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HOLOMORPHIC EXTENSION OF SOLUTIONS OF SEMILINEAR
ELLIPTIC EQUATIONS

MARCO CAPPIELLO AND FABIO NICOLA

Abstract. We prove sharp analytic estimates and holomorphic extensions in
sectors of Cd for the solutions of a wide class of semilinear elliptic differential and
pseudodifferential equations in Rd, improving earlier results where the extension
was shown for a strip. Moreover, we derive exponential decay estimates for such
extended solutions. The results presented apply in particular to solitary wave
solutions of many classical nonlinear evolution equations as Kdv-type, long-wave
type and Schrödinger equations.

1. Introduction

The main concern in this paper is the study of holomorphic extensions of the
solutions of semilinear elliptic equations in Rd. Broadly speaking, we deal with
equations of the form

(1.1) Pu = F [u],

where P is a linear elliptic differential, or even pseudodifferential, operator in Rd

and F [u] is a nonlinearity, possibly involving the derivatives of u. For a wide class
of equations of this type it is known that every solution u sufficiently regular and
with a certain decay at infinity, actually is analytic on Rd and it extends to a
holomorphic function in a strip of Cd of the form

(1.2) {z = x+ iy ∈ Cd : |y| < ε},
for some ε > 0, satisfying there the estimates

(1.3) |u(x+ iy)| ≤ Ce−c|x|

for some C > 0, c > 0. A pioneering work on this subject was the paper by Kato and
Masuda [24]. Later the problem of the holomorphic extension in a strip has been
intensively studied in connection with the applications to solitary wave equations.
In particular it was noticed in dimension 1 that several model equations like the
Korteweg-de Vries equations and its generalizations, Schrödinger-type equations,
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long wave-type equations admit solitary wave solutions which extend to meromor-
phic functions with poles out of a strip of the form (1.2) and having a decay of type
(1.3). Among the main contributions in this sense we recall the papers by Bona
and Li [8], [9], Grujic’ and Kalisch [21], Bona, Grujic’ and Kalisch [6], Bona and
Weissler [10]. We also recall the paper [22] by Hayashi on well-posedness of the
generalized KdV equation in Bergman-Szegö spaces of holomorphic functions in a
sector. Apart from its interest “per se” in the analysis of regularity properties of
the solutions of differential equations, the study of complex singularities of solitary
waves could give information also on the onset of real blowup; we refer to Bona
and Weissler [10] for a fascinating discussion in this connection.

Recently, the properties described above have been proved for some general
classes of semilinear elliptic equations in any dimension, even with variable coeffi-
cients; see for example Biagioni and Gramchev [5], Gramchev [20] and Gramchev,
Cappiello and Rodino [11, 12, 13, 14, 15]. The results in these papers have been
stated and proved in terms of estimates in the Gelfand-Shilov spaces of type S, cf.
[19]. We refer to Nicola and Rodino [27, Chapter 6] for a self-contained account of
these results.

Nevertheless in the above mentioned papers some relevant issues remained un-
explored. The first one is the identification of a maximal holomorphic extension.
In other words, the problem is to understand what is the biggest complex domain
on which a holomorphic extension is possible. The second one is related to a dual
aspect and concerns the identification of the maximal domain on which the decay
properties on Rd of solutions remain valid.

To be precise, let us introduce a class of operators which the above results and
those in the present paper apply to. First, one can consider differential operators
with polynomial coefficients

(1.4) P =
∑

|α|≤m, |β|≤n

cαβx
βDα,

m ≥ 1, n ≥ 0, cαβ ∈ C, with symbol

(1.5) p(x, ξ) =
∑

|α|≤m, |β|≤n

cαβx
βξα

of G-elliptic type, namely satisfying the following global version of ellipticity:

(1.6)
∑

|α|=m, |β|≤n

cαβx
βξα 6= 0, x ∈ Rd, ξ 6= 0,

(1.7)
∑

|α|≤m, |β|=n

cαβx
βξα 6= 0, x 6= 0, ξ ∈ Rd,
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(1.8)
∑

|α|=m, |β|=n

cαβx
βξα 6= 0, x 6= 0, ξ 6= 0.

If P has constant coefficients (that is n = 0) then (1.6), (1.7), (1.8) are satisfied if
and only if P is elliptic and its symbol p(ξ) satisfies p(ξ) 6= 0 in Rd. As a relevant
model one can consider the operator P = −∆ + λ, λ ∈ C, λ 6∈ R− ∪ {0}.

