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Review Article

MICROVASCULAR DYSFUNCTION INDUCED BY REPERFUSION INJURY
AND PROTECTIVE EFFECT OF ISCHEMIC PRECONDITIONING
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Abstract—Hepatic ischemia/reperfusion injury has immediate and deleterious effects on the outcome of patients after
liver surgery. The precise mechanisms leading to the damage have not been completely elucidated. However, there is
substantial evidence that the generation of oxygen free radicals and disturbances of the hepatic microcirculation are
involved in this clinical syndrome. Microcirculatory dysfunction of the liver seems to be mediated by sinusoidal
endothelial cell damage and by the imbalance of vasoconstrictor and vasodilator molecules, such as endothelin (ET),
reactive oxygen species (ROS), and nitric oxide (NO). This may lead to no-reflow phenomenon with release of
proinflammatory cytokines, sinusoidal plugging of neutrophils, oxidative stress, and as an ultimate consequence,
hypoxic cell injury and parenchymal failure. An inducible potent endogenous mechanism against ischemia/reperfusion
injury has been termed ischemic preconditioning. It has been suggested that preconditioning could inhibit the effects of
different mediators involved in the microcirculatory dysfunction, including endothelin, tumor necrosis factor-�, and
oxygen free radicals. In this review, we address the mechanisms of liver microcirculatory dysfunction and how ischemic
preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against
reperfusion damage. © 2002 Elsevier Science Inc.
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INTRODUCTION

What is hepatic microvascular dysfunction?

Hepatic injury secondary to warm ischemia and reperfu-
sion is an important clinical issue. It has been implicated
in the pathogenesis of a variety of clinical conditions
including trauma, thermal injury, hypovolemic and en-
dotoxin shock, reconstructive vascular surgery, liver
transplantation, and liver resectional surgery [1–7].

A considerable number of experimental studies have
indicated that ischemia/reperfusion-induced liver injury
occurs in a biphasic manner [5,8,9]. Data obtained by
several different research groups suggest that in both
early and late phases of reperfusion injury, oxidative
stress is one of the main pathogenic mechanisms
[5,10,11]. The early phase, which occurs between 0.5
and 4 h from the onset of reperfusion, appears to be
associated with the generation of reactive oxygen species
(ROS) by the activated Kupffer cell and by the reduced
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respiratory chains in hepatocytes and endothelial si-
nusoidal cells [5,8,12–14]. Furthermore, during this
initial period, neutrophils are primed and activated. In
the late phase of injury, between 6 and 24 h from
reperfusion, an evolving inflammatory process occurs,
which is mediated by oxidants of extrahepatic cellular
origin [8,12,15].

Although the concept of lethal reperfusion damage of
parenchymal cells is not universally accepted, it is be-
coming widely recognized that the hepatic microvascu-
lature, i.e., the sinusoidal space with the lining endothe-
lium, is particularly vulnerable to the deleterious
consequences of ischemia and reperfusion [16–19].

CELLULAR AND MOLECULAR EVENTS MAINLY

RESPONSIBLE FOR THE HEPATIC MICROVASCULAR

DYSFUNCTION

Microvascular dysfunction results from a series of
events that involve the interaction of intravascular blood
cells, i.e., neutrophils, with nonparenchymal cells, endo-
thelial and Kupffer cells, and are mediated by the syn-
thesis and release of adhesion proteins, cytokines, reac-
tive oxygen species (ROS), nitric oxide (NO), and
endothelins (ET) [20–22] (Fig. 1A, B).

It is important to note that many of the ischemia-depen-
dent cell changes, i.e., depletion of energy stores, increase
of cellular volume due to altered ion homeostasis, reduced
production of certain bioactive molecules (e.g., prostacy-
clin, nitric oxide), and increased formation of others (e.g.,
endothelin, thromboxane A2), are exacerbated by reoxy-
genation. Changes include: increase of swelling, lifting of
endothelial cells from the underlying basement membrane,
vasoconstriction as a result of a net imbalance between NO
and endothelin-1 production, primed-neutrophil entrap-
ment, and platelet aggregation. The entrapment of neu-
trophils favors homo-type (neutrophil-neutrophil) and
hetero-type (neutrophil-platelet) aggregations with fur-
ther worsening of flow hindrance in the sinusoidal space
and prolongation of hypoxic conditions [20,22,23].

