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Sub-exponential decay and uniform
holomorphic extensions for semilinear
pseudodifferential equations

Marco Cappiello #, Todor Gramchev ® and Luigi Rodino ©

Abstract

The goal of the present paper is to derive a simultaneous description of
the decay and the regularity properties for elliptic equations in R™ with coeffi-
cients admitting irregular decay at infinity of the type O(|z|~7),0 > 0, filling
the gap between the case of Cordes globally elliptic operators and the case of
regular/Fuchs behaviour at infinity. Representative examples in R™ are the

equations
—Au—&—?}x(;)u:f—&—F[u}, x € R™,

where 0 < 0 < 2,(z) = (1 + |2]|?)"/?,w(z) a bounded smooth function, f
given and Flu] a polynomial in u, and similar Schrodinger equations at the
endpoint of the spectrum. Other relevant examples are given by linear and
nonlinear ordinary differential equations with irregular type of singularity for
x — 00, admitting solutions y(x) with holomorphic extension in a strip and
sub-exponential decay of type |y(z)| < Ce=¢I?I" 0 < r < 1. Sobolev estimates
for the linear case are proved in the frame of a suitable pseudodifferential cal-
culus; decay and uniform holomorphic extensions are then obtained in terms of
Gelfand-Shilov spaces by an inductive technique. The same technique allows to
extend the results to the semilinear case.

Keywords: Pseudo-differential equations, sub-exponential decay, holomorphic ex-
tensions.
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1 Introduction

The main goal of the present paper is to study global regularity and decay at infinity
for linear (pseudo)-differential equations in R”

P(z,D)u = f(x), zeR" (1.1)
and for semilinear perturbations

P(x,D)u = f(x) + Flul, z € R", (1.2)



where the nonlinear term Flu| is typically a polynomial of u and the source term
f belongs to some functional space of smooth or analytic-Gevrey functions having
sub-exponential decay at infinity. The main novelty (and difficulty) is related to the
fact that we consider globally in R™ operators which are locally elliptic, but with
coefficients admitting “irregular” type of singularity for |z| — oc.

As a motivating model operator we exhibit

(1.3)

where A,,(D) is an elliptic homogeneous linear partial differential operator with
constant coefficients and real valued symbol A,, (&) of order m € N and w € C*°(R")
satisfies
sup (<x>\al|a;;w(x)y) = Ay < 400,  a€Zm. (1.4)
TzER™
In (1.3), (1.4) we denote (x) = (1 + |z|?)"/2. In particular, if we take m = 2 and
A9(D) = —A, we have

w(x)
(x)7”

Our attention in this paper will be fixed on the case of the irregular type singularity
0 <o <min (1.3), that is 0 < ¢ < 2 in (1.5). In fact, thinking of the one di-
mensional case, the assumption o > m implies regularity at infinity for the ordinary
differential operator P, whereas ¢ = m corresponds to the classical Fuchs condition
at infinity. As a counterpart in R, n > 1, we address to Lockhart and McOwen [22],
[23], [24] and references there for Fuchs-type operators. In particular, in [22], [23],
[24] the authors carried out a comprehensive analysis of elliptic operators in R™ un-
der the two assumptions (for (1.3)) o = m and lim|,_,o w(7) = 0. The case o < 0,
also corresponding to irregular-type singularity at infinity in the language of the
ordinary differential operators, has been extensively studied in literature. Namely,
if o < 0 we read in (1.5) a potential with algebraic growth at infinity and P is
then included in the theory of Shubin [33] and related generalizations, see [3]. For
o = 0, Cordes [13] (see also Parenti [26] and Schrohe [31]) developed a complete
theory on the so called md-elliptic (or SG-elliptic) pseudodifferential operators in
R™, in the framework of the L?-based weighted Sobolev spaces Hy, s,(R") with norm
|{(x)*2(D)*'u|| ;2. Note that SG-ellipticity in (1.3) reads as

P = -A+ (1.5)

c=0 and [An(€) + w(@)| > ClE)" (1.6)
for C' > 0 and large |z| + [¢], satisfied by (1.3) if 0 = 0 and

Ap(§) >0 for €40, Rw(z) >C">0  for |z|>R >0 (1.7)
or else

Apn(&) eR  for £eR™, 1Sw(z)| > C" >0 for |x| >R >0 (1.8)



for some positive C’, R’.
Somewhat surprisingly such a natural issue - the complementary case

o €]0,m| (1.9)

seems to be (as far as we know) not investigated in detail.

Our program is, in short, the following. First, we want to embed (1.3) under as-
sumptions (1.4), (1.7), (1.8) into a pseudodifferential calculus, and to derive Sobolev
estimates for the corresponding operators. This turns out to be a generalization of
Cordes [13] and, on the other hand, a particularization of the Weyl-Hérmander cal-
culus, cf. [20]. Then, we look for holomorphic extensions and decay properties
of solutions of the hypoelliptic equations. In fact, taking (1.3) as model in the
one-dimensional case, i.e. A, (D) = D™, cf. (1.23) below, we expect a decay as
e*5|’”‘1_0/m, e > 0, that is sub-exponential decay, in the sense that 0 <1 —o0/m < 1
by (1.9). This analysis will be the core of our paper; it will be performed in the lan-
guage of the Gelfand-Shilov spaces, see below. Finally we shall extend the previous
results to the semilinear case (1.2).

Let us state our main results. First we recall the basic notions about the func-
tional frame. The Gelfand-Shilov spaces S/ (R"™), u > 0, v > 0, u+ v > 1, are
defined as the set of all f € C°°(R") satisfying the following estimates: there exist
positive constants C, e such that

09 f(2)] < Ol @npe=slel g e R, (1.10)

cf. the book of Gelfand and Shilov [18] (see also Mityagin [25], Pilipovic [27]).
We notice that for y = 1, functions from SJ(R"™) are real analytic and admit a
holomorphic extension in a strip of the form {z € C: |3z| < T},T > 0. We also
remind that the Fourier transformation F acts as an isomorphism

F 1 SE(R™) — SY(R™). (1.11)

Gelfand-Shilov spaces were already used by the authors in [8], [10] for semilinear
Shubin equations, i.e. o < 0 in (1.3), (1.5), giving for the solutions estimates of the
form (1.10) with g > 1/2,v > 1/2, and in [9] for semilinear SG-elliptic equations,
i.e. 0 =01in (1.3),(1.5); in this case exponential decay of the type e ¢I*l. & > 0, was
proved.

To state our results in full generality, let us refer to the following class of pseudo-
differential operators.
Given m = (m1,mg) € R2,§ € [0, 1, we denote by T = I'"™°(R") the space of all
functions p(z, &) € C(R?*") such that

10800 p(x, €)| < Cap(&)™ 10l (zym2~1FIF0led (1.12)

for all (z,£) € R",a,3 € Z% and for some positive constant C,3. We shall also
denote by OPT™9 the class of pseudodifferential operator P = p(z, D) defined by a
symbol p € T79,



We introduce fundamental hypotheses which turn out to be crucial for the global
hypoellipticity in the weighted Sobolev spaces H, 5, (R™): there exist m’ = (m/, m})
with m} < mq,m < mgy and R > 0 such that

Iw‘iﬁzR(@)_ml (@)~ |p(x, )]) =: C1 > 0 (1.13)

and for every o, 3 € Z} one cand find C';ﬁ > 0 such that

0207 p(x, €)| < Clglp(a, €)1(€) ™1 () 1ol (1.14)

for all o, 3 € Z" and for all (z,£) € R* with |z + |¢| > R.

Notice that if § = 0, then ™9 coincides with the class of SG pseudodifferential

operators studied in [13], [26], [31], [32], and if we assume further m} = my, mf, = mg
in (1.19), the symbol p is SG-elliptic (or md-elliptic).
The metric (x)72|dz|? + (£)72|d¢|*(2)?9,0 < § < 1, is an admissible metric for the
Weyl-Hormander calculus in [20] and we may regard the preceding pseudodifferential
operators in this frame. For globally hypoelliptic operators we have then easily the
following result, see also [6] for details.

