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Abstract 

We hypothesized that Nandrolone (ND)-abuse induces cardiac hypertrophy, increases myocardial 

susceptibility to ischemia/reperfusion (I/R) injury, and reduces responsiveness to postconditioning 

(PostC) cardioprotection. Wistar-rats were ND-treated for 2-weeks (short_ND) or 10-weeks 

(long_ND). Vehicle-treated rats served as controls. Hearts were retrogradely perfused and left 

ventricular pressure (LVP) was measured before and after 30-min global ischemia. In subgroups 

of hearts, to induce cardioprotection a PostC protocol (five cycles of 10-s reperfusion and 10-s 

ischemia) was performed. β-adrenoreceptors, kinases (Akt and GSk-3β) and phosphatases (PP2A 

sub A and PP2A sub B) were examined by Western blot before and after ischemia. After 120-min 

reperfusion infarct-size was measured. Short_ND slightly increased cardiac/body weight ratio, but 

did not affect cardiac baseline nor post-ischemic contractile function or infarct-size when 

compared to vehicle hearts. However, PostC limited cardiac dysfunction much more in short_ND 

hearts than other groups. Although cardiac/body weight ratio markedly increased after long_ND, 

baseline LVP was not affected. Yet, post-ischemic contracture and infarct-size were exacerbated 

and PostC was unable to reduce infarct-size and ventricular dysfunction. While short_ND 

increased phosphatases, non-phosphorylated and phosphorylated Akt, long_ND reduced 

phosphatase-expression and Akt-phosphorylation. Both short_ND and long_ND had no effect on 

the GSK-3β-phosphorylation but increased the expression of β2-adrenoreceptors. In reperfusion, 

PostC increased Akt-phosphorylation regardless of protective effects, but reduced phosphatase-

expression in protected hearts only. In conclusion: short_ND improves post-ischemic myocardial 

performance in postconditioned hearts. However, long_ND increases myocardial susceptibility to 

I/R injury and abolishes cardioprotection by PostC. This increased susceptibility might be related 

to steroid-induced hypertrophy and/or to altered enzyme expression/phosphorylation. 
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Introduction 

 Ischemia/reperfusion (I/R) of the heart causes cell injury and death, which result in cardiac 

contractile dysfunction (myocardial contracture and stunning) and infarction. Clearly 

postconditioning (PostC, i.e., repetitive cycles of reperfusion and coronary occlusion following an 

ischemic insult) causes massive salvage of the myocardium exposed to I/R. The extension of 

protection by PostC and the transduction pathways involved in PostC are similar to those of 

ischemic preconditioning (IP) [3,10,21,34,62,65]. In particular the protective cascades may 

involve post-translational modifications mainly mediated by the activity of several kinases 

[3,10,12,21,22,34] and phosphatases [7,2134,62] in reperfusion. Several signaling pathways of 

cardioprotection converge to increase the threshold for mitochondrial permeability transition pore 

opening [3,4,11,23,24,34,43]. However, the details of the signal transduction of postconditioning 

remain unclear [21-23,55]. 

 There is a growing body of evidence indicating an increasing prevalence of the abuse of 

anabolic-androgenic steroid (AAS) in both non-athletes and athletes. Likewise, the number of 

people abusing AAS and being admitted to hospital for infarction is increasing. These patients are 

displaying angiographically normal arteries [1,35]. Nandrolone (ND), an AAS strongly associated 

with detrimental cardiovascular effects including sudden cardiac death, is commonly abused by 

humans [1,35]. When administered chronically to rats, ND has been associated with accelerated 

development of hypertension in developing spontaneously hypertensive rats (SHR) [61] and with 

left ventricular hypertrophy [60,61] in sedentary rats. More recently left ventricular hypertrophy 

and increased myocardial susceptibility to I/R injury have also been shown in isolated hearts 

prepared from rats treated chronically with ND [13]. However, we recently have shown that sub-

chronic treatment with ND for 14 days does not induce an evident left ventricular hypertrophy 



and, paradoxically, improves PostC cardioprotection [36]. Since cardiac hypertrophy is 

accompanied with alteration of function and expression of several proliferative modulators, such 

as kinases and phosphatates [53], many of which are involved in cardioprotection [10,21,22,34], 

we wondered whether treatment with ND, which induces cardiac hypertrophy, would alter the 

expression/activity of these enzymes and then would suppress the protective response to a PostC 

protocol. 

 Therefore, we hypothesized that chronic ND-abuse would increase myocardial 

susceptibility to ischemia/reperfusion (I/R) injury, and would reduce responsiveness to 

cardioprotective maneuvers only when myocardial hypertrophy is evident. Moreover, to our 

knowledge, thus far no investigation has been performed to study the effect of chronic ND on 

both infarct size and post-ischemic mechanical recovery after I/R with and without PostC in the 

same hearts. Importantly, no studies have compared the effects of sub-chronic and chronic ND in 

terms of development of hypertrophy and alteration of proliferative modulators, and in terms of 

alterations of responsiveness to I/R or cardioprotective maneuvers. 

 Thus, this study was performed in isolated rat hearts, in which infarct size and post-

ischemic cardiac function were studied in response to I/R and PostC. Hearts were harvested from 

rats, which had undergone two ND treatments with different duration (14 days or 10 weeks). At 

the end of ND-treatment (two or ten weeks) the activation/inactivation (phosphorylated/total 

ratio) of kinases (Akt and GSk-3β) and expression of phosphatases (PP2A sub A and PP2A sub 

B) were analyzed and compared with vehicle-treated hearts. Phosphorylation of kinases and levels 

of phosphatases were also analyzed during reperfusion.  

 

 



Materials and Methods 

 The methods are similar to those previously described [36,37]. These studies were carried 

out in accordance with the Guide for the Care and Use of Laboratory Animals (U.S. National 

Institutes of Health) and with Italian law (DL-116, Jan. 27, 1992) and approved by the ethical 

committee of the University of Turin. 

All animals were housed in our animal facilities at the age of 3 months, weighed and 

randomly assigned to one of the following three groups. 

 The 1st group: 3 months old male rats (Chronic, long_ND, n= 14) were treated twice a 

week for 10 weeks with an i.m. injection of 0.5 ml/kg of peanut oil solution containing 5 mg/kg of 

ND [60]. 

