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Abstract

Neural membrane potential data is necessarily conditionalon observation being prior

to a firing time. In a stochastic Leaky Integrate and Fire model this corresponds to

conditioning the process on not crossing a boundary. In the literature simulation and

estimation has almost always been done using unconditionedprocesses. In this paper

we determine the stochastic differential equations of a diffusion process conditioned

to stay below a levelS up to a fixed timet1 and of a diffusion process conditioned to

cross the boundary for the first time att1. This allows simulation of sample paths and

identification of the corresponding mean process. Differences between the mean of free

and conditioned processes are illustrated as well as the role of the noise in increasing

these differences.



1 Introduction

In simulation or estimation for a Leaky Integrate and Fire model, a fact that is com-

monly neglected is that neural membrane data comes from a time interval between a

resetting and the occurrence of a spike. Hence each piece of recorded data contains

further information in addition to its value: a spike has notyet happened on the time

interval since the previous resetting, and all the data recorded until that time must be

subthreshold. Mathematically this means that data must be modeled as coming from

a process conditioned to remain below a firing level. The probabilistic features of the

conditioned process are different from those of an unconditioned one. Serious errors

may arise from confounding these processes. Analoguous problems with a variety of

conditioning constraints arise in different application contexts such as finance (cf. for

example Li et al. (2004)).

In this paper we show how to simulate while taking this conditioning into account.

We also illustrate the significance of errors which may ariseif this point is neglected. A

similar situation, regarding the possible confusion betweenE(1/T ) and1/E(T ), where

T denotes the spiking time, was clarified in Lánsḱy et al. (2004).

Data from the evoked potential of a neural membrane is often regarded as coming

from a stochastic Leaky Integrate and Fire model. There exist many neuronal models

and their complexity ranges from oversimplified to highly realistic biophysical models

(Segev (1992)). The Leaky Integrate and Fire stochastic model is considered a good

compromise between tractability and realism. It is derivedfrom an original model

of membrane depolarization introduced by Stein (Stein (1965)). In Stein’s model the

membrane potential evolves due to incoming excitatory and inhibitory inputs, which

are assumed to be of constant amplitude and to occur in time according to Poisson

processes. Spontaneous decay between inputs is a further feature of this model. A

spike is produced by the neuron when a boundary is attained.

The pioneering work of Stein has motivated a large literature studying diffusion lim-

its of his model of membrane potential evolution (cf. Burkitt(2006a), Burkitt (2006b),

Sacerdote et al. (2010) and papers cited therein). Diffusion approximations avoid some

of the mathematical difficulties of the original discontinuous model. These models

take into account the dynamic and stochastic aspects of neuron behaviour. The mem-
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brane potential of interest is represented by, and is the solution of, a stochastic differen-

tial equation (SDE) and the spike time corresponds to the first crossing of the process

through a boundary. Various diffusion processes can be usedto model the membrane

potential evolution, depending upon the number of specific features one wishes to in-

troduce in the model. The Ornstein-Uhlenbeck process is a common choice (cf. Ĺansḱy

et al. (1995)).

A fact that has not yet been sufficiently emphasized for LeakyIntegrate and Fire

models is that all data is from observation prior to neuron firing. The few papers con-

cerning this problem consider the estimation of the parameters of the model. In Bibbona

et al. (2009) and Bibbona et al. (2010a) it is shown that if one ignores the fact that the

data is produced under the constraint of not crossing a boundary, the resulting estimator

of the input will be biased. The estimation problem is also the subject of a recent paper

(Bibbona et al. (2010b)), where samples from intracellular recordings, at discrete times,

of the membrane potential are used for the estimation problem. The authors propose

maximum likehood estimators of the parameters of an Ornstein-Uhlenbeck and of other

Leaky Integrate and Fire models, taking into account the presence of the boundary.

In terms of the model, one should describe the membrane potential behaviour be-

fore a boundary crossing time. Consequently, any appropriate model for data must be

conditioned on not having crossed the boundary. We introduce the termconstrained

process for such a process. Alternatively, depending on the question at hand, one may

observe the process until the spike time. In this case the appropriate model must be

conditioned on the boundary,S, being first crossed at the end of the observation time.

Such a process we call aconstrained bridge to S, to emphasize the bridge nature of a

process ending atS.

In this paper we compute the SDEs of diffusion processes conditioned to stay below

a threshold starting from diffusions defined by particular SDEs. Mathematically, the

conditioning can be interpreted as an absolutely continuous change of measure. Its ef-

fect on the original SDE is to add a term to the drift coefficient and to leave the diffusion

coefficient unchanged. We illustrate the differences between the original membrane po-

tential model and its conditioned version with plots of computed sample paths and with

computed mean paths.

These conditioned orconstrained SDEs correspond more closely to real data than
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do the unconstrained models currently in use.

Simulated samples are essential for the evaluation of statistical procedures. Knowl-

edge of these constrained SDEs is essential for the simulation of the sample paths deter-

mined by Leaky Integrate and Fire models and by their bridges. The typical approach

to the simulation of subthreshold sample paths up to a timet1 makes use of the rejection

method: one simulates sample paths on(0, t1) and rejects paths crossing the boundary

at a timet ∈ (0, t1). This method is computationally expensive and becomes impossible

in the case of the simulation of paths up to the spike time whenthe SDE for the free

bridge process is not known. Furthermore, in this way one gets sample paths from a

process which is not normalized. In Section 2 we define thisabsorbed process while we

define asconstrained its normalized version. The availability of SDEs for constrained

processes and for the constrained bridge toS facilitates the simulation of these samples,

avoiding the computational cost of the rejecton method.

