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Abstract

For years, we have been building models of gene regulatory networks, where recent

advances in molecular biology shed some light on new structural and dynamical

properties of such highly complex systems. In this work, we propose a novel tim-

ing of updates in Random and Scale-Free Boolean Networks, inspired by recent

findings in molecular biology. This update sequence is neither fully synchronous

nor asynchronous, but rather takes into account the sequence in which genes affect

each other. We have used both Kauffman’s original model and Aldana’s extension,

which takes into account the structural properties about known parts of actual

GRNs, where the degree distribution is right-skewed and long-tailed. The computer

simulations of the dynamics of the new model compare favorably to the original

ones and show biologically plausible results both in terms of attractors number and

length. We have complemented this study with a complete analysis of our systems’

stability under transient perturbations, which is one of biological networks defining

attribute. Results are encouraging, as our model shows comparable and usually even

better behavior than preceding ones without loosing Boolean networks attractive

simplicity.
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Scale-Free Networks, Genetic Regulatory Networks, Perturbations
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1 Introduction

Gene regulatory networks comprising genes, proteins and other interacting
molecules, are extremely complex systems and we are just beginning under-
standing them in detail. However, it is possible, and useful, to abstract many
details of the particular kinetic equations in the cell and focus on the system-
level properties of the whole network dynamics. This Complex Systems Biol-
ogy approach, although not strictly applicable to any given particular case,
may still provide interesting general insight.
Random Boolean Networks (RBNs) have been introduced by Kauffman more
than thirty years ago (1) as a highly simplified model of gene regulatory net-
works (GRNs). RBNs have been studied in detail by analysis and by computer
simulations of statistical ensembles of networks and they have been shown to
be capable of surprising dynamical behavior. We summarize the main results
in the next section.
In the last decade, a host of new findings and the increased availability of bio-
logical data have changed our understanding of the structure and functioning
of GRNs. In spite of this, the original view of Kauffman has been used to
predict gene expression patterns observed experimentally (2; 3). Today, this
model is still valid provided that it is updated to take into account the new
knowledge about the topological structure and the timing of events of real-life
gene regulatory networks without loosing its attractive simplicity. Following
these guidelines, our aim in this work is to describe and test a new model
that we call Generalized Boolean Networks (GBNs), which includes, at a high
level of abstraction, structures and mechanisms that are hopefully closer to
the observed data. Adhering to the original Kauffman’s view that attractors
of the dynamics of RBNs are the important feature and that they roughly cor-
respond to cell types, we will discuss the results of the systems ability to relax
into stable cycles or fixed points, and their tolerance to local perturbation.
The organization of this work is the following. In the next section we briefly
review the main assumption implied in Kauffman’s RBNs and their possible
limitations. Changes to both the randomness and the synchrony assumptions
will be proposed in section 3 leading to generalized boolean networks. In sec-
tions 4 and 5 the new model is studied by statistical sampling using numerical
simulation. Then we introduce the concept of perturbation in section 6 and
we investigate numerically the stability properties of GBNs. Finally, in section
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7 we present our conclusions and discuss possible future work.

2 Classical Random Boolean Networks

Random Boolean Networks (RBNs) have been introduced by Kauffman (1)
as a highly simplified model of gene regulatory networks. In Kauffman’s RBNs
with N nodes, a node represents a gene and is modeled as an on-off device,
meaning that a gene is expressed if it is on (1), and it is not otherwise (0).
Each gene receives K randomly chosen inputs from other genes. Initially, one
of the 22K

possible Boolean functions of K inputs is assigned at random to
each gene. The network dynamics is discrete and synchronous: at each time
step all nodes simultaneously examine their inputs, evaluate their Boolean
functions, and find themselves in their new states at the next time step.
More precisely, the local transition rule φ is one of the 22K+1

possible Boolean
functions of K inputs from the neighboring nodes plus that of the node itself,
thus possibly implementing a biological situation where a gene regulates itself:

φ : ΣK+1 → Σ.

This function maps the state si ∈ Σ = {0, 1} of a given node i into another
state from the set Σ, as a function of the state of the node itself and of the
states of the nodes that send inputs to i.
For a finite-size system of size N (such as those treated herein) a configuration
C(t) of the RBN at time t is defined by the binary string:

C(t) = (s0(t), s1(t), . . . , sN−1(t)),

where si(t) ∈ Σ is the state of node i at time t. The progression of the RBN in
time is then given by the iteration of the global mapping, also called evolution
operator Φ:

Φ : C(t) → C(t + 1), t = 0, 1, . . .

through the simultaneous application at each node of the non-uniform local
transition rule φ. The global dynamics of the RBN can be described as a
directed graph, referred to as the RBN’s phase space. Over time, the system
travels through its phase space, until a point or cyclic attractor is reached
whence either it will remain in that point attractor forever, or it will cycle
through the states of the periodic attractor. Since the system is finite and
deterministic, this will happen at most after 2N time steps.
This extremely simple and abstract model has been studied in detail by ana-
lysis and by computer simulations of statistical ensembles of networks and
it has been shown to be capable of surprising dynamical behavior. Complete
descriptions can be found in (4; 5). We summarize the main results here.
First of all, it has been found that, as some parameters are varied such as K,
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or the probability p of expressing a gene, i.e. of switching on the corresponding
node’s state, the RBN can go through a phase transition. Indeed, for every
value of p, there is a critical value of connectivity:

Kc(p) = [2p(1− p)]−1

such that for values of K below this critical value Kc(p) the system is in the
ordered regime, while for values of K above this limit the system is said to be
in the chaotic regime. In classical RBNs Kc(0.5) = 2 corresponds to the edge
between the ordered and the chaotic regime, systems where K < 2 are in the
ordered regime, and K > 2 means that the system is in the chaotic phase for
p = 0.5.
In his original work, Kauffman discovered that the mean cycle length scales are
at most linear with N for K = 2. He also believed that the number of attrac-
tors scales with the square root of the number of genes in the system, which
has an interesting analogy with the number of different cell types for genomes
in multicellular organisms. In fact, this last hypothesis has been proven to be
an artifact of undersampling by Bilke and Sjunnesson (2) who showed that the
number of attractors scales linearly with N . In addition, Kauffman found that
for K = 2 the size distribution of perturbations in the networks is a power-
law with finite cutoff that scales as the square root of N . Thus perturbations
remain localized and do not percolate through the system. Kauffman’s sug-
gestion was that cell types correspond to attractors in the RBN phase space,
and only those attractors that are short (between one and a few tens or hun-
dreds of states) and stable under perturbations will be of biological interest.
Thus, according to Kauffman, K = 2 RBNs lying at the edge between the
ordered phase and the chaotic phase can be seen as abstract models of genetic
regulatory networks. RBNs are interesting in their own as complex dynamical
systems and have been throughly studied as such using the concepts and tools
of statistical mechanics (see (6; 5)).
For the sake of completeness, let us mention that the “discrete” approach
to the high-level description of genetic regulatory networks is not the only
possible one. A more realistic description is obtained through the use of a
“continuous-state” model. In the latter, the levels of messenger RNA and
proteins are assumed to be continuous functions of time instead of on/off vari-
ables. The system evolution is thus represented by sets of differential equations
modeling the continuous variation of the components concentration. Here we
focus on the discrete approach, but the interested reader can find more infor-
mation on the continuous models in (7), for instance.
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3 From Random to Generalized Boolean Networks