Theorem 1.1. Let P = p(z, D) with p € T™7 satisfying (1.13), (1.14). Then the
operator P admits a parametric E € OPT™™9 satisfying

EoP =1+ Ry, PoE =1+ Ro, (1.15)
with R;, j = 1,2, being S-regularizing, i.e.,
R; : S'(R") — S(R™), ji=1,2, (1.16)

and
E: HSLSQ(Rn) = 51+m’1,82+m’2(Rn)’ (1.17)

for all s1,89 € R. Hence, Pu = f € S(R"),u € S'(R") implies u € S(R™). The
operator P is Fredholm in S(R™),S"(R™), cf. [33], Definition 2.54. In particular,
the solutions u € S'(R™) of Pu =0 are a finite dimensional subspace of S(R™).

The information about decay and regularity given by the Schwartz class S(R™) in
Theorem 1.1 is not sharp for the equation Pu = 0. Namely our purpose is to identify
sub-exponential decay and analytic regularity of the solutions in the framework of
Gelfand-Shilov spaces under suitable additional assumptions on the regularity of
the symbol of P. Let us then introduce a Gevrey-analytic variant of the class I"9
defined above. We shall limit to consider the case ™ = (m,0) for a given m > 1.
Let then m > 1,8 € [0,1[,x > 1. We denote by T'7° = I'**(R") the class of all
symbols p € C*°(R?") such that

|08 07p(x,€)| < Ol al(pry(g)m 1ol )~k (1.18)

for some constant C' > 0 independent of o, 3 € Z} and by OPFZ”S the class of pseu-
dodifferential operators with symbol in F,T’é. Simplifying further and approaching



the notation in the model (1.3), we assume (1.13) is satisfied with m' = (m, —o) for
some ¢ > 0, namely

e (7 @) (. ) =: €y >0, (1.19)

Moreover we shall assume the following variant of the condition (1.14): there exist
C5, R > 0 such that

10808p(x, €)| < CY I Q1B p(x, €)] (€)1 () ~1A1+led (1.20)

for all o, 3 € Z7 and for |z| + [€] > R.
We have the following result.

Theorem 1.2. Let u > 1,v > 1 and let f € SJ(R™). Let P be a pseudodifferential
operator with symbol p € I‘T’(S satisfying (1.19), (1.20). Then, if u € S'(R") is a
solution of the linear equation (1.1), then u € S¥,(R™), where v' = max{v, =5}. In
particular, every solution u € S'(R™) of the equation Pu = 0 satisfies the following
estimate

0%u(z)| < CleFt (ayreell ™
for allz € R", o € Z"} and for some positive constants C, e independent of c.

Example 1. Note that under the assumptions (1.4), (1.7), (1.9), the symbol p(z, )
of the operator P in (1.3) satisfies the conditions (1.14), (1.19). In fact we have the
following estimates

p(2,6)| = [Am(€) + w(@){x) 7| = C)™ ()77 for |z|+[¢] large.

Moreover, it is easy to see that the derivatives of p with respect to x satisfy (1.14)
for 6 = 0. Nevertheless, £-derivatives require 6 > 0. Limit for simplicity attention
to the expected estimate

020(2,€)] = const < €| An(€) +w(@)(@) [ ™)™ for lal +¢] large

which is satisfied if and only if § > o/m €]0,1[. Hence Theorem 1.1 applies to P in
(1.3), (1.5). Similarly, if w satisfies (1.4) for A, = Cl®+1(a!)#, then p € I’Zw/m and
the condition (1.20) is fulfilled. Then Theorem 1.2 gives for the solutions u(x) €
S'(R™) of

w(z)

(@ "

)(R”), that is a sub-exponential decay u(x) ~

the regularity u € Sﬁz/(m—o e—elalt=e/m
and uniform Gevrey regularity of order u. The pointwise decay rate is sharp (see
below). We note that if § = o = 0 the theorem above reduces to the known
statements for SG elliptic operators, cf. [9], Thm. 7.13. Finally, if p = 1, then u
admits a holomorphic extension in a strip of the form {z € C: |Jz| < T'} for some
T > 0. Consider in particular the equation

—Au+ Mu =0 (1.21)

(x)

5



with 0 < 0 < 2, w(x) satisfying (1.4) of the form w(z) = 14+ w,(x), with llim wo()

|z|—o00
= 0. For w,(z) = 0 solutions do not exist because of the positivity of the operator.
Taking for instance w,(z) = (1 —n 4 o/2)(x)2 7" — (6/2 + 1)(x)73+2 — ()72, we

<z>1—a/2

may easily verify that u(z) =e 1-9/2 € SQI/(Q_U) (R™) is a solution of (1.21).

Next, we deal with semilinear perturbations. We suppose that the nonlinear

term is of the form J

Flu]=) Fu/, FeC, (1.22)
j=t
for some integers d > ¢ > 2.
We have the following result.

Theorem 1.3. Let > 1,v > 1 and let f € SL(R™). Let P be a pseudodifferential
operator with symbol p € FL”’(; satisfying (1.19), (1.20) and F be of the form (1.22).
If uis a solution of (1.2) such that (z)%ou € H*(R™) for some s > n/2,e, > o/({—1),
then u € S (R™),with v' = max{v, 115}

Concerning ordinary differential equations, i.e. » = 1 in Theorems 1.2 and 1.3,
our results in their general form can be seen in the spirit of the classical analysis
on regularity and/or asymptotic behaviour at infinity (e.g. see Wasow [34]) and
also intersect recent results on Gevrey regularity for nonlinear equations proved by
Djakov and Mityagin [15], [16]. They apply to a large class of equations described
in detail in Section 5. The simplest model in this frame is given by the operator

[ +z(14+2%)7  zER, (1.23)
dx
with v > 0. If v > 1, the equation is Fuchsian or regular type at infinity, so let us
further assume v < 1. After multiplication by —i, we recognize in (1.23) an operator
of the form (1.3) with m = n = 1,A4:(D) = D,w(z) = —iz/(x),0 = 2y — 1. The
solutions of Ly = 0 are given by

y(x) = const - exp (14237, (1.24)

_
2(v-1)

The conditions (1.4), (1.8) are verified, so L is SG-elliptic for v = 1/2. The results in
the present paper refer to the case 1/2 < v < 1; in particular Theorem 1.2 applies.
We are then exactly in the frame of Example 1, where now = 1,0 =0 = 2y — 1,
so that we expect y € Sll/(l_é) (R) that is the regularity we may test in (1.24). We
may now give the nonlinear version of Example 1, taking for simplicity L in (1.23)
as linear part.

Example 2. Consider the ordinary differential equation

Ly =y +a(1+2?) Ty =9, reR,1>2 (1.25)



with 1/2 < v < 1. Theorem 1.3 applies and we have that all the solutions of (1.25)
such that (x)*°y(x) € H*(R), for some s > 1/2 and ¢, > (2y —1)/({ — 1), are an-
alytic and decay at infinity like exp(—|x|*(!=)). This will be tested on the explicit
expression of the solutions given by (5.16) in Section 5. Notice that with respect
to the linear case (1.1), we ask an a priori decay on the solution. Such assumption
is necessary to obtain sub-exponential decay. In fact in Section 5 we shall check
that the equation (1.25) admits two types of homoclinics: one with only algebraic
decay y(x) ~ 2(1=20)/U=1) for # — 400, which does not satisfy the required a priori
bound; other homoclinics, with (z)%°y(z) € H*(R),s > 1/2,e, > (2v —1)/(¢ — 1),
which have the expected sub-exponential decay. Moreover we may check that 2; —1
is indeed a sharp lower bound for .

