
26 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

TURINstream:  A Totally pUsh, Robust and effIcieNt P2P video streaming architecture

Published version:

DOI:10.1109/TMM.2010.2077623

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/80910 since



This is an author version of the contribution published on:

Andrea Magnetto, Rossano Gaeta, Marco Grangetto, Matteo Sereno
TURINstream: A Totally pUsh, Robust and effIcieNt P2P video streaming

architecture
IEEE TRANSACTIONS ON MULTIMEDIA (2010) 12

DOI: 10.1109/TMM.2010.2077623

The definitive version is available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5580077

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5580077


%
%
%
IEEE%Copyright.%This%material%is%presented%to%ensure%timely%dissemination%of%
scholarly%and%technical%work.%Copyright%and%all%rights%therein%are%retained%by%
authors%or%by%other%copyright%holders.%All%persons%copying%this%information%are%
expected%to%adhere%to%the%terms%and%constraints%invoked%by%each%author's%
copyright.%In%most%cases,%these%works%may%not%be%reposted%without%the%explicit%
permission%of%the%copyright%holder.%Personal%use%of%this%material%is%permitted.%
However,%permission%to%reprint/republish%this%material%for%advertising%or%
promotional%purposes%or%for%creating%new%collective%works%for%resale%or%
redistribution%to%servers%or%lists,%or%to%reuse%any%copyrighted%component%of%this%
work%in%other%works%must%be%obtained%from%the%IEEE.%



IEEE TRANSACTIONS ON MULTIMEDIA 1

TURINstream: A Totally pUsh, Robust and
effIcieNt P2P video streaming architecture

Andrea Magnetto, Rossano Gaeta, Marco Grangetto, Senior Member, IEEE, and Matteo Sereno, Member, IEEE

Abstract—This paper presents TURINstream , a novel P2P
video streaming architecture designed to jointly achieve low delay,
robustness to peer churning, limited protocol overhead, and qual-
ity of service differentiation based on peers cooperation. Separate
control and video overlays are maintained by peers organized
in clusters that represent sets of collaborating peers. Clusters
are created by means of a distributed algorithm and permit the
exploitation of the participant nodes upload capacity. The video
is conveyed with a push mechanism by exploiting the advantages
of multiple description coding. TURINstream design has been
optimized through an event driven overlay simulator able to
scale up to tens of thousands of peers. A complete prototype
of TURINstream has been developed, deployed and tested on
PlanetLab. We tested our prototype under varying degree of
peer churn, flash crowd arrivals, sudden massive departures, and
limited upload bandwidth resources. TURINstream fulfills our
initial design goals, showing low average connection, startup, and
playback delays, high continuity index, low control overhead, and
effective quality of service differentiation in all tested scenarios.

Index Terms—Peer-to-peer, Video streaming, Multiple Descrip-
tion Coding, Push architecture, PlanetLab testbed

I. INTRODUCTION

PEer-to-peer (P2P) streaming has proved to be a viable
and efficient approach to support the broadcasting of live

or pre-recorded media over the Internet. Peers contribute their
uplink bandwidth by forwarding content to their connected
peers. Global available resources (aggregate uplink bandwidth)
grows as the number of peers increases thus making the
approach potentially able to scale to a large number of users.

Nowadays P2P streaming architectures can be broadly
classified in two classes: tree-based (e.g., [1], [2], [3]) and
mesh-based (e.g., [4], [5]). In tree-based approaches (also
termed as push-based) the overlay is composed of several
diverse trees that are used to multicast the video packets
to the peers. The tree based approach can easily exploit
Multiple Description Coding (MDC) [6], [7], where the video
is encoded onto a set of independent descriptions to be pushed
across separate trees. The mesh-based approach is based on
file swarming mechanisms where participating peers form a
randomly connected mesh and use gossip-like protocols for
the creation and the administration of the overlay; buffer
maps are frequently exchanged among the peers to signal the
available video chunks. Each peer aims at retrieving the video

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with Università degli Studi di Torino
, Dipartimento di Informatica, Torino, Italia. E-mail:
{magnetto,gaeta,grangetto,sereno}@di.unito.it

stream by explicitly requesting its missing chunk (pull-based
approach). Recently [8] provided a comparison between the
two approaches as well as the identification of similarities and
differences. Push/tree P2P system generally guarantees lower
startup and playback delays, which depend on the topological
features of the overlay. Despite these advantages the results in
[8] indicate that the mesh-based approach generally exhibits
a superior performance over the tree-based approach. The
main shortcomings of the tree-based systems are reported to
be the large overhead due to the organization of the tree
topology, the difficulty to respond to the dynamics of the
peers, and the suboptimal exploitation of the upload band-
width. Nevertheless, the mesh-based approach suffers from
other problems; Although several mesh-based mechanisms that
deployed MDC have been proposed [9], [10], the use of MDC
techniques is not straightforward since one has to guarantee
that the descriptions follow independent distribution trees;
indeed the average decoded video quality is maximized if one
assumes independent losses of the descriptions. Access control
policies and service differentiation are difficult to implement.
Furthermore, mesh-based approaches suffer from the tradeoff
between control overhead and delay. In fact, to minimize
delay peers must notify their neighbors of available packets as
frequently as possible, thus resulting in high control overhead.
On the other hand, to reduce control messages notifications
must be aggregated over time thus making the delay higher.
An attempt to bring the benefits of tree-based approaches in
the mesh-based scenario is presented in [11]. The authors
propose a pull-push hybrid protocol where packets are pushed
along the trees, dynamically created according to a pull-based
protocol. In [12] another mesh based system that uses a push
data dissemination approach is presented.

In the present paper, we take a different viewpoint. In
particular, we leverage on the topological guarantees of a tree
structured overlay yielding short delays and allowing to exploit
MDC video, while improving on the side of robustness to
peer dynamics and bandwidth utilization. These two latter
objectives have been addressed with the introduction of a
small set of fully connected collaborating peers forming what
we termed a cluster. The contributions of this work are the
design, simulation and implementation of TURINstream, a
novel multi tree P2P streaming architecture where tree nodes
are represented by clusters of peers. The concept of cluster has
already been introduced in some previous research; as opposed
to such related works, briefly recalled in Sect. V, where the
clusters are organized in a hierarchical structure, the overlay
topology proposed in this paper is very flexible and permits a
more efficient exploitation of the resources.



IEEE TRANSACTIONS ON MULTIMEDIA 2

Separation of data and control overlays, cluster based or-
ganization, exploitation of MDC techniques, and tree-based
control overlay are all exploited in the TURINstream design
to achieve:

• high degree of robustness providing playback continuity
in order to minimize freezing or blackout periods despite
peers departures, failures, and churning. When a peer
leaves or crashes, the cluster does not disconnect from
the network and, while the cluster is being repaired, the
video content keeps reaching the cluster members. At the
same time, the probability of a joint failure of all the peers
supplying the video to a cluster becomes negligible as the
number of multiple trees increases;

• low connection, startup and playback delays. These met-
rics all depend on the depth of the control tree whose
scaling is logarithmic with respect to the total number of
participating peers;

• high scalability and low control overhead to allow a very
large number of users to join the application;

• rewards for altruistic (cooperative) users and penalties for
selfish (un-cooperating) ones. In fact, the join algorithm
we define allows for the adoption of access control
policies in terms of bandwidth and peer fairness; in other
terms, differentiated quality of services policies can be
used to pay back more collaborative peers, i.e., peers that
share a higher uplink bandwidth.

The TURINstream design has been aided by an event driven
overlay simulator able to scale up to tens of thousands of
users. Finally, the major contribution of the paper is the
development of a complete prototype of TURINstream which
has allowed us to deploy and test the application on Planet-
Lab. The TURINstream architecture has been used to stream
H.264/AVC video encoded with the MDC technique presented
in [7]. Such MDC codec is compliant with H.264/AVC and has
allowed us to use the standard RTP [13] protocol to transport
the video packets and RTSP/SDP [14], [15] protocols to signal
the video session. We tested our prototype under varying
degree of peer churn, flash crowd arrivals, sudden massive
departures, and limited upload bandwidth resources. The main
finding is that TURINstream fulfills our initial design goals,
showing low average connection, startup, and playback delays,
high continuity index, low control overhead, and effective
quality of service differentiation in all the scenarios we ad-
dressed.

The outline of the paper is as follows: Sect. II presents the
protocol operations, Sect. III describes the simulator we devel-
oped while Sect. IV presents the TURINstream prototype and
the tests performed on PlanetLab. Finally, Sect. V discusses
similar approaches in the literature while Sect. VI concludes
the paper with the outline of some of the future developments.

II. PROTOCOL DESCRIPTION

In this section we describe the TURINstream protocol. The
protocol is fully decentralized and it is designed to define and
maintain separated control and video streaming topologies that
are graphically shown in Fig. 1; this feature allows to keep
the video stream flowing across the peers while the control

overlay is undergoing some rearrangements in reaction to peer
exits/crashes and bandwidth fluctuations.