In this section we describe and comment on the main assumptions implied in
Kauffman’s RBNs. Following this, we propose some modifications that, in our
opinion, should bring the model closer to known facts about genetic regulatory
networks, without loosing the simplicity of classical RBNs.
Kauffman’s RBN model rests on three main assumptions:

(1) Discreteness: the nodes implement Boolean functions and their state is
either on or off;

(2) Randomness: the nodes that affect a given node in the network are ran-
domly chosen and are a fixed number;

(3) Timing: the dynamics of the network is synchronous in time.

3.1 Discrete State Approach

The binary state simplification could seem extreme but actually it repre-
sents quite well “threshold phenomena” in which variables of interest suddenly
change their state, such as neurons firing or genes being switched on or off.
This can be understood since the sigmoidal functions one finds in the contin-
uous differential equation approach (7) actually do reduce to threshold gates
in the limit, and it is well known that Boolean functions can be constructed
from one or more threshold gates (8). So, in the interest of simplicity, our
choice is to keep the discrete Boolean model for the states of the nodes and
the functions implemented at each node.

3.2 Random vs Scale-Free Networks

RBNs are directed random networks. The edges have an orientation because
they represent a chemical influence from one gene to another, and the topolo-
gies of the graphs are random because any node is as likely to be connected
to any other node in an independent manner. There are two main types of
RBNs, one in which the connections are random but the degree of each node
is fixed, and a more general one in which only the average connectivity is
fixed. Random graphs with fixed connectivity degree were a logical generic
choice in the beginning, since the exact couplings in actual genetic regula-
tory networks were largely unknown. Today it is more open to criticism since
it does not correspond to what we know about the topology of biological
networks. In fact, many biological networks, including genetic regulatory net-
works, seem to have a scale-free type or hierarchical output distribution (see,
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for example,(9; 10; 11)) but not random, according to present data, as far as
the output degree distribution is concerned 3 . The input degree distributions
seem to be close to normal or exponential instead. A scale-free distribution
for the degree means that p(k) follows a power-law p(k) ∼ k

−γ, with γ usually
but not always between 2 and 3. In contrast, random graphs have a Poisson
degree distribution p(k) � k̄

k
e
−k̄

/k!, where k̄ is the mean degree, or a delta
distribution as in a classical fixed-degree RBN. Thus the low fixed connectiv-
ity suggested by Kauffman (K ∼ 2) for candidate stable systems is not found
in such degree-heterogeneous networks, where a wide connectivity range is ob-
served instead. The consequences for the dynamics may be important, since
in scale-free graphs there are many nodes with low degree and a small, but
not vanishing, number of highly connected nodes (see, for instance, (13; 12)).
For the sake of completeness, we also wish to point out that the degree dis-
tribution is only one statistical aspect of a given network and the attribu-
tion of a scale-free nature to some genetic regulatory networks has been chal-
lenged (14; 15). Indeed, it has been recently shown that a random sample of
networks with different degree distributions may give subgraphs with similar
degree distributions. Conversely, networks with identical degree distributions
may have different topologies (16; 14). The issue is still far from being settled
due to the insufficient amount of analyses. However, we believe that it doesn’t
fundamentally change the nature of high-level models such as those discussed
here. In particular, everybody seems to agree on the fact that the distribu-
tions are, if not scale-free, at least broad-scale, i.e they have a longer tail to
the right for the output degree distribution.
The first work that we are aware of, using the scale-free topology for modeling
Boolean networks dynamics is (17). Oosawa and Savageau took Escherichia
coli as a model for their scale-free nets with an average input degree k̄ of two.
Interesting in this particular case, the model is a little too specialized as most
other known networks or network fragments have higher connectivity levels.
What is needed are models that span the range of observed connectivities.
Along this line, Aldana presented the first detailed analysis of a model Boolean
network with scale-free topology (18; 19). Using the power-law exponent γ as
a critical parameter instead of the mean degree, he has been able to define a
phase space diagram for scale-free boolean networks, including the phase tran-
sition from ordered to chaotic dynamics, as a function of γ where, if p = 0.5,
then γc(p) = 2.5 is the critical value for which systems rest on the edge be-
tween order and chaos, if γc(p) > 2.5 and the system is in the ordered regime
and if γc(p) < 2.5 it lies in the chaotic phase. He also made exhaustive simu-
lations for several small values of the network size N (N ≤ 20). The scale-free
distribution was the input distribution pin(k) while pout(k) was Poissonian. We

3
The degree distribution function p(k) of a graph represents the probability that

a randomly chosen node has degree k (12). For directed graphs, two distributions

may be defined, one for the outgoing edges pout(k) and another for the incoming

edges pin(k).
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now know these distributions are actually inverted when compared to known
GRNs. In our model we have thus adopted networks with a scale-free output
distribution, and a Poissonian input distribution, as this seems to be at least
close to the actual topologies. However, from the mathematical point of view
the results in terms of different regimes as a function of γ are the same in both
cases (18; 19).
One problem with Aldana’s networks was their small size since he wanted
to explore the phase space exhaustively, and this can only be done for small
N . However, scale-free network statistics cannot be accurate unless the net-
work size is large enough and k ranges, which should span at least a few
orders of magnitude, are suitably binned or the cumulative distribution func-
tion is used instead of p(k) (20). In another recent work, RBNs of various
topologies and of larger size have been studied using statistical sampling and
numerical simulation by Iguchi et al. (21). They used standard synchronous
updating of network nodes and various graph topologies: random with Poisson
distribution, exponential, and scale-free. Iguchi et. al focused on the distribu-
tion of phase space attractors and on their lengths and as such their work
is closely related to the one presented here. However, most of their results
concern the directed networks in which the input and output distributions are
the same (pin(k) = pout(k)) and, as said, above the timing of node update is
synchronous. They focused their analysis on the mean degree k̄. While k̄ is a
significant parameter for random and exponential degree-distributed graphs,
it is much less meaningful for graphs having a scale-free degree distribution.
For a continuous power-law distribution defined in (0, +∞) the mean becomes
infinite for γ ≤ 2 and the variance diverges for γ ≤ 3 (22). Although k̄ can al-
ways be computed given a finite arbitrary degree sequence {kj}, j = 1, . . . , N ,
it still looses its meaning when the distribution is such that a non-negligible
number of extreme values exist, as in scale-free networks which are highly
degree-heterogeneous. In this case, the average is controlled by the few largest
degrees and not by the numerous small ones. These differences make it difficult
to directly compare their results with ours but we shall nevertheless comment
on our respective findings as their study is related in many ways to the present
one.