-1

In conclusion, we would like to observe that the problems of the asymptotic de-

cay and the holomorphic extensions of solutions, apart from the interest “per se”
in the general theory of differential equations (both ordinary and partial), arise in
different contexts in Mathematical Physics, e.g. for analytic regularity and expo-
nential decay of travelling wave type solutions, cf. the fundamental work by Bona
and Li [4] (see also [2]), for the exponential decay of eigenfunctions of Schrodinger
operators appearing in Quantum Mechanics, starting from the celebrated work of
Agmon [1] (see also [5], [14], [19], [29]) and more generally, for solutions of second
order elliptic equations, cf. [28] and the references therein.
The paper is organized as follows. In Section 2, we introduce some scales of Sobolev
norms providing suitable characterizations of the space S, (R"), which will be instru-
mental in the proofs of our statements. In Sections 3 and 4, we prove sub-exponential
decay estimates and uniform regularity respectively, for the solutions of the equa-
tions (1.1), (1.2). As a consequence we obtain Theorems 1.2 and 1.3. In Section 5,
we fix the attention on a class of ordinary differential operators including (1.23) and
also check the sharpness of our results on the solutions of (1.25). In the proofs of
Sections 3 and 4, we shall use the classical theorems of pseudodifferential calculus for
the class FZ”S (composition, adjoints, construction of parametrices). Unlike the case
of I we are not aware of an existing specific calculus for FL”’5 in Gelfand-Shilov
classes, hence we proved these statements in the present paper and for a more gene-
ral class including TT’J. Nevertheless, in order to introduce immediately the reader
to the proofs of the main results of the paper we postponed the pseudodifferential
calculus in an Appendix at the end of the paper.

2 Preliminaries
For any s € R, we shall denote by H*(R™) the Sobolev space
H*(R") = {u € S'(R") : (&)*a(€) € L*(R")},

endowed with the standard norm |[|(-)*%(-)|| 72, where % denotes the Fourier transform
of u. Let us now introduce some scales of Sobolev norms defining the Gelfand-Shilov
spaces S5(R™) in (1.10). First of all we recall a result obtained in [12] which provides
a useful characterization of S} (R").



Proposition 2.1. Let > 0,v > 0 with p+v > 1 and let f € C°(R™). Then the
following conditions are equivalent:
i) f € SHR™);
ii) There exist positive constants A, B such that
sup [ f(2)] < AWK and  sup BLf(2)| < BIFIGE (21
TER™ z€eR™

for all j,k € ZT;
iii) There exist positive constants a,T such that

sup <exp(a\x|1/l’)|f(x)\) < 400 and sup TV 17* sup |9 f(x)] < +oo.
z€R™ jezn zERn

Proposition 2.1 states that to prove that the solution of (1.2) belongs to St (R™)
we can prove decay and regularity estimates separately. This will be the approach
we shall follow in the next Sections 3 and 4.

Taking into account Proposition 2.1, we introduce norms which describe only
the decay or the regularity properties. Precisely, let us set

Nully,. = >

kezn

K
|

\
g
g el

and denote

||
N% € k
kezZ™
i
k| <N
By Sobolev embedding estimates, it is obvious that if [Ju]|,,.. < +oo for some
v>0,s >n/2,e >0, then u satisfies the first inequality in (2.1). Similarly, we can
define

VI
ll ey = 3 5 0%l
JELL
It is easy to verify that if Nullgs iy < +00 for some T' > 0,5 > 0, then u satisfies
the second inequality in (2.1). In fact, for technical reasons that will be clear in
the next sections, we shall use a slightly different scale of norms to prove regularity
estimates for nonlinear equations. Precisely, fixed €, > 0 we shall consider the norm

Tl ,
Nellgyprey = 2 S (@) dzull (2.2)

JELT

and denote the corresponding partial sum as follows

. Tl A
9 7T’ o o
ENT ] = ) S @) ddulls, (2.3)
jezy J:
l7I<N

We shall write Ex ;T[u] for 518\}M;T’0 [u].



3 Decay estimates

The main goal of the present section is to derive sharp decay estimates for the
solutions of the equations (1.1), (1.2), where F' is of the form (1.22) and P is a
pseudodifferential operator with symbol p € FZ”S satisfying the conditions (1.19),
(1.20). The approach will be the same for the linear and the semilinear case, but
the latter case requires some a priori restrictions on the behavior at infinity of the
solution. Let us then start from the linear case Fu] = 0.

If u € S(R™) is a solution of Pu = f, then for every k € Z" ;e > 0,v > 1, we can

write | "
€k _ &k
W!Vac Pu(z) = \k|!”x f(x).

from which we get

|| || k|
€ k € k €
P =
|| (&) T Fo)+ ||

Now, since P satisfies (1.19) and (1.20), by Proposition A.13 there exists a left
parametrix E for P. Then we have

[P, z*]u.

|k k| k| Ik

1 k e k £ k £
= E R

R g 2D g B+

E([P, z"u).

where R is a regularizing operator mapping S’'(R™) into S(R™), c¢f. Remark A.8.
Taking Sobolev norms and summing up for |k| < N, N € Z; we obtain
S,Vi€ S‘k‘ k
Hy " [u] < Z WHE(J/‘ s

IK|<N
Ik

+ WHR(SU'“U)IIS

k<N

cIk|
+ > GElEE . (3.1)
0<|k|<N

We have the following result.

Theorem 3.1. Let P = p(z,D) € OPFZ”s satisfy the assumptions of Theorem
1.2. Assume moreover that f € S(R") is such that ||{z)? f|l,,,... < oo for some
v>1,¢ >0,8>n/2 Ifu e SR") is a solution of Pu = f, then there exists
€ > 0 such that [|ull, .. < 400, where V' = max{v, 1—3} In particular, there exist
positive constants C, ¢ such that

u(z)| < Cemel” (3:2)
for every x € R™.

In order to prove Theorem 3.1 we want to show that for some £ > 0 the left-hand
side of (3.1) converges for N — +o00. To do this we need to estimate properly the
three terms in the right-hand side. The most delicate term is the one containing
commutators for which some preliminary steps are necessary.



Lemma 3.2. Let § €]0,1[ and r > 0. Then

o s 5\ 9/0-9)
7 <rt? 4+ (1-0) { ., t>0. (3.3)

for all B € N.

Proof. Clearly we can assume = 1, setting % = 2. Set g(z) = 2° —rz, z > 0.

Since ¢'(2) = 62°"1 —r = 0iff 2 = 25, = (§/r)/(17%) we readily obtain that
53 8/(1=9) 53 1/(1=6) 53 8/(1=9)
S (2 —1-6(2 .
g}gg(Z) 9(zs) <T> r <r> (1-9) <T>
The proof is complete. O
Lemma 3.3. Let § €]0,1[, v > 1, v, > 0. Then

|| 1810

< n (A=0)18l |15
R 1) (k= A1+ )71 = QRIGH =D~ (kB T D)
(1 — )y 015l s 6/(1=9)
T ORGR = 1) (= B + D) 1709 (n) (3:4)

forallz e R™, k,B € Z, | 5] < |k|.

Proof. We set r =n/(|k|(|k| —1)...(|k — 5]+ 1)) and t = v|z|. Then (3.4) follows
by (3.3) and straightforward calculation. O

Lemma 3.4. Let 6 €]0,1], v > 1. Then there exists Co > 0 such that for every
~v €]0,1[,n > 0 the following estimate holds:

1810 .k—0 n
T (= A PP S g
- ol R 69
where
Dy = (IKI(k] - 1) <1\k —Bl+1))!
§/(1-9)
e T e Fey ;) - e
for allz € R™, k,B € 2, B < k.
Proof. Since ¢ €]0, 1] we have
(@) < (14 |2)P < (n+2)1P1(1 + Zn: |24 [1719). (3.7)

g=1

10



Next, we estimate by (3.4) and derive

2189 k8 3 7y (1)1 o
TR = 1) (k= Bl DT = QRIOR = 1) (k= A+ )7 " |
(1 — 8)y018l| k=P 5\ 8/ (1=9)
TR = 1) - (k= Bl 3 1))/ <n> (3.8)

for ¢ = 1,...,n, x € R". Combining (3.7) and (3.8) and summing over ¢ we get
(3.5) and (3.6). O

The next lemma states some crucial estimates for the operator P in (1.1), (1.2).
Since the proof is based on some results contained in the Appendix, we give here
only the statement and refer the reader to the Appendix for the proof.