 The 2nd group: 3 months old male rats (Sub-Chronic, short_ND, n= 14) were housed in our 

animal facility until the animals were 5 months old, then was treated daily for 2 weeks with an 

i.m. injection of 0.5 ml/kg of peanut oil solution containing 15 mg/kg of ND [30,36,37]. 

 The 3th group: 3 months old male rats (vehicle, n= 12) were treated twice a week for 10 

weeks with an i.m. injection of 0.5 ml/kg of peanut oil and served as control group. A group of 

short_vehicle controls was not considered because we had observed that 14 days of 0.5 

ml/(kg/day) peanut-oil was ineffective in changing the studied parameters (body weight, organ 

weights, including the heart weight, heart performance and infarct size following I/R) when 

compared to untreated animals (unpublished observations). In particular, in our previous study 

[37] the infarct size and post-ischemic mechanical function of the short vehicle group were 

similar to those observed several times in untreated animals in our laboratory [38,40,44-46]. 

Animal Sacrifice and Isolated Heart Perfusion 

 Methods for isolated rat hearts were similar to those previously described [38,40,42,44-

46]. In brief, at the end of treatment (animal age= 5.5 months) each animal was weighed and 



treated with heparin (800 U/100 g b.w., i.m.). Then, 10-min afterwards, animals were sacrificed; 

the heart was rapidly excised, placed in ice-cold buffer solution and weighed. Several organs 

(liver, kidney, prostate, spleen, pituitary and adrenal gland) were also harvested and weighed. 

 Isolated hearts were retrogradely perfused with oxygenated Krebs–Henseleit buffer (127 

mM NaCl, 17.7 mM NaHCO3, 5.1 mM KCl, 1.5 mM CaCl2, 1.26 mM MgCl2, 11 mM D-glucose 

and gassed with 95% O2 and 5% CO2) at constant flow (9±1 ml/min/g), paced at 280 bpm and 

kept in a temperature-controlled chamber (37°C) [38,40,42,44-46]. Coronary perfusion pressure 

and left ventricular pressure were monitored to assess the preparation conditions. During the 

stabilization period the flow was titrated to reach a coronary perfusion pressure (CPP) of about 85 

mmHg. Left ventricular pressure (LVP) was recorded by a polyvinyl chloride balloon placed in 

the left ventricle via the mitral valve and connected to an electromanometer (Monitoring Kit mk 

5-02 DTBNVF, Abbott, Milan, Italy). The balloon was saline-filled to achieve an end-diastolic 

LVP (LVEDP) of 5 mmHg. LVP was analyzed offline with Lab View software (National 

Instruments), which allowed the determination of LVEDP, as well as the developed LVP (dLVP) 

and the maximum rate of increase (dP/dtmax) and decrease (dP/dtmin) of systolic LVP. While 

LVEDP and dP/dtmin are used as indices of diastolic function, dLVP and dP/dtmax are considered 

indices of contractile state. In particular LVEDP is used to monitor contracture, which can be 

defined as an increase in intrachamber pressure of 4 mmHg above pre-ischemic (baseline) 

LVEDP values [33]. The cardiac/body weight ratio was used as an index of cardiac hypertrophy 

[13,60]. 

Experimental protocols 

 After a stabilization period (40 min), hearts of the three groups (long_ND, short_ND, and 

vehicle) were subjected to a specific protocol, which included a period of 30-min of global no-

flow ischemia and a subsequent period of 120-min of reperfusion (I/R). In subgroups, 



immediately after the 30-min of ischemia, the hearts underwent a protocol of PostC. This 

consisted of five cycles of 10-s reperfusion and 10-s ischemia at the beginning of reperfusion 

[38,40,44-46]. 

 Therefore the following six subgroups were studied (three subgroups of hearts underwent 

I/R only and three received PostC immediately after 30-min ischemia): 

1) vehicle+I/R (n= 6); 2) vehicle+PostC (n= 6), which served as controls; 

3) short_ND+I/R (n= 7); 4) short_ND+PostC (n= 7); 

5) long_ND+I/R (n= 7); 6) long_ND+PostC (n= 7). 

Western blotting analysis  

 To investigate the level of phosphatases (PP2A sub A and PP2A sub B) and the ratio of 

phosphorylated/total form of kinases (Akt and GSK-3β) after ischemia, in the six treatment 

groups above reported, samples of left ventricles were collected and freeze-clamped for Western 

blotting at the 60th min of reperfusion. To study the levels of these enzymes in the baseline 

conditions additional vehicle, short_ND and long_ND hearts (n=4 for each condition) were 

examined. These hearts were mounted on the Langendorff perfusion apparatus, perfused for the 

stabilization time and then the left ventricle was collected. Samples were homogenized on ice in 

RIPA Lysis buffer (Santa Cruz Biotechnology), using a polytron tissue grinder. The homogenate 

was centrifuged at 4°C for 30-min at 13,000 g. Protein level was determined by Bradford's 

method [8]. About 50-100 µg of protein extracts were separated by SDS-PAGE on 10% 

acrylamide gels (for Akt, p-Akt, GSK-3β; p- GSK-3β; PP2A sub A; PP2A sub B) and transferred 

to PVDF membranes (GE-Healthcare). These were then incubated overnight at 4°C with the 

following primary antibodies: anti-PP2A sub A, anti-PP2A sub B, anti-Akt, anti-phospho-

(Ser473)-Akt, anti-GSK-3β, anti-phospho-(Ser-9)-GSK-3β (Cell Signalling). To confirm equal 

protein loading, membranes were incubated with an anti-α-actin antibody (Sigma). 



Immunoblotted proteins were visualized by Immuno-Star HRP Substrate Kit (BioRad) and 

quantified by Kodak Image Station 440CF. Image analyses were performed with Kodak 1D 3.5 

software [41,43]. 

 Positive control: since ND treatment is accompanied by alteration of the expression of 

adrenoreceptors (AR) [36,37 and references therein], rat left ventricle lysates were also 

immunoprecipitated and immunoblotted with anti-β1- and anti-β2-AR polyclonal antibodies 

(Santa Cruz Biotech) according to the method previously reported [36,37]. 