3.2.1 Construction of input and output degree networks distributions

Here we present the methodology for constructing our model networks, start-
ing with the input and output degree distributions. As said above, Kauffman’s
RBNs are directed graphs with connectivity K. In fact, as anticipated in the
preceding section, according to present data many biological networks, includ-
ing GRNs, suggest an inhomogeneous output distribution and a Poissonian or
exponential input distribution (9; 11). Whether pin(k) is Poissonian or expo-
nential both distributions have a tail that decays quickly, although the Pois-
sonian distribution does so even faster than the exponential, and thus both

7



have a clear scale for the degree. On the other hand, pout(k) is very different,
with a fat tail to the right, meaning that there are some nodes in the network
that influence many other nodes.
In our model we have thus adopted networks with a scale-free output distri-
bution, where pout(k) is the probability a node n will have a degree k:

pout(k) =
1

Z
k
−γ

where the normalization constant Z(γ) =
�kmax

k=1 k
−γ coincides with Riemann’s

Zeta function for kmax → ∞. The input distribution approximates a normal
function centered around k̄. We call our model scale-free boolean networks (SF-
BNs). Figure 1 offers a taste of what such distributions look like. Naturally,
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Fig. 1. Networks degrees distributions. Actual output degrees distributions on a

log-log scale (a) and input degrees distributions on a lin-lin scale (b) of a sample

generated networks of size N = 1000 and γ = 2.0, γ = 2.5 and, γ = 3.0. Distribu-

tions are discrete and finite; the continuous lines are just a guide for the eye.

p(k) being defined over the positive integers only, an approximation is nec-
essary to define how many nodes of the network have a given input degree.
Namely, in a first pass, we use the integer value �p(k)� as the number of nodes
that will have a degree k , for each degree k ∈ {kmin, kmax}. In a second pass,
we use the decimal value p(k)− �p(k)� as the probability that one more node
will have a degree k until the degree of all nodes has been specified. This
non-deterministic process causes slight differences in the distributions, which
is especially important around the critical regime to explore the solution space
since the previously mentioned approximation leaves each scale-free distribu-
tions slightly off the power-law. Once the exact output degree distribution of
a given network is known, we use the average connectivity k̄ to produce a
matching discrete Poisson input distribution. Finally, each node i of the sys-
tem is assigned an input degree k

i
in and an output degree k

i
out, and nodes are

randomly connected according to these, avoiding edge repetitions.

In Table 1 below, we show the average input and output degrees k̄ over 100
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different networks, including their standard deviation. This is only given as an
information, because, as it has been mentioned in section 3.2 of this work and
according to Aldana’s model (18), the regime of a SFBN cannot be defined by
its average connectivity but by the γ exponent of its output degree distribution
function.

k̄order k̄critical k̄chaos

N = 100 1.36±0.06 1.82±0.14 3.25±0.35

N = 150 1.39±0.05 1.81±0.11 3.42±0.42

N = 200 1.38±0.04 1.81±0.11 3.68±0.40

N = 500 1.37±0.02 1.84±0.07 3.78±0.29

N = 750 1.37±0.02 1.84±0.06 3.85±0.24

N = 1000 1.37±0.02 183±0.05 3.98±0.23

Table 1

Networks mean degrees. Average input and output degrees k̄ over 100 networks

including the standard deviation in all three different regimes.

Iguchi et al. (21) have explored Boolean networks where both the output and
the input distribution are of the scale-free type and used the average degree
as an indicator of differentiation. Although an interesting metric, the average
degree allows one to distinguish regimes only in Kauffman’s classical RBNs
with random topologies. Instead, they have used a modified Barabási-Albert
preferential attachment model which allows one to tune the networks average
degree k̄. However, the k̄ factor has no effect on the regime, as the preferential
attachment model (13) produces a single value of γ ∼ 3 well into the chaotic
regime. When dealing with the attractors cycle lengths, they have used sys-
tems where the average degree was either k̄ = 2 or k̄ = 4 which, according
to our calculations, would essentially place all of their systems more or less
deeply in the chaotic regime. In addition, they show examples of SFRBNs
with an average degree of k̄ = 1, which does not seem possible if all nodes
are connected. Thus, a direct comparison of our results with those of (21) is
hardly meaningful for SFRBNs.

3.3 Timing of Events

Standard RBNs update their state synchronously (SU). This assumption sim-
plifies the analysis, but does not agree with results on gene activation experi-
ments if the network has to be biologically plausible (7). Rather, genes seem to
be expressed in different parts of the network at different times, according to
a strict sequence (see, for instance, (23)). Thus a kind of serial, asynchronous
update sequence seems to be needed. Asynchronous dynamics must neverthe-
less be further qualified, since there are many ways for serially updating the
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nodes of the network.
Two types of asynchronous updates are commonly used. In the first, a random
permutation (RPU) of the nodes is drawn and the nodes are updated one at
a time in that order. At the next update cycle, a fresh permutation is drawn
and the cycle is repeated. In a second often used policy, the next cell to be
updated is chosen at random with uniform probability and with replacement.
This is a good approximation of a continuous-time Poisson process, and it will
be called Uniform Update (UU).
Several researchers have investigated the effect of asynchronous updating on
classical RBN dynamics in recent years (24; 25; 26). Harvey and Bossomayer
studied the effect of random asynchronous updating on some statistical prop-
erties of network ensembles, such as cycle length and number of cycles, using
both RPU and UU (24). They found that many features that arise in syn-
chronous RBN do not exist, or are different in non-deterministic asynchronous
RBN. Thus, while point attractors do persist, there are no true cyclic attrac-
tors, only so-called “loose” ones and states can be in more than one basin of
attraction. Therefore attractor lengths, which is one of the main features in
RBNs, are not well defined in the asynchronous case. Also, the average num-
ber of attractors is very different from the synchronous case: even for K = 2
or K = 3, which are the values that characterize systems at the edge of chaos,
there is no correspondence between the two dynamics.
Mesot and Teuscher (25) studied the critical behavior of asynchronous RBNs
and concluded that they do not have a critical connectivity value analogous
to synchronous RBNs and they behave, in general, very differently from the
latter, thus confirming in another way the findings of (24).
Gershenson (26) extended the analysis and simulation of asynchronous RBNs
by introducing additional update policies in which specific groups of nodes are
updated deterministically. He found that all types of networks have the same
point attractors but other properties, such as the size of the attractor basins
and the cyclic attractors do change.
Considering the above results and what is known experimentally about the
timing of events in genetic networks we conclude, with (25), that neither fully
synchronous nor completely random asynchronous network dynamics are suit-
able models. Synchronous update is implausible because events do not happen
all at once, while completely random dynamics does not agree with experi-
mental data on gene activation sequences and the model does not show stable
cyclic attractors of the right size. For this reason, in the following section 3.3.1
we propose a new quasi-synchronous node update scheme, which is closer to
that observed in natural systems (23; 27).