Lemma 3.5. Let P = p(x, D) with p € FZM satisfying (1.19), (1.20) and let E be
a left parametriz for P as in Proposition A.13. Then for every s € R there exist
positive constants As, Cs such that for every u € S(R™) we have

1Bl < Coll@ullm (59
and
! A7 @)l
| B[P, 2¥]ul|s < . :
TR D S 773 OO (e ) e T
(3.10)

forallkeZ, k#0,v>1.

Taking into account Lemma 3.4 and Lemma 3.5 we can now estimate the com-
mutator in the right-hand side of (3.1).

Proposition 3.6. Let v > 1—;,5 € Z+. Then, there exist positive constants €,Cl
such that for every n > 0 the following estimate holds

Ld

g . .

> WHE[R aFlulls < Co(nHR [u] + eH Y S [u]). (3.11)
kezn ’

s<|k|I<N

for every N € Z4 with N > s.

Proof. In view of Lemma 3.5 we have

el A/ )15l
B[P, k < k| s s
(A DI (e oot (e Y e
e
— clkl s
P DI (2 (e e e Y

B<k,B7#0
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o (k—B)! a1 k—fB—az nas [\ |616

. Z Z arlaglag! (k— 3 — az)! 10z u) - 0 @) 2

|a|<s aytagtaz=a
az<k—p3

(ASC)W‘

||
= ﬁgkzﬁ:?go (Ikl(|k| = 1) ... (Jk = Bl + 1))»—1 X

! k- B)
8 Z Z aja I (k(—5—6)042)'ka_ﬁ_a2<$>|ﬁéagluuL2

|laf<s o1 tas=a '
ay<k—p3

using the fact that |923 (x)!819| < Clesl+81+1a,1(2)1819 Then, by Lemma 3.4, we get
for any n > 0, €]0, 1[:

Ik|

k (1-6), 18] ol

B<k,B3#0 || <s a1tag=a
as<k—p

(k=) elmealfatPestifeaggin)|
k-3 —as)! K|V
q=1

|
—5\18l _ X |B+as|
+Dy Z (M~~%) Z Z Oq!a2!€ a2l %

B<k,B#0 |a|<s artaz=a
az<k—f3

) il o ot 1
(h—B—a2) k= Bl

where M is a positive constant independent of €, k, 3,y and

(3.12)

Dy = sup DI < oo (3.13)
kBezm\08<k

in view of the condition v > 1%5. Now, observing that

(k — B)! 11
(k—B—az)l [k|¥ = |k — |

and
(k—p)! 1 < 1
(k=B —a)l |k—=pBI" = [k=f—as|
and choosing v < M~1/(1-9) ¢ < 1 we obtain
||
€

k Oé' |Oz2|
|k“u||E[P’x]“HS S Z Z Z alagl”

B<k,B#0 |a|<s a1 +ag=a
as<k

" bl ko tBla g

X
‘k _'QQUV

q=1

+Dye Z (M~~%)IB %
B<k,B#0
elb—pasl|zh—S-cagmy|

al
(3.14
% Z Z 011!042' |k‘—ﬁ—0¢2“” (3 )

o] <s a1 +ag=a ’
az<k—p

12



We observe now that in the first term in the right-hand side of (3.14), if s < |k| < N,
we have 0 < |k — 8 — ag + |Bleq| = |k — az| < N. Then, rescaling indices in the sums
we obtain that

gh=lozl|| gh—B—aztlBleggory||

DI I N M

s<|k,‘|<Nﬁ<k B#0 |a|<s oz1+<o¢k2 a =

||
9
<Cn Y Y gl

la1<s 0<\k:\<N

Similarly, choosing ¢ < (M ~14%) and taking into account the fact that in the second
term in the right-hand side of (3.14) we have 0 < |k — f — ag| < N — 1 since 3 # 0,
we obtain the following estimate:

I i I

Z Z (M~~?) 'B'Z Z all(')Q |/{_ﬁ_a2|!ux

S<|k‘|<N ﬂ<k 57&0 |a|<5 ajtag=a
042< ﬁ
clkl L
<OPe Y Y ol

|1/
a1 | <s 0<[k|<N -1 ]!

From the last two estimates we easily obtain (3.11) observing that

soptu= 3 et () (e,

J

cf. [8], Lemma 3.2. O

Proof of Theorem 3.1. We first observe that under the assumptions of Theorem 3.1,
we already know that u € S(R™), c¢f. Theorem 1.1. Now by (3.9) we have, for any
e €]0,¢&']:

> WIIE( Fhl<o Y

|k|<N |k|<N

‘,V, 2% ()7 flls < Call(@)° flly e < +00.

Moreover, since R is S-regularizing, also R o x; is S-regularizing for every j =
1,...,n. Fixed k # 0, there exists j = jx € {1,...,n} such that Roz* = Roxj, o
¥ Then

elk| gel=1
> P “V,||R(as wls < Jlulls +Coe Y PG [ s
[kl<N o<|kl<N "
We also observe that by (3.10), we have
glkl
> g EPaul < Cull @)l

0<|k|<s—1

13



Finally, applying Proposition 3.6 we get for any 1 > 0 and for some ¢ €]0,&'] :
Hy S u] < Col(lulls + 1) ulls + nHY" < [u] + e HRF[u] +[1(2)7 1l o0
Now, choosing 7 sufficiently small, we obtain

Y *ful < Cllull + 11 @) ull + By Tl + 1@ Fll ) (315)

Then, possibly shrinking e and iterating estimate (3.15), it follows that H]S\}V/;E[u]
is bounded from above with respect to N. Then for N — —+oo we obtain that
"u”s,y’;s < +oo.

To treat the nonlinear case, we shall suppose without loss of generality that
F[u] = u’ for some integer ¢ > 2. With respect to the linear case, here we need to
assume some a priori decay on u.

Theorem 3.7. Let P = p(x, D) € OPFZ”; satisfy the assumptions of Theorem 1.3.
Let u be a solution of (1.2), such that (z)*ou € H*(R"),s € Zy,s > n/2 for some
g0 > 0/(f —1). Assume moreover that ||(z)? f|l, ... < 0o for some ¢’ > 0,v > 1.

Then there exists € > 0 such that ||ull, .. < +oo, where v/ = max{v, {15}

s,V

Lemma 3.8. Under the assumptions of Theorem 3.7 we have (z)*°tPu € H*(R")
for every p < min{l — ¢, (£ — 1)e, — o}.

Proof. By (1.2) we have
()5 Py = ()5 £+ (g)Eo Pyt
from which
(@) tPu = E(()*% ) + R({x)*Pu) + E[P, ()% Ju+ E((z)*™u)  (3.16)

for some regularizing operator R mapping S’'(R™) into S(R™). Clearly, the assump-
tion on f and (3.9) imply that the Sobolev norm of the first term in the right-hand
side of (3.16) is finite. Furthermore, as a consequence of Theorem A.11 and Lemma
A.16, the operator E[P, (x)%P](x)~%~P~%+1 maps H*(R") into itself. Hence

IE[P, (@)% **Julls < Cyll{z) P ulls < 400
since p < 1 — 4. Finally, we have

1By uflls < Cull{@)=Poul]s

otp _
= Cill(@)™ou- ((@) =Tu) s
! €o otp /-1
< Cillw)*ulls - I{z) =rull™ < 400
applying Schauder’s lemma. The proof is complete. O

Iterating Lemma 3.8 we obtain that (z)"u € H*(R") for all 7 > 0.