In the next Section we introduce a number of processes related to an initial process

of interest. Our mathematical results are stated in Section3 in terms of only two of

these, theconstrained process and theconstrained bridge to S. The remaining processes

appear in computations. The proof of these results is postponed to the Appendixes. In

Section 4 we illustrate, through a set of examples, the consequences of our mathematical

results on the Integrate and Fire and on the Leaky Integrate and Fire models.

2 Background and notation

While our primary interest is in processes related to the Ornstein-Uhlenbeck process,

it is useful to introduce some ideas and notation in terms of general diffusions that can

include other Integrate and Fire and Leaky Integrate and Fire type models.

In order to make the meaning of our notation very clear, in this Section we in-

troduce a number of processes, related to a diffusion process of interest. First, let us

describe and motivate these processes informally and mention their names to facilitate

the reading of what follows. The first of these is the originalmembrane potential diffu-

sion process, usually started at 0, altered by excluding those sample paths which cross

the positive levelS before the observation timet. We call this theabsorbed diffusion.

The total probability mass of this process, at any timet > 0, is less than 1, since the
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excluded paths take some probability mass away. The next process we introduce is

the constrained process. This is formed by conditioning on the path not crossing the

level S during the fixed time interval[0, t1]. The probability mass of this process up to

each timet < t1 is 1. Up to this point we have three types of process. The original

membrane potential process may be calledfree, next theabsorbed process, next the

constrained process. An example of sample paths of the absorbed process and of the

constrained process is shown in Figure 1. Corresponding to each of the previous pro-

cesses, we introduce a bridge process. The idea of abridge process is that it begins and

ends at definite given points. In Figure 2 we illustrate sample paths of the free bridge

process and of the constrained bridge process in S where the original free process is the

Ornstein-Uhlenbeck process.

Since our processes all begin at given points, the corresponding bridge process can

be defined by additional conditioning on the given end point.A special role will be

played by bridge processes which end at the space point whichis the firing threshold,

S, and at the random firing time,T . We call thesebridges to S, even though the ending

time is the random threshold crossing timeT and not a fixed time.

Now we proceed more formally. We consider a time homogeneousdiffusion process

X(t) = {X (t) , t ≥ t0 |X (t0) = x0} with values in the intervalI = (r1,r2), r1,r2 ∈ R.

In the case of the Ornstein-Uhlenbeck process,r1 = −∞, r2 = ∞. The processX(t)

is the solution of an SDE

dX (t) = a (X (t)) dt + σ (X (t)) dW (t) , (1)

X(t0) = x0.

The processX (t) is characterized by its drift and diffusion coefficient functions,

a(x) andσ(x). Each pair of coefficient functions identifies a specific diffusion process.

HereW (t) is a standard Wiener process. We assume that the drift and thediffusion co-

efficients are such that equation (1) admits a unique solution with values in the interval

I. For the processes we work with, the transition probabilitydensity function

f = f (x, t |y, s) =
∂P (X(t) ≤ x |X(s) = y )

∂x

is the unique solution of the backward Kolmogorov equation

∂f

∂s
+ a (y)

∂f

∂y
+

σ2 (y)

2

∂2f

∂y2
= 0, (2)
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with the initial condition (cf. Karlin et al. (1981))

lim
s→t

f (x, t |y, s) = δ (x − y) . (3)

The firing threshold for a stochastic membrane potential model is represented here by a

levelS ∈ I, with x0 < S. The firing time corresponds to the first passage time (FPT)

T = inf {t : X (t) ≥ S |X (t0) = x0} .

We denote the probability density function ofT by g:

g (t |x0, t0 ) =
∂P (T ≤ t |X (t0) = x0 )

∂t
.

Now we introduce a number of processes associated with a diffusion process limited

by a boundary levelS. Some of them represent the evolving membrane potential data,

while others play supporting roles.

Absorbed process The process obtained by restricting the diffusion defined by

(1) not to cross the levelS,

Xa(t) = {Xa (t) : X (t) , X (s) < S,∀s < t |X (t0) = x0} ,

is called theabsorbed process. Its sample paths are the subset of the sample paths of

X(t) characterized by not having crossed the boundary before thetime t. The transition

probability density of this process,fa (x, t |y, s), is, again, the unique solution of (2)

but with the further boundary condition, for eachs < t, x < S,

lim
y→S

fa (x, t |y, s) = 0.

Generally, the transition probability density,fa, is not known in closed form, and a

numerical procedure is necessary to get its values from the equation (cf. Siegert (1951))

fa (x, t |y, s) = f (x, t |y, s) −

∫ t

s

g(τ |y, s)f (x, t |S, τ ) dτ. (4)

The integralP a (S, t |y, s) of fa (x, t |y, s), with respect tox, betweenr1 andS

is not equal to 1 whent > s. The densitiesfa (x, t |y, s) andg (S, t |y, s) are related

through the equation:
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P (T > t |X (s) = y ) := P a (S, t |X (s) = y ) =

∫ S

r1

fa (x, t |y, s) dx

= 1 −

∫ t

s

g (u |y, s) du. (5)

When we record the evolving membrane potential of spiking neurons we are looking

at sample paths of an absorbed process. However, due to (5), their total probability mass

is not normalized. It is convenient to introduce the normalized version of the absorbed

process, which we call theconstrained process.

