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Sub-exponential decay and uniform

holomorphic extensions for semilinear

pseudodifferential equations

Marco Cappiello a, Todor Gramchev b and Luigi Rodino c

Abstract

The goal of the present paper is to derive a simultaneous description of
the decay and the regularity properties for elliptic equations in Rn with coeffi-
cients admitting irregular decay at infinity of the type O(|x|−σ), σ > 0, filling
the gap between the case of Cordes globally elliptic operators and the case of
regular/Fuchs behaviour at infinity. Representative examples in Rn are the
equations

−∆u+
ω(x)
〈x〉σ

u = f + F [u], x ∈ Rn,

where 0 < σ < 2, 〈x〉 = (1 + |x|2)1/2, ω(x) a bounded smooth function, f
given and F [u] a polynomial in u, and similar Schrödinger equations at the
endpoint of the spectrum. Other relevant examples are given by linear and
nonlinear ordinary differential equations with irregular type of singularity for
x → ∞, admitting solutions y(x) with holomorphic extension in a strip and
sub-exponential decay of type |y(x)| ≤ Ce−ε|x|

r

, 0 < r < 1. Sobolev estimates
for the linear case are proved in the frame of a suitable pseudodifferential cal-
culus; decay and uniform holomorphic extensions are then obtained in terms of
Gelfand-Shilov spaces by an inductive technique. The same technique allows to
extend the results to the semilinear case.

Keywords: Pseudo-differential equations, sub-exponential decay, holomorphic ex-
tensions.
2000 Mathematics Subject Classification: Primary 35S05; Secondary 35B40,
35B65.

1 Introduction

The main goal of the present paper is to study global regularity and decay at infinity
for linear (pseudo)-differential equations in Rn

P (x,D)u = f(x), x ∈ Rn (1.1)

and for semilinear perturbations

P (x,D)u = f(x) + F [u], x ∈ Rn, (1.2)
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where the nonlinear term F [u] is typically a polynomial of u and the source term
f belongs to some functional space of smooth or analytic-Gevrey functions having
sub-exponential decay at infinity. The main novelty (and difficulty) is related to the
fact that we consider globally in Rn operators which are locally elliptic, but with
coefficients admitting “irregular” type of singularity for |x| → ∞.
As a motivating model operator we exhibit

P = Am(D) +
ω(x)
〈x〉σ

(1.3)

where Am(D) is an elliptic homogeneous linear partial differential operator with
constant coefficients and real valued symbol Am(ξ) of order m ∈ N and ω ∈ C∞(Rn)
satisfies

sup
x∈Rn

(
〈x〉|α||∂αxω(x)|

)
=: Aα < +∞, α ∈ Zn+. (1.4)

In (1.3), (1.4) we denote 〈x〉 = (1 + |x|2)1/2. In particular, if we take m = 2 and
A2(D) = −∆, we have

P = −∆ +
ω(x)
〈x〉σ

. (1.5)

Our attention in this paper will be fixed on the case of the irregular type singularity
0 < σ < m in (1.3), that is 0 < σ < 2 in (1.5). In fact, thinking of the one di-
mensional case, the assumption σ > m implies regularity at infinity for the ordinary
differential operator P , whereas σ = m corresponds to the classical Fuchs condition
at infinity. As a counterpart in Rn, n > 1, we address to Lockhart and McOwen [22],
[23], [24] and references there for Fuchs-type operators. In particular, in [22], [23],
[24] the authors carried out a comprehensive analysis of elliptic operators in Rn un-
der the two assumptions (for (1.3)) σ = m and lim|x|→∞ ω(x) = 0. The case σ ≤ 0,
also corresponding to irregular-type singularity at infinity in the language of the
ordinary differential operators, has been extensively studied in literature. Namely,
if σ < 0 we read in (1.5) a potential with algebraic growth at infinity and P is
then included in the theory of Shubin [33] and related generalizations, see [3]. For
σ = 0, Cordes [13] (see also Parenti [26] and Schrohe [31]) developed a complete
theory on the so called md-elliptic (or SG-elliptic) pseudodifferential operators in
Rn, in the framework of the L2-based weighted Sobolev spaces Hs1,s2(Rn) with norm
‖〈x〉s2〈D〉s1u‖L2 . Note that SG-ellipticity in (1.3) reads as

σ = 0 and |Am(ξ) + ω(x)| ≥ C〈ξ〉m (1.6)

for C > 0 and large |x|+ |ξ|, satisfied by (1.3) if σ = 0 and

Am(ξ) > 0 for ξ 6= 0, <ω(x) ≥ C ′ > 0 for |x| ≥ R′ > 0 (1.7)

or else

Am(ξ) ∈ R for ξ ∈ Rn, |=ω(x)| ≥ C ′ > 0 for |x| ≥ R′ > 0 (1.8)
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for some positive C ′, R′.
Somewhat surprisingly such a natural issue - the complementary case

σ ∈]0,m[ (1.9)

seems to be (as far as we know) not investigated in detail.
Our program is, in short, the following. First, we want to embed (1.3) under as-

sumptions (1.4), (1.7), (1.8) into a pseudodifferential calculus, and to derive Sobolev
estimates for the corresponding operators. This turns out to be a generalization of
Cordes [13] and, on the other hand, a particularization of the Weyl-Hörmander cal-
culus, cf. [20]. Then, we look for holomorphic extensions and decay properties
of solutions of the hypoelliptic equations. In fact, taking (1.3) as model in the
one-dimensional case, i.e. Am(D) = Dm, cf. (1.23) below, we expect a decay as
e−ε|x|

1−σ/m
, ε > 0, that is sub-exponential decay, in the sense that 0 < 1− σ/m < 1

by (1.9). This analysis will be the core of our paper; it will be performed in the lan-
guage of the Gelfand-Shilov spaces, see below. Finally we shall extend the previous
results to the semilinear case (1.2).

Let us state our main results. First we recall the basic notions about the func-
tional frame. The Gelfand–Shilov spaces Sµν (Rn), µ > 0, ν > 0, µ + ν ≥ 1, are
defined as the set of all f ∈ C∞(Rn) satisfying the following estimates: there exist
positive constants C, ε such that

|∂αx f(x)| ≤ C |α|+1(α!)µe−ε|x|
1/ν
, x ∈ Rn, (1.10)

cf. the book of Gelfand and Shilov [18] (see also Mityagin [25], Pilipovic [27]).
We notice that for µ = 1, functions from Sµν (Rn) are real analytic and admit a
holomorphic extension in a strip of the form {z ∈ C : |=z| < T}, T > 0. We also
remind that the Fourier transformation F acts as an isomorphism

F : Sµν (Rn) −→ Sνµ(Rn). (1.11)

Gelfand-Shilov spaces were already used by the authors in [8], [10] for semilinear
Shubin equations, i.e. σ < 0 in (1.3), (1.5), giving for the solutions estimates of the
form (1.10) with µ ≥ 1/2, ν ≥ 1/2, and in [9] for semilinear SG-elliptic equations,
i.e. σ = 0 in (1.3),(1.5); in this case exponential decay of the type e−ε|x|, ε > 0, was
proved.

To state our results in full generality, let us refer to the following class of pseudo-
differential operators.
Given m = (m1,m2) ∈ R2, δ ∈ [0, 1[, we denote by Γm,δ = Γm,δ(Rn) the space of all
functions p(x, ξ) ∈ C∞(R2n) such that

|∂αξ ∂βxp(x, ξ)| ≤ Cαβ〈ξ〉m1−|α|〈x〉m2−|β|+δ|α| (1.12)

for all (x, ξ) ∈ Rn, α, β ∈ Zn+ and for some positive constant Cαβ. We shall also
denote by OPΓm,δ the class of pseudodifferential operator P = p(x,D) defined by a
symbol p ∈ Γm,δ.
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We introduce fundamental hypotheses which turn out to be crucial for the global
hypoellipticity in the weighted Sobolev spaces Hs1,s2(Rn): there exist m′ = (m′1,m

′
2)

with m′1 ≤ m1,m
′
2 ≤ m2 and R > 0 such that

inf
|x|+|ξ|≥R

(〈ξ〉−m′1〈x〉−m′2 |p(x, ξ)|) =: C1 > 0 (1.13)

and for every α, β ∈ Zn+ one cand find C ′αβ > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ C ′αβ|p(x, ξ)|〈ξ〉−|α|〈x〉−|β|+δ|α| (1.14)

for all α, β ∈ Zn+ and for all (x, ξ) ∈ R2n with |x|+ |ξ| ≥ R.
Notice that if δ = 0, then Γm,0 coincides with the class of SG pseudodifferential

operators studied in [13], [26], [31], [32], and if we assume further m′1 = m1,m
′
2 = m2

in (1.19), the symbol p is SG-elliptic (or md-elliptic).
The metric 〈x〉−2|dx|2 + 〈ξ〉−2|dξ|2〈x〉2δ, 0 ≤ δ < 1, is an admissible metric for the
Weyl-Hörmander calculus in [20] and we may regard the preceding pseudodifferential
operators in this frame. For globally hypoelliptic operators we have then easily the
following result, see also [6] for details.

Theorem 1.1. Let P = p(x,D) with p ∈ Γm,δ satisfying (1.13), (1.14). Then the
operator P admits a parametrix E ∈ OPΓ−m

′,δ satisfying

E ◦ P = I +R1, P ◦ E = I +R2, (1.15)

with Rj, j = 1, 2, being S-regularizing, i.e.,

Rj : S ′(Rn) 7→ S(Rn), j = 1, 2, (1.16)

and
E : Hs1,s2(Rn) 7→ Hs1+m′1,s2+m′2

(Rn), (1.17)

for all s1, s2 ∈ R. Hence, Pu = f ∈ S(Rn), u ∈ S ′(Rn) implies u ∈ S(Rn). The
operator P is Fredholm in S(Rn),S ′(Rn), cf. [33], Definition 2.54. In particular,
the solutions u ∈ S ′(Rn) of Pu = 0 are a finite dimensional subspace of S(Rn).