14



Lemma 3.9. Under the assumptions of Theorem 3.7, the following estimate holds:

clkl
Z ‘k’lu
kez™m

0<|k|<N

ol |, .
IE(z"u")ls < Clell(z) =Tulls™" - Hy"STu] (3.17)
for every N € Z..

Proof. By (3.9), applying Schauder’s lemma, we obtain for every k € Z'} ,k # 0 :

elkl ¢ el¥l k) \o, £
aEl B < Ol el

€|k|_1||xk_ejku||s

< Clel(@)ajul ™, -
I (k[ — 1)
. F=L b
< Clel(a) Erul - S :
(k[ = 1)
from which we obtain (3.17). O

Proof of Theorem 3.7. Starting from the equation (1.2) and arguing as for (3.1)
we obtain that the solution satisﬁes

HY ] < Z I ,,VIIE( s+ D ‘,VHRSC u)lls
k|<N W<N
|K|
€
+ oy ,,VHE [Pt u)lls+ I |,VHE( u)s- (3:18)
o<m<N k|<N

The first three terms can be estimated as in the linear case, the last one using Lemma
3.9. Then we conclude as in the proof of Theorem 3.1. ]

Remark 3.10. We remark that Lemma 3.8 can be applied also in the linear case
for p < 1 —46. In this way we can obtain a variant of Theorem 3.1 in the case in
which f ¢ S(R™) but simply ||(x)? fll s,ver < +00 for some s > n/2,e" > 0. Namely,
in this case, if u is a solution of Pu = f and u € H*(R"™), then ||u]|sy .. < +00 for
some € > 0, with V' as in Theorem 3.1.

4 Regularity estimates

In this section, we derive regularity estimates for the solutions of (1.1), (1.2). As
in the previous section we first consider the linear case Flu] = 0. If u € S(R") is a
solution of the equation Pu = f, then for every j € Z},T > 0,1 > 1 we have the
identity

Tl Tl
Y Y|
from which
Tlil . T3l ) sl ) T3l
Wa%u = WE ((“)%f) + WR (8% ) + ]—E([P 63] ) (4.1)

where F is a left parametrix of P and R is a S-regularizing operator.

15



Lemma 4.1. Let P satisfy the assumptions of Theorems 1.2 and 1.3. Then, for
every €, > 0 there exists a constant B > 0 such that

B+t

WH@)“@%’W% (4.2)

IE[P, (@)% d]]ulls < Cj™
0#v<j

Proof. See Appendix.
Theorem 4.2. Let P = p(z,D) € OPFZZ’5 satisfy the assumptions of Theorem
1.2. Assume moreover that f € S(R™) is such that || fll{g 41 oy < 00 for some

w>1,T >0 and let u € S'(R™) be a solution of the equation (1.1). Then there
ezists T' > 0 such that Nullfo,ury < 00

Proof. As in the proof of Theorem 3.1 we know that u is actually in S(R"). By (4.1)
we can write

Z Hf)JUHLz < Z IIE (D%.)l 2

\J\<N |;|<N

Tl ,
+ WIIR@%U)IIH

ljI<N

T3l .
+ ) WIIE([R Rlu)ll 2.

0<[j|<N

By the assumption on f and by (3.9) we can estimate for any T €]0,7"] :

vl ‘ il iy
>, S IB@DIe <€ 3, ) df e < O Mooy < oo (43)
JI<N 7 ljj<n 7

Moreover

141 ,
> IR ze < Cllulze + TERET ) (14)
7SN

Finally, by Lemma 4.1 for s = 0 we obtain

il . o
E[P,®ul2 < BT (BT)MI=H ||l = —_
0<|Z i — B[P, 01]ul| Yoo« G v)'“ 2
jI<N 0<|j|<N 0#~y<j L
< CTE I ul, (4.5)
choosing T' < min{B~!,T’}. Then, by (4.3), (4.4), (4.5) we obtain that
0,57 0,u;T
1) < € (lullze + TR ] + 1 oz - (4.6)

Hence, possibly shrinking 7" and iterating (4.6) we deduce that [[u]l;, .7y < +o0.
O
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As a direct consequence of Theorems 3.1 and 4.2 we can prove Theorem 1.2.

Proof of Theorem 1.2. If f € SJ(R™) then it satisfies the assumptions of both
Theorems 3.1 and 4.2. By Theorem 3.1, it follows that

sup (k)™ sup |zFu(z)| < 400
keZn z€Rn

for some ¢ > 0, with v/ = max{v, 1%5} On the other hand, by Theorem 4.2, we
deduce that ' ‘

sup TVIj17# sup |dlu(z)| < +oc.

JELT z€R?

Then, invoking Proposition 2.1, we obtain that u € S*,(R™). O

As well as for decay estimates, in order to obtain regularity estimates for the
nonlinear case, we have to assume some a priori decay on v and to use the sums
(2.2) with €, > 0,s > n/2. We have the following result.

Theorem 4.3. Let P = p(x, D) € OPFZ”; satisfy the assumptions of Theorem 1.3.
Let u be a solution of (1.2) with (x)°u € H*(R™),s > n/2 for some e, > o/({ — 1)
and assume moreover that ||f||{8 Wil otes) < TOO for some p > 1,7 > 0. Then,

there exists T' > 0 such that ||ully ,.p. < +oo.

Lemma 4.4. Under the assumptions of Theorem 4.3, the following estimate holds

true:

go+to

| . i
)3 ﬂiHE<<x>foaiuf>usscs(u<x> PulfrTEtem) . @

Proof. Let j € Z,j # 0. Then j, # 0 for some ¢ € {1,...,n}. By (3.9) since m > 1,
we have

IE((@)*duf)lls < Coll{a)™ 7 85u’ ||s—m
< o, (@=roi )|
+CL |y, an, ok et
< o (@rmaret)|
FCO! |[[(@)F 7, 8, )05 rul ) (4.8)
Since we can estimate
.ot ], < Joetat ]
we obtain .
IE((2)™85u) s < Csll{z)™ o 0r " u’ . (4.9)

17



Now, applying Leibniz formula, we can write

. ¢
o j—eq_ ¢ (J — €q)! 09J 723 Ak
(yetoo) = Y S (o) I1 ((x)fflagf‘u>.(4.10)
Jit..Fje=j—eq k=2
Then, since p > 1 we obtain
T3l i C.T (j —eg)! Tl )
gwl@era™ e < = > i | G @)l ) >
: Y i iemi—eq 1:...J¢- 1'

£ .
T|]k|
[T (55 foron])
il )
Cr oy (wli<w>€°é‘w\s>x

Jitetie=j—eq
S)

Z .
T3k]
<1 < ek
k=2 ’
applying Schauder’s lemma and using the condition ¢, > o/(¢ — 1). Using the last
estimate, summing up over j we obtain (4.7). O

(@) 7T ofu

IA

Proof of Theorem 4.5. First observe that by an inductive argument similar to the
one adopted in Lemma 3.8, we have that (z)*°d7u € H*(R™) for every j € Z'. Then,
arguing as in the proof of Theorem 4.2, we obtain that

’ ;T7 o o ’ 7T7 o
ENl < Gl ulls + TEFY [wl + 1 s yrior e, y)

¥l .
Y e

S

Then, applying Lemma 4.4, we get for any T' < min{B~!,T"}:
goto

£ < O () ulla + 1) “T ull+

WiTEo i Teo
FTERTE ] + TE T L) N M oty )

from which we obtain that Hullgs pre,y < +oo-

Similarly as for the linear case, Theorem 1.3 can be easily obtained combining
Theorems 3.7 and 4.3. We leave the details to the reader.