A. Terminology and notation
A peer P is a host participating to the overlay.
The node that injects the video stream in the network is

called root source; the proposed protocol can use multiple root
sources improving in terms of robustness and scalability, e.g.
by streaming each description from a different source. The
node that coordinates the root sources and that is responsible
for maintaining their neighborhood relationships is called
tracker. The tracker and the root sources can reside on the
same host.

The key element of the proposed protocol architecture is the
cluster. A cluster C is a group of up to N cooperating peers
(set of nodes enclosed by a dash circle in Fig. 1), coordinated
by a peer outside C called cluster-head.

In our protocol, each peer belongs to only one cluster
cluster(P ) = C. We use members(C) to denote the set of
peers belonging to C. Similarly, we denote as headed(C) the
set of clusters whose cluster-head is a member of C; every
cluster is fed with video data by one or more external peers
called sources. The cluster-head is constrained to be one these
sources. Every peer of C receiving one video packet from a
source must share such packet with the remaining members
of its cluster.

As for the video codec, we assume to use MDC; there-
fore the stream (whose bitrate is R) is composed by D
(D > 1) independent and complementary descriptions. Each
description can be decoded independently yielding the base
video quality; such quality is improved by decoding more
descriptions and depends only on the number of the received
descriptions. Each description is further subdivided in L sub-
streams called stripes each requiring a bitrate r = R

L·D . A
stripe is identified by the pair (d, l) where 0 ≤ d < D and
0 ≤ l < L. While MDC works at the video coding level and
generates independent and mutually refinable video streams,
the stripe is introduced only at transmission level by selecting
the packets of one description based on their counter identifier
modulo L. The stripe represents the minimum access unit
to the video stream. This approach is followed to allocate
the upload bandwidth contributed by each peer with a finer
granularity with respect to the number of descriptions.

Every peer can share a portion of its upload bandwidth
U(P ) for both intra-cluster and inter-cluster communications.
To simplify the management of the upload bandwidth of the
peer we introduce the concept of slot, defined as the bandwidth
required to upload a single stripe. The total amount of slots
available at peer P , i.e. the maximum number of stripes that
P can upload, is given by S(P ) = ⌊U(P )

r
⌋. At a given

time instant, each peer will be characterized by a certain
slot allocation S(P ) = SI(P ) + SE(P ) + SF (P ), where
SI(P ) and SE(P ) are the slots used for intra and inter cluster
communications respectively, and SF (P ) represents the free
slots available at peer P .

Please note that most of previous definitions are time
dependent; we explicit the time dependency only where it is



IEEE TRANSACTIONS ON MULTIMEDIA 3

Root source
Cluster head
Tracker
Peer

Forwarding algorithm

A

B C

Stripe (0,0)

Control topology Data topology
Cluster

Source

Control link

Stripe (1,0)

Fig. 1. TURINstream control and data topologies.

TABLE I
TABLE OF SYMBOLS

Symbol Description
D number of video descriptions
L number of stripes per description
R video stream bitrate
r bitrate for each stripe
P a generic peer
C a generic cluster
N maximum number of peers per cluster
U(P ) upload capability of peer P
S(P ) slots of peer P
SI(P ) slots for intra-cluster communications
SE(P ) slots for inter-cluster communications
SF (P ) free slots

strictly necessary. To ease the task of the reader the notation
used in this paper is summarized in Tab. I.

B. Data delivery overlay
A peer can decode the video at full quality provided that

its cluster receives all the D · L stripes. Nonetheless, the
use of MDC guarantees service continuity, despite the lower
level of fidelity, when a subset of the descriptions is received.
TURINstream distributes the video stream to the clusters by
building and maintaining a video data distribution overlay that
is a forest of trees, one for each stripe. In Fig. 1 an example of
multi-tree for the distribution of 2 descriptions and one stripe
per description is depicted.
1) Data sources for a cluster: For a given cluster C each

stripe is provided to members(C) by a source that does not

belong to the cluster. Each packet is forwarded to a single
member P of C, that in turn propagates the information
to all its cluster-mates. For each packet of a given a stripe
(d, l), the recipient P is selected within C in a round robin
fashion among the peers that have enough upload resources
according to the bandwidth management algorithm described
in Sect. II-C5. It is now possible to define the set of cluster
sources for C as sources(C) = {P |∃d,lsource(C, d, l) = P}
as well as the set of clusters receiving stripe (d, l) from peer P
as served clusters(d,l)(P ) = {C|source(C, d, l) = P}, where
source(C, d, l) is the peer pushing the stripe (d, l) to the cluster
C.

To better exploit the advantages of MDC TURINstream
aims at guaranteeing that a source can serve a cluster for
stripes belonging to only one description, to make most likely
that if a source stops serving a cluster, this impacts only on
the delivery of one description until a new source will replace
the departed one. Formally, ∀S∈sources(C)∃d,lsource(C, d, l) =
S ⇒ ∀d′ ̸=d,l′source(C, d′, l′) ̸= S. This topological feature is
enforced as far as possible thanks to the bandwith allocation
algorithm described in Sect. II-C5. Indeed, it is of paramount
importance in order to make the delivery paths of the video
descriptions as independent as possible so as to maximize the
average quality of the received video.
2) Cluster level: Every cluster is characterized by its dis-

tance from the source root, defined as level(C). The level
of a cluster C does not change over time and represents
an upper bound to the number clusters to be traversed by
any path of the video data distribution graph from the root
source to C. The root source has level 0, clusters in the



IEEE TRANSACTIONS ON MULTIMEDIA 4

set served clusters(d,l)(root) have level 1 and so on. On
the contrary, a peer can move across the clusters and its
level changes over time in response to network dynamics as
described in the following.

We impose that the sources of a cluster C must be-
long to clusters whose level is lower than level(C), i.e.,
∀S∈sources(C)level(S) < level(C). This constraint guarantees
that the video packets of each stripe are forwarded along
acyclic paths. Nevertheless, we do not impose level(S) =
level(C) − 1 obtaining a more flexible data overlay struc-
ture, which in turn makes more likely to find spare upload
resources during overlay rearrangements. An example of data
link between levels 1 and 3 is shown in Fig. 1. Since a level
1 cluster is constrained to receive the video stream directly
from the root source, then it follows that the number of such
clusters cannot exceed ⌊U(root source)

R
⌋.

3) Forwarding algorithm: Content distribution occurs from
sources to clusters. Upon reception of a data packet in stripe
(d, l) a peer P ∈ C is responsible for intra-cluster sharing. All
members of C are guaranteed to receive all packets of each
stripe if

∑

P ′∈C

(S(P ′)− SE(P
′)) ≥ DL (|members(C)|− 1) (1)

holds; in fact, S(P ′)−SE(P ′) represents the maximum num-
ber of slots contributed by P ′ and DL (|members(C)|− 1)
slots are needed for intra cluster video distribution, given that
DL slots are provided by the external sources(C).

In case P is also source for the higher levels, then it must
forward the packet using inter-cluster communications. The
main problem is how to select one peer P ′ for each cluster
in served clusters(d,l)(P ). In particular, one source selects P ′

depending on the forwarding activity already performed by P ′

and on the slots allocation described in Sect. II-C5.
In Fig. 1 (bottom-right corner) an example of packet for-

warding involving three peers is shown; node A is sent a packet
from a lower level cluster, then A forwards it to its served
clusters and its cluster members B and C. Let us assume that
the next packet for the same stripe hits B; now, B will share it
with C and A, that in turn will forward it downward in the tree.
From previous example it is clear that each video packet takes
two hops to traverse a cluster in the worst case. Since every
cluster is fed by only one peer for a given stripe it follows that
each stripe spans along a tree rooted at the root source; the
complete overlay for video data delivery is a forest of trees,
one for each stripe.

C. Control topology
A control infrastructure is required to organize and maintain

peers in clusters as they join and leave the application. To
this end, one of the sources of a cluster is also responsible
for the management of the cluster and it is called cluster-
head. The control topology is composed by the edges from
cluster-heads to the peers belonging to the clusters they head.
Every connected peer depends only on one cluster-head. We
will refer to the cluster-head of P as its father and to the
members of the cluster as the cluster-head’s children. Since

the role of the cluster-head can be played by any of the
sources, the control topology is usually different from any
distribution topology. In the following we describe all the
protocol operations.
1) Peer join: The join procedure allows a new peer to

enter into the overlay network. The same operation can be
performed also by a peer that is already connected but whose
video continuity is not satisfactory. When a peer P wants to
join the network it first retrieves the address of the tracker
and sends it a message containing its available slots S(P ).
The tracker can assign P to a cluster served by a root source
(level 1 cluster) or it can provide P with the address of a level
1 cluster-head (responsible of a cluster at level 2); the level
1 cluster-head is then contacted to recursively repeat the join
operation. Reiterating this procedure, P can be joined at any
level of the network. In other words, P follows a path along
the control tree until it finds a cluster that can host it.

