrative Orders
Tables 1 and 2 present the values of the effectiveness mea-

sures for the three proposed narrative orderings, with and
without distance preserving sibling ordering. The values
presented in the table are averages of the performance re-
sults for five different target taxonomy sizes (from 10% to
50% of the original number concepts).

From these two tables, we observe that sibling ordering
results in slightly higher label term-length. This behavior is
due to the fact that the ordering of siblings is likely to lead
to longer sequences of similar siblings, which will be concate-
nated if the sequence does not contain the parent. However,
it is important to note that this lengthening of the labels
does not result in any increase in the redundancy or drop in
the coherence of the resulting taxonomies. In all cases, the
versions with sibling ordering has significantly smaller re-
dundancy than the corresponding versions with the random
ordering of siblings. Moreover distance preserving sibling
ordering also provides significantly higher coherences. The
differences in terms of their domain coverages are negligible.

When we consider the different traversal strategies, we
observe that, for both data sets, parenthetical traversal gen-
erally provides lower redundancies. In terms of coherence,
however, there is no clear winner among the three traversal
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Figure 3: (a) Domain coverage, (b) redundancy, (c) coherence, and (d) label term-length ratio ( ANITA
Original

)
curves. The two curves on each of the charts correspond to the NSF and NY Times data sets.

strategies. In general, parenthetical traversal leads to lower
label term-length. Parenthetical traversal also provides high
coverage, especially when distance preserving sibling order-
ing is used. Therefore, in the rest of the section, we only
consider the parenthetical traversal with distance preserv-
ing sibling ordering.

4.3 Comparison wrt. the Original Taxonomy
In this subsection, we quantify how much difference in

coverage, redundancy, and coherence with respect to the
original taxonomy occurs for varying target taxonomy sizes.
Figure 3 shows the ratios between the considered effective-
ness measures on the adapted and the original taxonomies
(the two curves in these charts correspond to the NSF and
NY Times data sets). Figure 3(a) shows that, for both data
sets, the relative domain coverage is very close to 1.0 for
adaptations with ≥ 30% of the nodes; this means that the
adapted taxonomy can index the same amount of contents
as the original taxonomy. As expected, the coverage drops
when the size of the adapted taxonomy is pushed further
down, even though ANITA increases the label length to com-
pensate for this drop. Note that, despite this increase in
the label lengths, ANITA is still able to lower the redun-
dancy in the taxonomy, while preserving the coherence of
the adapted taxonomies even when the compression rates
are lowered down to 10% range. Finally, note that the sim-
ilarities between the NSF and NY Times curves on these
charts highlight that the performance of ANITA (especially
in terms of redundancy and coherence) is largely indepen-
dent of the data set.

4.4 ANITA vs. other Concept Clustering
Methods

In Figure 4 we compare the impacts of narrative-based
partitioning against k-Means clustering, with k also being
equal to the target taxonomy size requested from ANITA.
In both cases, extended vector representation of the tax-
onomy nodes are used to support partitioning. Also, in
both cases, once the partitions are obtained, the same tax-
onomy re-construction and labeling strategies (described in
Section 3.4) are used to stitch the taxonomy back.

In this experiments, we considered target taxonomy sizes
between 10% and 70%. Each point in these charts denotes
the performance measure obtained in a single experiment us-
ing k-Means (y-axis) vs. ANITA (x-axis) on the same input.
These results show that while the two clustering approaches
show similar behaviors in terms of domain coverage, coher-
ence, and label length (Figures 4(a),(c), and (d)), ANITA

provides significant gains in terms of lowering the amount of
redundancy (Figure 4(b)) in the taxonomy. This is consis-
tent with the key design goals of ANITA; i.e., creating com-

Context: NSF+NYTimes Corpora
Ltl cover. redund. coher.

ANITA 1.840 0,266 0,737 0,075
EM 4.434 0,121 0,794 0,045

X-Means 5.314 0,169 0,775 0,056
H-EM 6.340 0,232 0,797 0,067

Table 3: ANITA (without a target taxonomy size) vs.
EM, X-Means, and Hierarchical-EM

pact taxonomies that provide high category differentiation
(to support effective navigation), while not losing in terms
of domain coverage or coherence.

We also compared narrative-based partitioning approach
with non-parametric clustering methods which do not re-
quire the number of target clusters as input. For these ex-
periments, we run ANITA without providing the target tax-
onomy size input. Instead, we stopped the segmentation
process described in Section 3.3 after its first step, with
the initial drifting threshold λmax set to 0.5. Table 3 com-
pares the results obtained by ANITA against results obtained
by clustering algorithms, such as EM , X − Means, and
Hierarchical − EM (Hierarchical − EM method applies
EM clustering strategy to each sibling group). As these re-
sults show, for this λmax value, ANITA provides better results
in terms of all parameters against these alternative cluster-
ing strategies.

4.5 Impact of the Corpus Context
Lastly, we evaluate the impact of the using the corpus con-

text, represented by the extended vectors introduced in Sec-
tion 3.2. In particular, we compare the application of ANITA
on these extended vectors with a version of ANITA where the
narrative structure is created on the CP/CV vectors (Sec-
tion 3.1.1) which reflect only the structure of the taxonomy
and do not take into account the corpus in any way. This
corresponds to omission of the contextual re-interpretation
step described in Section 3.2.

The four charts in Figure 5 plots the performance ratio,
ANITAwithcontext

ANITAwithoutcontext
for both NSF and NY Times data and for

different target taxonomy sizes.
For both data sets, the use of corpus context based re-

interpretation of the narrative promotes improved domain
coverage and lower redundancy (Figures 5(a) and (b)). In
terms of the lengths of the term labels, especially for very
low target taxonomy sizes, the ratio is close to 2.0 for both
data sets, indicating that the use of context results in longer
descriptors. This, however, does not result in a reduction
in coherence as shown in Figure 5(c): for both data sets,
the coherence ratio is close 1.0, indicating that the use of
context corpus does not impact the coherence of the nodes
with respect to each other at all.

Finally, once again, the almost identical behaviors of
ANITA with respect to these two very different data sets (and
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Figure 5: (a) Domain coverage, (b) redundancy, (c) coherence, and (d) label term-length ratio ( ANITAwithContext
ANITAwithoutContext

)
curves. The two curves on each of the charts correspond to the NSF and NY Times data sets.

corresponding taxonomies) provide strong evidence that the
results presented in this section are not data set specific.

5. CONCLUSIONS
In this paper, we introduced a novel narrative interpre-

tation of a taxonomy, where it is viewed as a discourse de-
scribing the relationships among concepts/categories in a
given domain, for re-structuring existing taxonomies to vary-
ing application contexts. The experimental results showed
that the proposed A Narrative Interpretation of Taxonomies
for their Adaptation (ANITA) technique provides significant
benefits in terms of reducing the redundancies in the tax-
onomies, while improving their domain coverages relative to
the given corpora of documents.
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