In this scenario, Kupffer cells become activated.
These resident phagocytes produce ROS and proinflam-
matory mediators, such as interleukins and TNF-�, en-
hancing the expression of endothelial cell adhesion mol-
ecules, such as ICAM-1 and P-selectin, and priming
circulatory neutrophils [24–27]. On the other hand, ac-
tivated Kupffer cells also polarize and protrude into the
sinusoidal lumen, where they come into close contact
with circulating blood cells and interfere with the move-
ment of primed and stiffened neutrophils.

Fig. 1. Hepatic microvasculature. Cell components and their relationships under the basal condition (A) and during the course of
microvascular dysfunction (B).
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Another mechanism involved in the pathogenesis of
the microvascular dysfunction is the local complement
activation with the formation of chemotactic and cyto-
toxic products. Whereas C5a contributes to cell damage
by means of neutrophil recruitment and activation, plate-
let accumulation, and Kupffer cell activation, MAC dep-
osition at the cell surface aggravates membrane damage
by its direct cytolytic effect [28–33].

Accordingly, the ischemia/reperfusion-induced mi-
crovascular dysfunction can be substantially explained
by means of: (i) imbalance between the rate of NO
production and the release of endothelin-1; (ii) alteration
of the ratio between NO and superoxide anion; (iii)
degree of neutrophil adhesion and activation.

Imbalance between NO and endothelin levels in the
endothelial sinusoidal cells

ET has been reported to provoke contraction of the
stellate cells in the sinusoid, via phospholipase C activa-
tion and interactivations with membrane ion channels,
and subsequently to cause sinusoidal constriction [34–
36]. On the other hand, NO, especially that derived from
endothelial nitric oxide synthase (eNOS) in sinusoidal
endothelial cells, is able to counter the vasoconstriction
effects of stellate cell activation, thus limiting perfusion
deficits [37,38]. However, in the early stages of reperfu-
sion, the increased concentration of ET reported in both
plasma and liver parenchyma, as well as the low con-
centration of NO, most probably due to the low intracel-
lular levels of NADPH and oxygen after the ischemic
period [20], contribute both with a decrease in liver
blood flow [39,40].

Imbalance between NO and superoxide anion
production by the endothelial sinusoidal cells

Under normal physiological conditions, both NO and
superoxide anion are produced by endothelial cells, with
NO production exceeding superoxide anion generation
by two/three orders of magnitude. This allows NO to (i)
effectively scavenge intracellular superoxide anion, (ii)
prevent platelet aggregation, and (iii) minimize adhesive
interactions between neutrophils and the endothelial cell
surface, increasing microvascular permeability [38].

Following ischemia and reperfusion insult, the forma-
tion of superoxide anion exceeds NO because of the
overproduction of superoxide anion and/or the dramati-
cally reduced bioavailability of NO due to (i) low intra-
cellular levels of cofactors for the synthesis of NO
(NADPH and oxygen), (ii) L-arginine breakdown by the
large amount of arginase released after ischemic insult,
(iii) inhibition of endothelial cell NO synthase activity,
and (iv) rapid inactivation of NO by superoxide anion.

Thus, under these conditions many, if not all, of NO
beneficial physiological actions are lost [38,41–46].

Neutrophil activation

Activation of neutrophils has been implicated in
the hepatic microvascular dysfunction and parenchy-
mal damage associated with ischemia/reperfusion
[8,9,11,12,15,47,48]. This is based on the observation
that preventing neutrophil influx into tissues, either by
depleting the number of circulating neutrophils or by
preventing neutrophil adhesion, significantly reduces
microvascular dysfunction and organ injury in animal
models of ischemia/reperfusion damage [49,50].

