



AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Data Management for Multimedia Retrieval

This is a pre print version of the following article:	
Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/73789	since 2021-04-29T21:11:05Z
Publisher:	
Cambridge University Press	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the tof all other works requires consent of the right holder (author or protection by the applicable law.	erms and conditions of said license. Use

(Article begins on next page)

This page intentionally left blank

Data Management for Multimedia Retrieval

Multimedia data require specialized management techniques because the representations of color, time, semantic concepts, and other underlying information can be drastically different from one another. The user's subjective judgment can also have significant impact on what data or features are relevant in a given context. These factors affect both the performance of the retrieval algorithms and their effectiveness. This textbook on multimedia data management techniques offers a unified perspective on retrieval efficiency and effectiveness. It provides a comprehensive treatment, from basic to advanced concepts, that will be useful to readers of different levels, from advanced undergraduate and graduate students to researchers and professionals.

After introducing models for multimedia data (images, video, audio, text, and web) and for their features, such as color, texture, shape, and time, the book presents data structures and algorithms that help store, index, cluster, classify, and access common data representations. The authors also introduce techniques, such as relevance feedback and collaborative filtering, for bridging the "semantic gap" and present the applications of these to emerging topics, including web and social networking.

K. Selçuk Candan is a Professor of Computer Science and Engineering at Arizona State University. He received his Ph.D. in 1997 from the University of Maryland at College Park. Candan has authored more than 140 conference and journal articles, 9 patents, and many book chapters and, among his other scientific positions, has served as program chair for ACM Multimedia Conference'08, the International Conference on Image and Video Retrieval (CIVR'10), and as an organizing committee member for ACM SIG Management of Data Conference (SIGMOD'06). In 2011, he will serve as a general chair for the ACM Multimedia Conference. Since 2005, he has also been serving as an associate editor for the *International Journal on Very Large Data Bases (VLDB)*.

Maria Luisa Sapino is a Professor in the Department of Computer Science at the University of Torino, where she also earned her Ph.D. There she leads the multimedia and heterogeneous data management group. Her scientific contributions include more than 60 conference and journal papers; her services as chair, organizer, and program committee member in major conferences and workshops on multimedia; and her collaborations with industrial research labs, including the RAI-Crit (Center for Research and Technological Innovation) and Telecom Italia Lab, on multimedia technologies.

DATA MANAGEMENT FOR MULTIMEDIA RETRIEVAL

K. Selçuk Candan

Arizona State University

Maria Luisa Sapino

University of Torino

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521887397

© K. Selcuk Candan and Maria Luisa Sapino 2010

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2010

ISBN-13 978-0-511-90188-1 eBook (NetLibrary)

ISBN-13 978-0-521-88739-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pref	face	page ix
1	Introduction: Multimedia Applications and Data Management Requirements	1
	1.1 Heterogeneity	1
	1.2 Imprecision and Subjectivity	8
	1.3 Components of a Multimedia Database Management System	12
	1.4 Summary	19
2	Models for Multimedia Data	20
	2.1 Overview of Traditional Data Models	21
	2.2 Multimedia Data Modeling	32
	2.3 Models of Media Features	34
	2.4 Multimedia Query Languages	92
	2.5 Summary	98
3	Common Representations of Multimedia Features	99
	3.1 Vector Space Models	99
	3.2 Strings and Sequences	109
	3.3 Graphs and Trees	111
	3.4 Fuzzy Models	115
	3.5 Probabilistic Models	123
	3.6 Summary	142
4	Feature Quality and Independence: Why and How?	143
	4.1 Dimensionality Curse	144
	4.2 Feature Selection	145
	4.3 Mapping from Distances to a Multidimensional Space	167
	4.4 Embedding Data from One Space into Another	172
	4.5 Summary	180

5	Indexing, Search, and Retrieval of Sequences	181
	5.1 Inverted Files	181
	5.2 Signature Files	184
	5.3 Signature- and Inverted-File Hybrids	190
	5.4 Sequence Matching	191
	5.5 Approximate Sequence Matching	195
	5.6 Wildcard Symbols and Regular Expressions	202
	5.7 Multiple Sequence Matching and Filtering	204
	5.8 Summary	206
6	Indexing, Search, and Retrieval of Graphs and Trees	208
	6.1 Graph Matching	208
	6.2 Tree Matching	212
	6.3 Link/Structure Analysis	222
	6.4 Summary	233
7	Indexing, Search, and Retrieval of Vectors	235
	7.1 Space-Filling Curves	238
	7.2 Multidimensional Index Structures	244
	7.3 Summary	270
8	Clustering Techniques	271
	8.1 Quality of a Clustering Scheme	272
	8.2 Graph-Based Clustering	275
	8.3 Iterative Methods	280
	8.4 Multiconstraint Partitioning	286
	8.5 Mixture Model Based Clustering	287
	8.6 Online Clustering with Dynamic Evidence	288
	8.7 Self-Organizing Maps	290
	8.8 Co-clustering	292
	8.9 Summary	296
9	Classification	297
	9.1 Decision Tree Classification	297
	9.2 k-Nearest Neighbor Classifiers	301
	9.3 Support Vector Machines	301
	9.4 Rule-Based Classification	308
	9.5 Fuzzy Rule-Based Classification	311
	9.6 Bayesian Classifiers	314
	9.7 Hidden Markov Models	316
	9.8 Model Selection: Overfitting Revisited	322
	9.9 Boosting	324
	9.10 Summary	326
10	Ranked Retrieval	327
	10.1 k-Nearest Objects Search	328
	10.2 Top-k Oueries	337

	Con	ntents
	10.3 Skylines	360
	10.4 Optimization of Ranking Queries	373
	10.5 Summary	379
11	Evaluation of Retrieval	380
	11.1 Precision and Recall	381
	11.2 Single-Valued Summaries of Precision and Recall	381
	11.3 Systems with Ranked Results	383
	11.4 Single-Valued Summaries of Precision-Recall Curve	384
	11.5 Evaluating Systems Using Ranked and Graded Ground Truths	386
	11.6 Novelty and Coverage	390
	11.7 Statistical Significance of Assessments	390
	11.8 Summary	397
12	User Relevance Feedback and Collaborative Filtering	398
	12.1 Challenges in Interpreting the User Feedback	400
	12.2 Alternative Ways of Using the Collected Feedback in Query	
	Processing	401
	12.3 Query Rewriting in Vector Space Models	404
	12.4 Relevance Feedback in Probabilistic Models	404
	12.5 Relevance Feedback in Probabilistic Language Modeling	408
	12.6 Pseudorelevance Feedback	411
	12.7 Feedback Decay	411
	12.8 Collaborative Filtering	413
	12.9 Summary	425
Bibl	iography	427
Inde	$\cdot x$	473

Color plates follow page 38

vii