Constrained process The constrained process is of primary importance to our

aim of identifying the membrane potential process prior to afiring time. It is defined

for t ∈ [t0, t1] as

Xc (t) = {Xc (t) : X (t) , t0 < t < t1 |X (t) < S, t0 < t < t1; X (t0) = x0} .

The constrained process is conditioned or constrained to remain under the threshold

level S up to the fixed timet1. We denote byf c
t1

(x, t |y, s) its transition probability

density, and byP c
t1

(X (u) , u ∈ (t0, t1) |X (t0) = x0 ) the measure of the constrained

process. In our computationst0 will be fixed, usually at0, whereast1 will take various

values.

Bridge processes (free, absorbed and constrained) The bridge process that ends

when it attains for the first time the threshold of the membrane potential is a central ob-

ject of our study. Indeed, it represents an intracellular recording from a neuron observed

up to the spike time. A step towards its definition is the simple bridge process, which

is conditioned to begin at(x0, t0) and end at(z, u), z ∈ (r1, r2), u ∈ (t0,∞). Thefree

bridge process is denoted by:

(z,u)
(x0,t0)X (t) = {X (t) : X (t) , t0 < t < u |X (u) = z; X (t0) = x0} .

The fact that this process, which we describe as obtained by conditioning on a set

of measure zero, is indeed defined, is estabilished in Karatzas et al. (1991). Its transi-

tion probability density is denoted byf (x, t |y, s; z, u). We call this process ”free”

since it is not conditioned further. We denote by(z,u)
(x0,t0)X

a (t) and (z,u)
(x0,t0)X

c (t) the
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bridges of the absorbed and constrained versions of the processX(t), arising in the

presence of the boundary. Their transition probability density functions will be denoted

asfa (x, t |y, s; z, u) andf c (x, t |y, s; z, u), respectively. Note that for these processes

z < S.

The transition probability densities of the processX(t) and that of its bridge(z,u)
(x0,t0)X (t)

are related through (cf. Giraudo et al. (1999)):

f (x, t |y, s; z, u) =
f (x, t |y, s) f (z, u |x, t)

f (z, u |y, s)
.

Similar relationships hold for the transition probabilitydensities of the absorbed and

the constrained processes.

Bridges to S (three additional processes: free, absorbed, and constrained) Fi-

nally we come to the case of most importance in connection with the sample paths of

membrane potential processes up to the moment of firing, the case whenz = S. In

particular we define the bridge process:

(S,u)
(x0,t0)X (t) = {X(t) : X(t), t0 < t < u |X(u) = S; X(s) < S,∀s < u; X0 = x0} ,

with transition probability densityf (x, t |y, s; S, u).

To define its absorbed and constrained versions we setz = S in the absorbed and

constrained bridges with endpointz at timeu, and we denote them as(S,u)
(x0,t0)X

a (t) and
(S,u)
(x0,t0)X

c (t), respectively. The corresponding transition probabilitydensities will be de-

notedfa (x, t |y, s; S, u) andf c (x, t |y, s; S, u). We give the nameconstrained bridge

to S to the process conditioned by the event that the crossing ofS is at the first passage

timeT . This is the same as the free process stopped atT , conditioned onT .

Wiener and Ornstein-Uhlenbeck processes Although different diffusion pro-

cesses may be used to describe the membrane potential time evolution, the Ornstein-

Uhlenbeck process is surely the best known. A simplificationof the Ornstein-Uhlenbeck

model can be obtained by disregarding the spontaneous decayof membrane potential

toward the resting potential, in the absence of incoming input. The model correspond-

ing to this case is the Wiener process. This model, also knownas the Integrate and Fire

model, was first proposed by Gerstein and Mandelbrot who gaveexperimental motiva-

tions for it (cf. Gerstein et al. (1964)). Later it was discarded as too simple but it is
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still considered helpful for intuition about the more complex dynamics of the Ornstein-

Uhlenbeck model. This last model is generally referred to asthe Leaky Integrate and

Fire model. In Sections3.1, 3.2 we discuss our results for the Integrate and Fire model,

characterized by:

a (y) = µ,

σ (y) = σ,

whereµ ∈ R, σ > 0, and for the Leaky Integrate and Fire model, characterized by:

a (y) = −
y

θ
+ µ,

σ (y) = σ,

whereµ ∈ R, θ > 0 andσ > 0. The constant drift,µ, common to the two models,

specifies the deterministic input to the membrane potential. The diffusion coefficient

specifies the variability of the noise term. The constantθ quantifies the spontaneous

decay of the membrane potential toward its resting value in the absence of external

input. The processes are generally assumed to originate atx0 = 0 because a simple

shift can always translate the biological initial value to zero. A large literature exists on

the role of these models in neural transmission (cf. for example Bulsara et al. (1994),

Longtin et al. (1991), Shimokawa et al. (1999)). In both models the spiking time is taken

to be the first passage time of the process through a thresholdS > 0. In Appendix 1 we

list well known results about these processes that will be used.

3 Results

In Section 2 we defined and estabilished notation for severalstochastic processes as-

sociated with the general Leaky Integrate and Fire model. One of the most central to

this paper is theconstrained process, Xc(t), which is conditioned to remain under a

threshold levelS up to a fixed timet1. In this Section we identify the drift and diffusion

coefficients of theconstrained process as well as those of theconstrained bridge pro-

cess and theconstrained bridge to the threshold S and evaluate these for the Integrate
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and Fire and for the Leaky Integrate and Fire models. We use the fact that the drift and

diffusion coefficients appearing in the SDE (1) are the same as the functionsa (·) and

σ (·) appearing in the Kolmogorov backward equation (2).