3.3.1 Semi-Synchronous Update Scheme

As we have seen above, in GRNs, the expression of a gene depends on some
transcription factors, whose synthesis appears to be neither fully synchronous
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nor instantaneous. Moreover, in some cases like the gene regulatory network
controlling embryonic specification in the sea urchin (23; 27), the presence of
an activation sequence of genes can be clearly seen. We concluded that neither
fully synchronous nor completely random asynchronous network dynamics are
suitable models. Thus the activation/update sequence in a RBN should be in
some way related to the topology of the network, i.e. on the mutual chemical
interaction structure of proteins, RNA, genes, and other molecules which is
abstracted in the network.
Aiming at remaining faithful to biologically plausible timing of events without
introducing unnecessary complexity into the model, we considered the influ-
ence of one node on another as biological activating or repressing factors: only
when the state of the node is turned or stays on has this node an effect on
the subsequent nodes in the activation sequence. In contrast, nodes changing
their state to or remaining off have no impact on nodes they are linked to, thus
breaking the cascade. In other words, only the activation of an activator or a
repressor will have a repercussion on the list of nodes to be updated at the next
time-step. This update scheme, which has been briefly described previously
in (28) is called the Activated Cascade Update (ACU) . As a consequence of

ON

ON

OFF

ON

ON

OFF

ON

OFF

ON

ON

OFF

ON

OFF

t=0 t=1 t=2

ON

OFF

OFF

ON

OFF

t=3 t=4

Fig. 2. A possible Activated Cascade Update sequence. At time t = 0 a node N0

is chosen at random and updated according to its inputs, if the new state of N0

is inactive, another starting node N0 is chosen at random. At time t = 1 all the

nodes receiving an input from N0 are updated according to their own inputs, those

becoming or remaining active (state on) decide which node will be updated at the

next time step. The cascade continues according to this scheme.

this novel update procedure, the definition of point or cyclic attractors changes
slightly, because the state of a network at any give time t is, from now on, not
only determined by the individual state s

t
i ∈ {on, off } of each node but also

by the list l
t+1 of nodes to be updated at the next time step. The concept of
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loose attractor has, in this context, no relevance.

4 Methodology and Simulations

In this work we investigate the effect of the new ACU update scheme pre-
sented in Section 3.3.1 vs. the previous SU on SFBNs for a set of γ exponents
of the scale-free distribution γ ∈ {2.0, 2.5, 3.0}. The results will be compared
to classical RBNs and all three sizes mentioned above will be studied. In order
to explore their behavior in the three different regimes, we propose to vary
k̄ ∈ {1.8, 2.0, 2.2}, thus keeping the probability p of the node update func-
tions to p = 0.5. In an effort to probe the network scaling properties, we have
simulated ensembles of graphs with N ∈ {100, 150, 200} which, although still
comparatively small, is closer to the observed GRNs sizes and still computa-
tionally feasible.
For each combination of topology, update and size, we produce 50 networks.
To each network, we associate 20 randomly generated sets of Boolean update
functions. A network-function pair is called a realization. Subsequently, for
each realization we create 500 different initial configurations (ICs) with equal
probability for each gene to be expressed or not. Starting from each IC, we let
each realization run over a number of initial steps depending on the size N of
the network (10000 for N = 100, 20000 for N = 150, and 30000 for N = 200).
This allows the system to possibly stabilize after a transient period, reaching
the basin of an attractor. After this primary period, we determine over another
1’000 time steps if the system has relaxed to an attractor. If so, we define the
length of that attractor as the minimum number of steps necessary to cycle
through the attractor’s configuration. In other words, we run 50 networks × 20
update functions ×500 ICs = 5×105 simulations for all combination of 3 sizes,
3 regimes and 2 updates for a total of 9× 106 simulations. Very often in this
work, we will omit to show figures of all three different sizes as this parameter
does not always have an impact on the results, that are in turn very similar
for all sizes. Nevertheless, all sizes and cases have been thoroughly simulated
and studied.

5 Finding Attractors

During the simulations, we have analyzed for each IC of each realization
whether the system has relaxed to a single state (point attractor) or cycled
through the configurations of a periodic attractor. According to Kauffman’s
estimate (4), the median lengths of attractors l ∝

√
N or linear at most for

k̄ critical. For k̄ well into the chaotic regime, the median length grows expo-
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nentially with N . Biologically speaking, very long attractors are unlikely to
have any meaning due to the actual gene expression time which is in the order
of seconds to minutes. Therefore we investigate in depth only attractors with
lengths ranging from 1 to 100 states. Admittedly, the maximum length is ar-
bitrary but remember that, according to Kauffmann, we are mostly interested
in attractors that are short and stable in the “critical” regime (or “edge of
chaos”). In natural systems, point and periodic attractors may have different
significations. As an example periodic attractors can be interpreted as a model
of the genetic regulatory system during the cell cycle, whereas point attractors
can refer to the end of the differentiation cycle of a stem cell. Although it has
been shown that point attractors may play a fundamental role outside the
stem cell context, as in the works of Albert et al. (29) and more recently of
Álvarez-Buylla and coauthors (3), we will often present simulation results and
statistics both with and without point attractors. The reason for this is that
in some instances under ACU, the scheer number of point attractors tend to
bias the statistics and to make the results more difficult to interpret (see Fig.
4).