The information about decay and regularity given by the Schwartz class S(Rn) in
Theorem 1.1 is not sharp for the equation Pu = 0. Namely our purpose is to identify
sub-exponential decay and analytic regularity of the solutions in the framework of
Gelfand-Shilov spaces under suitable additional assumptions on the regularity of
the symbol of P . Let us then introduce a Gevrey-analytic variant of the class Γm,δ

defined above. We shall limit to consider the case m = (m, 0) for a given m ≥ 1.
Let then m ≥ 1, δ ∈ [0, 1[, µ ≥ 1. We denote by Γm,δµ = Γm,δµ (Rn) the class of all
symbols p ∈ C∞(R2n) such that

|∂αξ ∂βxp(x, ξ)| ≤ C |α|+|β|+1α!(β!)µ〈ξ〉m−|α|〈x〉−|β|+δ|α| (1.18)

for some constant C > 0 independent of α, β ∈ Zn+ and by OPΓm,δµ the class of pseu-
dodifferential operators with symbol in Γm,δµ . Simplifying further and approaching
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the notation in the model (1.3), we assume (1.13) is satisfied with m′ = (m,−σ) for
some σ ≥ 0, namely

inf
|x|+|ξ|≥R

(〈ξ〉−m〈x〉σ|p(x, ξ)|) =: C1 > 0. (1.19)

Moreover we shall assume the following variant of the condition (1.14): there exist
C2, R > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ C
|α|+|β|+1
2 α!(β!)µ|p(x, ξ)|〈ξ〉−|α|〈x〉−|β|+δ|α| (1.20)

for all α, β ∈ Zn+ and for |x|+ |ξ| ≥ R.
We have the following result.

Theorem 1.2. Let µ ≥ 1, ν ≥ 1 and let f ∈ Sµν (Rn). Let P be a pseudodifferential
operator with symbol p ∈ Γm,δµ satisfying (1.19), (1.20). Then, if u ∈ S ′(Rn) is a
solution of the linear equation (1.1), then u ∈ Sµν′(R

n), where ν ′ = max{ν, 1
1−δ}. In

particular, every solution u ∈ S ′(Rn) of the equation Pu = 0 satisfies the following
estimate

|∂αxu(x)| ≤ C |α|+1(α!)µe−ε|x|
1−δ

for all x ∈ Rn, α ∈ Zn+ and for some positive constants C, ε independent of α.

Example 1. Note that under the assumptions (1.4), (1.7), (1.9), the symbol p(x, ξ)
of the operator P in (1.3) satisfies the conditions (1.14), (1.19). In fact we have the
following estimates

|p(x, ξ)| =
∣∣Am(ξ) + ω(x)〈x〉−σ

∣∣ ≥ C〈ξ〉m〈x〉−σ for |x|+ |ξ| large.

Moreover, it is easy to see that the derivatives of p with respect to x satisfy (1.14)
for δ = 0. Nevertheless, ξ-derivatives require δ > 0. Limit for simplicity attention
to the expected estimate∣∣∣∂mξj p(x, ξ)∣∣∣ = const ≤ C

∣∣Am(ξ) + ω(x)〈x〉−σ
∣∣ 〈ξ〉−m〈x〉mδ for |x|+ |ξ| large

which is satisfied if and only if δ ≥ σ/m ∈]0, 1[. Hence Theorem 1.1 applies to P in
(1.3), (1.5). Similarly, if ω satisfies (1.4) for Aα = C |α|+1(α!)µ, then p ∈ Γm,σ/mµ and
the condition (1.20) is fulfilled. Then Theorem 1.2 gives for the solutions u(x) ∈
S ′(Rn) of

Pu = Am(D)u+
ω(x)
〈x〉σ

u = 0

the regularity u ∈ Sµm/(m−σ)(R
n), that is a sub-exponential decay u(x) ∼ e−ε|x|1−σ/m

and uniform Gevrey regularity of order µ. The pointwise decay rate is sharp (see
below). We note that if δ = σ = 0 the theorem above reduces to the known
statements for SG elliptic operators, cf. [9], Thm. 7.13. Finally, if µ = 1, then u
admits a holomorphic extension in a strip of the form {z ∈ C : |=z| < T} for some
T > 0. Consider in particular the equation

−∆u+
ω(x)
〈x〉σ

u = 0 (1.21)
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with 0 < σ < 2, ω(x) satisfying (1.4) of the form ω(x) = 1 +ωo(x), with lim
|x|→∞

ωo(x)

= 0. For ωo(x) ≡ 0 solutions do not exist because of the positivity of the operator.
Taking for instance ωo(x) = (1 − n + σ/2)〈x〉

σ
2
−1 − (σ/2 + 1)〈x〉−3+σ

2 − 〈x〉−2, we

may easily verify that u(x) = e
− 〈x〉

1−σ/2
1−σ/2 ∈ S1

2/(2−σ)(R
n) is a solution of (1.21).

Next, we deal with semilinear perturbations. We suppose that the nonlinear
term is of the form

F [u] =
d∑
j=`

Fju
j , Fj ∈ C, (1.22)

for some integers d ≥ ` ≥ 2.
We have the following result.

Theorem 1.3. Let µ ≥ 1, ν ≥ 1 and let f ∈ Sµν (Rn). Let P be a pseudodifferential
operator with symbol p ∈ Γm,δµ satisfying (1.19), (1.20) and F be of the form (1.22).
If u is a solution of (1.2) such that 〈x〉εou ∈ Hs(Rn) for some s > n/2, εo > σ/(`−1),
then u ∈ Sµν′(R

n),with ν ′ = max{ν, 1
1−δ}.

Concerning ordinary differential equations, i.e. n = 1 in Theorems 1.2 and 1.3,
our results in their general form can be seen in the spirit of the classical analysis
on regularity and/or asymptotic behaviour at infinity (e.g. see Wasow [34]) and
also intersect recent results on Gevrey regularity for nonlinear equations proved by
Djakov and Mityagin [15], [16]. They apply to a large class of equations described
in detail in Section 5. The simplest model in this frame is given by the operator

L =
d

dx
+ x(1 + x2)−γ x ∈ R, (1.23)

with γ > 0. If γ ≥ 1, the equation is Fuchsian or regular type at infinity, so let us
further assume γ < 1. After multiplication by −i, we recognize in (1.23) an operator
of the form (1.3) with m = n = 1, A1(D) = D,ω(x) = −ix/〈x〉, σ = 2γ − 1. The
solutions of Ly = 0 are given by

y(x) = const · exp
[

1
2(γ − 1)

(1 + x2)1−γ
]
. (1.24)

The conditions (1.4), (1.8) are verified, so L is SG-elliptic for γ = 1/2. The results in
the present paper refer to the case 1/2 < γ < 1; in particular Theorem 1.2 applies.
We are then exactly in the frame of Example 1, where now µ = 1, δ = σ = 2γ − 1,
so that we expect y ∈ S1

1/(1−δ)(R) that is the regularity we may test in (1.24). We
may now give the nonlinear version of Example 1, taking for simplicity L in (1.23)
as linear part.

Example 2. Consider the ordinary differential equation

Ly = y′ + x(1 + x2)−γy = y`, x ∈ R, ` ≥ 2, (1.25)
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with 1/2 < γ < 1. Theorem 1.3 applies and we have that all the solutions of (1.25)
such that 〈x〉εoy(x) ∈ Hs(R), for some s > 1/2 and εo > (2γ − 1)/(` − 1), are an-
alytic and decay at infinity like exp(−|x|2(1−γ)). This will be tested on the explicit
expression of the solutions given by (5.16) in Section 5. Notice that with respect
to the linear case (1.1), we ask an a priori decay on the solution. Such assumption
is necessary to obtain sub-exponential decay. In fact in Section 5 we shall check
that the equation (1.25) admits two types of homoclinics: one with only algebraic
decay y(x) ∼ x(1−2γ)/(`−1) for x→ +∞, which does not satisfy the required a priori
bound; other homoclinics, with 〈x〉εoy(x) ∈ Hs(R), s > 1/2, εo > (2γ − 1)/(` − 1),
which have the expected sub-exponential decay. Moreover we may check that 2γ−1

`−1
is indeed a sharp lower bound for εo.

In conclusion, we would like to observe that the problems of the asymptotic de-
cay and the holomorphic extensions of solutions, apart from the interest “per se”
in the general theory of differential equations (both ordinary and partial), arise in
different contexts in Mathematical Physics, e.g. for analytic regularity and expo-
nential decay of travelling wave type solutions, cf. the fundamental work by Bona
and Li [4] (see also [2]), for the exponential decay of eigenfunctions of Schrödinger
operators appearing in Quantum Mechanics, starting from the celebrated work of
Agmon [1] (see also [5], [14], [19], [29]) and more generally, for solutions of second
order elliptic equations, cf. [28] and the references therein.
The paper is organized as follows. In Section 2, we introduce some scales of Sobolev
norms providing suitable characterizations of the space Sµν (Rn), which will be instru-
mental in the proofs of our statements. In Sections 3 and 4, we prove sub-exponential
decay estimates and uniform regularity respectively, for the solutions of the equa-
tions (1.1), (1.2). As a consequence we obtain Theorems 1.2 and 1.3. In Section 5,
we fix the attention on a class of ordinary differential operators including (1.23) and
also check the sharpness of our results on the solutions of (1.25). In the proofs of
Sections 3 and 4, we shall use the classical theorems of pseudodifferential calculus for
the class Γm,δµ (composition, adjoints, construction of parametrices). Unlike the case
of Γm,δ, we are not aware of an existing specific calculus for Γm,δµ in Gelfand-Shilov
classes, hence we proved these statements in the present paper and for a more gene-
ral class including Γm,δµ . Nevertheless, in order to introduce immediately the reader
to the proofs of the main results of the paper we postponed the pseudodifferential
calculus in an Appendix at the end of the paper.