More generally we deal with pseudodifferential operators. Namely, given real
numbersm > 0, n ≥ 0 we consider symbols p(x, ξ) satisfying the following estimates

(1.9) |∂αξ ∂βxp(x, ξ)| ≤ C |α|+|β|+1α!β!〈ξ〉m−|α|〈x〉n−|β|

for every (x, ξ) ∈ R2d, α, β ∈ Nd and for some positive constant C independent
of α, β (we denote as usual 〈x〉 = (1 + |x|2)1/2). Notice that every polynomial
p(x, ξ) as in (1.5) satisfies such estimates. For this general class the condition of
G-ellipticity can be stated by requiring that

(1.10) |p(x, ξ)| ≥ c〈ξ〉m〈x〉n, |x|+ |ξ| ≥ C,

for some positive constants c, C. It is known that a symbol of the form (1.5) satisfies
(1.10) if and only if it satisfies the three conditions (1.6), (1.7), (1.8) simultaneously
(see [32, Proposition 1.4.37]) or [27, Theorem 3.2.9]).

Finally, concerning the nonlinear term F [u] in (1.1), we assume here that it is of
the form

(1.11) F [u] =
∑
h,l

∑
ρ1,...,ρl

Fh,l,ρ1,...,ρlx
h

l∏
k=1

∂ρku,

where h ∈ Nd, with 0 ≤ |h| ≤ max{n−1, 0}, ρk ∈ Nd with 0 ≤ |ρk| ≤ max{m−1, 0},
l ∈ N, l ≥ 2 and Fh,l,ρ1,...,ρl ∈ C (the above sum being finite). Moreover, we allow
some of the factors in (1.11) to be replaced by their complex conjugates.

As a simple example, consider the equation

(1.12) −∆u+ u = |u|l−1u,

with l ∈ N, l > 2 odd, which arises e.g. when looking for standing wave solutions
for the Klein-Gordon or Schrödinger equation, as well as travelling wave solutions
for the Klein-Gordon equation (cf. Berestycki and Lions [4]). The existence of
solutions in H1(Rd) and their exponential decay was studied in [4], whereas the
possibility of extending them holomorphically on a strip has been recently shown
in [13] (incidentally, the exponential decay generally drops for elliptic equations
which are not globally elliptic, such as −∆u = |u|l−1u).

The above more general class of operators includes, in dimension d = 1, the
solitary wave counterpart of several evolution equations of Korteweg-de Vries type,
as well as of long-wave type; see [9] and below. This also motivated the statements
of the results for pseudodifferential operators, or at least for Fourier multipliers
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(e.g. p(ξ) = ξ Coth ξ + λ, λ > −1, for the intermediate-long-wave equation; see
[9]).

Now, it is known from [9] and [13, Theorem 7.3] that (for classes of nonlinearities
that intersect the above one), if P is G-elliptic, then all the solutions u of (1.1) with
u ∈ Hs(Rd), s > d

2
+m− 1 for n > 0 (respectively 〈x〉εou ∈ Hs(Rd), s > d

2
+m− 1

for n = 0) actually decay at infinity like e−c|x|, c > 0, and extend holomorphically
on a strip of the form (1.2).

Here we shall improve this result by showing that the holomorphic extension and
the exponential decay actually hold in a sector of the complex domain. Namely, we
have the following result, which seems new even for the simplest equation (1.12).

Theorem 1.1. Let P be a pseudodifferential operator with symbol p satisfying
(1.9), m > 0, n ≥ 0, and assume that p is G-elliptic, that is (1.10) is satisfied.
Let F [u] be of the form (1.11) (possibly with some factors in the product replaced
by their conjugates). Assume moreover that u ∈ Hs(Rd), s > d

2
+ max{|ρk|}, is

a solution of (1.1). In the case n = 0 assume further 〈x〉ε0u ∈ L2(Rd), for some
ε0 > 0. Then u extends to a holomorphic function in the sector of Cd

(1.13) Cε = {z = x+ iy ∈ Cd : |y| < ε(1 + |x|)},

for some ε > 0, satisfying there the estimates (1.3) for some constants C > 0, c > 0.

It will follow from the proof that the width of the sector depends in general
on the solution u considered, in fact on upper bounds for the norm ‖u‖Hs (and
‖〈x〉ε0u‖L2 if n = 0), although for nonlinearities of special type one could even
replace these norms by others, corresponding to a lower regularity (see Section 5.1
below). In any case, for a given nonlinear equation the width of the sector cannot
be expected to be the same for all the solutions; this is best seen for autonomous
equations, where the width in fact must depend on u, because one can exploit the
invariance with respect to translations to move the complex singularities parallel
to Rd.