Assessment of myocardial injury 

 At the end of the experiment, i.e., directly after 120-min reperfusion, each heart was 

rapidly removed from the perfusion apparatus and the left ventricle (LV) was dissected into 2–3 

mm circumferential slices. Following 15-min of incubation at 37°C in 0.1% solution of nitro-

blue-tetrazolium in phosphate buffer [38,40,42,44-46], unstained necrotic tissue was carefully 

separated from stained viable tissue by an independent observer who was not aware of the nature 

of the intervention. The weights of the necrotic and non-necrotic tissues were then determined and 

the necrotic mass was expressed as a percentage of total left ventricular mass, which is considered 

the risk area. 

Chemicals 

 We used a commercially available ND solution of 50 mg/ml (Deca-Durabolin, Organon, 

Italy). All other chemicals were purchased from Sigma (USA) if not otherwise specified. 

Statistical analysis 

 All data are means±S.E.M. One-way ANOVA and One-way ANOVA for multiple 

measures (post test: Newman-Keuls Multiple Comparison Test) were used for the analysis of 

infarct size and LVP data, respectively. A p value < 0.05 was considered significant. 

 



 

Results 

Effect of ND pre- treatment over organs and body weight (Table 1) 

At three months old, when animals were assigned to the different groups, they all had 

similar body weights, while at the end of treatment, just before the sacrifice (i.e. at 5.5 months of 

age), the body weights of long_ND treated animals resulted significantly (p< 0.01, for both) less 

than those of vehicle-treated animals and short_ND treated animals (vehicle vs short_ND p= NS). 

The inhibition of weight gain by ND has been associated to ND-induced modulation of 

proopiomelanocortin (POMC) expression and alteration of the central melanocortin system [30]. 

At the end of treatment, cardiac weight increased from 1.42±0.04 in vehicle group, to 1.61±0.05 

in short_ND and to 1.65±0.03 g in long_ND group. Moreover, cardiac to body weight ratio 

increased from 0.31±0.001 in vehicles to 0.36±0.009 (+15%, p< 0.05) in short_ND, and to 

0.41±0.09 g/100g bw (+31%, p<0.001) in long_ND animals (short_ND vs long_ND p<0.05). 

Therefore, there was evidence of a slight cardiac hypertrophy in short_ND treated animals and a 

marked hypertrophy in animals treated with ND for long period, compared with vehicles animals. 

The kidney and prostate of short_ND and long_ND treated animals were found to be 

heavier than those of untreated animals. While the prostate weight variations are not consistent in 

the various protocols, the kidney weight increase is typical in rats ND-treated with similar 

schedules and doses [19,30,36,61]. 

Effect of ND pre-treatment over baseline hemodynamic parameters 

In baseline conditions hearts of the three groups had similar cardiac performance, i.e. no 

significant differences were observed in hemodynamic parameters among groups (Table 1). 



Effect of I/R and PostC on cardiac function and injury in ND-pre-treated and vehicle-pre-

treated animals 

 Ischemia and the subsequent reperfusion caused diastolic dysfunction characterized by an 

increase in LVEDP and a reduction in dP/dt min, and a systolic dysfunction evidenced by a 

decrease in dP/dtmax and in developed LVP. These parameters were differently affected by both 

I/R and PostC in the different experimental groups. 

 Post-ischemic Diastolic function (Fig. 1) 

 Diastolic dysfunction was analyzed by variations of LVEDP (Fig. 1, panels A and B) and 

dP/dtmin (Fig. 1, panels C and D) during reperfusion, in I/R (panels A and C) and PostC (panels B 

and D). LVEDP analysis revealed that the time-course of contracture was different between 

long_ND+I/R from one side, and short_ND+I/R and vehicle+I/R hearts on the other side (Fig. 

1A). In particular, LVEDP was higher in hearts of long_ND+I/R compared to both vehicle+I/R 

and short_ND+I/R subgroups; in fact at the end of reperfusion the values were 78±24 vs 

48±11and 48±15 mmHg, respectively (p<0.05, long_ND+I/R vs both vehicle+I/R and 

short_ND+I/R). Differences were not significant among I/R groups in terms of lusitropic effect as 

indicated by dP/dtmin (Fig. 1C). 

Postconditioning confirmed its cardioprotective effect in the vehicle+PostC hearts, in fact 

in this subgroup at the end of reperfusion the LVEDP was significantly (p<0.05) reduced to 29±7 

mmHg. PostC maneuvers also reduced LVEDP to 35±9 mmHg in the short_ND treated hearts 

(p<0.05 vs short_ND+I/R; p=NS vs Vehicle+PostC). However, in the long_ND+PostC the 

LVEDP was 80±12 mmHg at the end of reperfusion (Fig. 1B), i.e. not different from that 

observed in long_ND+I/R (Fig. 1A). 



The dP/dtmin variations present a similar trend: only the vehicle+PostC and 

short_ND+PostC show a significant improvement of dP/dtmin recovery by PostC with respect to 

the correspondent I/R protocols (p<0.05 vs I/R; Fig. 1, panels C and D).  

Post-ischemic Systolic function (Fig. 2) 

Post-ischemic systolic dysfunction was analyzed by dLVP (Fig. 2, panels A and B) and 

dP/dtmax reduction in reperfusion (Fig. 2, panels C and D). No differences of these two parameters 

were seen among groups during post-ischemic periods in hearts subjected to I/R only (Fig. 2 

panels A and C). 

However, post-ischemic systolic function was slightly improved by postconditioning in 

vehicle subgroup, and markedly improved in short_ND+PostC hearts. In particular, 

short_ND+PostC showed higher post-ischemic dLVP and dP/dtmax with respect to hearts of both 

Vehicle- and long_ND treated groups (Fig 2, panels B and D). In fact, in the short_ND+PostC 

hearts, at the end of reperfusion, the recovery of dLVP and dP/dtmax were above 70% of baseline 

levels. The worsening of cardiac performance in the long_ND+PostC was similar to that of 

long_ND+I/R hearts, i.e. PostC was not protective (Fig. 2, panels C and D). 

 Infarct size (Fig.3) 

 Total infarct size, expressed as a percentage of left ventricular mass was 61±5% of risk 

area in hearts of vehicle pre-treated animals. Short_ND pre-treatment did not significantly affect 

infarct size of hearts subjected to I/R, infarct size being 53±10% of the risk area. However, 

long_ND pretreatment increased infarct size of hearts subjected to I/R, infarct size being 81±5% 

of  the risk area (p< 0.05 vs vehicle groups). 