Activated neutrophils cause endothelial and hepato-
cellular cell damage through the release of oxidants and
proteases. The primary neutrophil oxidant-generating
pathway involves NADPH oxidase. Although NADPH
oxidase-derived superoxide anion and its dismutation
product hydrogen peroxide are the reactive oxygen spe-
cies primarily formed, the concomitant release of myelo-
peroxidase results in the formation of hypochlorous acid
as the major oxidant. Due to the high levels of reactive
oxygen species occurring in the proximity of the sinu-
soidal endothelial and parenchymal cells, oxidative
breakdown of the membrane PUFAs is one of the main
molecular mechanisms of liver cell injury during reper-
fusion after ischemia [51–54]

In addition to the generation of ROS, activated neu-
trophils release a number of proteases and hydrolytic
enzymes by granule exocytosis, which may be directly
cytotoxic to liver cells. It has been reported that serine
proteases, such as elastase and cathepsine G, are mainly
responsible for the injury [55–57].

ISCHEMIC-PRECONDITIONING AS A STRATEGY FOR

ATTENUATING HEPATIC MICROVASCULAR

DYSFUNCTION RESULTING FROM

ISCHEMIA/REPERFUSION INJURY

Over recent years, a surgical strategy known as isch-
emic-preconditioning has been developed to reduce isch-
emia/reperfusion injury. By this procedure, an organ is
made resistant to the deleterious effects of sustained
ischemia and reperfusion by previous exposure to re-
peated short periods of ischemia, separated by intermit-
tent reperfusion. The protective effect of ischemic-pre-
conditioning was first described in the heart, and has
since been demonstrated in many other organs [58–65].

While originally described as an immediate adapta-
tion to brief vascular occlusion, ischemic precondition-
ing actually affords two types of protection, which differ
in time frame and mechanisms. For this reason, distinc-
tion is made between early and delayed preconditioning.
The effect of early preconditioning develops within min-
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utes of reperfusion and lasts for 2 to 3 h. Delayed
preconditioning becomes apparent 12–24 h after reper-
fusion and the effect lasts 2 to 3 d. Further, the protective
effects of early preconditioning are independent of pro-
tein synthesis, while the effects of delayed precondition-
ing are dependent on altered gene expression and syn-
thesis of new proteins [66,67].

Protective mechanisms of early ischemic
preconditioning

The molecular basis for ischemic preconditioning
consists of an ordered series of events. In response to the
triggers of ischemic preconditioning, a signal must be
rapidly generated that is transduced into an intracellular
message and amplified to influence the effector mecha-
nism of protection (Fig. 2).

It seems likely that substances released from the isch-
emic organ act in a paracrine fashion to activate the
protective mechanism. Experiments, mainly performed
in the heart, suggest a number of substances as potential
ligands, including adenosine, bradykinin, catechol-
amines, reactive oxygen species, opiods, angiotensin II,
and NO [68]. With regard to the liver, adenosine has thus
far been considered the major player in triggering pre-
conditioning [62,63,65,69,70]. Adenosine is a break-
down product of ATP that is released in large quantities
into the extracellular space within seconds of the onset of
ischemia.

Adenosine exerts its physiological effect through the
interaction with four distinct types of purinergic recep-
tors designated A1, A2a, A2b, and A3.

A1 and A2 receptors have been chiefly implicated in
the ischemic preconditioning of the myocardium and
liver, respectively [62,63,65,69,71].

The mechanisms by which adenosine, released during
ischemic preconditioning, can limit reperfusion injury
are still uncertain. Adenosine has been shown to inhibit
neutrophil oxidative metabolism and adhesion to endo-
thelial cells, to increase membrane stability and energy
production by promoting glucose transport, and to reduce
Ca2� influx through the activation of ATP-dependent K�

channels [72–75]. However, the role of all biochemical
effects in adenosine-afforded protection is yet to be de-
fined.

An increasing mass of data points to the activation of
adenosine receptors (I and II) coupled to G proteins as
the pathway that initiates the preconditioning response.
After activation, the receptor-coupled G protein dissoci-
ates and in turn activates a membrane-bound phospho-
lipase (phospholipase C or D). These phospholipases
cleave phosphatidylinositol biphosphate into two intra-
cellular second messengers, inositol triphosphate, which
releases Ca2� from nonmitochondrial intracellular
stores, and diacylglycerol (DAG), which activates spe-
cific isoforms of protein kinase C (PKC) [76,77].