The shape of the domain of holomorphic extension as a sector is sharp, in the
sense that, even in dimension d = 1, for any angle θ 6= 0, π we can find G-elliptic
equations with constant coefficients admitting Schwartz solutions whose meromor-
phic extensions have a sequence of poles along the ray arg z = θ. We refer to
Section 5 below for details on this point and also for remarks on the a priori regu-
larity assumptions in Theorem 1.1.

The linear case (F [u] = 0) deserves a separate discussion. Indeed, the analysis
of the linear equation Pu = 0 is important for the holomorphic extension and the
decay of eigenfunctions of G-elliptic operators and their powers; see Maniccia and
Panarese [25] and Schrohe [31]. Moreover in the linear case it is possible to relax
the assumptions on the regularity and decay of u, admitting solutions with a priori
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algebraic growth and in that case the width of the sector is independent on the
particular solution considered; see Theorem 5.1 below.

Finally we present an application of the above result to solitary waves. Following
[9], we consider the following class of Korteweg-de Vries-type equation

(1.14) vt + vx + F [v]x − (Mv)x = 0, (t, x) ∈ R× R,
and long-wave-type equations

(1.15) vt + vx + F [v]x + (Mv)t = 0, (t, x) ∈ R× R,
where M = p(D) is a Fourier multiplier, F [v] is a polynomial with real coefficients,
F (0) = F ′(0) = 0, and subscripts denote derivatives. We look for solutions v(t, x)
of solitary wave type, i.e. v(t, x) = u(x− V t), for some function u of one variable
and some constant velocity V . We have the following result.

Theorem 1.2. Let p(ξ) satisfy the analytic symbol estimates of order m ∈ R,
namely

(1.16) |∂αp(ξ)| ≤ Aα+1α!〈ξ〉m−α, ξ ∈ R, α ∈ N
for some constant A > 0, as well as the lower bounds

(1.17) p(ξ) ≥ 0, ξ ∈ R, p(ξ) ≥ C−1|ξ|m, |ξ| ≥ C,

for some constant C > 0. Suppose moreover m ≥ 1.
Let v(t, x) = u(x − V t) be a weak solution of (1.14) or (1.15), with V > 1,

u ∈ L∞(R), limx→∞ u(x) = 0. Then u extends to a holomorphic function u(x+ iy)
in the sector

(1.18) {z = x+ iy ∈ C : |y| < ε(1 + |x|)}
for some ε > 0, satisfying there the estimates (1.3) for some constants C > 0, c > 0.

Notice that the estimates (1.16) are satisfied by any polynomial p(ξ) of degree
m. More generally, the condition (1.16) is equivalent to saying that p(ξ) extends to
a holomorphic function p(ξ + iη) in a sector of the type (1.18), and satisfies there
the bounds |p(ξ + iη)| ≤ C ′〈ξ〉m (see Proposition 5.2 below). This remark makes
(1.16) very easy to check in concrete situations, where typically p(ξ) is expressed
in terms of elementary functions.

We also observe that, under the hypotheses of Theorem 1.2, we already know
from [9] that u extends to a holomorphic function on a strip and displays there
an exponential decay of type (1.3), hence Theorem 1.2 can be regarded as an
improvement of this result. For the existence of solitary waves for these equations
we refer to the detailed analysis in Albert, Bona and Saut [1], Amick and Toland
[2], Benjamin, Bona and Bose [3], Weinstein [34].

Finally we mention that similar extensions results should hopefully be valid for
other classes of non-linear elliptic equations, e.g. with linear part P = −∆ +
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|x|2 (cf. [11]). Similarly, even non-elliptic hypoelliptic operators and dispersion
managed solitons could share similar properties, possibly with the sector replaced
by a smaller domain (but larger than a strip). We plan to investigate these issues
in a subsequent paper.

The paper is organized as follows. Section 2 collects notation and some prelim-
inary results about G-pseudodifferential operators (composition, boundedness on
Sobolev spaces, parametrices, etc.). In Section 3 we introduce a suitable space of
analytic functions on Rd, which admit a holomorphic extension to sectors in Cd,
and we prove some relevant properties used in the sequel. In Section 4 we prove
Theorem 1.1. The proof is based on the application of an iterative Picard scheme in
the space of analytic functions defined in Section 3. In Section 5 we prove Theorem
1.2 and treat in detail the linear case F [u] = 0, see Theorem 5.1. We moreover
show some other examples and counterexamples and test on them the sharpness of
our results.

2. Notation and preliminary results

2.1. Factorial and binomial coefficients. We use the usual multi-index nota-
tion for factorial and binomial coefficients. Hence, for α = (α1, . . . , αd) ∈ Nd we
set α! = α1! . . . αd! and for β, α ∈ Nd, β ≤ α, we set

(
α
β

)
= α!