Acceptance of a new peer in a cluster C is done by the cor-
responding cluster-head. If |members(C)| < N , then it must
guarantee that (1) holds, i.e., S(P ) ≥ DL|members(C)| −∑

P ′∈C(S(P
′) − SE(P ′)). In the case of a full cluster P is

accepted if and only if S(P ) > αminP ′∈C S(P ′). In such a
case the worst peer, i.e. argminP ′∈C S(P ′), is substituted by
the new one. The worst peer uses a simplified join procedure
and it is demoted to a higher level cluster. Parameter α must be
greater than 1 to avoid frequent peer demotions. On the other
hand, large values for α would result in a very strict criterion
for the acceptance of a new peer. This cluster admission policy
is introduced to ensure that more altruistic peers are placed
closer to the root source to enjoy lower delays and higher
stability in response to their higher contribution to the overlay.
2) Peer leave: A peer P can leave the network at any time

notifying the following peers:
• the other members of cluster(P );
• the sources of P , i.e., peers in sources(cluster(P ));
• the members of the cluster it serves (if P is a source);
• the other sources of the cluster it serves (if P is a source);
When departure of a peer is silent, e.g., due to a software

or a hardware crash, its neighbors can infer it with some
delay from the lack of periodic keep-alive messages. Keep-
alive messages are sent from members of a cluster to their
cluster-head. This type of message carries information about
the peer free slots and information on its subtree (when the
reporting peer is a cluster-head itself). The cluster-head runs a
timeout for each of the members of its cluster; receipt of this
message from a peer causes the reset of the corresponding
timeout. The expiration of this timeout is equivalent to the
reception of a quit message, so the cluster-head removes the
peer from the list of members of that cluster and informs other
members and sources of P about that. Keep-alive messages
are also exchanged among the sources of a cluster (one of
them is of course the cluster-head) to detect silent departures
of sources (and cluster-heads) from the network. This allows
all sources of a cluster to be informed about departure of P
and enables the cluster-head to notify all the members about
P absence. Such messages are piggybacked along with the
control information required for peer bandwidth management
described in Sect. II-C5.



IEEE TRANSACTIONS ON MULTIMEDIA 5

After a departure several actions take place:
• all other members in its cluster and all its sources will

stop sending packets to P ;
• when a cluster-head detects that the leaving peer is one

of the sources of its cluster it starts the repair process.
The cluster-head sends a message to its father containing
its IP address, the level of the cluster to be repaired
and the missing stripe (d, l). If one of its children has
enough upload bandwidth to replace the source for the
missing stripe, then the repairing procedure is successful.
If there is a children, that is serving as a cluster-head
of a sub-tree with spare resources (gathered thorough
previously mentioned periodic reports) the repair request
is forwarded downward in the sub-tree. Otherwise, the
repair message is forwarded upward to a lower level
father, thus following a path along the control tree looking
for a cluster-head able to attempt the repairing process. To
avoid cyclical paths the repair message changes direction
along the control tree only once. Moreover, the selected
source must guarantee the service constraints depending
on the cluster level and requested stripe. Since this pro-
cess is not guaranteed to be successful it can be repeated
after the expiration of a timeout. It is worth pointing out
that in presence of a limited number of available slots a
higher priority is given to the repair request issued by the
lowest level clusters;

• if P is a cluster-head, another source will be elected
cluster-head. If the sources of a cluster detect the silent
departure of the cluster-head a successor is univocally
self-elected on the basis of a priority policy based on the
values of the stripe identifier. In particular, the cluster
source forwarding the stripe with the lowest identifiers
(d, l) is the one taking the lead.

If massive departures occur and all the sources of a cluster
stop serving it the cluster turns to be disconnected from the
network; in this unlikely case, the cluster peers reconnect by
repeating the join procedure.
3) New cluster creation: A new cluster C ′ can be created

below an existing cluster C, i.e. level(C ′) = level(C)+1; this
decision is taken by the cluster-head, that appoints some of its
children as sources of C ′. The control information required for
this operation is local to two levels of the control topology. To
increase stability, the set sources(C ′) is not filled entirely using
members(C). The remaining sources are gathered according
to the repair procedure so as to minimize the overlap between
the control and data topologies, thus limiting the probability
of cascaded clusters’ failures. C ′ will be initially an empty
cluster to be populated by successive join requests.

The decision to create a new cluster C ′ must be taken only
when the current clusters are almost full and it is likely to
have enough upload resources to support it. This conditions
guarantee that the control and distribution trees are kept as
compact as possible to limit the communication delays and that
the new clusters are well connected to the rest of the overlay.
Going into details, the cluster is created if the following
conditions are jointly satisfied:

• members(C) > β1N , with β1 < 1 a suitable constant,

i.e. the number of members(C) is close to the maximum
value N ;

•
∑

C′∈headed(C) |members(C ′)| > β2N |headed(C)|, with
β2 < 1 a suitable constant, i.e. the clusters headed
by members(C) are well populated; the quantities
|members(C ′)| are sent as control information by the
cluster-heads of the next level and represent the only
information that is not directly available at the cluster-
head of C.

•
∑

P∈C SF (P ) > DL (γ1 + γ2|headed(C)|), i.e.,
members(C) have enough free slots to support C ′. In
particular, the required number of free slots is made
proportional to the number of controlled clusters.

4) Peers promotion and demotion: As already mentioned
peers are not constrained to a given cluster but can move in re-
sponse to network dynamics. Such migrations are implemented
by means of a simplified join procedure. In particular, the
cluster-head of a full cluster can move the worst peer, i.e., the
one with the minimum contribution in slots, to a higher level
cluster as far as a better peer joins its cluster. In the opposite
case, a cluster-head that notes that the population of cluster
C is falling below a certain threshold has means to select
the best peers at level larger than level(C) by exploiting the
periodic information sent by its children. As a consequence, it
is possible to move the best peers of the higher levels to the
cluster C. This approach keeps the overlay compact allowing
to close the furthest clusters when the network population
decreases.

As a last resource a peer is allowed to disconnect and
reconnect in a new cluster if its quality of service is not
satisfactory or because of the contemporary departure of all
of its sources.
5) Upload bandwidth management: The management of

the cluster upload bandwidth is done by the cluster-head.
This is achieved on the basis of the periodic keep alive
messages sent by its children, which, for each P , contain
S(P ) and SE(P ); clearly, only peers that are cluster sources
have SE(P ) ̸= 0. The cluster head objective is the allocation
of the slots SI(P ) for intra cluster streaming under the
constraint that SF (P ) = S(P ) − SE(P ) − SI(P ) ≥ 0. The
overall upload bandwidth required by a cluster C amounts
to D(C)L (|members(C)|− 1) slots, where D(C) ≤ D rep-
resents the number of descriptions that can be supported by
C. In fact, especially in leaf clusters that may host peers with
limited resources, the churning could limit the slots availability
for a certain period of time, thus forcing the cluster-head
to reduce the streaming rate dropping some descriptions. If
cluster peers were homogeneous in terms of S(P ), the optimal
allocation would be SI(P ) ≈ D(C)L = S̄I . In practice,
peers are not homogeneous making this simple allocation
sub-optimal. Moreover, within TURINstream we take into
account the presence of MDC video coding so as to improve
the performance in terms of the user experience avoiding, if
possible, that the same peer relays more than one description.
To this end the cluster-head performs slots allocation at a finer
level of granularity, fixing the number of slots per peer P and
description d: SI(P, d). It follows that SI(P ) =

∑
d SI(P, d)

and that the number of slots allocated to the description d



IEEE TRANSACTIONS ON MULTIMEDIA 6

in the cluster is given by Sd =
∑

P∈C SI(P, d). Therefore,
the slots allocation sought by the cluster head is such that
Sd ≥ L (|members(C)|− 1) , ∀d < D(C) and SF (P ) ≥
0,∀P ∈ members(C). Moreover, if possible the following
constraint is enforced: ∃!d : SI(P, d) ̸= 0, ∀P ∈ members(C)
which amounts to preventing P to forward more than one
description.

The allocation is refined dynamically starting from the value
SI(P ) = 0, that is assumed when a new peer P joins the
cluster. The algorithm used in TURINstream aims at achieving
a balanced slots allocation SI(P ). Every time a peer enters
or leaves the cluster, the cluster head performs the following
steps:

• Update D(C) by selecting the maximum number of
description satisfying (1), given the slots available in
C. Then compute the average peer contribution S̄I =
D(C)L.

• ∀d : Sd > L (|members(C)|− 1), remove slots allocated
in excess (starting from peers holding more descriptions).

• ∀P ∈ members(C) having SI(P, d) ̸= 0 for more
than one d, keep the allocation only for description
d′ = argmaxd SI(P, d) and set SI(P, d) = 0, ∀d ̸= d′.

• ∀P ∈ members(C) having SI(P ) > S̄I , SI(P )−S̄I slots
are released.