Consider the joint probability of the processX(t) with the indicator of the event

{T > t}. The distribution ofXc(t) is obtained from this by dividing byP (T > t1),

whereX(t) starts at(y, s) and t1 > t. The joint distribution can be factored using

the Markov property ofX(t) into the joint distribution ofX(t) with the indicator of

{T > t} and the probability thatT > t1, starting from(x, t). Hence the transition prob-

ability density functionf c
t1

(x, t |y, s) of the processXc(t), t ∈ [t0, t1], is related with

the transition probability density functionfa (x, t |y, s) of the processXa (t) through

the following equation:

f c
t1

(x, t |y, s) =
fa (x, t |y, s) P (T > t1 |X(t) = x)

P (T > t1 |X(s) = y )
. (6)

A more formal derivation of (6) is in Appendix 2.

For many purposes it is desirable to simulate paths of constrained processes. The

method which has been used up to now produces sample paths of the absorbed process

by generating a large number of samples from equation (1) andthrowing away any

path which crossesS before timet. This is a computationally expensive approach.

We propose the following method for simulating the constrained process. First, we

derive the coefficients appearing in the Kolmogorov equation satisfied by the transition

probability density functionf c
t1

(x, t |y, s) of the processXc(t) on the time interval

[t0, t1], which reads (see Appendix 2)

∂f c
t1

∂s
+

[

a (y) + σ2 (y)
∂

∂y
ln P a (S, t1 |y, s)

]

∂f c
t1

∂y
+

σ2 (y)

2

∂2f c
t1

∂y2
= 0

with the initial condition

lim
s→t

f c
t1

(x, t |y, s) = δ (x − y)

and boundary conditions

lim
y→S

f c
t1

(x, t |y, s) = 0

∫ S

r1

f c
t1

(x, t |y, s) dx = 1. (7)
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Then the SDE for the constrained processXc(t) can be read from (3),

dXc(t) =

[

a (Xc(t)) +
σ2 (Xc(t))

P a (S, t1 |x, t)

∂P a (S, t1 |x, t)

∂x

∣

∣

∣

∣

x=Xc(t)

]

dt

+ σ (Xc(t)) dW (t). (8)

Finally, classical numerical methods (cf. Kloeden et al. (1992)) can be used to

simulateXc(t) from (8). Usually we have no closed form expression for the second

term in square brackets. A numerical scheme would involve (4) and (5). The first

passage time density is involved, and usually must be obtained numerically.

We observe that the drift process forXc(t), which we denote byAc(x, t), t ∈ [0, t1],

is obtained by adding the second term in square brackets in (8) to the drift coefficient

for X(t), and that the diffusion coefficient forXc is the same as that forX(t).

The expressions for the drift and the diffusion coefficient of a diffusion process

constrained to remain in a bounded region ofR
n, n ≥ 1 were determined in Pinsky

(1985) and coincide with (8) whenn = 1 and the boundary is a constant. The Proof

in Pinsky (1985) is more sophisticated than ours due to the more general frame of that

Theorem.

Next we consider the constrained bridge process(z,u)
(x0,0)X

c (t), t ∈ (0, u), u < t1,

associated with the diffusion processX(t). Its drift coefficient is

(z,u)
(x0,0)A

c (x, t) = a (x) +
σ2 (x)

fa (z, u |x, t)

∂fa (z, u |x, t)

∂x
(9)

with x ∈ (r1, S), while the diffusion coefficient is unchanged. The computation is in

Appendix2.

As in the case of the constrained processXc (t), the knowledge of the drift expres-

sion (9) allows the simulation of the process(z,u)
(x0,0)X

c (t). However, this task requires a

major computational effort to determine the functionfa (z, u |x, t) using relation (4).

Notice that the drift and the diffusion coefficients (9) of the constrained bridge do

not depend upon the endpoint,t1, of the interval of constraint.

Finally, we compute the SDE of the bridge toS process(S,u)
(x0,0)X

c (t). This is the

particular case of the constrained bridge process whereu ≡ t1 is the first passage time,

T , of the bridge throughS. We find that fort ∈ (0, u) andx < S, its drift coefficient is
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related to the drift coefficient of the processX(t) via:

(S,t1)
(x0,0)A

c (x, t) = a (x) +
σ2(x)

g (t1 |x, t)

∂g (t1 |x, t)

∂x
. (10)

The diffusion coefficient is unchanged. The computation is in Appendix2.

The knowledge of the infinitesimal moment (10) allows the simulation of(S,u)
(x0,0)X

c (t)

by means of its SDE with the classical discretization schemes (cf. Kloeden et al.

(1992)).

3.1 Integrate and Fire model

Here we use our results to illustrate the problems arising when one misunderstands the

membrane potential data and disregards the effect of the conditioning determined by the

presence of the boundary in Integrate and Fire and in Leaky Integrate and Fire models.

In the case of the Integrate and Fire model we can write down the analytical expres-

sion for the drift of its constrained version. This makes it easy to simulate sample paths

of this version, but we do not present here any examples.