β!(α−β)!
.

The following inequality is standard and used often in the sequel:

(2.1)

(
α

β

)
≤ 2|α|.

Also, we recall the identity∑
|α′|=j
α′≤α

(
α

α′

)
=

(
|α|
j

)
, j = 0, 1, . . . , |α|,

which follows from
∏d

i=1(1 + t)αi = (1 + t)|α|, and gives in particular

(2.2)

(
α

β

)
≤
(
|α|
|β|

)
, α, β ∈ Nd, β ≤ α.

The last estimate implies in turn, by induction,

(2.3)
α!

δ1! . . . δj!
≤ |α|!
|δ1|! . . . |δj|!

, α = δ1 + . . .+ δj,

as well as

(2.4)
α!

(α− β)!
≤ |α|!
|α− β|!

, β ≤ α.
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Finally we recall the so-called inverse Leibniz’ formula:

(2.5) xβ∂αu(x) =
∑

γ≤β, γ≤α

(−1)|γ|β!

(β − γ)!

(
α

γ

)
∂α−γ(xβ−γu(x)).

2.2. G-Pseudo-differential operators. Pseudo-differential operators are formally
represented as integral operators of the type

(2.6) p(x,D)u(x) = (2π)−d
∫

Rd
eixξp(x, ξ)û(ξ) dξ,

where

û(ξ) =

∫
Rd
e−ixξu(x) dx

denotes the Fourier transform of u and p(x, ξ) is the so-called symbol of p(x,D).
According to the symbol spaces which p belongs to, one can consider u in several
classes of functions or distributions and symbolic calculi and boundedness results
on Sobolev spaces are available. We briefly recall this for the class of the so-called
G-pseudodifferential operators (also named SG or scattering pseudodifferential op-
erators in the literature). They are defined by the formula (2.6), where p(x, ξ)
satisfies, for some m,n ∈ R, the following estimates: for every α, β ∈ Nd there
exists a constant Cα,β > 0 such that

(2.7) |∂αξ ∂βxp(x, ξ)| ≤ Cα,β〈x〉n−|β|〈ξ〉m−|α|

for every x, ξ ∈ Rd. The space of functions satisfying these estimates is denoted by
Gm,n(Rd), whereas we set OPGm,n(Rd) for the corresponding operators. We endow
Gm,n(Rd) with the topology defined by the seminorms

‖p‖(G)
N = sup

|α|+|β|≤N
sup

(x,ξ)∈R2d

{
|∂αξ ∂βxp(x, ξ)|〈x〉−n+|β|〈ξ〉−m+|α|}, N ∈ N.

As a prototype one can take P = −∆ + λ, λ ∈ C, of order m = 2, n = 0.
More generally, the case of Fourier multipliers, where the symbol p(ξ) depends
only on ξ (hence n = 0) is of great interest, mostly for applications to solitary
waves and ground state equations, see [13]. As another example, we have xβ∂α ∈
OPG|α|,|β|(Rd).

The classes OPGm,n(Rd) were introduced in [28] and studied in detail in [16],
[17], [26], [30], [32]. They are in fact a particular case of the general Hörmander’s
classes, see [23, Chapter XVIII], and turn out to be very convenient for a series of
problems involving global aspects of partial differential equations in Rd.

We now summarize some properties which will be useful for us later on; beside
the above mentioned papers, we refer to [27, Chapter 3] for a detailed and self-
contained presentation.
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First, if p ∈ Gm,n(Rd) then p(x,D) defines a continuous map S(Rd) → S(Rd)
which extends to a continuous map S ′(Rd) → S ′(Rd). The composition of two
such operators is therefore well defined in S(Rd) and in S ′(Rd); more precisely,
if p1 ∈ Gm1,n1(Rd) and p2 ∈ Gm2,n2(Rd), then p1(x,D)p2(x,D) = p3(x,D) with
p3 ∈ Gm1+m2,n1+n2(Rd) and the map (p1, p2) 7→ p3 is continuous Gm1,n1(Rd) ×
Gm2,n2(Rd)→ Gm1+m2,n1+n2(Rd).

It is useful to consider the action of such operators on the standard Sobolev
spaces

Hs(Rd) = {u ∈ S ′(Rd) : ‖u‖s :=

(∫
|û(ξ)|2(1 + |ξ|2)s dξ

)1/2

<∞},

and on the weighted versions

Hs1,s2(Rd) = {u ∈ S ′(Rd) : ‖u‖s1,s2 := ‖〈x〉s2u‖s1 <∞}.

Notice that⋃
s1,s2∈R

Hs1,s2(Rd) = S ′(Rd) and
⋂

s1,s2∈R

Hs1,s2(Rd) = S(Rd).