• ∀d : Sd < L (|members(C)|− 1), find additional re-
sources from the free slots of peers according to the
following priorities:

1) find every P such that SI(P ) = 0 and increment
SI(P, d) by using some or all of its free slots SF (P )
without exceeding S̄I ;

2) find every P such that SI(P ) < S̄I and SI(P, d) ̸=
0 and increment SI(P, d) while keeping SI(P, d) ≤
S̄I ;

3) find every P such that SI(P ) > S̄I and SI(P, d) ̸=
0 and increment SI(P, d);

4) find every P such that SI(P ) < S̄I and SI(P, d) =
0 and increment SI(P, d) without exceeding S̄I ;

5) find every other peer P and increment SI(P, d).
Given the selected SI(P ), the values of SF (P ) of each

children are known and can be used by the cluster-head to
drive the repair and new cluster creation procedures described
above. Finally, the values of SI(P ) are shared with all the
other cluster sources that must perform the actual forwarding
of the video data according to such slots allocation. It is worth
pointing out that the slots allocation is time dependent because
of the dynamic of the cluster population and the resources
they can provide. Let us make this dependence explicit by
using SI(P, d, t) and |members(C, t)| to represent the slots
allocation and the population of cluster C at a given time
instant t. At time t each source can evaluate the average
bandwidth utilization of a peer P for a given description d
as:

ρ(P, d, t) =
t∑

τ=t0(P )

Bits(P, d, τ) (|members(C, τ)|− 1)

(t− t0(P ))SI(P, d, τ)r

where t0(P ) is the time when P has joined C and Bits(P, d, τ)
is the amount of bits of the description d pushed toward P

at time τ . The utilization ρ(P, d, t) is defined as the average
ratio between the bandwidth spent by P to forward video
packets within C, measured by the source according to the
size of the transmitted packets Bits(P, d, τ), and the bandwidth
SI(P, d, τ)r allocated by the cluster-head. At time t each
source selects as destination of the next video packet of
description d the peer P (d, t) exhibiting the lowest utilization:

P (d, t) = arg min
P ′∈C

ρ(P ′, d, t).

III. PROTOCOL SIMULATOR

The first step towards the development of the TURINstream
prototype has been the design of an overlay simulator to aid
the development of the algorithms and the optimization of
the protocol parameters, e.g., number of stripes, number of
descriptions, and number of peers per cluster. The simulator
has been used to perform most of the optimization of the pro-
tocol before actually deploying it in a dynamic and distributed
environment. In Sect. III-A we describe the simulator, in
Sect. III-B the effect of the most critical protocol parameters is
analyzed and finally in Sect. III-C the ability of TURINstream
to scale to large networks is tested.

A. Simulator description
The behavior of the TURINstream protocol has been em-

ulated by means of an event driven simulator. The simulator
can handle networks of several thousands of peers and analyze
their performance over time. The peers/clusters relations are
modeled by a bipartite graph, composed by the objects Peers
and Clusters. Bidirectional edges link the two classes and
form a graph that models the TURINstream overlay topology.
The most important simulated events are peer arrivals and
departures (both notified and silent), cluster repairs and peer
reconnection. Random latencies are used to accomplish each
operation so as to simulate network delays. The simulator does
not keep track of every message, so it can easily manage
the dynamics of large networks for a long simulated time.
In order to test the proposed protocol in a realistic scenario
we adopted two different statistical models for peer arrival and
sojourn times. In the first scenario, in the following referred
to as departure process 1 (DP1), arrivals and departures are
distributed according to negative exponential distributions, like
in a M/M/∞ queue. In the second scenario a model where
burst departures concentrate in short periods is considered
(DP2). In particular, the simulated time interval is divided
into cycles of one hour and at the end of every cycle 50%
of the peers disconnect within a time interval of 100 s. The
first model represents a behavior where the departures occur
continuously, keeping the cluster repair system under pressure.
The second is representative of mass peer departures e.g., after
the end of a TV program, causing a major reorganization of the
overlay. All simulations begin with an empty network, growing
dynamically with peer arrivals; after an initial transitory, that is
not considered in the computation of the performance indexes,
its size became stable (in case of DP1) or begins its cyclical
behavior (DP2). In both DP1 and DP2 20% of the departures
are treated as silent to simulate unexpected peer crashes.



IEEE TRANSACTIONS ON MULTIMEDIA 7

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1000  10000

CI

Peers

DP1, L=2, D=2
DP2, L=2, D=2
DP1, L=1, D=4
DP2, L=1, D=4

Fig. 3. CI versus the average overlay size with N = 16, L = 2, 1 and
D = 2, 4 for DP1 and DP2 models.

Moreover, the simulator can handle peers with heteroge-
neous upload capacities. To obtain realistic results all the
following experiments have been worked out assuming a
typical upload distribution where the majority of the peer
accesses the network though connections with limited upload
bandwidth. The upload bandwidth distribution used in all the
reported experiments is 384kbps (72%), 512kbps (24%) and
768kbps (4%). The video bitrate has been fixed to R = 320
kbps. We used a single root source node with upload capacity
of 2R to initiate the video streaming.

The simulator goal is the computation of the percentage of
time a peer P is getting the video. We did the pessimistic
assumption that a description cannot reach a cluster if at least
one of the paths from the root to the cluster transporting that
description is broken somewhere. In other words, we assume
that a video description is completely useless as far a as a
single packet of such description is missing. This assumption
does not hold for real video players where a limited number
of packet losses can be mitigated e.g., by means of error
concealment. At any time a peer P can be in D + 2 states
s = {−1, 0, . . . , D}: it can be disconnected while trying to
reconnect (s = −1) or it can belong to a cluster that receives
s = 0, . . . , D descriptions. During the simulation, the time
T(P, s) spent by P in every possible state s is accumulated
and the continuity index is evaluates as:

CI =
∑

P

∑D
s=1 T(P, s)

∑
p

∑D
s=−1 T(P, s)

Moreover, the simulator reports some topological indexes,
namely the maximum and average height of the control tree.

B. Protocol parameters optimization
As a first result, the simulator has been used to select

reasonable values for the following parameters: α = 1.3 to
manage the peer admission in a full cluster and β1 = 0.75,
β2 = 0.7, γ1 = 2.5, γ2 = 1.2 to control the creation of
new clusters. Such values have been chosen by studying their
effects on the overlay topology and on the video service in
terms of CI .

The most important parameters of TURINstream are the
cluster size N and the number of stripes in which the video is
fragmented, i.e. DL. In Fig. 2-(a) CI is reported versus N for

an overlay of 1000 peers when fixing D = 2 and L = 2 for
both DP1 and DP2 dynamic models. In Fig. 2-(b) we show
the mean and maximum tree height versus N . As expected,
larger values of N yield a more reliable and shorter control
overlay network. On the other hand, using very large clusters
is not feasible because of the increased upload required for a
peer to share the video data with all his cluster-mates and the
larger amount of control information to be managed by the
cluster-head. It turns out that setting N ≥ 16 is optimal from
the point of view of both the overlay reliability and control
tree height. Fig. 2 also points out that the mass departure
scenario (DP2) is the most critical one yielding a lower CI
and a higher maximum height. Nevertheless, such effect is
particularly evident only when using small clusters.

C. Protocol scalability
The simulator has been used to test the behavior of the

TURINstream overlay when the number of peers in the net-
work increases up to the tens of thousands. The CI , the height
of the control tree and the number of messages required for
frequent protocol operations have been studied as a function
of the average overlay size from 1000 to 50000 peers.

In Fig. 3 CI is shown for the cases L = 2, D = 2 and
L = 1, D = 4 for DP1 and DP2 models. It can be noticed
that TURINstream is able to scale to tens of thousands of
users without a significant impact on the continuity index,
that remains above 0.98 for both DP1 and DP2 peer dynamic
models. Moreover, these latter experiments have been repeated
for two configurations of the stripes settings. In the first case
we use L = 2, D = 2 and in the second case L = 1, D = 4
so as to compare the performance of the protocol when the
number of stripes is constrained to 4 but the number of video
descriptions changes. Fig. 3 shows the improvements in terms
of CI obtained using 4 descriptions (see square markers);
clearly this advantage is due to the fact that when D = 4 the
reception of a single stripe guarantees service continuity, even
if with proportionally reduced video quality. Nevertheless,
such gain can be achieved at the expense of higher video
coding and decoding computational costs and a higher bitrate
overhead with respect to standard video coding [7], [16]. The
observation that TURINstream achieves a good performance
with D ≤ 4 is of paramount importance since most of the
MDC video coding schemes available in the literature are
designed for 2 or 4 descriptions [7], [16], [17], [18].