5 The case of ordinary differential operators

In this section we apply the results obtained in the previous sections to a class of
ordinary differential operators including (1.23) as example. Consider the operator

p—_1_ [("“”di)m + (@) (m(x);;)m_l bt am(x)] . (5.1)

KM ()
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The hypotheses on the coefficients of P are the following: k(z) is even, x(x) > 0 for
all x € R, and there exist C,, k, > 0 such that for p > 1,0 < § < 1:

|Djk(x)| < CIFH(HM)°,  weR,jE Ly, (5.2)

k(x) = kolz|° (1 4+ 0(1)) for x — Foo. (5.3)

Concerning a;(x),j = 1,...,m, we assume they satisfy estimates of type (5.2) with
0 =0 and aj(z) = a;to + 0(1),@?0 € C, for ¢ — £o0. It is easy to prove that P can
be re-written as

P =i™(D™ + by () D™  + .+ b (2)), (5.4)

where for j =1,...,m
|DEbj ()| < CFFL Rty (@) 0

and
bj(w) = (=i aj(x)x™ () + O((x) 77,

so that ‘
bj(z) = b;%|:r:|_]5(1 +o(1)) for z— +oo, (5.5)

where b;to = (—i)! CL;EOK; J. At this moment, we consider the two algebraic equations
LEN) = A" b 4 b =0
and we assume
IN#£0  for every X such that LE(\) = 0. (5.6)

Proposition 5.1. Under the previous assumptions, disregarding the factor i™ in
(5.4), we consider P in (5.1) as a pseudodifferential operator with symbol

p(2,8) =™ + b1 (2)E™ 7+ L+ b(). (5.7)

Then, p(z,&) can be seen as symbol in FZ”S globally hypoelliptic satisfying (1.19),
(1.20) for o =md.

Proof. First observe that
(&)™ (@)™ < |p(a, )l < CEO™  for |a| +[¢] = R. (5.8)

for some positive constants C, ¢, R. The second estimate is obvious. To prove the
estimate in the left-hand side, observe that under our assumptions

(L] = e(1+ ™), (5.9)

hence

Loty = L @I
@) 2 e

Argue first in the region x > 0. Write there

p(CIT,f) = pj(ﬁ,f) —|—p(IE,§) _pg_(xag)'

Py (2,6) = (5.10)
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In view of (5.5), given € > 0, for > R we can estimate:

L+ () lem

‘p(xaé) —pj(lﬂﬁ)‘ <e <x>m6

Applying (5.10) and taking e sufficiently small, we get for a new constant ¢ > 0

L+ (@)™]¢™

Pl €)] 2 ey

for x>r&eR. (5.11)

Arguing similarly for x < 0, we obtain the same estimate for x < —R. On the other
hand, for |z| < R, the estimates (5.11) are trivial provided |{] is large, so we have
proved (5.11) for |z| 4 || > R. At this moment we observe that

1 T md|¢|m
il

() ~mo ()™

and we get the left-hand side of (5.8). So we have proved that p satisfies (1.19) with
o = md. It remains to check the hypoellipticity condition (1.20). We first estimate

|0gp(, €)] < CIE™ ™ + (@) )™ 2 + 4 ) =m0, (5.12)

To proceed, it is convenient to use an equivalent version of (5.11) for |z| + [£| > R,
namely

p(x,8)| > ¢ Hj(,) (5.13)
§=0

with H;(x,&) = (2)=(m=99|¢7, which follows easily from the previous arguments.
Let us estimate the generic term in the right-hand side of (5.12). We have to prove
that

()~ < Clp(a, ()T (2)?, G =1, m (5.14)

Arguing for small |£|, we observe that
()=t < Oy (,€)(6) 7 2)’,
and in view of (5.13) we obtain (5.14). For large |£| we use the inequality
()~ m=De Tt < CH(,€)(6) ™ a)?,

and again in view of (5.13), we deduce (5.14). We leave to the reader similar
estimates of the other derivatives. O

We may then construct a parametrix for P in (5.1). Then for n = 1, Theorems
1.2, 1.3 apply to (5.1) under the assumptions (5.2), (5.3). To be definite, for the
solutions y(z), x € R, of the semilinear homogeneous equation (i.e. f = 0) we obtain
the estimates

Y@ (z)| < Clt (el p e R

We notice that in the particular case in which the coefficients a; in (5.1) are constant,
the operator P, besides being globally hypoelliptic, admits even a left inverse P~1.
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We also notice that the example (1.23) in the Introduction is included in the class
described in this section. The same conclusions then apply to (1.23) with § =2y —1
as we observed in the Introduction.

To conclude the section, let us write down the solutions of (1.25), and check on
them that the assumption on €, in Theorem 1.3 is sharp in this case. In fact, the
ordinary differential equation

1
Y +x(l+2) My =9 £> 2,5 <7<1, (5.15)

is a Bernoulli equation, which we can treat explicitly. Namely, let us write
(-1

iy

P(r) = —

and oo
A=(l— 1)/ V@) .
0

Fixing for simplicity attention on the solution y(z) for which y(0) = y, > 0, we have

1

B e = .
) = <A+ -1 [ ewmdt) (519

with A = y},_few(o) — A. Here and in the following, roots are defined to be positive
for positive numbers, with continuous extension in the complex domain, i.e. we take
principal branches. To study the behaviour of the solutions, let us observe that

E(z)=({—1) /+oo eVt

is positive and decreasing on the real axis, with

lim E(z) =24, E(0)=A, lim FE(z)=0 (5.17)

T——00 r—+00

and asymptotic expansion for r — 400
BE(z) = @ (@271 4 0(1)). (5.18)

We may easily prove (5.18) by applying the classical De 'Hopital rule. Let us test
Theorem 1.3 on (5.16). We distinguish three cases.

1/(1-0)
i) (ﬁ) < Yo < +00, that is —A < A < 0. Then the solution blows up at
the point z, > 0, uniquely defined by imposing E(z,) = —A, cf. (5.17).
1/(1-0) o\ o1
i) yo = (elfﬁ) , that is A = 0. Then the solution y(x) = (%) s well
defined analytic in R. The decay at —oo is sub-exponential, whereas from (5.18) we
get

1-2y
y(z) ~x =1 for = — +o0.
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Note that y(x) is then homoclinic, in the sense that lirin y(x) = 0, but Theorem
T— =00

1.3 cannot be applied, since for £, > o/(¢ — 1), with o = 2y — 1 in the present case,
we have (z)%°y(z) ¢ L>®(R), hence (z)%y(x) ¢ H*(R) C L*(R) for s > n/2.

, that is A > 0. In this case, since

1/(1=0)
iii) 0 < yo < (ﬁ)

0<A<A+E(r) <A+24
in view of (5.17), the solution y(z) is well defined analytic in R and
0 < y(z) < \/EDep@) < cre—clel’™

for positive constants cj,ce. Similar sub-exponential bound is satisfied by y/(z),
hence (z)%y(x) € H'(R) for every &, € R. Therefore, Theorem 1.3 applies and gives

the more precise information y € S', (R).
2—2v

A Appendix: Pseudodifferential operators on Gelfand-
Shilov spaces

In the sequel, we will use the following notation:
e1 = (1,0),e2 = (0,1),e = (1,1).

Moreover, we will denote as standard Dg = (—4)l*192 for all o € Z7.

Let m = (m1,m2) € R? and let yu,v be real numbers such that u > 1, > 1.
Let also 01,02, 01,02 be real numbers with 0 < ¢; < g; < 1,7 = 1,2 and denote

0= (01,02),6 = (01, 62).

Definition A.1. We shall denote by F,,mf"; the space of all functions p(x,§) €
C>(R?") satisfying the following condition: there exists a positive constant C' such
that

0 p(, §)| < I (al) (Btyn (g enleb Bl (gymamealBltaslol (a1

for every (z,€) € R*" and o, 3 € Z'y. We will denote by OPFT,’F’(s the space of all

operators (A.2) with symbol in FT,’F"S.