Indeed, if p ∈ Gm,n(Rd) then

(2.8) p(x,D) : Hs1,s2(Rd)→ Hs1−m,s2−n(Rd)

continuously, and

‖p(x,D)‖B(Hs1,s2 (Rd),Hs1−m1,s2−m2 (Rd)) ≤ C‖p‖(G)
N

for suitable C > 0, N ∈ N depending only on s1, s2,m1,m2 and on the dimension
d (see [27, Theorem 3.1.5]). In particular, for s2 = 0 we see that, if n ≤ 0 then
p(x,D) : Hs(Rd) → Hs−m(Rd) continuously for every s ∈ R. We also recall
that

⋂
m,n∈R

Gm,n(Rd) = S(Rd). In particular, operators with Schwartz symbols are

(globally) regularizing, i.e. they map continuously S ′(Rd) into S(Rd).

Remark 2.1. The complex interpolation for the spaces Hs1,s2(Rd) works as one
expects, i.e. for s1, s2, t1, t2 ∈ R, 0 < θ < 1,

(2.9) [Hs1,t1(Rd), Hs2,t2(Rd)]θ = Hs,t(Rd), s = (1−θ)s1+θs2, t = (1−θ)t1+θt2,

see for example [18, 33]. The property (2.9) will be useful in the sequel in view of
the following consequence: suppose that u ∈ Hs(Rd) and 〈x〉ε0u ∈ L2(Rd) for some
ε0 > 0. Then for every s′ < s there exists ε > 0 such that 〈x〉εu ∈ Hs′(Rd).

A symbol p ∈ Gm,n(Rd) (and the corresponding operator) is called G-elliptic if it
satisfies (1.10) for some constants C, c > 0. For example, P = −∆ + λ is G-elliptic
if and only if λ 6∈ R−∪{0}. More generally, as we mentioned before, for an operator
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with polynomial coefficients as in (1.4), G-ellipticity is equivalent to (1.6), (1.7),
(1.8) to hold simultaneously (see [32, Proposition 1.4.37] or [27, Theorem 3.2.9]).

The importance of G-ellipticity in the subsequent arguments relies in the fact
that this condition guaranties the existence of a parametrix E ∈ OPG−m,−n(Rd) of
P = p(x,D). Namely we have the following result, see [16, 28] for the proof.

Proposition 2.2. Let p ∈ Gm,n(Rd) be G-elliptic. Then there exists an operator
E ∈ OPG−m,−n(Rd) such that EP = I+R and PE = I+R′, where R,R′ are (glob-
ally) regularizing pseudodifferential operators, i.e. with Schwartz symbols. Hence
R and R′ are continuous maps S ′(Rd) → S(Rd). The operator E is said to be a
parametrix for P .

Remark 2.3. We emphasize the fact that in the following (see Proposition 4.3
below) actually we shall not use the fact that the remainder R in Proposition 2.2
has arbitrarily small orders. To prove our results it is sufficient to consider it as a
symbol in G−1,−1(Rd).

Finally we point out for further reference the following formulas, which can be
verified by a direct computation: for α, β ∈ Nd,

(2.10) xβPu =
∑
γ≤β

(−1)|γ|
(
β

γ

)
(Dγ

ξ p)(x,D)(xβ−γu),

(2.11) ∂αPu =
∑
δ≤α

(
α

δ

)
(∂δxp)(x,D)∂α−δu.

3. A space of analytic functions

We introduce here a space of analytic functions in Rd, already considered in [12]
(and denoted there by S1?

1 (Rd)), which is tailored to the problem of the holomorphic
extension to subsets of Cd of the form (1.13), as shown by the subsequent Theorem
3.2.

Definition 3.1. We denote by Asect(Rd) the space of all functions f ∈ C∞(Rd)
satisfying the following condition: there exists a constant C > 0 such that

(3.1) |xβ∂αf(x)| ≤ C |α|+|β|+1 max{|α|, |β|}!, for all α, β ∈ Nd.

Theorem 3.2. Let f ∈ Asect(Rd). Then f extends to a holomorphic function
f(x+ iy) in the sector of Cd

(3.2) Cε = {z = x+ iy ∈ Cd : |y| < ε(1 + |x|)}
for some ε > 0, satisfying there the estimates

(3.3) |f(x+ iy)| ≤ Ce−c|x|,

for some constants C > 0, c > 0.
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Proof. First we show the estimates

(3.4) |xβ∂αf(x)| ≤ C |α|+1|α|!e−c|x|, for |β| ≤ |α|.