In order to illustrate the effect of conditioning with biologically compatible parame-

ter values, we set S=10 mV,θ = 10 ms−1, µ ranging from 0.5 mVms−1 to 1.5 mVms−1

andσ2 ranging from 0.5 mV2ms−1 to 9 mV2ms−1.

Let W (t) be a Wiener process started at0, with drift a (x) = µ > 0 and diffusion

coefficientσ. The drift of the processW c(t) constrained to remain below the boundary

S up to timet1 is:

Ac (x, t) = µ +
σ2

P a (S, t1 |x, t)

∂P a (S, t1 |x, t)

∂x
(11)

where
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∂P a (S, t1 |x, t)

∂x
=

d

dx
(1 −

1

2
Erfc

[

S − x − µ (t1 − t)

σ
√

2 (t1 − t)

]

−
1

2
exp

[

2µ (S − x)

σ2

]

Erfc

[

S − x + µ (t1 − t)

σ
√

2 (t1 − t)

]

)

= −
1

σ
√

2π (t1 − t)
e

[

−
(

S−x−µ(t1−t)

σ
√

2(t1−t)

)2
]

+
µ

σ2
exp

[

2µ (S − x)

σ2

]

Erfc

[

S − x + µ (t1 − t)

σ
√

2 (t1 − t)

]

−
1

σ
√

2π (t1 − t)
e[

2µ(S−x)

σ2 ]e

[

−
(

S−x+µ(t1−t)

σ
√

2(t1−t)

)2
]

(12)

where Erfc denotes the complementary Error function (cf. Abramowitz et al. (1970)).

In Figure 3 we plot the second term of (11), i.e. the difference between the drift of

the constrained process and the driftµ of the free one, to illustrate the importance of this

correction ast varies whenµ = 1 mVms−1. Different curves in this figure correspond

to different values ofσ2. Note that the importance of the correction, determined by the

effect of the boundary on the drift, increases whenσ2 increases while it decreases as

the time grows up. One could simulate the sample paths of the processW c(t) by means

of the discretization procedures in Kloeden et al. (1992) and observe their different

behaviors (Figure not shown).

We compute the mean membrane potential, i.e. the mean valueE[W c(t)], of the

constrained processW c(t), by numerical integration of the formula

E[W c(t)] =

∫ S

−∞
xf c

t1
(x, t |0, 0) dx

=
1

P a (S, t1 |0, 0)

∫ S

−∞
xfa (x, t |0, 0) P a (S, t1 |x, t) dx,

which is a simple consequence of (6). Figure 4 illustratesE [W (t)] andE [W c(t)] for

two different choices oft1, t1 = 6 ms andt1 = 40 ms. The importance of the correction

increases in the case of absence of spikes for a longer interval.

When one observes the membrane potential up to the spike time,the correct model

is the constrained bridge process with coefficient given by (10). It is interesting to

13



look at the behavior of sample paths of the process(S,t1)
(0,0) W c (t). In this case the drift

coefficient, forµ = 0, is given by

(S,t1)
(0,0) Ac (x, t) = −

σ2

S − x
+

S − x

t1 − t
.

Note that the drift of a bridge toS, in the absence of absorption, is

(S,t1)
(0,0) A (x, t) =

S − x

t1 − t
.

In this case we do not need a figure to illustrate the effect of the constraint, which is

more important asσ2 increases.

3.2 Leaky Integrate and Fire model

Let X(t) be an Ornstein-Uhlenbeck process started atx0 at timet0, solution of

dX(t) = (µ −
X(t)

θ
)dt + σ2dW (t).

No closed form expression exists for its first passage time distribution across a con-

stant boundary. Hence to simulate the sample paths of the constrained processes (8)

and (10), one should numerically evaluate their drift termsat each point of the time

discretization scheme. Numerical techniques (cf. Buonocore et al. (1987)) can be

employed to evaluate the crossing probability densityg (t |x0, t0 ). The numerical in-

tegration of this density gives the crossing probability evaluations in (8) while their

numerical differentiation gives the necessary quantitiesin (10).

The mean value of the unconstrained process,X(t), is the solution of the differential

equation

dE[X(t)]

dt
= µ −

E[X(t)]

θ

and is given byE[X(t)] = µθ(1 − e−
t
θ ) in the case wherex0 = 0.

For the bridge process(S,u)
(x0,0)X

c (t), sample paths can be obtained only by means of

combined numerical and simulation techniques, in the same way as for the constrained

processXc(t).

14



Many qualitative studies of neuronal dynamics described through the Ornstein-

Uhlenbeck process distinguish two types of behaviors: supra and subthreshold dynam-

ics, characterized by the asymptotic meanE[X(∞)] = µθ ≥ S or < S respectively,

whereXt is the ”free” process (cf. Sacerdote et al. (2010)). The meanvalue of the

processXc (t), obtained as an arithmetic mean of a set of samples of the process, is

illustated in Figure 5. Note that all the examples shown fromhere on are done setting

x0 = 0 mV. In the two panels of Figure 5 different choices for the parameters of the pro-

cess are made. Panel A illustrates an example of subthreshold behavior while in Panel

B there is an example of suprathreshold behavior. The effectof the constraint increases

in both cases with the time but it is more remarkable in the suprathreshold regime.

The mean value of the constrained bridge toS is represented in Figure 6 together

with the mean value of the free bridge process taking the valueS at the same time as the

previous process. The parameters are chosen in the subthreshold regime, but the same

behavior arises also in the suprathreshold regime.