We shall denote by rB;,%‘s the class F,(,?,’LO)’E’S,

Given p € FT;’F";, we can consider the pseudodifferential operator defined as

standard by

Pu(z) = p(z, D)u(x) = (27T)_"/ ¢ p(a,E)a(€)de, uweSRY),  (A2)

n

where 4 denotes the Fourier transform of w.
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Remark A.2. In this Appendiz we shall construct a calculus for the class OPFT,’F"S
on the Gelfand-Shilov spaces SL(R™). First of all we notice that the class FT’(; con-
sidered in the previous sections corresponds in the notation of this section to the
class FTZl’e";e?, so all the results presented here apply to I‘Ln’é. We observe that most
part of the results in the sequel can be proved following the same arguments used
in other similar contexts, cf. [7], [9], [11]. For this reason some proofs will be just

sketched or omitted for the sake of brevity.

We start by giving a continuity theorem on Sobolev spaces for operators from

OPI‘T,’P’(s which gives precise factorial estimates for the norm of the operators. This
is an obvious consequence of the Weyl-Hoérmander calculus, see [20].

Theorem A.3. Givenp € ngg’g, the operator p(x, D) defined by (A.2) is linear and
continuous from H*(R™) to H*(R™) for every s € R and

.D oy < K clF Bl a8,
Ip(x, D)l c(as, 15y < o (a)*(B!)

where C' is the constant appearing in (A.1) and the constants K, N depend only on
s and on the dimension n.

The next result states the action of the operators defined above on the Gelfand-
Shilov spaces.

Theorem A.4. Given p € Fl,mf’a, the operator P defined by (A.2) is linear and
continuous from S, (R™) into itself for any p/, v with ' > p/(1—61),v" > v/(1-62).
Furthermore, P can be extended to a linear and continuous map from (S,’j,/ (R™))" into
itself.

Proof. For any «, 3 € Z"} and for any positive integer N, we can write:

B1! 52!

*DP Pu(x) = (2m) "z® Z

[ et gie)as
B1+B2=p

| .
= (m) et YD s [ (- A VIt DEp(a, (e,
BitBa=p " RY

Choosing N = [‘O‘HTW} +1, by (1.11), (A.1) and by standard factorial inequalities,

we obtain

(@)1=2V | (1 = AN [ DEp(a, €)al€)]
< C\a|+\6\+1(a!)u+5gy’ (51!)“/ (ﬁg!)“+61“/€_a<£>l/w

for some positive constants C,a. Then, by the conditions p/ > u/(1 — 61),0/ >
v/(1 — &), it follows that P is continuous from S, (R™) into itself. By standard
arguments we can extend P on the dual space (Sﬁ,/)’(R”), cf. Theorem 2.2in [11]. O
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For ¢ > 0, denote by @ the set
Qr ={(z,¢) € R2" . <£>91—51 <t and <x>@2—62 <t}

and

Qf =R¥\ Q.

Definition A.5. We denote by FS’T,’F5 the space of all formal sums ) p; such
Jj=>0

that p; € C>(R?") for all j > 0 and there exist positive constants B,C such that

Vi>0:

0800p;(z,€)| < ClIFIBIF2ITL () (gnp(jnptvt

% <£>m1791\a|+51|ﬁ\*(91*5l)j<x>m2*92|/3|+52\04|*(92*52)J'
for all a, 3 € Z} and for all (x,§) € Q%jwy_l.

Definition A.6. We say that two sums ) pj, > q; € FST,’P"S are equivalent if
j=0 520
there exist positive constants B, C' such that for every N = 1,2, ...

8,?85 Z(pj — qj) S C|a|+‘ﬁ|+2N+l(a!)u(ﬂ!)u(N!)lH_,,_l
<N
> <£>m1—91\a|+51|ﬂ\—(91—51)N<$>m2_92|g‘+52|a|_(g2_62)N

forall o, B € Z7} and for all (x,€) € Q% w1 In this case, we write Y pj ~ > q;.
Jj=20 720

Proposition A.7. Let p € ng,éj(s. If p ~ 0, then the operator P is Sl’f,/—regularizing,
i.e. it extends to a continuous linear map from (Sg,, (R™))" into Sﬁ,, (R™), for every

W'V such that min{y’,v'} > min{#@.

Proof. In view of Proposition 2.11 in [7], it is sufficient to show that p € S'g (R2),

with 0 = min{%@. Now, if p ~ 0, then there exist positive constants B, C
such that

3?8519(93’5)‘ < ClaHBIFL (1) (g1 (g) ~erlal 8118l ) —ealBl+5zlal
C2N(N!)H+V*1

X inf
0<N<Blmax{ (0101, (myea-sayy it (177 (m)e2=02)Y

IN

ClHIBIFL ()7 (B1)# (g) ~erlal 3118l () —e2lBl+b2]e]
C2N(N!)M+V—1
X inf

0<N<B(max{(€)217°1 (z)227%2 })ﬁ (max{(£)er=01, (z)e2—2 N~

Furthermore, by standard arguments (see for example [30], Lemma 3.2.4), we have
the following estimate:

CQN(N!);H-V—I
al) (B (€)OLIBl ()02l inf
( ) ( ) < > < > 0§N§B(max{<£>91761,(:B)‘-’?*‘S?})“*’l’*l (maX{<§>gl_517<x>92_62})N
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< O @l expl—af (max{ (), ()%} 7o)
o a
< O 1) expl =3 (@) + (6)1/9)] (A:3)
for some constants Cy,a > 0. Then, p € Sg(RQ”). O

Remark A.8. Notice that if R is S -reqularizing, then in particular it is S-requla-
rizing, i.e. it maps S'(R™) into S(R™).

Every symbol p € Fl,m’é’g can be identified with a sum > p; € FSl,m’E’S, by settin

Yy sy , j i y g
>0

po=pandp; =0 Vj>1.In order to construct a symbol in ['};2 o

79,5

starting from a

formal sum in F'S;;2°, some restictions on y, v are necessary. In fact, the arguments
in the following requlre the use of Gevrey cut-off functions of order y and v. This
leads to assume the non-analyticity condition:

w>1lv>1 (A4)

Hence, the next results of this section hold for analytic symbols of I‘lm’g"S only con-

sidering them as elements of Fm 20 for any choice of > 1,v > 1.

With the same argument used in [7], Theorem 2.14, it is easy to prove the
following result.

Proposition A.9. Let ) p; € FSm 00 , with p > 1,v > 1. Then, for every fized
j7>0

R > 0, we can find a sequence of nonnegative functions p; € C>(R?") satisfying
the following conditions:
@0($7§) =1 n Ran (A5)

@j(®,§) =0 in Qapjurv— and ¢j(x,§) =1 in Qfpjutv-1, (A.6)

L, [oFodies (a0 < @ oy (R T gz A
x,£)eR="

for some positive constant C' and such that the function

z 5) = Z@j(xag)pj(l‘ag) (A8)

Jj=0

is in Tyt 2 and pr~ Yy pjin FST,’P’S for R sufficiently large.
j=0

Using the same arguments as in [11] we obtain the following results about the

transpose of an operator from OPT}}! .00

omit the proofs for the sake of brevity.

and the composition of two operators. We

Proposition A.10. Let P = p(z, D) € OPFT,’F’S and let ' P be its transpose defined
by
(*Pu,v) = (u, Pv), e (S (R),ve " (R, (A.9)
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with (' > p/(1—61),v" > v/(1 —82) as in Theorem A.4. Then, 'P = Q + R, where
Q =q(z,D) is in OPI‘T,’E’& with

9z, ~ > > () ogDep(x, &)

720 al=;

— = 5 ’
in FSLZ;Q’& and R is a S, -reqularizing operator for any p',v" with min{y',v'} >
p+v—1
min{e1—d1,02—02} "

Theorem A.11. Let p € Ffﬁé’a,q € FT;’@’&. Then, there exists a symbol s €

FTIW’M such that p(z,D)q(x, D) = s(x,D) + R for some Sﬁ,l-regularizmg_ ope-

rator R, with ', as in Proposition A.10. Moreover, if p ~ > p; in FST[L@"S and

) >0
g~ >.qjin FS,T;’E’J, then
Jj=>0
1 , s
s@O~Y D, —Ep(ODg(w,€) in FSTITEC (A.10)

720 htk+|a|=j

Similarly, the commutator [P, Q] = ¢(xz, D) € OPFT:[W_@JFS’@S with
1 Qo « Qo (03
e(@,6) ~ D — (9p(x,§)Diq(x, &) — O q(z,§) Dip(x, )
a0
in PST-E083,
We now formulate the global hypoellipticity conditions in their general form for

the class FT,’?’(S.