5.1 Number of Attractors

In Fig. 3 we show the frequencies at which networks of size (a) N = 100 and
(b) N = 200 find attractors of any length. Since the simulations for networks
with N = 150 nodes behave similarly to larger and smaller ones, we do not
show them here. Fig. 3 shows that almost all instances under ACU we find
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Fig. 3. Number of attractors of any length. Comparing the frequency at which

simulations have found an attractor of any length for realizations with (a) N = 100

and (b) N = 200 genes. We compare all network topologies and update schemes.

an attractor, except for scale-free systems in a chaotic regime, which tend
to produce 10 to 50 times less attractors. On the contrary, GRNs under SU
struggle to relax to an attractor. In both RBNs and GBNs, we observe that
the number of attractors does not seem to be impacted by the scaling.
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Frequencies and length concerning simulations of shorter and more biologi-
cally plausible attractors are shown below in Fig. 4 and in Fig. 5 respectively.
On the right-hand sides, point attractors have been removed from statistics.
When comparing Figs. 3(a) with 4(a) and 3(b) with 4(c) respectively, there
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Fig. 4. Number of attractors of biologically plausible lengths. Comparing the fre-

quency at which simulations have found attractors of length (a)(c) between 1 and

100 and (b)(d) between 2 and 100. We consider networks of size (a)(b) N = 100

and (c)(d) N = 200.

is virtually no difference, as over 95% of the attractors are in fact below a
length of 100 states. As for attractors of length between 2 and 100 in Fig.
4(b) and (d), we see that ACU systems, whether scale-free or random, find
more attractors than those under SU. We note that SFBNs in a critical regime
under ACU have a peak in finding attractors, compared with other regimes,
which are exactly the attractors we are interested in. In RBNs and GBNs,
we observe that the number of attractors does not seem to be impacted by
the scaling either. Using ACU almost every IC of every realization leads to
an attractor, no matter what the regime is. On the contrary, under SU the
overall number of attractors tends to decrease as the system goes from order
to chaos.
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N=100 N=200

w PA w/o PA w PA w/o PA

SFBN ACU order 1.01 1 1 1

critical 1.03 1.13 1.01 1.01

chaos 4.42 10.44 2.16 1.68

SU order 121.16 73.37 46.55 78.77

critical 104.26 95.82 60.54 65.46

chaos 5.08 43.60 1 1

RBN ACU order 1.01 1 1 1

critical 1.01 1.01 1 1

chaos 1.03 1.07 1.01 1.01

SU order 44.90 39.39 22.24 26.33

critical 58.01 53.26 30.34 33.93

chaos 61.01 58.75 24.69 30.04

Table 2

Attractors diversity. The average time each attractor has been found over 500 ICs.

Cases with (w PA) and without (w/o PA) point attractors are segregated. In this

case, N = 100 and 200, and the attractors length is limited to a maximum of 100

states.

5.2 Variety of the Attractors

Table 2 shows how many times on average the same attractor has been found
for each update scheme, regime and topology over the 500 ICs the system
has been submitted to. We divided the results for attractors including and
excluding point attractors (PA). We can summarize in Table 2 a few observa-
tions as follows: the topology type does not seem to have a drastic effect on
how often the system relaxes to the same attractor. On the other hand, the
update scheme affects the total number of times the same attractor is found,
and so does the regime, but in a much milder manner. In fact, we can see
that SU tends to find much more often the same attractor than ACU does. In
addition, we see in Figures 3 and 4 that this SU also tends to find many fewer
attractors overall. Alternatively, systems under ACU find a greater number
of different attractors, only in the chaotic regime, where the overall number
of distinct attractors is already very small compared with the other ones. We
witness an increase in the average number of the times the same attractor is
found. Note that in the chaotic regime for systems where N = 200 under SU,
the low repetition value is due to the fact that very few attractors are found.
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5.3 Length of the Attractors

Fig. 5 shows statistics on the length of attractors. We exclude point attractors
for figures on the right-hand side (figures (b) and (d)). The bar at the center
of the box is the median of the attractors lengths, the upper and lower box
delimiters are the third and first quartile respectively. The whiskers show
extreme minimal and maximal values. Results are shown only for the case
where the networks size N = 200, as results for smaller sizes are very similar.
Once more we see that scaling does not have a significant impact on the length
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Fig. 5. Attractors lengths. Comparing the length of the attractors found by simu-

lations. In the left-hand side column (a)(c) we show statistics of attractors of size

up to 100 states and the right hand-one (b)(d) also excludes point attractors. Hor-

izontally, the upper row (a)(b) corresponds to SFBNs and the lower row (c)(d) to

RBNs. All systems have N = 200 nodes.

of the attractors that are found by the systems. It is mostly the regime the
system evolves in and, in a lesser manner, the update scheme that defines the
attractors average length. We note in Fig. 5(a) and (c) that, although under-
represented, attractors under SU seem to be the longest, especially in the
chaotic regime. When focusing on the more interesting part of the attractors
population in Fig. 5(b) and (d), we see that the lengths remain comparable,
though slightly shorter when considering systems under ACU. We also know
from the section 5.1 above that those attractors are much more frequent in
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systems under ACU. A global conclusion concerning the attractors distribution
is that the update model has a prominent effect on the number and length of
attractors over the networks topologies.
Fig. 6 shows the distribution of the number of attractors according to their
length on a log-log scale. Interestingly, the distribution of attractors lengths
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Fig. 6. Attractors lengths distribution. Distribution of the attractors’ lengths be-

tween 1 and 100 states. The left-hand side column represents systems under (a)(c)

Activated Cascade Update and the right-hand side on (b)(d) Synchronous Update.

Figures in the upper row (a)(c) show results for SFBN, the lower one (b)(d) for

RBN networks of size N=100. Note that the vertical axis in the four figures have

different scales. The continuous lines are power regressions to be used as a guide for

the eye.

for SFBNs shows a long-tail for both updates, which is especially marked
for systems in the chaotic regime. But this distribution does show comparable
tendencies on SFBNs under any update, whereas for RBNs, the tail under ACU
is much less pronounced than it is under SU. So we see that now, regime has a
greater influence on attractors length for SFBNs and not the update scheme.
It is the opposite for RBNs, where the timing of update has a greater impact.
All cases compare favorably with Aldana’s work (18) where he clearly shows
that SFBN systems, although he had the input and the output distribution
swapped, exhibit a long tailed distribution of the attractors lengths in the
chaotic regime. This phenomenon is much less pronounced in the ordered
and critical regime. Although we observe a difference in the case of RBNs,
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the different regimes are difficult to tell apart. Nevertheless, the distributions
also show a power-law-like curve for all regimes, with a tail longer than that
of SFBNs in the ordered and critical regime. This second observation is in
line with Iguchi et al. (21) where, in the case of smaller RBNs, both in the
critical and chaotic regime, attractors lengths distributions show a long tail.
We also notice that ACU has the unexpected effect to help tell apart regimes,
as distribution is much easier to distinguish than under SU.