2 Preliminaries

For any s ∈ R, we shall denote by Hs(Rn) the Sobolev space

Hs(Rn) = {u ∈ S ′(Rn) : 〈ξ〉sû(ξ) ∈ L2(Rn)},

endowed with the standard norm ‖〈·〉sû(·)‖L2 , where û denotes the Fourier transform
of u. Let us now introduce some scales of Sobolev norms defining the Gelfand-Shilov
spaces Sµν (Rn) in (1.10). First of all we recall a result obtained in [12] which provides
a useful characterization of Sµν (Rn).
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Proposition 2.1. Let µ > 0, ν > 0 with µ + ν ≥ 1 and let f ∈ C∞(Rn). Then the
following conditions are equivalent:
i) f ∈ Sµν (Rn);
ii) There exist positive constants A,B such that

sup
x∈Rn

|xkf(x)| ≤ A|k|+1(k!)ν and sup
x∈Rn

|∂jxf(x)| ≤ B|j|+1(j!)µ (2.1)

for all j, k ∈ Zn+;
iii) There exist positive constants a, T such that

sup
x∈Rn

(
exp(a|x|1/ν)|f(x)|

)
< +∞ and sup

j∈Zn+
T−|j|j!−µ sup

x∈Rn
|∂jxf(x)| < +∞.

Proposition 2.1 states that to prove that the solution of (1.2) belongs to Sµν (Rn)
we can prove decay and regularity estimates separately. This will be the approach
we shall follow in the next Sections 3 and 4.

Taking into account Proposition 2.1, we introduce norms which describe only
the decay or the regularity properties. Precisely, let us set

u s,ν;ε =
∑
k∈Zn+

ε|k|

|k|!ν
‖xku‖s

and denote

Hs,ν;ε
N [u] =

∑
k∈Zn+
|k|≤N

ε|k|

|k|!ν
‖xku‖s.

By Sobolev embedding estimates, it is obvious that if u s,ν;ε < +∞ for some
ν > 0, s > n/2, ε > 0, then u satisfies the first inequality in (2.1). Similarly, we can
define

u {s,µ;T} =
∑
j∈Zn+

T |j|

j!µ
‖∂jxu‖s.

It is easy to verify that if u {s,µ;T} < +∞ for some T > 0, s ≥ 0, then u satisfies
the second inequality in (2.1). In fact, for technical reasons that will be clear in
the next sections, we shall use a slightly different scale of norms to prove regularity
estimates for nonlinear equations. Precisely, fixed εo ≥ 0 we shall consider the norm

u {s,µ;T,εo} =
∑
j∈Zn+

T |j|

j!µ
‖〈x〉εo∂jxu‖s (2.2)

and denote the corresponding partial sum as follows

Es,µ;T,εo
N [u] =

∑
j∈Zn+
|j|≤N

T |j|

j!µ
‖〈x〉εo∂jxu‖s. (2.3)

We shall write Es,µ;T
N [u] for Es,µ;T,0

N [u].
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3 Decay estimates

The main goal of the present section is to derive sharp decay estimates for the
solutions of the equations (1.1), (1.2), where F is of the form (1.22) and P is a
pseudodifferential operator with symbol p ∈ Γm,δµ satisfying the conditions (1.19),
(1.20). The approach will be the same for the linear and the semilinear case, but
the latter case requires some a priori restrictions on the behavior at infinity of the
solution. Let us then start from the linear case F [u] = 0.

If u ∈ S(Rn) is a solution of Pu = f , then for every k ∈ Zn+, ε > 0, ν ≥ 1, we can
write

ε|k|

|k|!ν
xkPu(x) =

ε|k|

|k|!ν
xkf(x).

from which we get

ε|k|

|k|!ν
P (xku) =

ε|k|

|k|!ν
xkf(x) +

ε|k|

|k|!ν
[P, xk]u.

Now, since P satisfies (1.19) and (1.20), by Proposition A.13 there exists a left
parametrix E for P. Then we have

ε|k|

|k|!ν
xku =

ε|k|

|k|!ν
E(xkf) +

ε|k|

|k|!ν
R(xku) +

ε|k|

|k|!ν
E([P, xk]u).

where R is a regularizing operator mapping S ′(Rn) into S(Rn), cf. Remark A.8.
Taking Sobolev norms and summing up for |k| ≤ N,N ∈ Z+ we obtain

Hs,ν;ε
N [u] ≤

∑
|k|≤N

ε|k|

|k|!ν
‖E(xkf)‖s

+
∑
|k|≤N

ε|k|

|k|!ν
‖R(xku)‖s

+
∑

0<|k|≤N

ε|k|

|k|!ν
‖E([P, xk]u)‖s. (3.1)

We have the following result.

Theorem 3.1. Let P = p(x,D) ∈ OPΓm,δµ satisfy the assumptions of Theorem
1.2. Assume moreover that f ∈ S(Rn) is such that 〈x〉σf s,ν;ε′ < ∞ for some
ν ≥ 1, ε′ > 0, s > n/2. If u ∈ S ′(Rn) is a solution of Pu = f , then there exists
ε > 0 such that u s,ν′;ε < +∞, where ν ′ = max{ν, 1

1−δ}. In particular, there exist
positive constants C, c such that

|u(x)| ≤ Ce−c|x|1/ν
′

(3.2)

for every x ∈ Rn.

In order to prove Theorem 3.1 we want to show that for some ε > 0 the left-hand
side of (3.1) converges for N → +∞. To do this we need to estimate properly the
three terms in the right-hand side. The most delicate term is the one containing
commutators for which some preliminary steps are necessary.
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Lemma 3.2. Let δ ∈]0, 1[ and r > 0. Then

tβδ ≤ rtβ + (1− δ)
(
δ

r

)δ/(1−δ)
, t ≥ 0. (3.3)

for all β ∈ N.

Proof. Clearly we can assume β = 1, setting tβ = z. Set g(z) = zδ − rz, z ≥ 0.
Since g′(z) = δzδ−1 − r = 0 iff z = zδ,r = (δ/r)1/(1−δ) we readily obtain that

sup
z≥0

g(z) = g(zδ,r) =
(
δ

r

)δ/(1−δ)
− r

(
δ

r

)1/(1−δ)
= (1− δ)

(
δ

r

)δ/(1−δ)
.

The proof is complete.

Lemma 3.3. Let δ ∈]0, 1[, ν ≥ 1, γ, η > 0. Then

|x||β|δ

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1
≤ η

(|k|(|k| − 1) . . . (|k − β|+ 1))ν
γ(1−δ)|β||x||β|

+
(1− δ)γ−δ|β|

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1/(1−δ)

(
δ

η

)δ/(1−δ)
(3.4)

for all x ∈ Rn, k, β ∈ Zn+, |β| ≤ |k|.

Proof. We set r = η/(|k|(|k| − 1) . . . (|k − β| + 1)) and t = γ|x|. Then (3.4) follows
by (3.3) and straightforward calculation.

Lemma 3.4. Let δ ∈]0, 1[, ν ≥ 1. Then there exists C0 > 0 such that for every
γ ∈]0, 1[, η > 0 the following estimate holds:

|〈x〉|β|δxk−β|
(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1(|k − β|)!ν

≤ C
|β|
0

η

|k|!ν
n∑
q=1

γ(1−δ)|β| |xk−β+|β|eq |

+ C
|β|
0 γ−δ|β|D|k−β|ν,δ,η

|xk−β|
|k − β|!ν

, (3.5)

where

D|k−β|ν,δ,η :=
1

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1

+n
1− δ

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1/(1−δ)

(
δ

η

)δ/(1−δ)
, (3.6)

for all x ∈ Rn, k, β ∈ Zn+, β ≤ k.

Proof. Since δ ∈]0, 1[ we have

〈x〉|β|δ ≤ (1 + |x|δ)|β| ≤ (n+ 2)|β|(1 +
n∑
q=1

|xq||β|δ). (3.7)
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Next, we estimate by (3.4) and derive

|x|β|δq xk−β|
(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1

≤ ηγ(1−δ)|β|

(|k|(|k| − 1) . . . (|k − β|+ 1))ν
|xk−β+|β|eq |

+
(1− δ)γ−δ|β||xk−β|

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1/(1−δ)

(
δ

η

)δ/(1−δ)
(3.8)

for q = 1, . . . , n, x ∈ Rn. Combining (3.7) and (3.8) and summing over q we get
(3.5) and (3.6).

The next lemma states some crucial estimates for the operator P in (1.1), (1.2).
Since the proof is based on some results contained in the Appendix, we give here
only the statement and refer the reader to the Appendix for the proof.

Lemma 3.5. Let P = p(x,D) with p ∈ Γm,δµ satisfying (1.19), (1.20) and let E be
a left parametrix for P as in Proposition A.13. Then for every s ∈ R there exist
positive constants As, Cs such that for every u ∈ S(Rn) we have

‖Eu‖s ≤ Cs‖〈x〉σu‖s−m (3.9)

and

1
|k|!ν
‖E[P, xk]u‖s ≤

∑
β≤k,β 6=0

A
|β|
s

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1
· ‖〈x〉

δ|β|xk−βu‖s
|k − β|!ν

(3.10)
for all k ∈ Zn+, k 6= 0, ν ≥ 1.

Taking into account Lemma 3.4 and Lemma 3.5 we can now estimate the com-
mutator in the right-hand side of (3.1).

Proposition 3.6. Let ν ≥ 1
1−δ , s ∈ Z+. Then, there exist positive constants ε, Cs

such that for every η > 0 the following estimate holds

∑
k∈Zn+

s≤|k|≤N

ε|k|

|k|!ν
‖E[P, xk]u‖s ≤ Cs(ηHs,ν;ε

N [u] + εHs,ν;ε
N−1[u]). (3.11)

for every N ∈ Z+ with N ≥ s.

Proof. In view of Lemma 3.5 we have

ε|k|

|k|!ν
‖E[P, xk]u‖s ≤ ε|k|

∑
β≤k,β 6=0

A
|β|
s

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1

‖〈x〉δ|β|xk−βu‖s
|k − β|!ν

= ε|k|
∑

β≤k,β 6=0

A
|β|
s

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1
×
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×
∑
|α|≤s

∑
α1+α2+α3=α

α2≤k−β

α!
α1!α2!α3!

· (k − β)!
(k − β − α2)!

‖(∂α1
x u) ·xk−β−α2∂α3

x 〈x〉|β|δ‖L2

≤ ε|k|
∑

β≤k,β 6=0

(AsC)|β|

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1
×

×
∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

· (k − β)!
(k − β − α2)!