 The postconditioning maneuvers induced a significant reduction of infarct size both in 

hearts of vehicle pre-treated animals and in short_ND treated, infarct size being 35±7 and 30±3% 



(p<0.05 with respect to correspondent I/R; p=NS vs each other). However, in the 

long_ND+PostC, PostC was unable to reduce infarct size; in fact it was 72±5% of the risk area. 

Western blotting analysis 

The immunoprecipitated and immunoblotted assay, as seen in Fig. 4, confirmed the 

overexpression of β2-ARs during both short and long treatment with ND, as previously shown for 

short treatment only [36,37]. No changes in β1-AR expression were observed either in short or 

long treatment (data not shown) as previously reported for short treatment only [36,37]. 

 In Fig. 5 the ratios of phosphorylated/total kinases (Akt and GSK-3β) in baseline 

conditions are reported. After sub-chronic treatment (Short_ND) no appreciable changes in Akt 

and GSK-3β ratios were observed. However, after chronic treatment (Long_ND) only Akt ratio 

was significantly reduced. Of note, in Short_ND hearts the maintained Akt ratio is due to an 

increase of both the total and phosphorylated forms. However, in Long_ND hearts the marked 

Akt ratio reduction is due to both an increase in total Akt and the almost complete absence of 

phosphorylation. Apparently there is also a slight tendency of total GSK-3β increase in Long_ND 

hearts. 

In Fig. 6 the ratios of phosphorylated/total kinases (Akt and GSK-3β) in reperfusion in 

both I/R and PostC subgroups are reported. As can be seen, in I/R subgroup Akt ratio shows a 

trend similar to that observed in baseline conditions in response to treatments, i.e., with a 

significant reduction of this ratio in Long_ND animals only. However, in PostC the 

phosphorylated/total ratios are higher than in the I/R hearts. On the other hand GSK-3β ratios 

were higher in I/R and PostC than those observed in baseline conditions, but PostC induced no 

appreciable changes in these ratios in the three treatment groups. 

In Fig. 7 the expression of phosphatases (PP2A sub A and PP2A sub B) in baseline 

conditions is reported. The expression of both subunits increased after Short_ND, and decreased 



after Long_ND, the subunits being PP2A sub A below and sub B at Vehicle levels in the 

Long_ND group. 

In Fig. 8 the expression of phosphatases (PP2A sub A and PP2A sub B) in reperfusion is 

reported. As can be seen the expression of both subunits shows similar trends in reperfusion to 

those observed in baseline conditions in the three groups. Comparing I/R with PostC we observe a 

significant reduction for PP2A sub A in protected hearts (Vehicle and Short_ND) and, in 

particular, for both subunits (sub A  and sub B) in PostC subgroups of the Short_ND animals. 

 

 
Discussion 

 Here we report that sub-chronic treatment with the potentially toxic Nandrolone renders 

the postconditioned heart more resistant to ischemic injury, improving post-ischemic mechanical 

recovery. However, this protection is lost a few weeks afterwards, and I/R injury is increased, 

possibly as hypertrophic cardiomyopathy develops. Clearly the use of chronic models better 

reflects the clinical situation of compulsive abuse observed in humans AAS addicts, in which 

detrimental cardiovascular effects, including sudden cardiac death is commonly observed [36]. 

The increased protection in sub-chronic ND-treated heart and the increased susceptibility of the 

chronically ND-treated heart to I/R injury may be related to developing hypertrophy, which in an 

initial phase is characterized by preservation/potentiation of protective mechanisms; then, these 

mechanisms are exhausted and I/R injury increases. This shift from potentiation to worsening is 

reminiscent of the observed increase/reduction of the resistance to I/R injury when diabetes is 

induced by streptozotocin or alloxan administration [18]. Actually, dose- and time-dependency in 

determining detrimental vs beneficial effects has been observed for other compounds, including 

PAF [41,42] and TNFα [21,26]. 



We did not find any differences between the basal pre-ischemic function of the hearts 

from vehicle- and ND-treated animals with either treatment regimes (sub-chronic and chronic). 

This lack of effect of ND may be related to the model we used and/or to the dose of the steroid we 

choose from the literature [30,57]. In the studies where baseline mechanical function of the hearts 

was compromised, the doses of different AAS were somewhat higher [27,50]. In particular, while 

LeGros et al. [27] used isolated rat hearts in which an intra-ventricular balloon was filled to 

achieve an identical diastolic volume in the different experimental groups, we instead, filled the 

balloon to achieve the same baseline LVEDP, as is usually done in I/R studies [20,38,40,42,44-

46]. Therefore, we cannot rule out whether chronic treatment with anabolic steroids may reduce 

left ventricular compliance, as shown by LeGros et al. [27]. 

 We did, however, find that the hearts from animals that were on a chronic treatment 

program developed higher susceptibility to I/R injury and they lost the possibility to reduce 

infarct size with a well-characterized protective protocol [38,40,44-46]. The long_ND treatment 

significantly reduced the cardioprotective effect by PostC, with an increase of infarct size and 

reduction of cardiac performance. Paradoxically, the short_ND pre-treatment enhanced the 

cardioprotective effect of PostC, improving both diastolic and systolic functions during 

reperfusion. This is not associated with a further reduction of infarct size, suggesting a better 

improvement of stunning with respect to PostC in the control group. This aspect is very intriguing 

and has been attributed to the over-expression of β2 adrenergic receptors, which are involved in 

the cardioprotection induced by PostC [37]. In fact, the release of catecholamines from 

sympathetic terminal nerves and β-AR stimulation play an important role in cardioprotection 

against necrosis and/or stunning [31,47,59,64]. We previously reported that the β2-AR antagonist, 

ICI-118.551, abolishes PostC-protection both in ND- and vehicle-pretreated hearts [37]. Also 



Penson et al. [48] suggested that PostC-protection can be prevented by the same β2-AR antagonist 

in isolated rat hearts. 