In Figure 7 we compare the simulated mean values of the constrained processXc(t)

with E [X(t)] for different values ofσ2 to show the effect of the noise on the mean of

the constrained process. The difference between the free and the constrained processes

is stronger in the suprathreshold regime and the noise increases this difference.

As we have pointed out, an important part of the analysis of neuronal recordings

is to establish whether the observed dynamics arises in the subthreshold or in the

suprathreshold regime. In the subthreshold dynamics crossings of the boundary may

happen only in the presence of noise. If one disregards the constraint of the boundary

in modelling the data and uses a biased estimator to decide whether the neuron is in

the suprathreshold regime, an error arises and the conclusion can be wrong, i.e. one can

classify as subthreshold a case that is suprathreshold. This is illustrated with an example

in Figure 8, where suprathreshold behavior results can be confused with a subthreshold

dynamics if one does not recognize the constrained nature ofthe observed data.

Conclusions

If we ignore the fact that membrane potential data is conditional on firing not yet having

occurred, serious errors in model interpretation can result, particularly when the noise

15



is strong. The problem is corrected when we use the conditioned processes computed

in this paper to model the membrane potential behavior.

The SDE of the constrained process (8) should be used for a correct simulation of

the sample paths to compare with data recorded up to a fixed time prior to firing. If data

is recorded up to a firing time, simulation of comparable synthetic data should be done

using the drift coefficient (10) instead of that in the SDE (8).

Our examples of simulations in the case of the constrained Wiener and Ornstein-

Uhlenbeck processes, and these processes bridged to the firing boundaryS, illustrate

the striking difference conditioning makes to the nature ofsimulated paths and hence

the important misunderstanding that can arise confoundingthese processes for mod-

elling purposes. A typical risk concerns the distinction between the subthreshold and

suprathreshold regimes for the Ornstein-Uhlenbeck model.This point becomes more

important in the presence of stronger noise intensity.

The results obtained allow to suggest the right choice of theSDE to employ if one

wants to simulate sample paths analoguous to real experimental data obtained from reg-

istration of neuronal activity. The SDE for the bridge to S process should be used if one

wants to simulate registrations up to the first spike, while the SDE for the constrained

process is suitable to simulate sample paths up to any time instant before the spike

occurs.

Appendix 1

For both the Wiener and the Ornstein-Uhlenbeck processes the diffusion interval coin-

cides with the real line and their transition probability density is the only solution of the

corresponding Kolmogorov equation (2) with the initial condition (3). The transition

probability density function of the Wiener process is (cf. Karlin et al. (1981)):

fW (x, t |y, s) =
1

√

2πσ2 (t − s)
exp

{

−
[x − y − µ (t − s)]2

2σ2 (t − s)

}

while that of the Ornstein-Uhlenbeck process is:
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fOU (x, t |y, s) =
1

√

πσ2 (1 − e−2(t−s))

× exp

{

−

[

x − ye−(t−s)/θ − µ
(

1 − e−(t−s)/θ
)]2

σ2 (1 − e−2(t−s))

}

.

In the case of the Wiener process the first passage time probability density forS >

x0 is:

g (t |x0, t0 ) =
S − x0

√

2πσ2 (t − t0)
3

exp

{

−
[S − x0 − µ (t − t0)]

2

2σ2 (t − t0)

}

.

The analogous expression for the Ornstein-Uhlenbeck process is not known in closed

form but it can be obtained numerically solving an integral equation proposed in Buono-

core et al. (1987).

A closed form expression for the transition probability density in the presence of an

absorbing boundary atS is known for the Wiener process with drift (cf. Ricciardi et al.

(1989)):

fa (x, t |y, s) =
1

√

2πσ2 (t − s)

{

exp

[

−
(x − y − µ (t − s))2

2σ2 (t − s)

]

− exp

[

−
(x + y − 2S − µ (t − s))2

2σ2 (t − s)
+

2µ (S − y)

σ2

]}

for y < S. Hence for the Wiener process, wheny < S, one has:

P a (S, t |y, s) =

∫ S

−∞
fa (x, t |y, s) dx

= 1 −
1

2

{

Erfc

[

S − y − µ (t − s)

σ
√

2 (t − s)

]

+ exp

[

2µ (S − y)

σ2

]

Erfc

[

S − y + µ (t − s)

σ
√

2 (t − s)

]}

.

Analoguous closed form expressions are not available for the Ornstein-Uhlenbeck pro-

cess.
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Appendix 2

Proof of (6).

The transition probability densityf c
t1

(x, t |y, s) may be rewritten according to the

following chain of equations:

f c(x, t |y, s)dx = P (Xc (t) ∈ (x, x + dx) |Xc (s) = y )

= P (X(t) ∈ (x, x + dx) |X(u) < S, u ∈ [s, t1]; X(s) = y )

=
P (X (t) ∈ (x, x + dx) ; X (u) < S, u ∈ [s, t1] |X(s) = y )

P (X (u) < S, u ∈ [s, t1] |X (s) = y )

=
P (X (t) ∈ (x, x + dx) ; X (u) < S, u ∈ [s, t] ; X (u) < S, u ∈ [t, t1] |X (s) = y )

P (T > t1 |X (s) = y )

=
P (X (t) ∈ (x, x + dx) ; X (u) < S, u ∈ [s, t] |X (s) = y )

P (T > t1 |X (s) = y )

× P (X (u) < S, u ∈ [t, t1] |X (t) = x)

=
fa (x, t |y, s) P (T > t1 |X(t) = x)

P (T > t1 |X(s) = y )
dx

Proof of (3), (7) and (8).