Fig. 2. The molecular basis of ischemic preconditioning. In this diagram are represented the mechanisms thought to be responsible to
induce the first and second windows of protection. See text for explication.
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PKC is well placed to play a key role in cellular
protection. The kinase is known to regulate a number of
biological processes such as metabolism, ion transport,
and gene expression. PKC is a family of at least 12
serine/threonine kinases. Each protein contains four con-
stant regions responsible for activation and enzymatic
action, as well as five variable regions responsible for
translocation and substrate binding. PKC isoenzymes can
be divided into three broad categories: conventional,
novel, and atypical. The conventional PKCs (�, �I, �II,
and �) require Ca2�, DAG and phospholipids for acti-
vation. The novel PKC isoforms (�, �, �, �) lack the
calcium-binding region, so these subtypes are not depen-
dent on Ca2� for activation. Activation of isoenzymes of
the atypical PKC group (�, 	, 
, �) is also independent
from calcium; however, atypical isoenzymes lack the
Zn2� finger region required for binding DAG and 3'-
phosphoinositides may instead be the activators of these
atypical PKCs. Recent reports indicate that the novel
PKC isoforms, particularly �, �, and �, may be impli-
cated in the protective effect of ischemic precondition-
ing, whereas the classical isoforms contribute to the
detrimental effects of ischemia/reperfusion [78–80].
Any way they are activated, novel PKCs afford phos-
phorylation of effector molecules, most probably ATP-
sensitive K� channel (KATP), 5'-nucleotidase, and
cAMP-protein kinase A activation (PKA).

It has been proposed that in the mitochondria potas-
sium channel openers target an ATP-sensitive K� chan-
nel implicated in the regulation of mitochondrial ion and
volume homeostasis. Under normoxic conditions, K�

channel opening is regulated by ATP levels. Activated
PKC isoforms phosphorylate K� channels, changing the
stoichiometry of the ATP binding sites and favoring their
opening to the ATP concentration seen in early ischemia.
Opening of these channels leads to preservation of intra-
mitochondrial calcium homeostasis and ATP levels, thus
improving viability.

The PKC-dependent translocation of 5'-nucleotidase
from the cytosol to the plasma membrane may also play
an important role in the protective effects induced by
ischemic preconditioning. Indeed, 5'-nucleotidase has
been shown to stimulate production of adenosine from
AMP. A cAMP increase is thought to reduce postisch-
emic injury by preserving the endothelial barrier func-
tion. In addition, it has been reported to block leukocyte
adhesion by reducing the expression of adhesion mole-
cules, superoxide radical production, and phagocytic ac-
tivity of neutrophils [71,77–80].

On the other hand, during the ischemic precondition-
ing procedure, cellular consumption of ATP leads to
accumulation of AMP [81]. The involvement of AMP in
the stimulation of AMP-activated protein kinase
(AMPK) is well known. Once activated, AMPK re-

sponds by phosphorylating multiple downstream sub-
strates, with the purpose of switching on catabolic path-
ways that generate ATP, while switching off anabolic
pathways that consume ATP. Thus, through the cAMP-
activated PKA, ischemic preconditioning could promote
energy-saving mechanisms [81–83].

Protective mechanisms of delayed ischemic
preconditioning

While the triggering and amplification of signals for
protection seem to be as in early preconditioning, the
effectors of this second window are probably different,
but still far from certain. The time frame within which
the second window confers protection lends itself to the
theory that altered gene expression, with the consequent
synthesis of new proteins, is the protection method.
However, it is not possible to exclude posttranslational
modifications or changes in compartmentalization of ex-
isting proteins as the mechanisms involved in the de-
layed protective response [66–68].

The transcription-dependent synthesis of proteins,
which plays a significant role during the second window
of protection, remains practically unknown; however, it
has been demonstrated that after preconditioning, the
PKC� isomer migrates to the nucleus, inducing nuclear
transcription factors. On the other hand, a cytoplasmic
transcription factor, nuclear transcription factor B
(NF�B), has also been implicated in the delayed precon-
ditioning. Activation and nuclear translocation of these
transcriptional factors govern the expression of protec-
tive genes responsible for late preconditioning [84–87].
Thus, unlike early preconditioning, late preconditioning
requires increased synthesis of new proteins. The time
frame of the enhanced tolerance to reperfusion damage,
which requires 12 to 24 h to develop and lasts for 3–4 d
is also consistent with the synthesis and degradation of
protective proteins. Several proteins have been proposed
as possible effectors, including nitric oxide synthase,
cyclooxygenase-2, aldose reductase, antioxidant en-
zymes (particularly Mn-SOD), and heat shock proteins
[67,68] (Fig. 2).