 β2-AR over-expression may be taken as an index of ND treatment [36,37]. Yet this over-

expression may represent a first modification that will lead to cardiac hypertrophy, as is the case 

for transgenic mice that overexpress β2-ARs [29]. These receptors are even more upregulated in 

the long_ND hearts, where I/R injury are exacerbated and cardioprotection by PostC lost. In fact, 

in our model hypertrophy develops progressively during treatment with ND, arriving at 

borderline levels after two weeks and very evident after ten weeks of treatment. Actually, with the 

two week regime treatment, the increase of heart/body weight ratio was not significant in our 

previous study [37] and it is slightly significant in the present study. Nevertheless, only when 

hypertrophy is evident cardioprotection is lost. The gain or loss of protection may be related to 

discrete alterations in intracellular enzymes and pathways (see below). 

 Our data confirm results from a recent study showing that chronic ND treatment induced 

cardiac hypertrophy and increased the susceptibility of hearts to I/R injury [13] and are in 

agreement with a more recent study showing that a 8 week treatment with ND impairs exercise-

induced cardioprotection [9]. Data of the present study are also in line with our previous 

observation that PostC protection is impaired in hypertrophic hearts of SHR [46]. However, it is 

not clear whether hypertrophic hearts can be protected by PostC. In hearts from 2-year old mice (a 

model that displays definitive morphometric and molecular hallmarks of cardiovascular aging, 

including hypertrophy), no benefit was seen in any of the multiple PostC algorithms that were 

evaluated [52]. However, Fantinelli & Mosca [16] reported that PostC was as effective as 

preconditioning in improving the post-ischemic dysfunction of hearts isolated from SHR. Yet in 

two different models of overload myocardial hypertrophy, Zhu et al. [66] in post-ischemic 



remodeled myocardium and Li et al. [28] in transverse aortic constriction in mice reported 

preserved PostC cardioprotection. 

 A limit to the present study is that we used a single PostC protocol, but did not check 

whether or not this stimulus was submaximal in hypertrophic hearts. Our study only suggests that 

a specific PostC protocol that is ideal for normo-trophic hearts is not working in hyper-trophic 

hearts of animals after chronic treatment with ND. Therefore, we cannot rule out that protective 

PostC protocol also exists for ND-treated hypertrophic hearts. Nevertheless, we should consider 

that it is not easy to ascertain whether or not increasing or reducing the numbers and/or the 

duration of postconditioning I/R cycles would be protective [25,56]. In fact, reducing the 

“additive ischemia” (cumulative coronary re-occlusions during PostC) from 2 to 1% of index 

ischemia in aging mice fully reestablished the protection [2,5,56]. Yet, in porcine hearts an 

increase in “additive ischemia” was necessary to show effectiveness [39,55,56]. Finally, as said, 

in aging hypertrophic mouse heart no benefit was seen in any of the multiple PostC algorithms 

that were evaluated [52]. Whether infarct size reduction with PostC is, indeed, preserved in 

hypertrophic myocardium remains to be assessed in future studies. On the basis of the present 

study, we can argue that preserved PostC-induced protection is typical of moderate/initial 

hypertrophy. 

 It has been suggested that in rodent models contracture development, rather than systolic 

function, may be a more appropriate end-point to study the protective effects of cardioprotective 

maneuvers [20,45]. The present study confirms this point of view; in fact contracture 

development matches very well with infarct size in all the experimental conditions. In particular, 

a higher level of contracture is observed in hypertrophic long_ND treated hearts, which develops 

greater infarct size and looses PostC protection. 



 Heart hypertrophy and failure are associated with diminished β-adrenergic responsiveness, 

altered protein phosphatase activity, and altered protein phosphorylation [14,63]. We previously 

reported altered β-adrenergic responsiveness in short_ND treated rats [36]. Here we observe 

reduced phosphorylated/total ratio of Akt only after chronic treatment with ND. However, 

phosphatases levels (both sub A and sub B of PP2A) increased after sub-chronic ND and then 

decreased after chronic ND treatments. Whether these enzyme alterations play a causal role in 

both hypertrophy and altered responses to I/R cannot be inferred. Nevertheless, data show that the 

impact on baseline levels of kinases and phosphatases is different, depending on the duration of 

ND treatment. We can argue that after short_ND-treatment up-regulation of PP2A may represent 

a feedback regulator of the increased activation of the PI3K/Akt pathway, as revealed by 

increased Akt level and phosphorylation (Fig. 5). Yet reduced phospho-Akt and increased GSK-

3β total levels in long_ND-treatment might act as negative modulators of proliferation and 

protection. [12,58]. After ischemia/reperfusion Akt phosphorylation is particularly low in more 

vulnerable hearts (i.e., Long_ND group). However, albeit starting from different levels, the 

increase in Akt phosphorylation is observed after PostC in all groups, regardless of protective 

effects. This supports the hypothesis that Akt phosphorylation in PostC needs to reach a threshold 

to be protective or alternatively that it may be an epiphenomenon [54,55]. Moreover, GSK-3β 

ratios are not correlated to protective effects; in fact the role of GSK-3β phosphorylation in PostC 

has been questioned [32]. Finally, PostC reduces the levels of PP2A when is protective. In 

particular, in short_ND, PostC reduces both PP2A subunits. Whether these reductions are 

somehow correlated to protection and to the maintained level of Akt phosphorylation needs to be 

confirmed. Actually, this different framework in the expression/activity of enzymes in the two 

ND-treatment regimes with and without I/R and PostC deserves further studies. Nevertheless, our 

results are in line with a recent study [7] showing that other phosphatases (PTEN, MKP-3, and 



PP2C) are significantly decreased in wild-type mice by PostC protection, but are increased by 

PostC in ob/ob mice, which cannot be protected. Although we did not study the catalytic subunit 

of PP2A and did not directly measure PP2A activity, one could speculate that a reduced 

phosphatase activity could be responsible for the enhanced phosphorylation of protecting kinases 

and therefore contributes to beneficial effect of PostC. Intriguingly, alterations in phosphatase 

expression or activity limit the efficacy of both pre- and postconditioning during aging and 

cardiac hypertrophy [17,52]. 