Indeed, since |x|n ≤ kn
∑
|γ|=n |xγ| for a constant k > 0 depending only on the

dimension d, by (3.1) we have (assuming C ≥ 1 in (3.1))

ec|x||xβ∂αf(x)| =
∞∑
n=0

(c|x|)n

n!
|xβ∂αf(x)|

≤
∞∑
n=0

(ck)n
∑
|γ|=n

1

|γ|!
|xβ+γ∂αf(x)|

≤
∞∑
n=0

(ck)n
∑
|γ|=n

C2|α|+|γ|+1 (|α|+ |γ|)!
|γ|!

.

Since the number of multi-indices γ satisfying |γ| = n does not exceed 2d+n−1, an
application of (2.1) gives (3.4) for a new constant C, if c is small enough.

Now, (3.4) and the estimate |α|! ≤ d|α|α! give

(3.5) |∂αf(x)| ≤ C |α|+1α!〈x〉−|α|e−c|x|,

for a new constant C > 0. This shows that the power series

(3.6)
∑
α

∂αf(x)

α!
(z − x)α,

for any fixed x ∈ Rd converges in a polydisc in Cd defined by |zk − xk| < 〈x〉
2C

,

1 ≤ k ≤ d. The union of such polydiscs, when x varies in Rd, cover a subset
Cε ⊂ Cd of the type (3.2), for some ε > 0. Since on the intersection (when not
empty) of two such polydiscs these extensions agree (Rd ⊂ Cd is totally real), f(x)
extends to a holomorphic function on Cε. For z ∈ Cε, using the representation (3.6)
as a power series with x = Re z and (3.5), we also get the desired estimate (3.3)
for a new constant C > 0.

In the sequel we will use the following characterization of the space Asect(Rd) in
terms of Hs-based norms.

Set, for f ∈ S ′(Rd),

(3.7) Ss,ε∞ [f ] =
∑
α, β

ε|α|+|β|

max{|α|, |β|}!
‖xβ∂αf‖s.

Proposition 3.3. Let f ∈ Asect(Rd). Then for every s ≥ 0 there exists ε > 0 such
that Ss,ε∞ [f ] <∞.
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In the opposite direction, if for some s ≥ 0 there exists ε > 0 such that Ss,ε∞ [f ] <
∞ then f ∈ Asect(Rd).

Proof. Assume f ∈ Asect(Rd). It suffices to argue when s = k is integer. Then

‖xβ∂αf‖k ≤ C ′
∑
|γ|≤k

‖∂γ
(
xβ∂αf

)
‖L2 .

Now, if M ∈ N satisfies M > d/4 we have

(3.8) ‖∂γ
(
xβ∂αf

)
‖L2 ≤ C ′′‖(1 + |x|2)M∂γ

(
xβ∂αf

)
‖L∞ .

On the other hand we have, by Leibniz’ formula and (3.1),

‖(1 + |x|2)M∂γ
(
xβ∂αf

)
‖L∞ ≤

∑
σ≤γ, σ≤β

(
γ

σ

)
β!

(β − σ)!
‖(1 + |x|2)Mxβ−σ∂α+γ−σf‖L∞

≤ Cγ|β||γ|C |α|+|β|max{2M + |β|, |α|+ |γ|}!.

Since max{2M + |β|, |α| + |γ|} ≤ max{|β|, |α|} + 2M + |γ| and |β||γ| ≤ C̃
|β|
γ , by

(2.1) we get

‖xβ∂αf‖k ≤ C
|α|+|β|+1
k max{|α|, |β|}!

for some constant Ck > 0. Hence Ss,ε∞ [f ] <∞ if ε < C−1
k .

In the opposite direction, we may take s = 0; hence assume S0,ε
∞ [f ] <∞ for some

ε > 0. Then (3.1) holds with the L∞ norm replaced by the L2 norm. If M is an
integer, M > d/2, we have

‖xβ∂αf‖L∞ ≤ C
∑
|γ|≤M

‖∂γ
(
xβ∂αf

)
‖L2 .

Hence an application of Leibniz’ formula and the same arguments as above show
that f ∈ Asect(Rd).

4. Proof of the main result (Theorem 1.1)

In this section we prove Theorem 1.1. In fact we shall state and prove this result
for the more general non-homogeneous equation

(4.1) Pu = f + F [u],

where P and F [u] satisfy the assumptions of Theorem 1.1 and f is a function in the
space Asect(Rd) defined in Section 3. Moreover we shall restate our result in terms
of estimates in Asect(Rd). Namely, in view of Theorem 3.2, it will be sufficient to
prove the following theorem.
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Theorem 4.1. Let P be a pseudodifferential operator with symbol p satisfying
(1.9), m > 0, n ≥ 0 and assume that p is G-elliptic, that is (1.10) is satisfied. Let
F [u] be of the form (1.11) (possibly with some factors in the product replaced by
their conjugates) and f ∈ Asect(Rd). Assume moreover that u ∈ Hs(Rd), s > d

2
+

max{|ρk|}, is a solution of (4.1). In the case n = 0 assume further 〈x〉ε0u ∈ L2(Rd)
for some ε0 > 0. Then u ∈ Asect(Rd).