SinceXc(t) is a diffusion process, its transition probability densitysatisfies the

Kolmogorov equation

∂f c
t1

∂s
+ Ac (y, s)

∂f c
t1

∂y
+ Bc (y, s)

∂2f c
t1

∂y2
= 0. (13)

Making use of (6) we can relate the drift and the diffusion coefficient of equation (13)

with the drift a (y) and the diffusion coefficientσ (y) of the processX(t). To this

purpose we write the derivatives with respect tos and toy of f c
t1

(x, t |y, s) :

∂f c
t1

∂s
=

∂fa

∂s
P a (S, t1 |y, s) − fa (x, t |y, s) ∂P a(S,t1|y,s )

∂s

[P a (S, t1 |y, s)]2
P a (S, t1 |x, t) (14)

∂f c
t1

∂y
=

P a (S, t1 |x, t)

[P a (S, t1 |y, s)]2

×

{

∂fa

∂y
P a (S, t1 |y, s) − fa (x, t |y, s)

∂P a (S, t1 |y, s)

∂y

}

∂2f c
t1

∂y2
=

{

−fa (x, t |y, s)
∂2P a (S, t |y, s)

∂y2

1

[P a (S, t1 |y, s)]2

+
∂2fa

∂y2

1

P a (S, t1 |y, s)
− 2

∂fa

∂y

∂P a (S, t1 |y, s)

∂y

1

[P a (S, t1 |y, s)]2

+ fa (x, t |y, s)

[

∂P a (S, t1 |y, s)

∂y

]2
2

[P a (S, t1 |y, s)]3

}

.
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Let us now substitute (14) into (2); making use of equation (2) for fa (x, t |y, s) we

get:

0 =
∂2fa

∂y2

[

Bc (y, s) −
σ2 (y)

2

]

+
∂fa

∂y
[Ac (y, s) − a (y)

−
∂P a (S, t1 |y, s)

∂y

2Bc (y, s)

P a (S, t1 |y, s)
]

+
fa (x, t |y, s)

P a (S, t1 |y, s)
[a (y)

∂P a (S, t1 |y, s)

∂y
+

σ2 (y)

2

∂2P a (S, t1 |y, s)

∂y2

− Ac (y, s)
∂P a (S, t1 |y, s)

∂y

− Bc (y, s)
∂2P a (S, t1 |y, s)

∂y2
+ 2

(

∂P a (S, t1 |y, s)

∂y

)2
Bc (y, s)

P a (S, t1 |y, s)
].

Hence by the homogeneity principle we have

Ac (y, s) = a (y) +
σ2 (y)

P a (S, t1 |y, s)

∂P a (S, t1 |y, s)

∂y
(15)

while the diffusion coefficient is unchanged. This gives (3)since the second term of

(15) can be written as the derivative of thelog. The second boundary condition in (7)

arises from (6), sincef c
t1
(x, t |y, s)dx is normalized to integrate to1. Finally the SDE

(8) for the constrained process immediately follows from the drift (15).

Computation of (9).

Consider the constrained process on[0, t1]; according to (8) its drift is given by

Ac (y, s) = a (x) +
σ2 (x)

P a (S, t1 |x, t)

∂P a (S, t1 |x, t)

∂x
,

while its diffusion coefficient coincides with that of the free process. It is known that

the drift of a bridge process is related with that of the corresponding free processX(t)

through the relationship (cf. Giraudo et al. (2001)):

(z,u)
(x0,t0)A (x, t) = a (x) +

σ2 (x)

f (z, u |x, t)

∂f (z, u |x, t)

∂x
(16)

and the diffusion coefficient does not change. We substitutea constrained process

for the free one in (16), and hencef c
t1

(z, u |x, t) as given by (6) forf (z, u |x, t) and

Ac(x, t) as given by (15) toa(x), to obtain

(z,u)
(x0,t0)A

c (x, t) = a (x) +
σ2 (x)

P a (S, t1 |x, t)

∂P a (S, t1 |x, t)

∂x

+
σ2 (x)

f c
t1 (z, u |x, t)

∂f c
t1

(z, u |x, t)

∂x
, u ≤ t1
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Recalling (6), after some algebra, one gets

σ2 (x)

f c
t1 (z, u |x, t)

∂f c
t1

(z, u |x, t)

∂x
=

σ2 (x)

fa (z, u |x, t)

∂fa (z, u |x, t)

∂x

−
σ2 (x)

P a (S, t1 |x, t)

∂P a (S, t1 |x, t)

∂x

and (9) follows.

Remark. Note that to prove (9) we first consider a constrained processup to time

t1 and then its bridge toz at timeu ≤ t1. One could also introduce another process by

first considering a bridge toz at timeu, with z ≤ S, and then its constrained version up

to the timet1 < u. In the limit whenu → t1 (or t1 → u) these two processes coincide.

Proof of (10).