‖xk−β−α2〈x〉|β|δ∂α1
x u‖L2

using the fact that |∂α3
x 〈x〉|β|δ| ≤ C |α3|+|β|+1α3!〈x〉|β|δ. Then, by Lemma 3.4, we get

for any η > 0, γ ∈]0, 1[:

ε|k|

|k|!ν
‖E[P, xk]u‖s ≤ η

∑
β≤k,β 6=0

(Mγ(1−δ))|β|
∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

×

×ε|α2| (k − β)!
(k − β − α2)!

n∑
q=1

ε|k−α2|‖xk−β−α2+|β|eq∂α1
x u‖L2

|k|!ν

+D0

∑
β≤k,β 6=0

(Mγ−δ)|β|
∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

ε|β+α2| ×

× (k − β)!
(k − β − α2)!

· ε
|k−β−α2|‖xk−β−α2∂α1

x u‖L2

|k − β|!ν
(3.12)

where M is a positive constant independent of ε, k, β, γ and

D0 := sup
k,β∈Zn+\0,β≤k

D|k−β|ν,δ,η < +∞ (3.13)

in view of the condition ν ≥ 1
1−δ . Now, observing that

(k − β)!
(k − β − α2)!

· 1
|k|!ν

≤ 1
|k − α2|!ν

and
(k − β)!

(k − β − α2)!
· 1
|k − β|!ν

≤ 1
|k − β − α2|!ν

and choosing γ < M−1/(1−δ), ε < 1 we obtain

ε|k|

|k|!ν
‖E[P, xk]u‖s ≤ η

∑
β≤k,β 6=0

∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

ε|α2| ×

×
n∑
q=1

εk−|α2|‖xk−β−α2+|β|eq∂α1
x u‖L2

|k − α2|!ν

+D0ε
∑

β≤k,β 6=0

(Mγ−δ)|β| ×

×
∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

ε|k−β−α2|‖xk−β−α2∂α1
x u‖L2

|k − β − α2|!ν
.(3.14)
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We observe now that in the first term in the right-hand side of (3.14), if s ≤ |k| ≤ N,
we have 0 ≤ |k−β−α2 + |β|eq| = |k−α2| ≤ N. Then, rescaling indices in the sums
we obtain that

η
∑

s≤|k|≤N

∑
β≤k,β 6=0

∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

ε|α2|
n∑
q=1

εk−|α2|‖xk−β−α2+|β|eq∂α1
x u‖L2

|k − α2|!ν

≤ Csη
∑
|α1≤s

∑
0≤|k|≤N

ε|k|

|k|!ν
‖xk∂α1

x u‖L2 .

Similarly, choosing ε < (M−1γδ) and taking into account the fact that in the second
term in the right-hand side of (3.14) we have 0 ≤ |k− β − α2| ≤ N − 1 since β 6= 0,
we obtain the following estimate:

D0ε
∑

s≤|k|≤N

∑
β≤k,β 6=0

(Mγ−δ)|β|
∑
|α|≤s

∑
α1+α2=α

α2≤k−β

α!
α1!α2!

ε|k−β−α2|‖xk−β−α2∂α1
x u‖L2

|k − β − α2|!ν

≤ CsD0ε
∑
|α1|≤s

∑
0≤|k|≤N−1

ε|k|

|k|!ν
‖xk∂α1

x u‖L2 .

From the last two estimates we easily obtain (3.11) observing that

xk∂α1
x u =

∑
j≤α1
j≤k

k!
(k − j)!

(
α1

j

)
(−1)|j|∂α1−j

x (xk−ju),

cf. [8], Lemma 3.2.

Proof of Theorem 3.1. We first observe that under the assumptions of Theorem 3.1,
we already know that u ∈ S(Rn), cf. Theorem 1.1. Now by (3.9) we have, for any
ε ∈]0, ε′]:

∑
|k|≤N

ε|k|

|k|!ν′
‖E(xkf)‖s ≤ Cs

∑
|k|≤N

ε|k|

|k|!ν′
‖xk〈x〉σf‖s ≤ Cs 〈x〉σf s,ν;ε′ < +∞.

Moreover, since R is S-regularizing, also R ◦ xj is S-regularizing for every j =
1, . . . , n. Fixed k 6= 0, there exists j = jk ∈ {1, . . . , n} such that R ◦ xk = R ◦ xjk ◦
xk−ejk . Then∑

|k|≤N

ε|k|

|k|!ν′
‖R(xku)‖s ≤ ‖u‖s + Csε

∑
0<|k|≤N

ε|k|−1

|k|!ν′
‖xk−ejku‖s.

We also observe that by (3.10), we have

∑
0<|k|≤s−1

ε|k|

|k|!ν′
‖E[P, xk]u‖s ≤ Cs‖〈x〉s−2+δu‖s.
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Finally, applying Proposition 3.6 we get for any η > 0 and for some ε ∈]0, ε′] :

Hs,ν′;ε
N [u] ≤ Cs(‖u‖s + ‖〈x〉s−2+δu‖s + ηHs,ν′;ε

N [u] + εHs,ν′;ε
N−1 [u] + 〈x〉σf s,ν;ε′).

Now, choosing η sufficiently small, we obtain

Hs,ν′;ε
N [u] ≤ C ′s(‖u‖s + ‖〈x〉s−2+δu‖s + εHs,ν′;ε

N−1 [u] + 〈x〉σf s,ν;ε′). (3.15)

Then, possibly shrinking ε and iterating estimate (3.15), it follows that Hs,ν′;ε
N [u]

is bounded from above with respect to N . Then for N → +∞ we obtain that
u s,ν′;ε < +∞.

To treat the nonlinear case, we shall suppose without loss of generality that
F [u] = u` for some integer ` ≥ 2. With respect to the linear case, here we need to
assume some a priori decay on u.

Theorem 3.7. Let P = p(x,D) ∈ OPΓm,δµ satisfy the assumptions of Theorem 1.3.
Let u be a solution of (1.2), such that 〈x〉εou ∈ Hs(Rn), s ∈ Z+, s > n/2 for some
εo > σ/(` − 1). Assume moreover that 〈x〉σf s,ν;ε′ < ∞ for some ε′ > 0, ν ≥ 1.
Then there exists ε > 0 such that u s,ν′;ε < +∞, where ν ′ = max{ν, 1

1−δ}.

Lemma 3.8. Under the assumptions of Theorem 3.7 we have 〈x〉εo+ρu ∈Hs(Rn)
for every ρ ≤ min{1− δ, (`− 1)εo − σ}.

Proof. By (1.2) we have

〈x〉εo+ρPu = 〈x〉εo+ρf + 〈x〉εo+ρu`

from which

〈x〉εo+ρu = E(〈x〉εo+ρf) +R(〈x〉εo+ρu) + E[P, 〈x〉εo+ρ]u+ E(〈x〉εo+ρu`) (3.16)

for some regularizing operator R mapping S ′(Rn) into S(Rn). Clearly, the assump-
tion on f and (3.9) imply that the Sobolev norm of the first term in the right-hand
side of (3.16) is finite. Furthermore, as a consequence of Theorem A.11 and Lemma
A.16, the operator E[P, 〈x〉εo+ρ]〈x〉−εo−ρ−δ+1 maps Hs(Rn) into itself. Hence

‖E[P, 〈x〉εo+ρ]u‖s ≤ Cs‖〈x〉εo+ρ+δ−1u‖s < +∞

since ρ ≤ 1− δ. Finally, we have

‖E〈x〉εo+ρu`‖s ≤ Cs‖〈x〉εo+ρ+σu`‖s
= Cs‖〈x〉εou · (〈x〉

σ+ρ
`−1 u)`−1‖s

≤ C ′s‖〈x〉εou‖s · ‖〈x〉
σ+ρ
`−1 u‖`−1

s < +∞

applying Schauder’s lemma. The proof is complete.

Iterating Lemma 3.8 we obtain that 〈x〉τu ∈ Hs(Rn) for all τ > 0.
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Lemma 3.9. Under the assumptions of Theorem 3.7, the following estimate holds:∑
k∈Zn+

0<|k|≤N

ε|k|

|k|!ν
‖E(xku`)‖s ≤ C ′′s ε‖〈x〉

σ+1
`−1 u‖`−1

s ·Hs,ν;ε
N−1[u] (3.17)

for every N ∈ Z+.

Proof. By (3.9), applying Schauder’s lemma, we obtain for every k ∈ Zn+, k 6= 0 :

ε|k|

|k|!ν
‖E(xku`)‖s ≤ Cs

ε|k|

|k|!ν
‖xk〈x〉σu`‖s

≤ C ′sε‖〈x〉σxjku
`−1‖s ·

ε|k|−1‖xk−ejku‖s
(|k| − 1)!ν

≤ C ′′s ε‖〈x〉
σ+1
`−1 u‖`−1

s · ε
|k|−1‖xk−ejku‖s

(|k| − 1)!ν

from which we obtain (3.17).

Proof of Theorem 3.7. Starting from the equation (1.2) and arguing as for (3.1)
we obtain that the solution u satisfies

Hs,ν;ε
N [u] ≤

∑
|k|≤N

ε|k|

|k|!ν
‖E(xkf)‖s +

∑
|k|≤N

ε|k|

|k|!ν
‖R(xku)‖s

+
∑

0<|k|≤N

ε|k|

|k|!ν
‖E([P, xk]u)‖s +

∑
|k|≤N

ε|k|

|k|!ν
‖E(xku`)‖s. (3.18)

The first three terms can be estimated as in the linear case, the last one using Lemma
3.9. Then we conclude as in the proof of Theorem 3.1.

Remark 3.10. We remark that Lemma 3.8 can be applied also in the linear case
for ρ ≤ 1 − δ. In this way we can obtain a variant of Theorem 3.1 in the case in
which f /∈ S(Rn) but simply 〈x〉σf s,ν,ε′ < +∞ for some s > n/2, ε′ > 0. Namely,
in this case, if u is a solution of Pu = f and u ∈ Hs(Rn), then u s,ν′;ε < +∞ for
some ε > 0, with ν ′ as in Theorem 3.1.