In fact we always assume that F [u] has the form in (1.11), and we leave to the
reader the easy changes when some factors of the product in (1.11) are replaced by
their conjugates.

We start by showing that, under the assumptions of Theorem 4.1, u is in fact a
Schwartz function.

Lemma 4.2. Let P , m, n, F [u], f be as in Theorem 4.1. Let u be a solution
of (4.1) satisfying 〈x〉ε0u ∈ Hs(Rd) for some s > d

2
+ max{|ρk|}, ε0 ≥ 0. Then,

when n > 0, we have 〈x〉ε0+σ2〈D〉σ1u ∈ Hs(Rd) for every σ1 ≤ min{m, 1}, and
σ2 ≤ min{n, 1}. If n = 0 and we assume in addition ε0 > 0, then we have
〈x〉ε0+σ2〈D〉σ1u ∈ Hs(Rd) for every σ1 ≤ min{m, 1} and σ2 ≤ min{ε0, 1}.

Proof. We first consider the case n > 0. Let E ∈ OPG−m,−n(Rd) be a parametrix
for P ; hence R := EP − I ∈ OPG−1,−1(Rd). We have from (4.1)
(4.2)
〈x〉ε0+σ2〈D〉σ1u = 〈x〉ε0+σ2〈D〉σ1Ef − 〈x〉ε0+σ2〈D〉σ1Ru+ 〈x〉ε0+σ2〈D〉σ1EF [u].

Since σ1 ≤ 1 and σ2 ≤ 1, the operator 〈x〉σ2〈D〉σ1R ∈ OPG0,0(Rd) is bounded
on Hs,ε0(Rd); cf. (2.8). Taking also into account the assumptions on f it follows
therefore that the Hs-norm of the first two terms in the right-hand side of (4.2) is
finite. Concerning the last term, observe that, by the assumptions on σ1, σ2 and
h, the operator 〈x〉σ2〈D〉σ1 ◦ E ◦ xh ∈ OPG−m+σ1,−n+σ2+|h|(Rd) belongs in fact to
OPG−max{m−1,0},0(Rd). As a consequence, since M := max{|ρk|} ≤ max{m−1, 0},
it is bounded Hs−M,ε0(Rd) → Hs,ε0(Rd). Hence by Schauder’s estimates (recall
that s > d/2 +M) we have

‖〈x〉ε0+σ2〈D〉σ1EF [u]‖s ≤ Cs
∑
l

∑
ρ1,...,ρl

‖〈x〉ε0
l∏

k=1

∂ρku‖s−M

≤ C ′s
∑
l

∑
ρ1,...,ρl

‖〈x〉lε0
l∏

k=1

∂ρku‖s−M

≤ C ′′s
∑
l

∑
ρ1,...,ρl

l∏
k=1

‖〈x〉ε0∂ρku‖s−M ≤ C ′′′s
∑
l

‖〈x〉ε0u‖ls <∞.
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We treat now the case n = 0, hence h = 0 in the nonlinearity (1.11). We consider
again (4.2). For the terms 〈x〉εo+σ2〈D〉σ1Ef and 〈x〉εo+σ2〈D〉σ1Ru we argue as
before. For the nonlinear term observe that, since M := max{|ρk|} ≤ max{m −
1, 0}, we have that 〈D〉σ1E ∈ OPG−max{m−1,0},0(Rd) is bounded Hs−M,lε0(Rd) →
Hs,lε0(Rd), for every l; see (2.8). Hence for σ2 ≤ ε0 ≤ ε0(l − 1) we get

‖〈x〉ε0+σ2〈D〉σ1EF [u]‖s ≤ Cs
∑
l

∑
ρ1,...,ρl

‖〈x〉lε0〈D〉σ1E
l∏

k=1

∂ρku‖s

≤ C ′s
∑
l

∑
ρ1,...,ρl

‖〈x〉lε0
l∏

k=1

∂ρku‖s−M

≤ C ′′s
∑
l

∑
ρ1,...,ρl

l∏
k=1

‖〈x〉ε0∂ρku‖s−M

≤ C ′′′s
∑
l

‖〈x〉ε0u‖ls <∞,

where we applied again Schauder’s estimate and, in the last inequality, (2.8) to ∂ρk .