5.4 Scaling

Modern high throughput technologies for genetic analysis have tremendously
contributed to the unveiling of ever bigger parts of GRNs in living organisms.
Present sub-networks sizes range from a few tens to a few hundreds of genes.
In the section above, we thoroughly investigated the attractor’s dynamics of
systems of sizes ranging from 100 to 200 nodes, and have noticed the size of
the system mainly affects the number of attractors that are found. This fact
was expected as the state space grows with the number of nodes N as 2N ,
making it harder for the system to relax in a cycle. For other properties such
as the length distribution or mean length, although sightly different, the gen-
eral tendencies are not impacted by the scaling.
In order to study the effect of scaling on Boolean systems and its effect on both
different topologies and both updates, we have extended the above analysis to
networks of size N = 25, 50, 75, 100, 125, 150, 175, 200. Due to extreme compu-
tational resources necessary, we have unfortunately not been able to increase
N to greater sizes and obtain sufficiently reliable data. Indeed, as the number
of node grows, the transient period before the system reaches an attractor
and length of the attractors themselves increases dramatically, especially in
the chaotic phase. Aldana (18) shows the increase in the transient time and
also shows trends on the expected length of the attractors as N grows.
Fig. 7 shows the trends followed by the attractors lengths as the size of the
systems grows for both topologies, updates and all three regimes. The size
of the attractors for SFBN systems under both update strategies, scales as
expected form Aldana’s work (18). He exhaustively studied SFBNs under SU
of sizes N ∈ {8, . . . , 20}. We witness, both for SU and ACU, a similar and
expected trend, where only the length of attractors found by systems in the
chaotic phase increase significantly with N . The mean attractor length of sys-
tems under ACU is much shorter than that of systems under SU, which is
in line with the thorough analysis conducted in Section 5.3. In the case of
classical RBNs, the differences in size between the regimes, although existing,
is much less pronounced. The range average size is yet again much greater
with SU. Under both updates, lengths for ordered and critical regimes re-
main relatively close whereas for the chaotic regime, the difference with the
other regimes augments significantly. We have unfortunately not been able to

18



ACU SU

S
F
B

N

0
!

1
0
0
!

2
0
0
!

3
0
0
!

25! 50! 75! 100! 125! 150! 175! 200!

m
e
a
n
 a

tt
ra

c
to

r 
le

n
g
th
!

network size!

order!

critical!

chaos!

0
!

2
0
0
!

4
0
0
!

6
0
0
!

25! 50! 75! 100! 125! 150! 175! 200!

m
e
a
n
 a

tt
ra

c
to

r 
le

n
g
th
!

network size!

order!

critical!

chaos!

(a) (b)

R
B

N

0
!

5
!

1
0
!

1
5
!

25! 50! 75! 100! 125! 150! 175! 200!

m
e
a
n
 a

tt
ra

c
to

r 
le

n
g
th
!

network size!

order!

critical!

chaos!

0
!

5
0
!

1
0
0
!

1
5
0
!

25! 50! 75! 100! 125! 150! 175! 200!

m
e
a
n
 a

tt
ra

c
to

r 
le

n
g
th
!

network size!

order!

critical!

chaos!

(c) (d)

Fig. 7. Attractors average cycle length with respect to the network size. Scaling of

the average length of attractors compared to the networks size N for (a)(b) SFBNs

and (c)(d) RBNs under (a)(c) ACU and (b)(d) SU. Note that the vertical axis in

the four figures have different scales. Continuous lines are only added as a guide for

the eye.

compare the number of attractors to Aldana’s work because we are only sam-
pling much bigger systems, up to ten times larger, that cannot be exhaustively
analysed in a reasonable amount of time. Nevertheless, this comforts us in the
idea that our model, while in our eyes is more realistic, still it has behaviors
that are in accordance with our predecessors validated work. Iguchi et al. (21)
have conducted similar experiment on a limited sample of scale-free input and
output distribution networks of very lage size under SU. Though their results
seem in agreement with our own findings, their model is too different to draw
direct parallels.

6 Fault Tolerance of Random Boolean Networks

Failures in systems can occur in various ways, and the probability of some
kind of error increases dramatically with the complexity of the systems. They
can range from a one-time wrong output to a complete breakdown and can
be system-related or due to external factors. Living organisms are robust to
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a great variety of genetic changes, and since RBNs are simple models of the
dynamics of biological interactions, it is interesting and legitimate to ask ques-
tions about their fault tolerance aspects.
Kauffman (30) defines one type of perturbation to RBNs as “gene damage”,
that is the transient reversal of a single gene in the network. These tempo-
rary changes in the expression of a gene are extremely common in the normal
development of an organism. The effect of a single hormone can transiently
modify the activity of a gene, resulting in a growing cascade of alternations
in the expression of genes influencing each other. This is believed to be at the
origin of the cell differentiation process and guides the development.
The effect of a gene damage can be measured by the size of the avalanche re-
sulting from that single gene changing its behavior from active to inactive or
vice-versa. The size of an avalanche is defined as the number of genes that have
changed their own behavior at least once after the perturbation happened.
Naturally, this change of behavior is compared to an unperturbed version of
the system that would be running in parallel. The size of the avalanche is
directly related to the regime in which the RBN is; in the ordered regime, the
cascades tend to be significantly smaller than in the chaotic regime. In real
cells, where the regime is believed to lie on the edge of chaos, the cascades
tend to be small also. Moreover, the distribution of the avalanche sizes in the
ordered regime follows a power-law curve (30), with many small and few large
avalanches. In the chaotic regime, in addition to the power-law distribution,
30-50 percent of the avalanches are huge. The distribution of avalanche sizes
of RBNs in the ordered regime roughly fits the expectations of biologists,
where most of the genes, if perturbed, are only capable of initiating a very
small avalanche, if any. Fewer genes could cause bigger cascades, and only a
handful can unleash massive ones. Perturbing an arbitrary gene is reasonable
in RBNs where all genes have the same average number of interactions. In
scale-free nets however, this is no longer true due to the presence of a high
degree inhomogeneity. Even for values of γ around 3.5 there will be nodes
that have many more output connections than the average value. A transient
perturbation of a gene that has few interactions will have moderate or no ef-
fect, while perturbing a highly connected node will have larger consequences.
Several studies dealing with various kinds of system perturbation have been
recently published. Aldana’s approach (18) is similar to the one taken here
except that he deals with small scale-free networks in which N , the number of
nodes, is 19. Ribeiro and Kauffman (31) exhaustively studied the state space
of small (N < 20) RBNs under probabilistic errors in gene state searching for
ergodic sets, i.e. sets of states such that once the system is in one of them, it
cannot leave it subject to internal noise. They find that if noise may affect all
nodes of an attractor then multiple ergodic sets are unlikely. However, when
noise is limited, multiple ergodic sets do exist which means that attractors
are stable. Serra et al (32) present a study of the distribution of avalanches in
unperturbed RBNs and in RBNs in which one gene has been “knocked-out”,
i.e. a state 0 has been permanently changed to 1. They show that the stan-
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dard model readily explains the distribution of the resulting avalanches. They
also examined the influence of a scale-free topology for the outgoing links on
the system. Aldana et al. (33) examine the effect of more complex and bio-
logically plausible perturbations of the attractor landscape of both standard
RBNs and scale-free RBNs. Genes undergo duplication and mutation which
cause topological changes that in general maintain the original attractors and
may create new ones. Near the critical regime robustness and evolvability are
found to be maximum.