4 Regularity estimates

In this section, we derive regularity estimates for the solutions of (1.1), (1.2). As
in the previous section we first consider the linear case F [u] = 0. If u ∈ S(Rn) is a
solution of the equation Pu = f , then for every j ∈ Zn+, T > 0, µ ≥ 1 we have the
identity

T |j|

j!µ
∂jxPu(x) =

T |j|

j!µ
∂jxf(x)

from which

T |j|

j!µ
∂jxu =

T |j|

j!µ
E
(
∂jxf

)
+
T |j|

j!µ
R
(
∂jxu

)
+
T |j|

j!µ
E([P, ∂jx]u), (4.1)

where E is a left parametrix of P and R is a S-regularizing operator.
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Lemma 4.1. Let P satisfy the assumptions of Theorems 1.2 and 1.3. Then, for
every εo ≥ 0 there exists a constant B > 0 such that

‖E[P, 〈x〉εo∂jx]u‖s ≤ Cj!µ
∑

0 6=γ≤j

B|γ|+1

(j − γ)!µ
‖〈x〉εo∂j−γx u‖s. (4.2)

Proof. See Appendix.

Theorem 4.2. Let P = p(x,D) ∈ OPΓm,δµ satisfy the assumptions of Theorem
1.2. Assume moreover that f ∈ S(Rn) is such that f {0,µ;T ′,σ} < +∞ for some
µ ≥ 1, T ′ > 0 and let u ∈ S ′(Rn) be a solution of the equation (1.1). Then there
exists T > 0 such that u {0,µ;T} < +∞.

Proof. As in the proof of Theorem 3.1 we know that u is actually in S(Rn). By (4.1)
we can write ∑

|j|≤N

T |j|

j!µ
‖∂jxu‖L2 ≤

∑
|j|≤N

T |j|

j!µ
‖E(∂jxf)‖L2

+
∑
|j|≤N

T |j|

j!µ
‖R(∂jxu)‖L2

+
∑

0<|j|≤N

T |j|

j!µ
‖E([P, ∂jx]u)‖L2 .

By the assumption on f and by (3.9) we can estimate for any T ∈]0, T ′] :

∑
|j|≤N

T |j|

j!µ
‖E(∂jxf)‖L2 ≤ C

∑
|j|≤N

T |j|

j!µ
‖〈x〉σ∂jxf‖L2 ≤ C f {0,µ;T ′,σ} < +∞. (4.3)

Moreover ∑
|j|≤N

T |j|

j!µ
‖R(∂jxu)‖L2 ≤ C(‖u‖L2 + TE0,µ;T

N−1 [u]). (4.4)

Finally, by Lemma 4.1 for s = 0 we obtain

∑
0<|j|≤N

T |j|

j!µ
‖E[P, ∂jx]u‖L2 ≤ B2T

∑
0<|j|≤N

∑
06=γ≤j

(BT )|γ|−1

∥∥∥∥∥T |j−γ| ∂j−γx u

(j − γ)!µ

∥∥∥∥∥
L2

≤ CTE0,µ;T
N−1 [u], (4.5)

choosing T ≤ min{B−1, T ′}. Then, by (4.3), (4.4), (4.5) we obtain that

E0,µ;T
N [u] ≤ C

(
‖u‖L2 + TE0,µ;T

N−1 [u] + f {0,µ;T ′,σ}

)
. (4.6)

Hence, possibly shrinking T and iterating (4.6) we deduce that u {0,µ;T} < +∞.
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As a direct consequence of Theorems 3.1 and 4.2 we can prove Theorem 1.2.

Proof of Theorem 1.2. If f ∈ Sµν (Rn) then it satisfies the assumptions of both
Theorems 3.1 and 4.2. By Theorem 3.1, it follows that

sup
k∈Zn+

ε|k|(k!)−ν
′

sup
x∈Rn

|xku(x)| < +∞

for some ε > 0, with ν ′ = max{ν, 1
1−δ}. On the other hand, by Theorem 4.2, we

deduce that
sup
j∈Zn+

T |j|j!−µ sup
x∈Rn

|∂jxu(x)| < +∞.

Then, invoking Proposition 2.1, we obtain that u ∈ Sµν′(R
n).

As well as for decay estimates, in order to obtain regularity estimates for the
nonlinear case, we have to assume some a priori decay on u and to use the sums
(2.2) with εo > 0, s > n/2. We have the following result.

Theorem 4.3. Let P = p(x,D) ∈ OPΓm,δµ satisfy the assumptions of Theorem 1.3.
Let u be a solution of (1.2) with 〈x〉εou ∈ Hs(Rn), s > n/2 for some εo > σ/(`− 1)
and assume moreover that f {s,µ;T ′,σ+εo} < +∞ for some µ ≥ 1, T ′ > 0. Then,
there exists T > 0 such that u s,µ;T,εo

< +∞.

Lemma 4.4. Under the assumptions of Theorem 4.3, the following estimate holds
true: ∑

|j|≤N

T |j|

j!µ
‖E(〈x〉εo∂jxu`)‖s ≤ Cs

(
‖〈x〉

εo+σ
` u‖`s + T (Es,µ;T,εo

N−1 [u])`
)
. (4.7)

Proof. Let j ∈ Zn+, j 6= 0. Then jq 6= 0 for some q ∈ {1, ..., n}. By (3.9) since m ≥ 1,
we have

‖E(〈x〉εo∂jxu`)‖s ≤ C ′s‖〈x〉εo+σ∂jxu`‖s−m
≤ C ′s

∥∥∥∂xq (〈x〉εo+σ∂j−eqx u`
)∥∥∥

s−m

+C ′s
∥∥∥[〈x〉εo+σ, ∂xq ]∂

j−eq
x u`

∥∥∥
s

≤ C ′′s

∥∥∥(〈x〉εo+σ∂j−eqx u`
)∥∥∥

s

+C ′′s
∥∥∥[〈x〉εo+σ, ∂xq ]∂

j−eq
x u`

∥∥∥
s
. (4.8)

Since we can estimate∥∥∥[〈x〉εo+σ, ∂xq ]∂
j−eq
x u`

∥∥∥
s
≤ C ′′′s

∥∥∥〈x〉εo+σ−1∂
j−eq
x u`

∥∥∥
s
,

we obtain
‖E(〈x〉εo∂jxu`)‖s ≤ Cs‖〈x〉εo+σ∂

j−eq
x u`‖s. (4.9)
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Now, applying Leibniz formula, we can write

〈x〉εo+σ∂j−eqx u` =
∑

j1+...+j`=j−eq

(j − eq)!
j1!...j`!

(
〈x〉εo∂j1x u

) ∏̀
k=2

(
〈x〉

σ
`−1∂jkx u

)
.(4.10)

Then, since µ ≥ 1 we obtain

T |j|

j!µ
‖〈x〉εo+σ∂j−eqx u`‖s ≤

CsT

j!µ
∑

j1+...+j`=j−eq

(j − eq)!
(j1!...j`!)1−µ

(
T |j1|

j1!µ
∥∥〈x〉εo∂j1x u∥∥

)
×

×
∏̀
k=2

(
T |jk|

jk!µ

∥∥∥〈x〉 σ
`−1∂jkx u

∥∥∥)

≤ CsT
∑

j1+...+j`=j−eq

(
T |j1|

j1!µ
∥∥〈x〉εo∂j1x u∥∥s

)
×

×
∏̀
k=2

(
T |jk|

jk!µ

∥∥∥〈x〉 σ
`−1∂jkx u

∥∥∥
s

)
applying Schauder’s lemma and using the condition εo > σ/(` − 1). Using the last
estimate, summing up over j we obtain (4.7).

Proof of Theorem 4.3. First observe that by an inductive argument similar to the
one adopted in Lemma 3.8, we have that 〈x〉εo∂jxu ∈ Hs(Rn) for every j ∈ Zn+. Then,
arguing as in the proof of Theorem 4.2, we obtain that

Es,µ;T,εo
N [u] ≤ C ′s(‖〈x〉εo+σu‖s + TEs,µ;T,εo

N−1 [u] + f {s,µ;T,σ+εo})

+
∑

0 6=|j|≤N

T |j|

j!µ

∥∥∥E(〈x〉εo∂jxu`)
∥∥∥
s
.

Then, applying Lemma 4.4, we get for any T ≤ min{B−1, T ′}:

Es,µ;T,εo
N [u] ≤ Cs

(
‖〈x〉εo+σu‖s + ‖〈x〉

εo+σ
` u‖`s+

+TEs,µ;T,εo
N−1 [u] + T (Es,µ,T,εoN−1 [u])` + f {s,µ;T,εo+σ}

)
from which we obtain that u {s,µ;T,εo} < +∞.

Similarly as for the linear case, Theorem 1.3 can be easily obtained combining
Theorems 3.7 and 4.3. We leave the details to the reader.

5 The case of ordinary differential operators

In this section we apply the results obtained in the previous sections to a class of
ordinary differential operators including (1.23) as example. Consider the operator

P =
1

κm(x)

[(
κ(x)

d

dx

)m
+ a1(x)

(
κ(x)

d

dx

)m−1

+ ...+ am(x)

]
. (5.1)
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The hypotheses on the coefficients of P are the following: κ(x) is even, κ(x) > 0 for
all x ∈ R, and there exist Co, κo > 0 such that for µ ≥ 1, 0 < δ < 1 :∣∣Dj

xκ(x)
∣∣ ≤ Cj+1

o (j!)µ〈x〉δ−j , x ∈ R, j ∈ Z+, (5.2)

κ(x) = κo|x|δ(1 + o(1)) for x→ ±∞. (5.3)

Concerning aj(x), j = 1, ...,m, we assume they satisfy estimates of type (5.2) with
δ = 0 and aj(x) = a±j0 + o(1), a±j0 ∈ C, for x → ±∞. It is easy to prove that P can
be re-written as

P = im(Dm
x + b1(x)Dm−1

x + ...+ bm(x)), (5.4)

where for j = 1, ...,m ∣∣∣Dk
xbj(x)

∣∣∣ ≤ Ck+1(k!)µ〈x〉−jδ−k

and
bj(x) = (−i)jaj(x)κ−j(x) +O(〈x〉−jδ−1),

so that
bj(x) = b±j0|x|

−jδ(1 + o(1)) for x→ ±∞, (5.5)

where b±j0 = (−i)ja±j0κ
−j
o . At this moment, we consider the two algebraic equations

L±(λ) = λm + b±10λ
m−1 + ...+ b±m0 = 0

and we assume

=λ 6= 0 for every λ such that L±(λ) = 0. (5.6)

Proposition 5.1. Under the previous assumptions, disregarding the factor im in
(5.4), we consider P in (5.1) as a pseudodifferential operator with symbol

p(x, ξ) = ξm + b1(x)ξm−1 + ...+ bm(x). (5.7)

Then, p(x, ξ) can be seen as symbol in Γm,δµ globally hypoelliptic satisfying (1.19),
(1.20) for σ = mδ.