Let us take the limit of equation (9) whenz → S. We use l’Hopital’s rule to compute

this drift coefficient for the constrained bridge toS:

lim
z→S

{

a (x) +
σ2(x)

fa (z, u |x, t)

∂fa (z, u |x, t)

∂x

}

= lim
z→S







a (x) + σ2(x)

∂
∂z

[

∂fa(z,u|x,t )
∂x

]

∂fa(z,u|x,t )
∂z







= a (x) + σ2(x)

∂
∂x

[

∂fa(z,u|x,t )
∂z

∣

∣

∣

z=S

]

∂fa(z,u|x,t )
∂z

∣

∣

∣

z=S

(17)

Taking the derivative of (5) with respect tot and using the forward Kolmogorov

equation, gives us

∂fa (y, u |x, t)

∂y

∣

∣

∣

∣

y=S

= g (u |x, t) . (18)

We substitute then (18) in the right hand side of (17) to obtain the result.
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Figure Captions

Figure 1 Sample paths of the absorbed process (dashed lines) and of the corresponding

constrained process witht1 = 30 ms (continuous lines). The paths of the absorbed

process are killed at the time where they first reachS = 10 mV.

Figure 2 Sample paths of the free bridge process inS = 10 mV with u = 15 ms,

u = 20 ms (continuous lines) and two sample paths of the corresponding constrained

bridge processes inS (dashed lines).

Figure 3 Additional term in the drift of the constrained Wiener process withµ = 1

mVms−1, S = 10 mV, t1 = 40 ms, as a function oft, for σ2 = 1, 4, 6, 9 mV2ms−1

(continuous, dashed, dotted, dashed-dotted lines respectively).

Figure 4 Mean of the constrained (continuous line) and of the free (dashed line)

Wiener process,E[W (t)] = µt, with µ = 0.5 mVms−1, σ2 = 1 mV2ms−1, S = 10 mV,

t1 = 6 ms (inset) andt1 = 40 ms. HereP (T ≤ 6) ∼= 5∗10−5 while P (T ≤ 40) ∼= 0.12.

Figure 5 Mean of the constrained (continuous line) and of the free (dashed line)

Ornstein-Uhlenbeck process withσ2 = 2 mV2ms−1, θ = 10 ms−1, S = 10 mV. Panel

A: sub-threshold regime withµ = 0.5 mVms−1, t1 = 6 ms (inset) andt1 = 20 ms.

HereP (T ≤ 6) ∼= 5 ∗ 10−3 while P (T ≤ 20) ∼= 0.16. Panel B: supra-threshold regime

with µ = 1.5 mVms−1, t1 = 5 ms (inset) andt1 = 20 ms. HereP (T ≤ 5) ∼= 0.09

while P (T ≤ 20) ∼= 0.96.

Figure 6 Mean of the free (dashed line) and of the constrained (continuous line)

Ornstein-Uhlenbeck bridge process toS with θ = 10 ms−1, S = 10 mV, µ = 0.5

mVms−1, σ2 = 2 mV2ms−1. Hereu ≡ T = 9.3 ms.

Figure 7 Mean of the free (dashed line) and of the constrained (continuous lines)

Ornstein-Uhlenbeck process withθ = 10 ms−1, S = 10 mV. Panel A: sub-threshold

regime withµ = 0.5 mVms−1, t1 = 20 ms, σ2 = 0.5, 2, 6 mV2ms−1 (from top to

bottom). Panel B: supra-threshold regime withµ = 1.5 mVms−1, t1 = 20 ms,σ2 =

1, 2, 6 mV2ms−1 (from top to bottom).

21



Figure 8 Continuous line: mean of a constrained Ornstein-Uhlenbeck process with

µ = 1.2 mVms−1, σ2 = 1 mV2ms−1, θ = 10 ms−1, S = 10 mV, i.e. possible recorded

data (suprathreshold); dashed-dotted line: mean of a corresponding free process; dashed

line: mean of a corresponding free Ornstein-Uhlenbeck process withµ = 0.8 mVms−1,

which is estimated from the continuous curve as originated from a free process.
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Bibbona E., Ĺansḱy P. & Sirovich R. (2010a). Estimating input parameters from intra-

cellular recordings in the Feller neuronal model.Phys. Rev. E, 81, 031916.

Bulsara A.R., Lowen S.B. & Rees C.D. (1994). Cooperative behavior in the periodically

modulated Wiener process: Noise-induced complexity in a model neutron.Phys. Rev.

E, 49, 4989.

Buonocore, A., Nobile, A. G. & Ricciardi, L.M. (1987). A new integral equation for

the evaluation of the first-passage-time probability densities. Adv. Appl. Prob., 19,

784-800.

Burkitt A.N. (2006a). A review of the integrate and fire neuronmodel: I. Homogeneous

synaptic input.Biol. Cybern., 95, 1-19.

Burkitt A.N. (2006b). A review of the integrate and fire neuronmodel: II. Inhomoge-

neous synaptic input and network properties.Biol. Cybern., 95, 97-112.

23



Gerstein G.L. & Mandelbrot B. (1964). Random walk models for the spike activity of

a single neuron.Biophys. J., 4, 41-68.

Giraudo M.T. & Sacerdote L. (1999). An improved technique for the simulation of first

passage times for diffusion processes.Comm. Statist. Simulation Comput., 28(4),

1135-1163.

Giraudo M.T., Sacerdote L. & Zucca C. (2001). Evaluation of first passage times of

diffusion processes through boundaries by means of a totally simulative algorithm.

Meth. Comp. Appl. Prob., 3, 215-231.

Karatzas I. & Shreve S.E. (1991). Brownian Motion and Stochastic Calculus. Second

Edition. Springer New York.

Karlin S. & Taylor H.E. (1981). A Second Sourse in StochasticProcesses.Academic

Press.

Kloeden P. & Platen P. (1992). The Numerical Solution of Stochastic Differential Equa-

tions. Springer.
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