In Fig. 4-(a) the average and maximum heights of the
tree of clusters build by TURINstream are reported versus
the network size. It turns out that the average height of the
control tree has logarithmic dependence on the overlay size (an
O(log(·)) function is plotted for comparison). Clearly, a com-
pact topology is able to guarantee low control and playback
delays. Finally, in Fig. 4-(b) we show the average number of
messages required for two TURINstream operations, namely
the join and repair procedures. It turns out that a limited
number of messages needs to be exchanged to accomplish the
two tasks even for very large networks. The repair procedure,
taking on average less than 5 control messages, turns out
to be quite efficient and points out that the identification of



IEEE TRANSACTIONS ON MULTIMEDIA 8

 0.7
 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 12  14  16  18  20  22  24  26  28  30  32

CI

N

DP1
DP2

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 12  14  16  18  20  22  24  26  28  30  32

H
ei

gh
t

N

max - DP1
max - DP2

avg - DP1/2

(b)

Fig. 2. CI (a) and control tree maximum and average height (b) versus the number of peers per cluster N , with D = 2, L = 2, overlay size of 1000, using
DP1 and DP2 models.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 1000  10000

H
ei

gh
t

Peers

max - DP1
max - DP2

avg - DP1/2
O(log(x))

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1000  10000

M
es

sa
ge

s p
er

 o
pe

ra
tio

n

Peers

Join - DP1/2
Repair - DP1
Repair - DP2

(b)

Fig. 4. Control tree maximum and average height (a) and average number of messages per operation (b) versus the average overlay size with N = 16,
L = 2, D = 2 for DP1 and DP2 models.

additional resources requires only a local visit of the control
tree. These latter achievements can be exploited to obtain the
low protocol control overhead measured on the full prototype
presented in the following section.

To conclude, for the prototype implementation and exper-
imentation presented in Sect. IV, we selected a cluster size
N = 24 and 4 stripes obtained by setting D = 2 and L = 2 .
The value of N has been selected as a compromise between
reliability and upload bandwidth requirements for intra cluster
communications. The number of stripes has been selected
in order to accommodate the efficient MDC video coding
technique recalled in the following that allow us to perform
real time encoding of live video.

IV. PROTOTYPE DEVELOPMENT AND EXPERIMENTAL
RESULTS

In the following we present details on the implementation
of a prototype of TURINstream (Section IV-A) that we de-
ployed and tested on PlanetLab (Section IV-B). We discuss
results for the performance indexes we defined in Section
IV-C that we obtained in several scenarios aimed at proving
that TURINstream fulfills all the inspiring design goals. In
particular, Section IV-D presents results when peers alternate
between active and idle periods. In this case, performance
of TURINstream are compared against those presented in

[4]. Scalability properties of TURINstream are investigated
in Section IV-E. Different arrival and departure patterns are
considered in Section IV-F where most users join (flash crowd)
and leave (mass departure) the application in a very short time.
Finally, Section IV-G presents results in scenarios where the
global amount of available upload resources (the so called
resource index [19]) is rather limited, i.e., less than 1.

A. Prototype description
A complete prototype of the proposed P2P streaming

protocol has been developed, using the C++ language. The
application includes the client and the server implementing the
protocol primitives described in this paper. The P2P protocol
uses only UDP sockets so as to minimize transport delay and
overhead. The server is equipped with a modified VideoLan
[20] server in order to encode and stream the video according
to the MDC algorithm presented in [7]. The client is able to
receive the video descriptions, decode and play the video. The
video descriptions are transported using RTP on top of UDP,
whereas the video session and the decoder are set-up by means
of SDP.

The proposed TURINstream is not constrained to the use of
a particular MDC algorithm. Nevertheless the selection of the
MDC video codec is important from the point of view of the
added encoder/decoder complexity and coding overhead with



IEEE TRANSACTIONS ON MULTIMEDIA 9

respect to standard single description coding. The prototype
has been worked out employing the MDC video technique [7],
which is designed to create D = 2 video streams. According to
this technique every video picture is fragmented into a number
of slices; MDC coding yields 2 alternative representations of
each slice, i.e., one packet for each description bitstream to be
forwarded by the TURINstream protocol. This MDC technique
has a number of desirable features: first of all it is compliant
with the H.264/AVC standard [21], that achieves state of the
art compression performance and allows one to use standard
transport and signaling protocols. Moreover, as opposed to
other solutions, the MDC coding overhead1, expressed as
the rate penalty with respect to standard video coding, can
be controlled and freely adjusted according to the desired
robustness/video quality trade-off. In other words, the MDC
overhead can be selected so as to be hardly noticeable in
absence of packet losses, while guaranteeing a more graceful
degradation of the video quality when the P2P overlay is
under stress. In the following experiments an MDC coding
overhead ranging from 5% to 10% of the rate R has been used.
Finally, the effort required on the decoder side to decode the
descriptions is based on a simple RTP packet level selection
algorithm, followed by a standard H.264/AVC player. The two
descriptions are received as two separate RTP flows. The two
streams are synchronized exploiting the RTP timestamps and
merged into single AVC/H.264 RTP flow containing the best
available representation per each slice; the output stream can
be decoded by any standard player.

The TURINstream client and server applications are com-
posed of four main modules:

• a thread that listens to the socket for incoming messages
and processes them;

• an event list that is used to implement timeouts and
periodic messaging;

• a video buffer where the incoming descriptions are syn-
chronized and merged into a single video stream for
playout according to [7];

• a queue that manages outgoing messages (control and
video); in this queue smaller control packets are given
higher priority so as to guarantee that critical operations,
e.g. overlay repairs, are completed as quickly as possible.

B. Experimental testbed

The developed prototype has been initially validated by
means of a local testbed; then it has been deployed using the
PlanetLab platform to test the application in a realistic Internet
scenario and to compare it versus other solutions.

We considered two scenarios:
• in the first setting we used our local PlanetLab node

to host the video server (the root source) and a subset
of other active PlanetLab nodes to run full clients, i.e.,
clients able to receive, mix and decode the video. We
conducted experiments with a number of active PlanetLab

1All MDC coding techniques incur a rate penalty with respect to standard
video coding. The coding overhead allows one to decode the descriptions
independently and makes them mutually refinable.

nodes ranging from 50 to 200. We refer to this case as
the full scenario.

• the second setting aims at analyzing the performance of
TURINstream when scaling from hundreds to thousands
of users. Since there are usually slightly more than 200
usable 2 PlanetLab hosts supporting our experiments
the only solution is to allocate several peers per active
host. Nevertheless, the bandwidth of a single host is not
sufficient to support tens of concurrent peers, besides
generating unrealistic and very correlated congestion pat-
terns over the IP network. To overcome this limitation we
considered a lightweight scenario where clients imple-
ment all the signaling procedures of the TURINstream
protocol but video packets transmissions are emulated
by sending only the packet headers. Clearly the peers
bandwidth usage is computed by assuming the full size
video packets. Peers push video packet headers in the
network allowing to estimate all the performance indexes
in absence of actual video streaming. The shortcoming
of this approach is that IP network congestion may be
underestimated. Still, the possibility to test the protocol
scalability is a key point of our study and the obtained
results are very accurate if one assumes that the under-
lying network infrastructure is not under stress. In fact,
results obtained in the lightweight scenario have been
successfully validated against results in the full scenario
when the number of peers was equal to 200.

Moreover, all experiments have been performed by limiting
the upload bandwidths; this was achieved by adding a software
module between the application and transport layers, that
drops packets if the upstream exceeds the selected limit. Such
module is obtained controlling the rate at which messages
are popped from the outgoing queue. This choice has two
important motivations. First of all we are interested in simu-
lating the system in a more realistic scenario comprising both
residential ADSL and institutional users. More importantly, we
want to make our results as reproducible as possible3, even if
we resort to the PlanetLab concurrent and open environment
where resources cannot be guaranteed using a preemptive
allocation.

According to the protocol optimization presented in Sect.III
the prototype has been tested with the following protocol
parameters: α = 1.3, β1 = 0.75, β2 = 0.7, γ1 = 2.5,
γ2 = 1.2, N = 24, D = 2 and L = 2. Moreover, the
development of the full prototype and its testing in realistic
scenarios has led to the selection of proper timeout values
for the protocol operations. The most critical timeout values
turned out to be the timeout for a cluster-head to receive a
message from a child (Tfather) and the timeout for periodic
messages between sources (Tsources). The optimization of the
protocol on the field has led to the selection of Tfather = 1 s
and Tsources = 0.8 s.

2We use the term usable to denote a Planetlab node which was free of all
the following problems: frequently unreachable due to downtimes and other
issues, unable to reach (or be reached) by other Planetlab nodes, experienced
a very bad connection quality, suffering from DNS problems, under very high
load, varying SSH-keys, not enough disk space to write log files.

3unfortunately, bandwidth dynamics (congestion) cannot be controlled.



IEEE TRANSACTIONS ON MULTIMEDIA 10

We also developed a console application to manage the
joining and leaving of the peers and the collection of measure-
ments. We conducted repeated experiments during September-
November, 2009; results showed similar characteristics there-
fore we selected representative cases for the next discussion.