Proof. First observe that

c〈ξ〉m〈x〉−mδ ≤ |p(x, ξ)| ≤ C〈ξ〉m for |x|+ |ξ| ≥ R. (5.8)

for some positive constants C, c,R. The second estimate is obvious. To prove the
estimate in the left-hand side, observe that under our assumptions

|L±(λ)| ≥ c(1 + |λ|m), (5.9)

hence

p±o (x, ξ) =
1
〈x〉mδ

L±(〈x〉δξ) ≥ c1 + 〈x〉mδ|ξ|m

〈x〉mδ
. (5.10)

Argue first in the region x > 0. Write there

p(x, ξ) = p+
o (x, ξ) + p(x, ξ)− p+

o (x, ξ).
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In view of (5.5), given ε > 0, for x > R we can estimate:

∣∣p(x, ξ)− p+
o (x, ξ)

∣∣ ≤ ε1 + 〈x〉mδ|ξ|m

〈x〉mδ
.

Applying (5.10) and taking ε sufficiently small, we get for a new constant c > 0

|p(x, ξ)| ≥ c1 + 〈x〉mδ|ξ|m

〈x〉mδ
for x > r, ξ ∈ R. (5.11)

Arguing similarly for x < 0, we obtain the same estimate for x < −R. On the other
hand, for |x| ≤ R, the estimates (5.11) are trivial provided |ξ| is large, so we have
proved (5.11) for |x|+ |ξ| ≥ R. At this moment we observe that

1 + 〈x〉mδ|ξ|m

〈x〉mδ
≥ 〈x〉−mδ〈ξ〉m

and we get the left-hand side of (5.8). So we have proved that p satisfies (1.19) with
σ = mδ. It remains to check the hypoellipticity condition (1.20). We first estimate

|∂ξp(x, ξ)| ≤ C(|ξ|m−1 + 〈x〉−δ|ξ|m−2 + ...+ 〈x〉−(m−1)δ). (5.12)

To proceed, it is convenient to use an equivalent version of (5.11) for |x|+ |ξ| ≥ R,
namely

|p(x, ξ)| ≥ c
m∑
j=0

Hj(x, ξ) (5.13)

with Hj(x, ξ) = 〈x〉−(m−j)δ|ξ|j , which follows easily from the previous arguments.
Let us estimate the generic term in the right-hand side of (5.12). We have to prove
that

〈x〉−(m−j)δ|ξ|j−1 ≤ C|p(x, ξ)|〈ξ〉−1〈x〉δ, j = 1, ...,m. (5.14)

Arguing for small |ξ|, we observe that

〈x〉−(m−j)δ|ξ|j−1 ≤ CHj−1(x, ξ)〈ξ〉−1〈x〉δ,

and in view of (5.13) we obtain (5.14). For large |ξ| we use the inequality

〈x〉−(m−j)δ|ξ|j−1 ≤ CHj(x, ξ)〈ξ〉−1〈x〉δ,

and again in view of (5.13), we deduce (5.14). We leave to the reader similar
estimates of the other derivatives.

We may then construct a parametrix for P in (5.1). Then for n = 1, Theorems
1.2, 1.3 apply to (5.1) under the assumptions (5.2), (5.3). To be definite, for the
solutions y(x), x ∈ R, of the semilinear homogeneous equation (i.e. f = 0) we obtain
the estimates

|y(α)(x)| ≤ C |α|+1(α!)µe−ε|x|
1−δ
, x ∈ Rn.

We notice that in the particular case in which the coefficients aj in (5.1) are constant,
the operator P , besides being globally hypoelliptic, admits even a left inverse P−1.
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We also notice that the example (1.23) in the Introduction is included in the class
described in this section. The same conclusions then apply to (1.23) with δ = 2γ−1
as we observed in the Introduction.

To conclude the section, let us write down the solutions of (1.25), and check on
them that the assumption on εo in Theorem 1.3 is sharp in this case. In fact, the
ordinary differential equation

y′ + x(1 + x2)−γy = y`, ` ≥ 2,
1
2
< γ < 1, (5.15)

is a Bernoulli equation, which we can treat explicitly. Namely, let us write

ψ(x) = − `− 1
2(1− γ)

(1 + x2)1−γ

and

A = (`− 1)
∫ +∞

0
eψ(x)dx.

Fixing for simplicity attention on the solution y(x) for which y(0) = yo > 0, we have

y(x) =

(
eψ(x)

λ+ (`− 1)
∫ +∞
x eψ(t)dt

) 1
`−1

(5.16)

with λ = y1−`
o eψ(0) − A. Here and in the following, roots are defined to be positive

for positive numbers, with continuous extension in the complex domain, i.e. we take
principal branches. To study the behaviour of the solutions, let us observe that

E(x) = (`− 1)
∫ +∞

x
eψ(t)dt

is positive and decreasing on the real axis, with

lim
x→−∞

E(x) = 2A, E(0) = A, lim
x→+∞

E(x) = 0 (5.17)

and asymptotic expansion for x→ +∞

E(x) = eψ(x)(x2γ−1 + o(1)). (5.18)

We may easily prove (5.18) by applying the classical De l’Hôpital rule. Let us test
Theorem 1.3 on (5.16). We distinguish three cases.

i)
(

A
eψ(0)

)1/(1−`)
< yo < +∞, that is −A < λ < 0. Then the solution blows up at

the point xo > 0, uniquely defined by imposing E(xo) = −λ, cf. (5.17).

ii) yo =
(

A
eψ(0)

)1/(1−`)
, that is λ = 0. Then the solution y(x) =

(
eψ(x)

E(x)

) 1
`−1 is well

defined analytic in R. The decay at −∞ is sub-exponential, whereas from (5.18) we
get

y(x) ∼ x
1−2γ
`−1 for x→ +∞.

21



Note that y(x) is then homoclinic, in the sense that lim
x→±∞

y(x) = 0, but Theorem

1.3 cannot be applied, since for εo > σ/(`− 1), with σ = 2γ − 1 in the present case,
we have 〈x〉εoy(x) /∈ L∞(R), hence 〈x〉εoy(x) /∈ Hs(R) ⊂ L∞(R) for s > n/2.

iii) 0 < yo <
(

A
eψ(0)

)1/(1−`)
, that is λ > 0. In this case, since

0 < λ < λ+ E(x) < λ+ 2A

in view of (5.17), the solution y(x) is well defined analytic in R and

0 < y(x) < λ1/(1−`)eψ(x) ≤ c1e
−c2|x|2−2γ

for positive constants c1, c2. Similar sub-exponential bound is satisfied by y′(x),
hence 〈x〉εoy(x) ∈ H1(R) for every εo ∈ R. Therefore, Theorem 1.3 applies and gives
the more precise information y ∈ S1

1
2−2γ

(R).

A Appendix: Pseudodifferential operators on Gelfand-
Shilov spaces

In the sequel, we will use the following notation:

e1 = (1, 0), e2 = (0, 1), e = (1, 1).

Moreover, we will denote as standard Dα
x = (−i)|α|∂αx for all α ∈ Zn+.

Let m = (m1,m2) ∈ R2 and let µ, ν be real numbers such that µ ≥ 1, ν ≥ 1.
Let also %1, %2, δ1, δ2 be real numbers with 0 ≤ δj < %j ≤ 1, j = 1, 2 and denote
%̄ = (%1, %2), δ̄ = (δ1, δ2).

Definition A.1. We shall denote by Γm,%̄,δ̄ν,µ the space of all functions p(x, ξ) ∈
C∞(R2n) satisfying the following condition: there exists a positive constant C such
that ∣∣∣∂αξ ∂βxp(x, ξ)∣∣∣ ≤ C |α|+|β|+1(α!)ν(β!)µ〈ξ〉m1−%1|α|+δ1|β|〈x〉m2−%2|β|+δ2|α| (A.1)

for every (x, ξ) ∈ R2n and α, β ∈ Zn+. We will denote by OPΓm,%̄,δ̄ν,µ the space of all
operators (A.2) with symbol in Γm,%̄,δ̄ν,µ .

We shall denote by Γ0,%̄,δ̄
ν,µ the class Γ(0,0),%̄,δ̄

ν,µ .

Given p ∈ Γm,%̄,δ̄ν,µ , we can consider the pseudodifferential operator defined as
standard by

Pu(x) = p(x,D)u(x) = (2π)−n
∫

Rn
ei〈x,ξ〉p(x, ξ)û(ξ)dξ, u ∈ S(Rn), (A.2)

where û denotes the Fourier transform of u.
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Remark A.2. In this Appendix we shall construct a calculus for the class OPΓm,%̄,δ̄ν,µ

on the Gelfand-Shilov spaces Sµν (Rn). First of all we notice that the class Γm,δµ con-
sidered in the previous sections corresponds in the notation of this section to the
class Γme1,e,δe21,µ , so all the results presented here apply to Γm,δµ . We observe that most
part of the results in the sequel can be proved following the same arguments used
in other similar contexts, cf. [7], [9], [11]. For this reason some proofs will be just
sketched or omitted for the sake of brevity.

We start by giving a continuity theorem on Sobolev spaces for operators from
OPΓm,%̄,δ̄ν,µ which gives precise factorial estimates for the norm of the operators. This
is an obvious consequence of the Weyl-Hörmander calculus, see [20].

Theorem A.3. Given p ∈ Γ0,%,δ
ν,µ , the operator p(x,D) defined by (A.2) is linear and

continuous from Hs(Rn) to Hs(Rn) for every s ∈ R and

‖p(x,D)‖L(Hs,Hs) ≤ K max
|α|+|β|≤N

C |α|+|β|(α!)µ(β!)ν ,

where C is the constant appearing in (A.1) and the constants K,N depend only on
s and on the dimension n.