In conclusion, sub-chronic use of high concentrations of ND, improves post-ischemic 

cardiac function in postconditioned hearts. However, chronic treatment with ND induces marked 

myocardial hypertrophy, increases cardiac susceptibility to I/R injury and abolishes the possibility 

to induce postconditioning protection. Moreover, both sub-chronic and chronic ND treatments 

increase β2-AR expression. Yet only chronic ND treatment markedly decreases the 

activity/expression of important enzymes (phosphorylated Akt and PP2A levels) involved in both 

cardiomyocyte growth and protection. It seems that maintenance of adequate PP2A expression 

and appropriate ratio of phosphorylated/total form of Akt in basal conditions are necessary to 

preserve the possibility for future PostC cardioprotection. Starting from these adequate levels a 

concomitant increase in Akt phosphorylation and a reduced level of PP2A occur with PostC 

protection in this model. Yet the increase in Akt phosphorylation is not always associated to 

cardioprotection, especially if it starts from inadequately low pre-ischemic levels and/or occurs 

without concomitant PP2A downregulation. Nevertheless, whether the observed enzyme 

alterations play a causal role in the shift from protection to exacerbation of I/R injury remains to 

be clarified. 

 

Acknowledgments 



The authors were supported by Compagnia di S. Paolo, National Institutes of Cardiovascular 

Research (INRC, FM, PP); Regione Piemonte (CP, PP, SR), PRIN (CP, PP), ex-60% (CP, PP, 

SR). We would thank Prof. D. Gattullo and Dr D. Mancardi for their invaluable support and help. 

 

Conflict of interest 

The authors declare that they have no conflict of interest.



References 

1. American Academy of Pediatrics. Committee on Sports Medicine and Fitness. 

Adolescents and anabolic steroids: a subject review. (1997). Pediatrics. 

Doi:10.1542/peds.99.6.904 

2. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, 

Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-

deficient mice. Circ Res. Doi: 10.1161/CIRCRESAHA.107.164699 

3. Boengler K, Heusch G, Schulz R (2010) Mitochondria in postconditioning. 

Antioxid Redox Signal. Doi:10.1089/ars.2010.3309. 

4. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of 

permeability transition pore opening by mitochondrial STAT3 and its role in myocardial 

ischemia/reperfusion. Basic Res Cardiol. Doi OI: 10.1007/s00395-010-0124-1 

5. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. 

Cardiovasc Res. Doi: 10.1093/cvr/cvp033 

6. Bokník P, Fockenbrock M, Herzig S, Knapp J, Linck B, Lüss H, Müller FU, 

Müller T, Schmitz W, Schröder F, Neumann J (2000) Protein phosphatase activity is 

increased in a rat model of long-term beta-adrenergic stimulation. Naunyn Schmiedebergs 

Arch Pharmacol. Doi: 10.1007/s002100000283 

7. Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B (2008) Myocardial 

ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J 

Physiol Heart Circ Physiol. Doi:10.1152/ajpheart.00379.2008 

8. Bradford MM. (1976) A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein–dye binding, Anal. 

Biochem. Doi:10.1016/0003-2697(76)90527-3 

9. Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, de Carvalho AC, de 

Carvalho DP, Oliveira MF, Nascimento JH (2006) Nandrolone decanoate impairs exercise-

induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 

Doi:10.1016/j.jsbmb.2006.01.004 

10. Cohen MV, Downey JM (2010). Ischemic postconditioning: from receptor to end-

effector. Antioxid Redox Signal. Doi:10.1089/ars.2010.3318. 



11. Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabò R, Menazza S, Semenzato 

M (2010) Mitochondrial injury and protection in ischemic pre- and post-conditioning. 

Antioxid Redox Signal. Doi:10.1089/ars. 2010.3375 

12. Downey JM, Davis AM, Cohen MV (2007) Signaling pathways in ischemic 

preconditioning. Heart Fail Rev. Doi: 10.1007/s10741-007-9025-2 

13. Du Toit EF, Rossouw E, Van Rooyen J, Lochner A (2005) Proposed mechanisms 

for the anabolic steroid-induced increase in myocardial susceptibility to 

ischaemia/reperfusion injury. Cardiovasc J S Afr 16: 21-28. 

14. El-Armouche A, Gocht F, Jaeckel E, Wittköpper K, Peeck M, Eschenhagen T 

(2007) Long-term beta-adrenergic stimulation leads to downregulation of protein 

phosphatase inhibitor-1 in the heart. Eur J Heart Fail. Doi: 10.1016/j.ejheart.2007.09.006 

15. Fan WJ, van Vuuren D, Genade S, Lochner A (2010). Kinases and phosphatases in 

ischaemic preconditioning: a re-evaluation. Basic Res Cardiol. Doi: 10.1007/s00395-010-

0086-3 

16. Fantinelli JC, Mosca SM (2007) Comparative effects of ischemic pre and 

postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). 

Mol Cell Biochem. Doi: 10.1007/s11010-006-9296-2 

17. Fenton RA, Dickson EW, Dobson JG Jr (2005) Inhibition of phosphatase activity 

enhances preconditioning and limits cell death in the ischemic/reperfused aged rat heart. 

Life Sci. Doi:10.1016/j.lfs.2005.05.047 

18. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk 

factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. 

Pharmacol Rev. Doi: 10.1124/pr.107.06002 

19. Fortunato RS, Marassi MP, Chaves EA, Nascimento JH, Rosenthal D, Carvalho 

DP (2006) Chronic administration of anabolic androgenic steroid alters murine thyroid 

function. Med Sci Sport Exerc. Doi: 10.1249/01.mss.0000183357.19743.51 

20. Gelpi RJ, Morales C, Cohen MV, Downey JM (2002) Xanthine oxidase contributes 

to preconditioning’s preservation of left ventricular developed pressure in isolated rat heart: 

developed pressure may not be an appropriate end-point for studies of preconditioning. 

Basic Res Cardiol. Doi: 10.1007/s395-002-8386-0 



21. Hausenloy DJ, Lecour S, Yellon DM (2010) RISK and SAFE pro-survival 

signalling pathways in ischaemic postconditioning: Two sides of the same coin. Antioxid 

Redox Signal. Doi:10.1089/ars.2010.3360. 

22. Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at 

reperfusion. Pharmacol Ther. Doi:10.1016/j.pharmthera.2007.06.005 | 

23. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein 

kinases, and mitochondria. Circulation. Doi: 10.1161/CIRCULATIONAHA.108.805242 

24. Heusch G, Boengler K, Schulz R (2010). Inhibition of mitochondrial permeability 

transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol. Doi: 

10.1007/s00395-009-0080-9 

25. Iliodromitis EK, Downey JM, Heusch G, Kremastinos DT (2009) What is the 

optimal postconditioning algorithm? J Cardiovasc Pharmacol Ther. Doi: 

10.1177/1074248409344328 

26. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, 

myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 

Doi:10.1016/j.pharmthera.2010.05.002 | 

27. LeGros T, McConnell D, Murry T, Edavettal M, Racey-Burns LA, Shepherd RE, 

Burns AH (2000) The effect of 17 alpha-methyltestosterone on myocardial function in vitro. 