C. Performance indexes
The purpose of our experiment was to estimate some

performance indexes to confirm that TURINstream satisfies
our design goals. To assess the robustness of TURINstream
we considered the continuity index (CI), that is expressed as
the fraction of video packets that arrive to a peer before their
playback deadline. Since TURINstream is designed to exploit
MDC we consider that the video service is granted as far as at
at least one out of the two representations of each video packet
is received. To reflect this the continuity index (CI) is defined
as the fraction of video slices for which at least one description
has been received. In fact, in presence of MDC every video
slice is split into two packets, one per each description, and a
discontinuity occurs only if both packets are lost; if only one
is received, the user does not perceives it as a discontinuity
but as a degradation of the video quality.

Moreover, the developed prototype allowed us to measure
the delays incurred by the distributed application. The protocol
latency is measured by means of the following indexes:

• Connection delay tC , defined as the time interval between
the sending of the first join request message and the
reception of the accept message.

• Startup delay tS , defined as the interval between the first
join message and the decoding of the first video frame;
it includes connection time and buffering time. Hence, it
is the time between the application starts and the time
instant the user starts watching the video.

• Playback delay tP , defined as the amount of time elapsed
from the first transmission of a packet in the overlay by
the server and its actual playback time experienced by
the user.

Finally, the efficiency of TURINstream has been evaluated
in terms of signaling overhead. Two types of overheads can be
identified, namely those caused by the video packet headers
and by messages carrying control information, respectively.
The video packet headers are 14 bytes long, summing up
to 28 bytes if one takes into account the UDP headers as
well; this overhead is negligible and it is similar to the one
yielded by standard streaming transport protocols such as
RTP/UDP. Clearly, the major source of overhead is represented
by signaling information exchanged to maintain the control
and video streaming overlay topologies. Moreover, such con-
tribution depends on the peers/network dynamics. To measure
this latter, the overall amount of control traffic is logged by
each peer. This allows us to measure the protocol overhead as
the ratio between the average bitrate of the control information
over the video bitrate.

D. On-off behavior
Performance of novel P2P video streaming architecture

should be compared against those of other techniques. This

TABLE II
PARAMETERS OF THE TEST ENVIRONMENTS SHARED WITH [4]

System parameter Value
R 500 Kbps

Number of peers 50 to 200
Arrival (departure) Exponentially distributed (average 50s to 200s)

important issue is nevertheless very difficult to deal with.
Indeed, a thorough and fair comparison may not be accurate
due to the difficulty of re-creating the same test environment
4. For instance, while it would be theoretically possible to
compare different architectures using the same video bitrate,
root source upload bandwidth, peers upload bandwidth dis-
tribution, arrival (departure) pattern, number of peers in the
overlay, it is surely impossible to reproduce the congestion
and CPU load experienced by the PlanetLab nodes. Of course,
this is true only if the prototypes implementations of other
techniques were publicly available for experimentation. If this
is not the case then it is only possible to provide a comparison
where the maximum number of system parameters is matched
to obtain hints on the relative performance of two competing
architectures.

We chose to compare the performance of TURINstream
against those of Coolstreaming as presented in [4]. In par-
ticular, we evaluated the average CI and control overhead
performance indexes where we matched the video bitrate, the
peer arrival (departure) pattern, the number of peers in the
overlay (Table II shows the parameters of the test environments
that match those used in [4]). We were not able to obtain
information on the root source upload bandwidth and on the
peers upload bandwidth distribution. In [4] the CI and the
overhead have been measured using 4 connections per peer
(including the root source); therefore it seems reasonable to
assume that the root source upload bandwidth has been fixed
to 4R. On the other hand, no limitations seems to have been
applied to the peers upload bandwidth.

To show that TURINstream is capable of providing perfor-
mance at least as good as those of Coolstreaming we fixed
our root upload bandwidth to only 2R (half of what has
been presumably used in [4]). This choice is representative
of a scenario where a user wants to stream its video content
without resorting to a dedicated networking infrastructure. It
follows that results could be significantly improved if a better
connected video provider was considered, e.g., representative
of a commercial video distribution system. In fact, by increas-
ing the number of level 1 clusters the continuity index would
increase and delays would shorten for a larger number of peers.
The control overhead would practically be unaltered.

We also imposed a cap on the peers upload bandwidth by
using the upload bandwidths of the participating peers accord-
ing to the distribution shown in Tab. III. The second column
represents upload values distributed according to bandwidth
available to a majority of home ADSL users and a limited
percentage of institutional/business users with high capacity.
The resource index is equal to 1.18.

4We do not consider architectures whose performance have been evaluated
only through simulations.



IEEE TRANSACTIONS ON MULTIMEDIA 11

 0.75

 0.8

 0.85

 0.9

 0.95

 1

50 100 200

CI

T [s]

50 nodes
100 nodes
150 nodes
200 nodes

(a)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

50 100 200

t C
 , 

t S
 [s

]

T [s]

50 nodes
100 nodes
150 nodes
200 nodes

(b)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

50 100 200

O
ve

rh
ea

d

T [s]

50 nodes
100 nodes
150 nodes
200 nodes

(c)

Fig. 5. TURINstream average CI (empty bars) and the ratio between the average number of received descriptions and D (grey bars) along with experimental
results from CoolStreaming [4] (black dots) (a), tC (gray bars), tS (b) and protocol overhead (c) for networks with 50,100,150,200 peers as a function of
the average ON/OFF period T (full scenario).

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 200  400  600  800  1000  1200  1400  1600  1800  2000

Co
nt

in
ui

ty
 in

de
x

Peers
(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 200  400  600  800  1000  1200  1400  1600  1800  2000

Ti
m

e 
[s

]

Peers

tC
tS
tP

(b)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 200  400  600  800  1000 1200 1400 1600 1800 2000

O
ve

rh
ea

d

Peers
(c)

Fig. 6. Performance indexes as a function of the number of peers (lightweight scenario): average CI (a), tC , tS , and tP (b) and overhead (c).

TABLE III
LIMITED UPLOAD BANDWIDTH DISTRIBUTION

% TURINstream upload bandwidth [kbps]
8 397
64 530
12 662
12 795
4 1060

Moreover, we decided that peers’ departures are notified
with probability 0.95 while they are silent with probability
0.05 to simulate crashes. Silent departures are obtained by
suppressing all quit messages. This is another feature that
makes our experimental conditions more adverse than those
in [4].

All our experiments lasted for one hour and performance
indexes are computed over all the ON periods. Fig. 5(a)
shows the TURINstream performance in terms of CI as
a function of the average ON/OFF period T for different
network sizes. The four bars in the histograms show the CI
obtained with different overlay sizes of 50,100,150 and 200
nodes; the dash level in each bar shows the ratio between
the average number of received descriptions and D and it
is representative of the averaged received video quality; the
black dots are experimental values of CI reported in [4].
Fig. 5(a) shows that TURINstream achieves a high CI by
profitably exploiting MDC. In particular, it can be noticed that
for T = 100 and T = 200 s TURINstream yields CI ≥ 0.97
with an average number of received descriptions very close
to D. In presence of a higher churn, e.g. T = 50 s, the
TURINstream architecture still yields CI larger than 0.9 at
the expense of a slight reduction in the number of received
descriptions. The results from [4] are reported in order to

compare TURINstream performance with that of the first
popular mesh based streaming system; nevertheless, it must be
recalled that in [4] no limitation on the peer upload bandwidths
were considered and the root source upload bandwidth was
likely to be double with respect to that used for TURINstream
.

TURINstream exhibits limited latencies, taking on average
less the 500 ms to complete the join procedure as shown in
Fig. 5(b) (filled bars for tC) in all cases. In the same figure
a low startup delay tS of about 5 s is reported. The playback
delay tP is about 12 s in all cases. We also computed the
CDF for tS in the case T = 100 s and 100 nodes (the other
cases are qualitatively very similar); we observed that the 95th

percentile is equal to 6.1 s and the 99th percentile is equal to
6.6 s.

Finally, the proposed design is very efficient also in terms
of signaling overhead which is kept below 0.003 as shown
in Fig. 5(c) which is one order of magnitude smaller than
what reported in [4]. The main contribution to the overhead
is given by periodic keep-alive messages. There are 3 kind of
such messages:

• every peer sends a message to its cluster-head every
Tfather seconds containing information for bandwidth
management;

• every source sends a keep-alive message to the cluster-
head every Tsources seconds;

• the cluster-head communicates to the sources the slots
allocation every Tsources seconds.

An approximation of the average overhead per peer due to the
keep-alive messages is given by:

(472 + 8N)

Tfather
+

(736 + 8DN)(DL− 1)

(TsourcesN)
[bps] (2)



IEEE TRANSACTIONS ON MULTIMEDIA 12

where the first term takes into account the messages from a
peer to its cluster-head, while the second one is the contri-
bution of the cluster head. This latter represents the cost of
sending the DN values of SI(P, d) to the (DL − 1) other
sources. The constant values represent the size of control
packets, including the cost of UDP headers, that do not depend
on any system parameter. As a sanity check we computed (2)
when substituting the protocol parameters values reported in
Sect. IV-B: one obtains 839 bps, which amounts to about the
0.2 % of the video bitrate. This estimate confirms the results
shown in Fig. 5(c). The discrepancy is due the fact that (2)
neglects the contributions of control information exchanged
for protocol operations, e.g., join, leave, cluster repair, etc.