The precise mechanism by which ischemic precondi-
tioning exerts its hepatoprotective effect is still under
investigation. Recent studies have demonstrated that
ischemic preconditioning induces activation of adeno-
sine A2 receptors, which in turn, by induction of NO
synthesis, confer cytoprotection against postischemic
damage [63,65]. Along these lines, it has been shown
that inhibition of NO synthesis with N-nitro-L-arginine
methylester, an L-arginine analogue that competitively
blocks NO synthase, abolished the protective effect of
preconditioning, whereas administration of a NO donor
or L-arginine to ischemic and reperfused livers simulated
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the protective effect of preconditioning against hepatic
injury [63,65].

Ischemic-preconditioning has also been observed to
prevent the TNF-� release from Kupffer cells, as well as
preventing generation of hepatic ET, in response to isch-
emia/reperfusion, thus attenuating the microvascular
dysfunction of the liver; the mechanism is probably NO
modulated. Moreover, in remote organs like the lung,
small intestine, and pancreas, hepatic preconditioning
cancelled the increase in P-selectin upregulation, pre-
venting recruitment of circulating neutrophils and thus
reducing oxidative stress and microvascular disorders in
these organs, after one cycle of hepatic ischemia/reper-
fusion. Because administration of antibodies against P-
selectin or TNF-� prior to ischemia was seen to have the
same effect as preconditioning, it has been suggested that
the blockade of P-selectin upregulation probably results
from inhibition of systemic TNF release from Kupffer
cells [88]. Moreover, recently it was reported that isch-
emic preconditioning was able to increase the hepatic
tolerance against reperfusion injury by attenuating the
release of ET [89] and the production of ROS, either by
blocking the xanthine-oxidase pathway or by preserving
the mitochondria structure [90,91]. In this last work it
was also reported that well-preserved mitochondria were
associated with an attenuated release of cytochrome c to
the cytoplasm, as well as with a low index of caspase-3
activity [91]. Therefore, ischemic preconditioning ap-
pears to be a useful strategy to downregulate the molec-
ular pathways involved in liver apoptosis.

Preconditioning also appears to be a useful strategy
against the deleterious effects of cold storage-reperfusion
injury, since it was observed that ischemic-precondi-
tioned grafts had reduced levels of transaminases and
TNF-�, as well as augmented bile flow and improved
tissue blood flow [92–94]. Accordingly, in a recent pub-
lication it was observed that preconditioned rat livers
were more tolerant against cold-storage-reperfusion in-
jury, most probably due to a decreased production of
O2

�• by Kupffer cells. Moreover, the authors showed
also that ischemia to half the liver confers protection to
the other half, providing that heterologous precondition-
ing could be a tool to protect liver tissue against isch-
emia-reperfusion injury without imposing ischemia on
the target tissue [95].

In liver surgery, the reperfusion injury is one of the
most serious insults that affect the organ viability and
ultimately postsurgical results. Hepatic ischemic precon-
ditioning here described could be of clinical interest
because this surgical approach appears as a potential
therapeutic strategy to attenuate the postreperfusion
damage.
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ABBREVIATIONS

AMPK—AMP-activated protein kinase
DAG—diacylglycerol
eNOS—endothelial nitric oxide synthase
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ET—endothelin
HSP—heat shock proteins
H2O2—hydrogen peroxide
iNOS—inducible nitric oxyde synthase
I�B—inhibitor of kappa B
ICAM-1—intercellular adhesion molecule 1
IL-1—interleukin-1
O2

�•—superoxide anion
Pi-K ATP channel—phosphorylated ATP-sensitive potas-

sium channel

Mn-SOD—manganase superoxide dismutase
MAC—membrane attack complex
NO—nitric oxide
NF-�B—nuclear factor kappa B
PLC—phospholipase C
PLD—phospholipase D
PKC—protein kinase C
PUFAs—polyunsatured fatty acids
ROS—reactive oxygen species
TNF-�—tumor necrosis factor alpha
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