Definition A.12. A symbol p € FT,’F’S is said to be globally hypoelliptic if there
exist B,Cy,Cy > 0 and m' = (m}, m}) € R? such that

e (67 (@) (@, 6)] = Gy > 0 (A.11)

and
1080 p(, )] < CYIHPl () (81 |p(a, €)| (&) ~erlel+oull (gy—ealBl+azlal (A 12)

for all o, p € 27 and (z,§) € Q%.

Proposition A.13. Let p be a globally hypoelliptic symbol in FT,’F‘S. Then, there
exists a left parametriz for P i.e. an operator E with symbol in F;Hm',g,a such that
EP =1+ R, where I is the identity operator and R is a Sff, -reqularizing operator

!, : /A ptr—1
for every /v such that min{y/,v'} > (o —o1.00=52]
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Proof. As standard, we construct the symbol e(z, &) of E starting from its asymp-
totic expansion and applying Proposition A.9. Define

6()(113,5) :p(l}g)il(l —w(x,ﬁ)) (A13)

where w is a Gevrey function of order ¢ = min{y, v} with compact support such
that w = 1 in a neighborhood of @p. It is easy to prove by induction on |« + (| that

O 0feo(x,€)| < ClIHPl ) (B () ~erialtonldl(z) mealPlonlelieg (2, 6) - (A.14)
for every (z,§) € Q% and «, 3 € ZT. For j =1,2,... we can define by induction

ej(mag) = _60(1175) Z 8?6j_|a|($,f)D%p(I,f). (A15)

0<lal<j

Using (A.14) and arguing by induction on j, we deduce that ) e; € FS,;T/’@’S.

L

Then, by Proposition A.9 we can find a symbol e € F;T’é’é such that e ~ )" e;.
Jj=0

Moreover, in view of (A.10), the symbol of EP — I is equivalent to 0. We conclude

applying Proposition A.7. O

As an immediate consequence of Proposition A.13 we obtain the following result
of hypoellipticity for linear equations in Gelfand-Shilov spaces.

Theorem A.14. Let p be a globally hypoelliptic symbol in FT,’F"S and let f €
Sﬁ,/ (R™), for some p',v" with min{y’,v'} > W@. Then, if u € (Sff,/ (R™))
s a solution of the equation

Pu=f,

then u € S’fj,l(R").

Proof. By Proposition A.13 there exists an operator £ with symbol in I, ,7’@’5 such
that

u=Ru+ Ef
for some Sf/l—regularizing operator R. Then, u € Sff,/ (R™). O

Remark A.15. Notice that due to the restrictions on w,v in the pseudodifferential
calculus, cf. Proposition A.9, Theorem A.1J does not cover the case p =1 and/or
v = 1. Hence, if we compare Theorem 1.2 with Theorem A.14, we notice that the
latter result, though it is valid for the more general class FT,’F"S, does not give sharp
estimates. This justifies the alternative approach used in the previous Sections 3 and
4 also for linear equations.

We conclude the Appendix giving the proofs of Lemmas 3.5 and 4.1. To do this
we need a preliminary technical result which could be stated in general for a symbol
p E Fym,,gg"s. For simplicity we shall prove it only for the class F,T’é treated in the
previous sections, since this is enough for our purposes.
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Lemma A.16. Let P = p(x,D) with p € FZL"S satisfying (1.19), (1.20) and let
E be its left parametriz. For every o, € Z, denote by ro5 the symbol of the

operator E(@g‘Dgp)(a:, D). Then, for every ~y,0 € Z}, there exists a positive constant
C = C(v,0) independent of o, 3 such that

lﬁgﬁgrag(x,g)\ < Cla\+|ﬂ|a!(g!)u<£>—la\—l9l<x>—\ﬁl+5|a\—lv\+él9l (A.16)
for all (z,£) € R*™.

Proof. By Theorem A.11 and Proposition A.13, we have rog ~ > rqg; with
Jj=0

1
ragi(,6) = Y —0fen(x,£)0¢ DI p(x,8),
hetlnl=5 "

where the functions e, are defined by (A.13), (A.15). Then, by (A.14), (A.15) and
by Leibniz rule it is easy to verify that

|8galraﬁj($,f)| < ClalHIBIHIPHRIR2T+1 01 g1y (a1)” (A1) (1)1
><<g>—|a\—|9|—j <x>—|ﬁ\+6|a|—\v|+5\e|—(1_5)j_ (A.17)
for some p/ > 1,0/ > 1,1/ > p. Then, in particular we deduce that »_ 74g; €

Jj=0

FSlET'?“’_lerﬂaD’e’&ez. Finally we apply Proposition A.9, taking in (A.8) cut-off func-

tions @;j(z, &) independent of «, 3 and obtain (A.16). O

Proof of Lemma 3.5. Estimate (3.9) is obvious by the previous arguments. Con-
cerning (3.10), we can write

FPu(r) = (2m) / &8 (2, €)a(€)de

= @m) (=D [ @O DE (p(z,€)a(g)) de

Rn
= o [ 095 () -Phwin Do ateri
B<k
k —

) %(ﬁ) ((-De)p) (2. D) Pu).

Hence
PPl = - 2 (5)E (C00%) @it aay
Therefore
|k1|!u||E[P,xk]u||s§ > |kl|!y <g> HE(@gp)(x, D)) 391 (2) 9125w |

0#B<k
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At this moment observe that
1B p) (@, D)) || g5, 115y < CIH L. (A.19)

In fact, from Lemma A.16 we know that E(agp)(m,D) = rg(x, D) with rg(x,§)
satisfying
|8g@grg(x,£)| < C\ﬁ|+1/3!<§>—lﬂ\—l9l<x>—lv\+élﬁl+5l9\ (A.20)

for every 0, € Z'} and for some constant C' = C(f,~,s) > 0. At this moment we
consider the operator rg(z, D){z) 98 and its transpose, cf. Proposition A.10, with
symbol given by sg(x, &) = (x)08l75(x, €), with 75(x, D) = rg(x, D). Tt is easy to
recognize that also 73 satisfies (A.20) and hence

16007 55(x, €)] < g, CII B1{) 11101 )l 1+10,
Then, by Theorem A.3

Iss(z, D)l ceme ey < KCPIBI,

with K = w'n‘la‘xNC'g7 and we deduce (A.19). Summing up, we obtain
+v<
1
\B|+1 ! 5|5| k=5,
aplEPatl < 3 o (5) s s
0+£B<k

for some constant As depending only on s and on the dimension n. Then we conclude
observing that

1 1
Ikl‘”< >ﬂ = (KI(E = 1) (k= Bl + 1)tk = Bl

Proof of Lemma 4.1. Assume initially £, = 0. To treat [P, 8%] we write

PP = Z( ) (8)p)(x, D)LY

v<I
Hence .
elrou= Y (1)@ D)k
0v<i V)
Applying Theorem A.3 and Lemma A.16, we obtain

|Z1P.2lull, < > (‘7)0'7'“(v!>“||az;—m\|s
077<s N1
from which we deduce (4.2) for ¢, = 0. The case ¢, > 0 can be derived similarly.

We leave details to the reader. O
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