To summarize TURINstream is able to obtain low delays, as
those previously reported for tree based topologies, and at the
same time robustness to peer churning and very low control
overhead. The comparison against the mesh based architecture
Coolstreaming reveals that TURINstream performance are at
least as good for CI, while it outperforms Coolstreaming for
both control overhead and delays.

E. Scalability
To test system composed of a larger peer population we

considered three hours long experiments in the lightweight
scenario where peers’ inter-arrival and permanence times are
generated according to an exponential distribution, i.e., the
amount of peers in the system behaves like a M/M/∞ queue.
The exponential distribution parameters have been set to obtain
an average sojourn time T = 120 s and steady-state average
overlay sizes ranging from 100 to 2000 peers.

Fig. 6(a)-6(c) show the performance indexes versus the
average overlay size up to 2000 peers. It can be noticed that
TURINstream is able to scale to thousands of peers without
significant impairment in terms of CI (Fig. 6(a)), delays
(Fig. 6(b)) and signaling overhead (Fig. 6(c)).

F. Mass behavior
We also tested the performance of TURINstream in a more

challenging setting where a large number of peers joins the
application in a short amount of time (flash crowd). To this
end, we considered a system of 1000 peers in the lightweight
scenario. For flash crowds we considered rate of peer arrivals
ranging from 50 to 200 peers/s while for mass departure
we forced a percentage ranging from 10% to 40% of the
peers to leave the application in a time interval of 5 s (these
departures are silent with probability 0.05). The behavior of
CI in presence of a flash crowd starting at time instant 0
is shown in Fig. 7-(a). It can be noted that the application
is robust under sudden massive arrivals. In fact, the initial
unavoidable drop in CI is recovered in a few seconds. When
arrivals occur on average every 5 ms we note that after 30
seconds the average CI is above 0.9 and stabilizes to slightly
less than 1 because no departures occur thereafter. In this
case tC and tS slightly increase to 3 s and 8 s, respectively.
These values must be compared with those experienced with
1000 peers in Fig. 6(b) where tC = 500 ms and tS = 6
s; it turns out that tC is the most sensitive to flash crowds,

TABLE IV
LIMITED UPLOAD BANDWIDTH DISTRIBUTION

class id upload bandwidth [kbps] S1 S2 S3 S4
1 230 10% 20% 30% 40%
2 345 10% 20% 30% 40%
3 460 70% 50% 30% 10%
4 690 5% 5% 5% 5%
5 920 5% 5% 5% 5%

Resource Index 1.09 1.01 0.93 0.84

whereas the impact on tS is limited. Control overhead is only
marginally affected. As a final comment, one has to keep in
mind that these results have been obtained starting from an
empty overlay; the presented results improve if the flash crowd
arrivals occurred on an already well populated network.

The effect of massive departures on CI is reported in
Fig. 7(b); this latter clearly shows that the TURINstream
is able to efficiently cope with the sudden reduction of the
resources experienced by the system when many peers leave
almost at the same time. In particular, it can be noted that
the continuity index never drops below 0.8 even when 40%
of the peers leave within 5 seconds. The delay of about 5 s
with respect to the start of the mass departure event at time
0 is due to the presence of video buffering. In presence of
mass departures delay and overhead values show negligible
variations.

G. Quality of service differentiation under limited resources

To test the ability of TURINstream to provide different
quality of service to peers sharing more resources, we con-
sidered scenarios where the resource index is significantly
lower than what we used in the previous sections, i.e., 1.18.
In particular, we considered a video bitrate R = 420 Kbps, a
root server upload bandwidth equal to 4R and peers upload
bandwidth distributed according to five classes in four scenar-
ios as summarized in Table IV. We considered a lightweight
scenario where the average sojourn time is equal to 360 s
while the inter-arrival time is equal to 720 ms and 360 ms to
obtain an average overlay size equal to 500 and 1000 peers,
respectively. Experiments lasted for three hours; we computed
the average CI, the average number of descriptions Q, and the
startup delay tS obtained by peers in each bandwidth class
for each of the four scenarios. Results presented in Table V
prove that TURINstream allows altruistic peers to enjoy very
high CI and almost full quality video reception. Indeed, this
goal is obtained even in scenarios with very scarce available
resources (S3 and S4) and it is maintained as the number
of peers doubles. The more peers act selfishly the more they
are penalized; it can be noted that peers in class 1 (that
contribute no more than half the video bitrate) enjoy low CI
and Q while the quality of service experienced by class 2
peers (that contribute for three quarters the video bitrate) are
consistently better. It can also be noted that the startup delay
tS is lower for more cooperating peers: this result is due to the
fact that TURINstream is able to accommodate more altruistic
peers into the top levels of the overlay through promotion and
demotion operations.



IEEE TRANSACTIONS ON MULTIMEDIA 13

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  50  100  150  200

Co
nt

in
ui

ty
 in

de
x

Time (s)

50 peers/s
100 peers/s
200 peers/s

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  20  40  60  80  100

Co
nt

in
ui

ty
 in

de
x

Time (s)

departing: 10%
departing: 20%
departing: 30%
departing: 40%

(b)

Fig. 7. TURINstream continuity index for flash crowd arrivals (a), and mass departures (b).

TABLE V
LIMITED UPLOAD BANDWIDTH DISTRIBUTION

S1 S2
500 peers 1000 peers 500 peers 1000 peers

CI Q tS CI Q tS CI Q tS CI Q tS
class 1 64.2 0.84 6.26 62.9 0.83 6.50 59.5 0.68 6.34 58.7 0.67 6.39
class 2 83.1 1.14 5.96 80.2 1.10 6.05 77.3 0.91 6.19 74.8 0.87 6.23
class 3 98.4 1.83 5.07 98.1 1.81 5.13 97.5 1.76 5.19 97.5 1.74 5.09
class 4 99.6 1.95 4.36 99.1 1.93 4.47 99.2 1.92 4.57 99.2 1.92 4.47
class 5 99.6 1.96 4.34 99.2 1.94 4.41 99.4 1.95 4.57 99.3 1.92 4.36

S3 S4
500 peers 1000 peers 500 peers 1000 peers

CI Q tS CI Q tS CI Q tS CI Q tS
class 1 61.9 0.68 6.32 52.8 0.58 6.42 49.4 0.53 6.51 53.9 0.58 6.59
class 2 73.7 0.81 6.13 67.6 0.75 6.35 66.4 0.74 6.19 67.8 0.73 6.33
class 3 98.5 1.85 4.82 95.3 1.66 5.34 98.1 1.80 4.88 95.4 1.69 5.06
class 4 99.5 1.95 4.42 98.3 1.86 4.68 99.0 1.87 4.64 98.4 1.87 4.56
class 5 99.5 1.95 4.36 99.2 1.92 4.55 99.0 1.88 4.61 99.1 1.92 4.48

V. RELATED WORKS

The TURINstream architecture encompasses two key el-
ements, namely the MDC video distribution on a multi-
tree topology and the organization of the peers in clusters.
In the past many multi-tree solutions have been proposed
where the node of the trees are the peers as opposed to
the TURINstream clusters. Here we mention CoopNet [1]
and Splitstream [2] that are two well known approaches. In
CoopNet a set of random random trees is built by using a
centralized approach. All the peers joining and leaving the
overlay exploit a resourceful server node that coordinates the
overlay construction and optimization. Because of the absence
of a distributed and local algorithm for the construction of the
trees the overlay reorganization in response to peer crashes
or bandwidth fluctuation can be costly. Moreover, CoopNet
exploits a high number of video descriptions (up to 16)
to make the offered service reliable. On the other hand,
SplitStream represents a viable distributed approach to the
construction of the multi-tree; in this latter case the use of
interior-node-disjoint trees is proposed, where each peer is
an interior node in at most one tree. This solution limits the
impact of the departure of a peer to a single tree. Nevertheless,
it has the negative drawback that every peer is a leaf node
in the distribution of D − 1 out of the D descriptions. In
presence of churn the quality of service in terms of both delays
and continuity decreases with the height of the tree. This fact

heavily limits the overall quality offered to each peer.