6.1 The Effect of Perturbation

In this work we have submitted all systems that have reached biologically
plausible attractors to “gene damage”, the simplest failure amongst those
previously described. That is, when the system is cycling through the con-
figurations of the attractor, the whole system is duplicated. The original will
continue unperturbed. On the other hand, a node of the copy is chosen at
random and will give the opposite output value a single time step. This usu-
ally knocks the system out of the course of its attractor. Now we let both
systems evolve over time and record at each time step how many more nodes
have a different value in the copy compared to the original. This value usually
reaches a maximum that represents the number of nodes that have ever had
a behavior different than those of the original. This number is the size of the
avalanche. There are only three possible senarios for the copy: it will return to
the same attractor as the original, it will reach a different attractor or diverge
and reach no attractor within the maximum number of configurations allowed
(1000). Each system in an attractor is copied 10 times, and each copy will have
a different avalanche starting point. We record separately these informations
in order to compare the re-convergence capabilities of systems in each regime,
with different topologies and update schemes.
Fig. 8 shows the frequency at which systems that have already converged to an
attractor re-converge. We show separately whether systems re-converge to any
attractor or to the same one as before the perturbation. In particular, Fig. 8
depicts results for attractors before perturbation (original attractors) of sizes
between 2 and 100. We show systems that used networks of size N = 200.
Results for smaller systems are comparable and are not shown in this work.
Re-convergence seems to mostly depend on the regime the system evolves in,
rather than its degree distributions, update scheme, or size. On Fig. 8 we note
that only networks in the chaotic regime do not re-converge to an attractor in
every case. It also seems that ACU performs a little better at helping systems
to find a stable state. However, this tendency seems inverted when taking into
account only cases where the same attractors are found. In this case, under
ACU, the same attractor as the original one is found about half of the time.
Under SU, the same one is found about 75% of the time. This could be ex-
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Fig. 8. Re-convergence frequency. Frequency at which perturbed systems re-converge

to either the same attractor (light grey) or another one (dark grey). Left-hand (a)

side figure shows results for SFBNs and right-hand (b) side figure shows results for

RBNs. All systems have N = 200 nodes. We purposefully omit point attractors.

plained by the fact that the number of attractor lying in the state spaces of
systems under ACU is much greater.
As expected when dealing with random failure, the information traveling
through a structure with regular output distribution is more vulnerable to
faults compared to structures with hubs and leaves. This fact is well known
in various examples such as computer networks which are very resistant to
random failure as long as they are failures and not targeted attacks on highly
interconnected nodes. Especially under SU, SFBNs tend to re-converge to the
same attractor more than RBNs, although overall, both topologies perform
well. The chaotic case will be explained below in details. Under ACU, critical
and ordered SFBNs systems are again performing as able as or better than
their counter parts in RBNs, recovering as often to any attractor but more
often to the same as the original one. The counter-performance of chaotic sys-
tems, especially SFBNs, can be explained by the “spike of huge avalanches”
described by Kauffman (30) and visible in Fig. 9. Indeed, SFBN systems and,
in a lesser manner, RBN under SU have a surge of very long avalanches when
in the chaotic regime. This characteristic explains why these systems are not
as well able to re-converge to an attractor, let alone the same one.
Fig. 9 shows the distribution of the avalanches’ size. Again we distinguish
networks that have re-converged at all in Fig. 9(a) and those that have re-
converged to the original attractor Fig. 9(b). For readability reasons and, since
results are very similar, we show only results for systems of size N = 100 and
N = 200. As mentioned in Section 6, the size of the avalanche varies mainly
due to the regime. Smaller systems with N = 100 react as expected, with the
size of their avalanches increasing as the systems grows chaotic. However, this
does not seem to always be the case, and this relationship between avalanche
size and regime is changed in bigger networks. Under ACU networks where
N = 150 or N = 200, it is the systems that evolve in the critical regime that
clearly show the longest avalanches. This is true for ACU only, SU systems
still corroborate Kauffman’s conjecture. Although in the case where systems
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Fig. 9. Mean avalanche lengths. Average avalanches length of cases where systems

re-converge to (a)(c) any attractor and (b)(d) the same attractor.

return to the original attractor, avalanche sizes are much smaller, the tenden-
cies observed in the more general case stand. This time we observe an obvious
impact of the networks size on the systems dynamics. Further investigations
are necessary as to define why larger systems in critical regime under ACU
are more impacted by perturbations.
Fig. 10 shows the distribution of the avalanches’ sizes for different systems.
Although values are discrete, we used continuous lines as a guide for the eye.
In Fig. 10, we see that tendencies are the same and are anticipated from Kauff-
man’s work (30). SFBNs under both (a) SU and (b) ACU exhibit a steady
long tailed decrease in the number of avalanches as their length grows for or-
dered and critical regime, and there is an increase for long avalanches in the
case of chaotic systems. This tendency is the same for synchronous RBNs in
(d). Interestingly, this does not seem to apply to RBNs under ACU, where no
increment is to be noted.
Lastly, Fig. 11 illustrates the average output degree of the node that represents
the damaged gene. For clarity reasons, we show results only for bigger systems
as they are similar when networks are scaled down. Although predictable, we
clearly see the effect of the hubs in SFBNs, where failing nodes in systems that
do not re-converge had a much higher output degree on average than those of
systems that did recover. Another interesting observation, is that there seems
to be a direct relationship between the degree of the wrongful node and the
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Fig. 10. Avalanche length distributions. Distribution of the avalanche lengths for all

three regimes and N = 100. Upper row (a)(b): For SFBNs. Lower row (c)(d): For

RBNs. Left-hand side column (a)(c): Systems under ACU. Right-hand side column

(b)(d): Systems under SU.
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Fig. 11. Faulty nodes average degree. Average degree of the nodes that have failed

for both re-converged and not re-converged avalanches. RBNs are shown on the

right hand side (b) and SFBNs left one (a). Size N = 200.