The next result states the action of the operators defined above on the Gelfand-
Shilov spaces.

Theorem A.4. Given p ∈ Γm,%̄,δ̄ν,µ , the operator P defined by (A.2) is linear and
continuous from Sµ

′

ν′ (R
n) into itself for any µ′, ν ′ with µ′ ≥ µ/(1−δ1), ν ′ ≥ ν/(1−δ2).

Furthermore, P can be extended to a linear and continuous map from (Sµ
′

ν′ (R
n))′ into

itself.

Proof. For any α, β ∈ Zn+ and for any positive integer N, we can write:

xαDβ
xPu(x) = (2π)−nxα

∑
β1+β2=β

β!
β1!β2!

∫
Rn
ei〈x,ξ〉ξβ1Dβ2

x p(x, ξ)û(ξ)dξ

= (2π)−nxα〈x〉−2N
∑

β1+β2=β

β!
β1!β2!

∫
Rn
ei〈x,ξ〉(1−∆ξ)N [ξβ1Dβ2

x p(x, ξ)û(ξ)]dξ.

Choosing N =
[
|α|+m2

2

]
+ 1, by (1.11), (A.1) and by standard factorial inequalities,

we obtain
〈x〉|α|−2N

∣∣∣(1−∆ξ)N [ξβ1Dβ2
x p(x, ξ)û(ξ)]

∣∣∣
≤ C |α|+|β|+1(α!)ν+δ2ν′(β1!)µ

′
(β2!)µ+δ1µ′e−a〈ξ〉

1/µ′

for some positive constants C, a. Then, by the conditions µ′ ≥ µ/(1 − δ1), ν ′ ≥
ν/(1 − δ2), it follows that P is continuous from Sµ

′

ν′ (R
n) into itself. By standard

arguments we can extend P on the dual space (Sµ
′

ν′ )
′(Rn), cf. Theorem 2.2 in [11].
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For t ≥ 0, denote by Qt the set

Qt = {(x, ξ) ∈ R2n : 〈ξ〉%1−δ1 < t and 〈x〉%2−δ2 < t}

and
Qet = R2n \Qt.

Definition A.5. We denote by FSm,%̄,δ̄ν,µ the space of all formal sums
∑
j≥0

pj such

that pj ∈ C∞(R2n) for all j ≥ 0 and there exist positive constants B,C such that
∀j ≥ 0 :∣∣∣∂αξ ∂βxpj(x, ξ)∣∣∣ ≤ C |α|+|β|+2j+1(α!)ν(β!)µ(j!)µ+ν−1

× 〈ξ〉m1−%1|α|+δ1|β|−(%1−δ1)j〈x〉m2−%2|β|+δ2|α|−(%2−δ2)j

for all α, β ∈ Zn+ and for all (x, ξ) ∈ QeBjµ+ν−1 .

Definition A.6. We say that two sums
∑
j≥0

pj ,
∑
j≥0

qj ∈ FSm,%̄,δ̄ν,µ are equivalent if

there exist positive constants B,C such that for every N = 1, 2, ...∣∣∣∣∣∣∂αξ ∂βx
∑
j<N

(pj − qj)

∣∣∣∣∣∣ ≤ C |α|+|β|+2N+1(α!)ν(β!)µ(N !)µ+ν−1

× 〈ξ〉m1−%1|α|+δ1|β|−(%1−δ1)N 〈x〉m2−%2|β|+δ2|α|−(%2−δ2)N

for all α, β ∈ Zn+ and for all (x, ξ) ∈ QeBNµ+ν−1 . In this case, we write
∑
j≥0

pj ∼
∑
j≥0

qj .

Proposition A.7. Let p ∈ Γ0,%̄,δ̄
ν,µ . If p ∼ 0, then the operator P is Sµ

′

ν′ -regularizing,
i.e. it extends to a continuous linear map from (Sµ

′

ν′ (R
n))′ into Sµ

′

ν′ (R
n), for every

µ′, ν ′ such that min{µ′, ν ′} ≥ µ+ν−1
min{%1−δ1,%2−δ2} .

Proof. In view of Proposition 2.11 in [7], it is sufficient to show that p ∈ Sθθ (R2n),
with θ = µ+ν−1

min{%1−δ1,%2−δ2} . Now, if p ∼ 0, then there exist positive constants B,C
such that∣∣∣∂αξ ∂βxp(x, ξ)∣∣∣ ≤ C |α|+|β|+1(α!)ν(β!)µ〈ξ〉−%1|α|+δ1|β|〈x〉−%2|β|+δ2|α|

× inf
0≤N≤B(max{〈ξ〉%1−δ1 ,〈x〉%2−δ2})

1
µ+ν−1

C2N (N !)µ+ν−1

(〈ξ〉%1−δ1〈x〉%2−δ2)N

≤ C |α|+|β|+1(α!)ν(β!)µ〈ξ〉−%1|α|+δ1|β|〈x〉−%2|β|+δ2|α|

× inf
0≤N≤B(max{〈ξ〉%1−δ1 ,〈x〉%2−δ2})

1
µ+ν−1

C2N (N !)µ+ν−1

(max{〈ξ〉%1−δ1 , 〈x〉%2−δ2})N
.

Furthermore, by standard arguments (see for example [30], Lemma 3.2.4), we have
the following estimate:

(α!)ν(β!)µ〈ξ〉δ1|β|〈x〉δ2|α| inf
0≤N≤B(max{〈ξ〉%1−δ1 ,〈x〉%2−δ2})

1
µ+ν−1

C2N (N !)µ+ν−1

(max{〈ξ〉%1−δ1 , 〈x〉%2−δ2})N
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≤ C |α|+|β|+1
2 (α!β!)θ exp[−a((max{〈ξ〉%1−δ1 , 〈x〉%2−δ2})

1
µ+ν−1 ]

≤ C |α|+|β|+1
2 (α!β!)θ exp[−a

2
(〈x〉1/θ + 〈ξ〉1/θ)] (A.3)

for some constants C2, a > 0. Then, p ∈ Sθθ (R2n).

Remark A.8. Notice that if R is Sµν -regularizing, then in particular it is S-regula-
rizing, i.e. it maps S ′(Rn) into S(Rn).

Every symbol p ∈ Γm,%̄,δ̄ν,µ can be identified with a sum
∑
j≥0

pj ∈ FSm,%̄,δ̄ν,µ , by setting

p0 = p and pj = 0 ∀j ≥ 1. In order to construct a symbol in Γm,%̄,δ̄ν,µ starting from a
formal sum in FSm,%̄,δ̄ν,µ , some restictions on µ, ν are necessary. In fact, the arguments
in the following require the use of Gevrey cut-off functions of order µ and ν. This
leads to assume the non-analyticity condition:

µ > 1, ν > 1. (A.4)

Hence, the next results of this section hold for analytic symbols of Γm,%̄,δ̄1,1 only con-

sidering them as elements of Γm,%̄,δ̄ν,µ for any choice of µ > 1, ν > 1.
With the same argument used in [7], Theorem 2.14, it is easy to prove the

following result.

Proposition A.9. Let
∑
j≥0

pj ∈ FSm,%̄,δ̄ν,µ , with µ > 1, ν > 1. Then, for every fixed

R > 0, we can find a sequence of nonnegative functions ϕj ∈ C∞(R2n) satisfying
the following conditions:

ϕ0(x, ξ) = 1 in R2n, (A.5)

ϕj(x, ξ) = 0 in Q2Rjµ+ν−1 and ϕj(x, ξ) = 1 in Qe3Rjµ+ν−1 , (A.6)

sup
(x,ξ)∈R2n

∣∣∣∂αξ ∂βxϕj(x, ξ)∣∣∣ ≤ C |α|+|β|+1(α!)ν(β!)µ
[
Rjµ+ν−1

]−|α|−|β|
, j ≥ 1 (A.7)

for some positive constant C and such that the function

p(x, ξ) =
∑
j≥0

ϕj(x, ξ)pj(x, ξ) (A.8)

is in Γm,%̄,δ̄ν,µ and p ∼
∑
j≥0

pj in FSm,%̄,δ̄ν,µ for R sufficiently large.

Using the same arguments as in [11], we obtain the following results about the
transpose of an operator from OPΓm,%̄,δ̄ν,µ and the composition of two operators. We
omit the proofs for the sake of brevity.

Proposition A.10. Let P = p(x,D) ∈ OPΓm,%̄,δ̄ν,µ and let tP be its transpose defined
by

〈 tPu, v〉 = 〈u, Pv〉, u ∈ (Sµ
′

ν′ (R
n))′, v ∈ Sµ

′

ν′ (R
n), (A.9)
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with µ′ ≥ µ/(1− δ1), ν ′ ≥ ν/(1− δ2) as in Theorem A.4. Then, tP = Q+R, where
Q = q(x,D) is in OPΓm,%̄,δ̄ν,µ with

q(x, ξ) ∼
∑
j≥0

∑
|α|=j

(α!)−1∂αξ D
α
xp(x,−ξ)

in FSm,%̄,δ̄ν,µ and R is a Sµ
′

ν′ -regularizing operator for any µ′, ν ′ with min{µ′, ν ′} ≥
µ+ν−1

min{%1−δ1,%2−δ2} .

Theorem A.11. Let p ∈ Γm,%̄,δ̄ν,µ , q ∈ Γm
′,%̄,δ̄

ν,µ . Then, there exists a symbol s ∈
Γm+m′,%̄,δ̄
ν,µ such that p(x,D)q(x,D) = s(x,D) + R for some Sµ

′

ν′ -regularizing ope-
rator R, with µ′, ν ′ as in Proposition A.10. Moreover, if p ∼

∑
j≥0

pj in FSm,%̄,δ̄ν,µ and

q ∼
∑
j≥0

qj in FSm
′,%̄,δ̄

ν,µ , then

s(x, ξ) ∼
∑
j≥0

∑
h+k+|α|=j

1
α!
∂αξ ph(x, ξ)Dα

x qk(x, ξ) in FSm+m′,%̄,δ̄
ν,µ . (A.10)

Similarly, the commutator [P,Q] = c(x,D) ∈ OPΓm+m′−%̄+δ̄,%̄,δ̄
ν,µ with

c(x, ξ) ∼
∑
α 6=0

1
α!
(
∂αξ p(x, ξ)D

α
x q(x, ξ)− ∂αξ q(x, ξ)Dα

xp(x, ξ)
)

in FSm+m′−%̄+δ̄,%̄,δ̄
ν,µ .