A few peer-to-peer architectures have introduced the con-
cept of clustering in recent years as well. The Zigzag [22]
protocol, which is an enhanced version of NICE [23], builds
a single clustered multicast tree. As opposed to TURINstream
in ZigZag all the peers belong to a cluster at level 0, whose
cluster-head belongs to a cluster at level 1; then level 1 cluster-
head belong also to a cluster in level 2 and so on. As a
consequence, in [22] a top level cluster-head belongs to all
the clusters; on the other hand, in TURINstream each cluster-
head has only a local knowledge of the overlay making it
more robust to peer churn. In particular, TURINstream repair
operations are quicker since the topology is more flexible
and does not require split and merging of clusters as in
ZigZag. Moreover, TURINstream uses a multi-tree for con-
tent distribution whereas ZigZag employs a single multicast
tree. Finally, in [22] simulation based results without the
exploitation of MDC have been reported. [24] presents another
layered cluster architecture very similar to ZigZag from the
point of view of the overlay topology. The focus of this work
is on optimal exploitation of peer bandwidth whereas the
proposed architecture, as most of the structured topologies,
is not resilient to peer churn and departures. In particular, in
dHCPS the cluster-heads represent a single point of failure.
Furthermore, experimental results in [24] have been worked
out for small and stable systems (80 peers on PlanetLab) and



IEEE TRANSACTIONS ON MULTIMEDIA 14

considering a video server equipped with 3.2 Mbps upload
bandwidth capacity; actual scalability and resilience are thus
a concern for this architecture.

Another goal pursued in this work is service differentia-
tion based on peers contribution so as to promote altruistic
behaviors. In [25] a centralized solution that organizes peer
in a direct acyclic graph and adapts the video streaming rate
based on the peer contributions is proposed and analyzed by
simulation. The system proposed in [25] requires a parent node
to transcode incoming stream to serve its children at different
rates. Transcoding is more flexible in terms of the achievable
rates but is highly demanding in terms of computational
resources with respect to the use of MDC, where peers can
simply drop some description to shape the rate.

VI. CONCLUSIONS

In this paper we presented TURINstream, an architecture for
P2P based video streaming. It exploits separation of data and
control overlays, cluster based organization, MDC video cod-
ing, and tree-based control overlay to achieve a high degree of
robustness, low connection, startup and playback delays, high
scalability, low control overhead, and differentiated quality of
services for different classes of users.

TURINstream design has been optimized through an event
driven overlay simulator able to scale up to tens of thousands
of users. A complete prototype of TURINstream has been
developed, deployed and tested on PlanetLab under varying
degree of peer churn, flash crowd arrivals, sudden massive
departures, and upload bandwidth limitation. Moreover, the
prototype has been equipped with state of the art MDC
video coding allowing us to test the streaming protocol under
realistic video traffic. The main finding is that TURINstream
fulfills our initial design goals and proved to be competitive
with other architectures.

Future efforts will be devoted to devise more efficient ex-
ploitation of all the available upload bandwidth of participating
users as well as to cope with the delay in adaptation to
bandwidth fluctuations. Moreover, network aware algorithms
will be considered for optimal cluster formation.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviwers
for their valuable comments and suggestions that contributed
to improve the paper. This work has been partially supported
by the FP7 COAST (FP7-ICT-248036) project, funded by the
European Community.

REFERENCES

[1] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing streaming media content using cooperative networking,” in ACM
NOSSDAV, May 2002, pp. 177–186.

[2] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative En-
vironments,” in ACM SOSP, Oct. 2003, pp. 298–313.

[3] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient peer-to-peer
Streaming,” in IEEE ICNP, Nov. 2003, pp. 16–27.

[4] X. Zhang, J. Liu, B. Li, and Y. S. P. Yum, “CoolStreaming/DONet: a
data-driven overlay network for peer-to-peer live media streaming,” in
IEEE INFOCOM, Mar. 2005, pp. 2102–2111.

[5] X. Hei, Y. Liu, and K. W. Ross, “IPTV over P2P Streaming Networks:
The Mesh-Pull Approach,” IEEE Communications Magazine, vol. 46,
no. 2, pp. 86 –92, Feb. 2008.

[6] V. Vaishampayan, “Design of multiple description scalar quantizers,”
IEEE Trans. on Information Theory, vol. 39, no. 3, pp. 821–834, May
1993.

[7] T. Tillo, M. Grangetto, and G. Olmo, “Redundant slice optimal allocation
for H.264 multiple description coding,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 18, no. 1, pp. 59–70, Jan. 2008.

[8] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A com-
parative study of live p2p streaming approaches,” in IEEE INFOCOM,
2007.

[9] Z. Liu, Y. Shen, S. Panwar, K. Ross, and Y. Wang, “P2P video live
streaming with MDC: Providing incentives for redistribution,” in ICME,
Jul. 2007, pp. 48–51.

[10] N. Magharei and R. Rejaie, “Prime: peer-to-peer receiver-driven mesh-
based streaming,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1052–
1065, 2009.

[11] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the Power of
Pull-Based Streaming: Can We Do Better?” In IEEE Journal on Selected
Areas in Communications, vol. 25, no. 8, pp. 1678–1694, Dec. 2007.

[12] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg, “Epi-
demic live streaming: optimal performance trade-offs,” in SIGMETRICS,
Jun. 2008, pp. 325–336.

[13] RFC 3984, RTP Payload Format for H.264 Video, Feb. 2005.
[14] RFC 2326, Real Time Streaming Protocol (RTSP), Apr. 1998.
[15] RFC 5583,Signaling Media Decoding Dependency in the Session De-

scription Protocol (SDP), Jul. 2009.
[16] R. Bernardini, M. Durigon, R. Rinaldo, L. Celetto, and A. Vitali,

“Polyphase spatial subsampling multiple description coding of video
streams with H.264,” in IEEE ICIP, Oct. 2004, pp. 3213–3216.

[17] E. Akyol, A. Tekalp, and M. Civanlar, “A flexible multiple description
coding framework for adaptive peer-to-peer video streaming,” IEEE
Journal of Selected Topics in Signal Processing, vol. 1, no. 2, pp. 231–
245, Aug. 2007.

[18] C. Zhu and M. Liu, “Multiple description video coding based on
hierarchical B pictures,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 19, no. 4, pp. 511–521, Apr. 2009.

[19] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibil-
ity of supporting large-scale live streaming applications with dynamic
application end-points,” in ACM SIGCOMM, Feb. 2004, pp. 107–120.

[20] VideoLAN project. [Online]. Available: http://www.videolan.org/
[21] Joint Video Team JVT of ISO/IEC MPEG and ITU-T VCEG, Intl.

Standard of Joint Video Specification (ITU-T Rec. H.264, ISO/IEC
14496-10 AVC), Mar. 2003.

[22] D. A. Tran, K. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming,” in IEEE INFOCOM, Mar. 2003, pp.
1283–1292.

[23] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in ACM SIGCOMM, Aug. 2002, pp. 205–217.

[24] Y. Guo, C. Liang, and Y. Liu, “dHCPS: decentralized hierarchically
clustered p2p video streaming,” in ACM CIVR, Jul. 2008, pp. 655–662.

[25] W. Ooi, “Dagster: Contributor aware end-host multicast for media
streaming in heterogeneous environment,” in MMCN, Jan. 2005, pp.
77–90.

Andrea Magnetto was born in Rivoli, Italy, in 1984.
He received his degree in Computer Science in 2006
from the University of Torino. His main research
interests include network modeling/simulation, with
particular interest in peer-to-peer streaming



IEEE TRANSACTIONS ON MULTIMEDIA 15

Rossano Gaeta received his Laurea and Ph.D. de-
grees in Computer Science from the University of
Torino, Italy, in 1992 and 1997, respectively. He
is currently Associate Professor at the Computer
Science Department of the University of Torino.
He has been recipient of the Best Paper award at
the 14-th IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2006)
and at the 26th International Symposium on Com-
puter Performance, Modeling, Measurements, and

Evaluation (PERFORMANCE 2007). His current research interests include
the design and evaluation of peer-to-peer computing systems and the analysis
of compressive sensing and coding techniques in distributed applications.

Marco Grangetto (S’99-M’03-SM’09) received the
Electrical Engineering degree and the Ph.D. degree
from the Politecnico di Torino, Turin, Italy, in 1999
and 2003, respectively. He is currently an Assistant
Professor at the Computer Science Department, Uni-
versity of Torino. His research interests are in the
fields of multimedia signal processing and network-
ing. In particular, his expertise includes wavelets,
image and video coding, data compression, video er-
ror concealment, error resilient video coding unequal
error protection, and joint source channel coding. Dr.

Grangetto was awarded the Premio Optime by Unione Industriale di Torino in
September 2000, and a Fulbright grant in 2001 for a research period with the
Department of Electrical and Computer Engineering, University of California
at San Diego. He has participated in the ISO standardization activities on
Part 11 of the JPEG 2000 standard. He has been a member of the Technical
Program Committee for several international conferences, including the IEEE
ICME, ICIP, ICASSP, and ISCAS.

Matteo Sereno (M’08) was born in Nocera In-
feriore, Italy. He received his Laurea degree in
Computer Science from the University of Salerno,
Italy, in 1987, and his Ph.D. degree in Computer
Science from the University of Torino, Italy, in
1992. He is currently Full Professor at the Computer
Science Department of the University of Torino.
His current research interests are in the area of
performance evaluation of computer systems, com-
munication networks, peer-to-peer systems, sensor
networks, queuing networks and stochastic Petri net

models.