Med Sci Sports Exer 32:897–903. 

28. Li XM, Ma YT, Yang YN, Zhang JF, Chen BD, Liu F, Huang Y, Han W, Gao XM 

(2009) Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling 

pathway: experiment with mice. Zhonghua Yi Xue Za Zhi 89: 846-850. 

29. Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S, Yatani A, 

Dorn GW 2nd (2000) Early and delayed consequences of beta(2)-adrenergic receptor 

overexpression in mouse hearts: critical role for expression level. Circulation 101: 1707-

1714. 

30. Lindblom J, Kindlundh AM, Nyberg F, Bergström L, Wikberg JE. (2003) Anabolic 

androgenic steroid nandrolone decanoate reduces hypothalamic proopiomelanocortin Mrna 

levels. Brain Res. Doi:10.1016/S0006-8993(03)03223-2 

31. Nasa Y, Yabe K, Takeo S (1997) Beta-adrenoceptor stimulation-mediated 

preconditioning-like cardioprotection in perfused rat hearts. J Cardiovasc Pharmacol 

29:436-443.  



32. Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, 

Miura T, Yellon DM, Avkiran M, Marber MS (2008) Glycogen synthase kinase-3 

inactivation is not required for ischemic preconditioning or postconditioning in the mouse. 

Circ. Res. Doi: 10.1161/CIRCRESAHA.107.169953 

33. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch 

M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiolsensitive myocardial 

protective effects akin to early preconditioning. Free Radic Biol Med. Doi:10.1016/S0891-

5849(02)01179-6 

34. Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C (2010) Cardioprotective 

pathways during reperfusion: focus on redox signaling and other modalities of cell 

signaling. Antioxid Redox Signal. Doi:10.1089/ars.2010.3245.  

35. Parkinson AB, Evans NA (2006) Anabolic androgenic steroids: a survey of 500 

users. Med Sci Sports Exerc. Doi: 10.1249/01.mss.0000210194.56834.5d 

36. Penna C, Abbadessa G, Mancardi D, Spaccamiglio A, Racca S, Pagliaro P (2007) 

Nandrolone-pretreatment enhances cardiac beta(2)-adrenoceptor expression and reverses 

heart contractile down-regulation in the post-stress period of acute-stressed rats. J Steroid 

Biochem Mol Biol. Doi:10.1016/j.jsbmb.2007.05.005 

37. Penna C, Abbadessa G, Mancardi D, Tullio F, Piccione F, Spaccamiglio A, Racca 

S, and Pagliaro P (2008) Synergistic effects against post-ischemic cardiac dysfunction by 

sub-chronic nandrolone pretreatment and postconditioning: role of beta2-adrenoceptor. J 

Physiol Pharmacol 59:645-6.  

38. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, 

Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role of 

coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol Doi: 

10.1007/s00395-005-0543-6 

39. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of 

postconditioning to protect the heart. J Cell Mol Med. Doi: 10.1111/j.1582-

4934.2007.00210.x 

40. Penna C, Mancardi D, Tullio F, Pagliaro P (2008) Postconditioning and 

intermittent bradykinin induced cardioprotection require cyclooxygenase activation and 

prostacyclin release during reperfusion. Basic Res Cardiol. Doi: 10.1007/s00395-007-0695-

7 



41. Penna C, Mognetti B, Tullio F, Gattullo D, Mancardi D, Moro F, Pagliaro P, 

Alloatti G (2009) Post-ischaemic activation of kinases in the pre-conditioning-like 

cardioprotective effect of the platelet-activating factor. Acta Physiol (Oxf). Doi: 

10.1111/j.1748-1716.2009.02000.x 

42. Penna C, Mognetti B, Tullio F, Gattullo D, Mancardi D, Pagliaro P, Alloatti G 

(2008) The platelet activating factor triggers preconditioning-like cardioprotective effect via 

mitochondrial K-ATP channels and redox-sensible signaling. J Physiol Pharmacol 59:47-

54. 

43. Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, 

Mancardi D, Pagliaro P (2009) Postconditioning induces an anti-apoptotic effect and 

preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta. 

Doi:10.1016/j.bbabio.2009.03.013 

44. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, 

Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a 

redoxsensitive mechanism, mitochondrial ATP-sensitive K + channel and protein kinase C 

activation. Basic Res Cardiol. Doi: 10.1007/s00395-006-0584-5 

45. Penna C, Tullio F, Merlino A, Moro F, Raimondo S, Rastaldo R, Perrelli MG, 

Mancardi D, Pagliaro P (2009) Postconditioning cardioprotection against infarct size and 

post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol. Doi: 

10.1007/s00395-008-0762-8 

46. Penna C, Tullio F, Moro F, Folino A, Merlino A, Pagliaro P (2010) Effects of a 

protocol of ischemic postconditioning and/or captopril in hearts of normotensive and 

hypertensive rats. Basic Res Cardiol. Doi: 10.1007/s00395-009-0075-6 

47. Penson PE, Ford WR, Kidd EJ, Broadley KJ (2008) Activation of beta-

adrenoceptors mimics preconditioning of rat-isolated atria and ventricles against ischaemic 

contractile dysfunction. Naunyn Schmiedebergs Arch Pharmacol. Doi: 10.1007/s00210-

008-0331-6 

48. Penson PE, Frod WR, Kidd EJ, Broadley KJ (2008) Protective role of b2- and b3-

adrenoceptors at reperfusion in isolated rat heart. J Mol Cell Cardiol. 

Doi:10.1016/j.yjmcc.2008.02.020 



49. Perret M, Broussard H, LeGros T, Burns A, Chang JK, Summer W, Hyman A, 

Lippton H (1993) The effect of adrenomedullin on the isolated heart. Life Sci. 