regime, the more ordered the system, the higher the degree to allow the system
to recover. This difference is toned down in ACU systems. Naturally this does
not hold for classical RBNs, where all nodes have comparable output degrees.
As a general conclusion on gene-damage failures of Boolean Networks, we can
highlight the prominent effect of the topology on distribution of the lengths of
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the avalanches and its ability to re-converge to an attractor over the networks
update and regime.

6.2 Derrida Plots

In this section we compare Derrida plots of our models with those of Kauff-
man (30) and Iguchi et al. (21). These representations are meant to illustrate a
convergence versus a divergence in state space that can in turn help character-
ize the different regimes. These plots show the average Hamming distance 4

H(t) between any two states sa and sb and the Hamming distance H(t + 1)
of their respective consecutive state s

�
a and s

�
b at the next time step. Derrida

plots of systems in the chaotic regime will remain above the main diagonal
H(t) = H(t + 1) longer, crossing the main diagonal earlier and remaining
closer to it as the systems near the critical regime. Systems in the critical
regime remain on the main diagonal before diverging beneath it. Ordered sys-
tems remain under the main diagonal at all times. These results are already
known for RBNs under SU and, to some extent as the regimes are not defined
explicitly by Iguchi et al. (21), for SFBNs under SU.
Figure 12 shows the Derrida plots for systems under ACU on the right and
SU on the left. This plot concerns networks of size N = 100. The system un-
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Fig. 12. Derrida plot of the Hamming Distance H at time t vs. t+1. The right-hand

side figure represent systems under Activated Cascade Update and the left-hand side

one under Synchronous Update. All systems are SFBNs of size N = 100.

der SU on the right-hand side has a fairly typical behavior, where the chaotic
systems remain clearly above the main diagonal, critical ones remain close to
and then diverge below the main diagonal. The ordered curve, although clearly
remaining below the main diagonal, is somewhat irregular. This is probably
due to the fact that the number of attractors is the lowest of all in the ordered
SFBN systems under SU, thus making the curve less smooth. In the case of

4
The normalized number of positions that are not identical when comparing two

(binary) strings.

25



SFBNs under ACU, the chaotic curve shows the expected behavior, though
it remain closer to and crosses the main diagonal earlier than in the SU case.
It can still be considered a reliable indication that the system is indeed in a
chaotic regime. In the ordered and critical regimes, the curves are literally on
the main diagonal all the way through, and show no sign of convergence or
divergence whatsoever. So in this case, the update method has a major impact
on the Derrida plots, making the ordered and critical systems impossible to
distinguish under ACU.

7 Conclusions and Future Work

Although a long way from a fully functional model of GRNs, we are mov-
ing closer to one by aggregating modern findings obtained with recent high
throughput techniques. These refinements to the original RBN model by Kauff-
man and the subsequent ones by Aldana help us understand some key details
of the complex interactions that are taking place between the different com-
ponents and the role that the topological structure plays in the dynamics. In
this paper, we have made some progress towards an understanding of what
structural and dynamical properties make GRNs highly stable and adaptable
to mutation, yet resistant to perturbation.
This work suggests one structural property, namely the scale-free output dis-
tribution, and a dynamical one, the semi-synchronous updating, to try to
improve the standard RBN model and to account in an abstract way for re-
cent findings in system-level biology. We have used computer simulations to
reflect the impact of these changes on original RBN models. Results are en-
couraging, as our SFBNs model shows comparable or better performance than
the original one with more attractors and smaller avalanches. This leads us
to believe that the models are pointing in the right direction. Nevertheless,
from the results of this analysis, we also see that neither model is the absolute
optimum in this problem. Indeed, if we focus on maximizing the number of
attractors, the prominent effect is that of the update, with ACU combined
with original RBNs achieving the best results in finding the most attractors
with a biologically relevant cycle length. On the other hand, when considering
maximizing the fault tolerance, we witness the highest resilience with SFBNs
under SU, that achieve the highest rate of re-converging to the same attractor
as observed originally. This demonstrates that no combinaison is optimal on
all problems and that compromise is necessary if we are looking to build a
model that will perform well in a realistic situation.
In the future, we intend to expand the range of analysis conducted on per-
turbed systems, in the hope of shedding some light on GRNs. Also, we would
like to explore different degree distribution types and combinations, including
the use of some actual GRNs as high-throughput molecular genetics methods
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make real-life data available like never before.
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C. Espinosa-Soto, D. A. Hartasánchez, R. B. Lotto, D. Malkin, G. J.
Escalera-Santos, P. Padilla-Longoria, Floral morphogenesis: Stochastic
explorations of a gene network epigenetic landscape, PLoS ONE 3 (11)
(2008) e3626.

[4] S. A. Kauffman, The Origins of Order, Oxford University Press, New
York, 1993.

[5] M. Aldana, S. Coppersmith, L. P. Kadanoff, Boolean dynamics with ran-
dom couplings, in: E. Kaplan, J. E. Marsden, K. R. Sreenivasan (Eds.),
Perspectives and Problems in Nonlinear Science, Springer Applied Math-
ematical Sciences Series, Springer, Berlin, 2003, pp. 23–89.

[6] B. Derrida, Y. Pomeau, Random networks of automata: a simple annealed
approximation, Europhysics Letters 1 (2) (1986) 45–49.

[7] R. Edwards, L. Glass, A calculus for relating the dynamics and structure
of complex biological networks, Vol. 132 of Advances in Chemical Physics,
J. Wiley and Sons, New York, 2006, pp. 151–178.

[8] M. H. Hassoun, Fundamentals of artificial neural networks, MIT Press,
Cambridge, MA, 1995.

[9] A. Vázquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z. N. Oltvai, A.-L.
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