We now formulate the global hypoellipticity conditions in their general form for
the class Γm,%̄,δ̄ν,µ .

Definition A.12. A symbol p ∈ Γm,%̄,δ̄ν,µ is said to be globally hypoelliptic if there
exist B,C1, C2 > 0 and m′ = (m′1,m

′
2) ∈ R2 such that

inf
(x,ξ)∈QeB

〈ξ〉−m′1〈x〉−m′2 |p(x, ξ)| = C1 > 0 (A.11)

and

|∂αξ ∂βxp(x, ξ)| ≤ C
|α|+|β|
2 (α!)ν(β!)µ|p(x, ξ)|〈ξ〉−%1|α|+δ1|β|〈x〉−%2|β|+δ2|α| (A.12)

for all α, β ∈ Zn+ and (x, ξ) ∈ QeB.

Proposition A.13. Let p be a globally hypoelliptic symbol in Γm,%̄,δ̄ν,µ . Then, there
exists a left parametrix for P i.e. an operator E with symbol in Γ−m

′,%̄,δ̄
ν,µ such that

EP = I + R, where I is the identity operator and R is a Sµ
′

ν′ -regularizing operator
for every µ′, ν ′ such that min{µ′, ν ′} ≥ µ+ν−1

min{%1−δ1,%2−δ2} .
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Proof. As standard, we construct the symbol e(x, ξ) of E starting from its asymp-
totic expansion and applying Proposition A.9. Define

e0(x, ξ) = p(x, ξ)−1(1− ω(x, ξ)) (A.13)

where ω is a Gevrey function of order σ = min{µ, ν} with compact support such
that ω = 1 in a neighborhood of QB. It is easy to prove by induction on |α+β| that∣∣∣∂αξ ∂βxe0(x, ξ)

∣∣∣ ≤ C |α|+|β|(α!)ν(β!)µ〈ξ〉−%1|α|+δ1|β|〈x〉−%2|β|+δ2|α||e0(x, ξ)| (A.14)

for every (x, ξ) ∈ QeB and α, β ∈ Zn+. For j = 1, 2, ... we can define by induction

ej(x, ξ) = −e0(x, ξ)
∑

0<|α|≤j

∂αξ ej−|α|(x, ξ)D
α
xp(x, ξ). (A.15)

Using (A.14) and arguing by induction on j, we deduce that
∑
j≥0

ej ∈ FS−m
′,%̄,δ̄

ν,µ .

Then, by Proposition A.9 we can find a symbol e ∈ Γ−m
′,%̄,δ̄

ν,µ such that e ∼
∑
j≥0

ej .

Moreover, in view of (A.10), the symbol of EP − I is equivalent to 0. We conclude
applying Proposition A.7.

As an immediate consequence of Proposition A.13 we obtain the following result
of hypoellipticity for linear equations in Gelfand-Shilov spaces.

Theorem A.14. Let p be a globally hypoelliptic symbol in Γm,%̄,δ̄ν,µ and let f ∈
Sµ
′

ν′ (R
n), for some µ′, ν ′ with min{µ′, ν ′} ≥ µ+ν−1

min{%1−δ1,%2−δ2} . Then, if u ∈ (Sµ
′

ν′ (R
n))′

is a solution of the equation
Pu = f,

then u ∈ Sµ
′

ν′ (R
n).

Proof. By Proposition A.13 there exists an operator E with symbol in Γ−m
′,%̄,δ̄

ν,µ such
that

u = Ru+ Ef

for some Sµ
′

ν′ -regularizing operator R. Then, u ∈ Sµ
′

ν′ (R
n).

Remark A.15. Notice that due to the restrictions on µ, ν in the pseudodifferential
calculus, cf. Proposition A.9, Theorem A.14 does not cover the case µ = 1 and/or
ν = 1. Hence, if we compare Theorem 1.2 with Theorem A.14, we notice that the
latter result, though it is valid for the more general class Γm,%̄,δ̄ν,µ , does not give sharp
estimates. This justifies the alternative approach used in the previous Sections 3 and
4 also for linear equations.

We conclude the Appendix giving the proofs of Lemmas 3.5 and 4.1. To do this
we need a preliminary technical result which could be stated in general for a symbol
p ∈ Γm,%̄,δ̄ν,µ . For simplicity we shall prove it only for the class Γm,δµ treated in the
previous sections, since this is enough for our purposes.
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Lemma A.16. Let P = p(x,D) with p ∈ Γm,δµ satisfying (1.19), (1.20) and let
E be its left parametrix. For every α, β ∈ Zn+, denote by rαβ the symbol of the
operator E(∂αξ D

β
xp)(x,D). Then, for every γ, θ ∈ Zn+, there exists a positive constant

C = C(γ, θ) independent of α, β such that

|∂θξ∂γxrαβ(x, ξ)| ≤ C |α|+|β|α!(β!)µ〈ξ〉−|α|−|θ|〈x〉−|β|+δ|α|−|γ|+δ|θ| (A.16)

for all (x, ξ) ∈ R2n.

Proof. By Theorem A.11 and Proposition A.13, we have rαβ ∼
∑
j≥0

rαβj with

rαβj(x, ξ) =
∑

h+|η|=j

1
η!
∂ηξ eh(x, ξ)∂αξ D

β+η
x p(x, ξ),

where the functions eh are defined by (A.13), (A.15). Then, by (A.14), (A.15) and
by Leibniz rule it is easy to verify that

|∂θξ∂γxrαβj(x, ξ)| ≤ C |α|+|β|+|θ|+|γ|+2j+1α!(β!)µ(θ!)ν
′
(γ!)µ

′
(j!)µ

′+ν′−1

×〈ξ〉−|α|−|θ|−j〈x〉−|β|+δ|α|−|γ|+δ|θ|−(1−δ)j . (A.17)

for some µ′ > 1, ν ′ > 1, µ′ ≥ µ. Then, in particular we deduce that
∑
j≥0

rαβj ∈

FS
(−|α|,−|β|+δ|α|),e,δe2
ν′,µ′ . Finally we apply Proposition A.9, taking in (A.8) cut-off func-

tions ϕj(x, ξ) independent of α, β and obtain (A.16).

Proof of Lemma 3.5. Estimate (3.9) is obvious by the previous arguments. Con-
cerning (3.10), we can write

xkPu(x) = (2π)−n
∫

Rn
ei〈x,ξ〉xkp(x, ξ)û(ξ)dξ

= (2π)−n(−1)|k|
∫

Rn
ei〈x,ξ〉Dk

ξ (p(x, ξ)û(ξ)) dξ

= (2π)−n
∫

Rn
ei〈x,ξ〉

∑
β≤k

(
k

β

)
(−Dβ

ξ )p(x, ξ)(−Dξ)k−βû(ξ)dξ

=
∑
β≤k

(
k

β

)(
(−Dξ)βp

)
(x,D)(xk−βu).

Hence

1
|k|!ν

E[P, xk]u = − 1
|k|!ν

∑
06=β≤k

(
k

β

)
E
(

(−Dξ)βp
)

(x,D)(xk−βu). (A.18)

Therefore

1
|k|!ν
‖E[P, xk]u‖s ≤

∑
06=β≤k

1
|k|!ν

(
k

β

)∥∥∥E(∂βξ p)(x,D)〈x〉−δ|β|(〈x〉δ|β|xk−βu)
∥∥∥
s
.
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At this moment observe that

‖E(∂βξ p)(x,D)〈x〉−δ|β|‖L(Hs,Hs) ≤ C |β|+1β!. (A.19)

In fact, from Lemma A.16 we know that E(∂βξ p)(x,D) = rβ(x,D) with rβ(x, ξ)
satisfying

|∂θξ∂γxrβ(x, ξ)| ≤ C |β|+1β!〈ξ〉−|β|−|θ|〈x〉−|γ|+δ|β|+δ|θ| (A.20)

for every θ, γ ∈ Zn+ and for some constant C = C(θ, γ, s) > 0. At this moment we
consider the operator rβ(x,D)〈x〉−δ|β| and its transpose, cf. Proposition A.10, with
symbol given by sβ(x, ξ) = 〈x〉−δ|β|r̃β(x, ξ), with r̃β(x,D) = trβ(x,D). It is easy to
recognize that also r̃β satisfies (A.20) and hence

|∂θξ∂γxsβ(x, ξ)| ≤ CθγC |β|β!〈ξ〉−|β|−|θ|〈x〉|γ|+δ|θ|.

Then, by Theorem A.3

‖sβ(x,D)‖L(Hs,Hs) ≤ KC |β|β!,

with K = max
|θ|+|γ|≤N

Cθγ and we deduce (A.19). Summing up, we obtain

1
|k|!ν
‖E[P, xk]u‖s ≤

∑
06=β≤k

1
|k|!ν

(
k

β

)
A|β|+1
s β!

∥∥∥〈x〉δ|β|xk−βu∥∥∥
s

for some constant As depending only on s and on the dimension n. Then we conclude
observing that

1
|k|!ν

(
k

β

)
β! ≤ 1

(|k|(|k| − 1) . . . (|k − β|+ 1))ν−1|k − β|!ν
.

Proof of Lemma 4.1. Assume initially εo = 0. To treat [P, ∂jx] we write

∂jxP =
∑
γ≤j

(
j

γ

)
(∂γxp)(x,D)∂j−γx .

Hence

E[P, ∂jx]u =
∑

06=γ≤j

(
j

γ

)
E(∂γxp)(x,D)∂j−γx u.

Applying Theorem A.3 and Lemma A.16, we obtain∥∥E[P, ∂jx]u
∥∥
s
≤
∑

06=γ≤j

(
j

γ

)
C |γ|+1(γ!)µ‖∂j−γx u‖s

from which we deduce (4.2) for εo = 0. The case εo > 0 can be derived similarly.
We leave details to the reader.
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