Doi:10.1016/0024-3205(93)90213-M 

50. Pesola MK (1988) Reversibility of the haemodynamic effects of anabolic steroids 

in rats. Eur J Appl Physiol Occup Physiol. Doi: 10.1007/BF00636615 

51. Phillis BD, Irvine RJ, Kennedy JA (2000) Combined cardiac effects of cocaine and 

the anabolic steroid, nandrolone, in the rat. Eur J Pharmacol. Doi:10.1016/S0014-

2999(00)00294-6 

52. Przyklenk K, Maynard M, Darling CE and Whittaker P (2008) Aging mouse hearts 

are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol. 

Doi:10.1016/j.jacc.2007.11.070 

53. Schulz R, Heusch G (2008). Extracellular adenosine attenuates left ventricular 

hypertrophy through its impact on the protein kinase and phosphatase interaction. 

Hypertension. Doi: 10.1161/HYPERTENSIONAHA.108.112144 

54. Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion 

activates Akt and ERK without protecting against lethal myocardial ischemia/reperfusion 

injury in pigs. Am J Physiol Heart Circ Physiol. Doi:10.1152/ajpheart.00864.2005 

55. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz 

R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. 

Circ Res. Doi: 10.1161/CIRCRESAHA.108.186429 

56. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch 

G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic 

Res Cardiol. Doi: 10.1007/s00395-009-0040-4 

57. Sullivan ML, Martinez CM, Gennis P, Gallagher EJ (1998) The cardiac toxicity of 

anabolic steroids. Prog Cardiovasc Dis. Doi:10.1016/S0033-0620(98)80019-4   

58. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling 

pathways: insights into insulin action. Nat Rev Mol Cell Biol. Doi:10.1038/nrm1837 

59. Tong H, Bernstein D, Murphy E, Steenbergen C (2005) The role of beta-adrenergic 

receptor signaling in cardioprotection. FASEB J. Doi:10.1096/fj.04-3067fje 

60. Trifunovic B, Norton GR, Duffield MJ, Avraam P, Woodiwiss AJ (1995) An 

androgenic steroid decreases left ventricular compliance in rats. Am J Physiol 268:H1096-

H1105. 



61. Tseng YT, Rockhold RW, Hoskins B, Ho IK (1994) Cardiovascular toxicities of 

nandrolone and cocaine in spontaneously hypertensive rats. Fundam Appl Toxicol. Doi: 

10.1093/toxsci/22.1.113 

62. Vinten-Johansen J, Granfeldt A, Mykytenko J, Undyala VV, Dong Y, Przyklenk K 

(2010) The Multi-dimensional Physiological Responses to Postconditioning. Antioxid 

Redox Signal. Doi:10.1089/ars.2010.3396. 

63. Wittköpper K, Eschenhagen T, El-Armouche A (2010) Phosphatase-1-inhibitor-1: 

amplifier or attenuator of catecholaminergic stress? Basic Res Cardiol. Doi: 

10.1007/s00395-010-0107-2 

64. Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-

specific alpha1- and beta-adrenoceptor signaling in the heart. Trends Pharmacol Sci. 

Doi:10.1016/j.tips.2006.04.009 

65. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-

Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during 

reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 

Erratum in: Am J Physiol Heart Circ Physiol. 2004;286:H477. 

Doi:10.1152/ajpheart.01064.2002 

66. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, Schaub MC, Zaugg 

M (2006) Ischemic postconditioning protects remodeled myocardium via the PI3K-

PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. Doi: 

10.1016/j.cardiores.2006.06.027 



Figure legends 

Fig 1. Diastolic function. Left ventricular end diastolic pressure (LVEDP, mmHg, panel A) and 

percent variation of dp/dtmin with respect to baseline level (panel B), during the 30 min ischemia 

and 120 min reperfusion. Time 0 correspond to the beginning of reperfusion. I/R, 

Ischemia/Reperfusion; PostC, Postconditioning. † p< 0.05 vs Vehicle; * p<0.05, vs I/R. 

 

Fig 2. Systolic function. Percent variation of developed left ventricular pressure (dLVP, panel A) 

and percent variation of dp/dtmax with respect to baseline (panel B) during the 30 min ischemia 

and 120 min reperfusion. Time 0 correspond to the beginning of reperfusion. I/R, 

Ischemia/Reperfusion; PostC, Postconditioning. † p< 0.05 vs Vehicle; * p<0.05, vs I/R; ** p< 

0.01 vs I/R. 

 

Fig. 3 Infarct size (IS). The amount of necrotic tissue is expressed as percent of the left ventricle 

(LV), which is considered the risk area. I/R, Ischemia/Reperfusion; PostC, Postconditioning. 

* p<0.05, vs I/R; † p< 0.05 vs Vehicle. 

 

Fig 4. Expression of β2-Adrenoceptor (β2-AR). Immunoblots are from representative 

experiments. β2-AR levels assessed in the left ventricle are expressed in arbitrary units (a.u.). † p< 

0.05 vs Vehicle; ‡ p< 0.01 vs Vehicle. 

Fig 5. Phosphorylated/total ratio of kinases (Akt and GSK-3β) in baseline conditions. Blots 

are from representative experiments and ratios are assessed from kinase form levels detected in 

the left ventricle. † p< 0.05 vs Vehicle; # p< 0.01 vs Short_ND. 

 



Fig 6. Phosphorylated/total ratio of kinases (Akt and GSK-3β) in reperfusion. Blots are from 

representative experiments and ratios are assessed from kinase form levels detected in the left 

ventricle. I/R, Ischemia/Reperfusion; PostC, Postconditioning. 

* p< 0.05 vs I/R; † p< 0.05 vs Vehicle; # p< 0.05 vs Short_ND. 

 

Fig 7. Expression of phosphatases (PP2A sub A and PP2A sub B) in baseline conditions. 

Blots are from representative experiments. Phosphatases levels assessed in the left ventricle are 

expressed in arbitrary units (a.u.). † p< 0.05 vs Vehicle; # p< 0.01 vs Short_ND. 

 

Fig 8. Expression of phosphatases (PP2A sub A and PP2A sub B) in reperfusion. Blots are 

from representative experiments. Phosphatases levels assessed in the left ventricle are expressed 

in arbitrary units (a.u.). I/R, Ischemia/Reperfusion; PostC, Postconditioning. 

* p< 0.05 vs I/R; † p< 0.05 vs Vehicle; # p< 0.01 vs Short_ND. 

 



 



 

 



 



 



 



 



 



 

 