Let us observe that, when n > 0, an iterated application of Lemma 4.2 shows
that, under the assumptions of Theorem 4.1, 〈x〉τ2〈D〉τ1u ∈ Hs(Rd) for every τ1 >
0, τ2 > 0, that is u ∈ S(Rd). The same is true when n = 0, because the assumptions
u ∈ Hs(Rd), s > d/2 + max{|ρk|}, and 〈x〉ε0u ∈ L2(Rd), ε0 > 0, imply that for
new values of s and ε0 as above we have 〈x〉ε0u ∈ Hs(Rd) (see Remark 2.1), and
Lemma 4.2 still allows us to upgrade regularity and decay.

In particular, the sum Ss,εN [u] is finite for every N ∈ N.
In order to prove Theorem 4.1 it suffices to verify that Ss,ε∞ [u] < ∞, in view

of Proposition 3.3. This will be achieved by an iteration argument involving the
partial sum of the series in (3.7), that is

(4.3) Ss,εN [f ] =
∑

|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖xβ∂αf‖s.

We shall treat separately the cases m ≥ 1 and 0 < m < 1, since the study of the
nonlinearity requires different arguments.

4.1. Proof of Theorem 4.1: the case m ≥ 1. We need several estimates to
which we address now. It is understood that they hold for arbitrary N ≥ 1, with
constants independent on N .
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Proposition 4.3. Let R ∈ OPG−1,−1(Rd). Then for every s ∈ R there exists a
constant Cs > 0 such that, for every ε ≤ 1, N ∈ N and u ∈ S(Rd), we have∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖R(xβ∂αu)‖s ≤ CsεS

s,ε
N−1[u].

Proof. We first estimate the terms with α = 0, hence β 6= 0. Let j ∈ {1, . . . , d}
such that βj 6= 0. Since R ◦ xj ∈ OPG−1,0(Rd) is bounded on Hs(Rd) we have1

ε|β|

|β|!
‖R(xβu)‖s ≤ Csε

ε|β|−1

|β|!
‖xβ−eju‖s.

Similarly one argues if β = 0, α 6= 0. If finally α 6= 0, β 6= 0, hence for some
j, k ∈ {1, . . . , d}, we have αj 6= 0, βk 6= 0, we write

xβ∂α = ∂j ◦ xkxβ−ek∂α−ej − βjxβ−ej∂α−ej

and use the fact that R∂j ◦ xk ∈ OPG0,0(Rd) is bounded on Hs(Rd). We get

ε|α|+|β|

max{|α|, |β|}!
‖R(xβ∂αu)‖s ≤ Csε

2 ε|α|+|β|−2

max{|α|, |β|}!
‖xβ−ek∂α−eju‖s

+ Csε
2 ε|α|+|β|−2

max{|α| − 1, |β| − 1}!
‖xβ−ej∂α−eju‖s,

(we understand that the second term in the right-hand side is omitted if βj = 0).
These estimates give at once the desired result if ε ≤ 1.

Proposition 4.4. Let P = p(x,D) be a pseudodifferential with symbol p(x, ξ)
satisfying the estimates (1.9), with m ≥ 0, n ≥ 0. Let E ∈ OPG−m,−n(Rd). Then
for every s ∈ R there exists a constant Cs > 0 such that, for every ε small enough,
N ∈ N and u ∈ S(Rd), we have

(4.4)
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E[P, xβ∂α]u‖s ≤ CsεS

s,ε
N−1[u].

Proof. We have

[P, xβ∂α] = [P, xβ]∂α + xβ[P, ∂α].

1We denote by ej the jth vector of the standard basis of Rd.
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Hence, using (2.10), (2.11), we get

(4.5) [P, xβ∂α]u =
∑

06=γ0≤β

(−1)|γ0|+1

(
β

γ0

)
(Dγ0

ξ p)(x,D)(xβ−γ0∂αu)

−
∑

06=δ≤α

(
α

δ

)
xβ∂δxp(x,D)∂α−δu.

Given β, δ, let δ̃ be a multi-index of maximal length among those satisfying |δ̃| ≤ |δ|
and δ̃ ≤ β (hence |δ̃| = |δ| unless β − δ̃ = 0). Writing xβ = xδ̃xβ−δ̃ in the last term
of (4.5) and using again (2.10) we get
(4.6)

[P, xβ∂α]u =
∑
δ≤α

∑
γ0≤β−δ̃

(δ,γ0)6=(0,0)

(−1)|γ0|+1

(
β − δ̃
γ0

)(
α

δ

)
xδ̃(Dγ0

ξ ∂
δ
xp)(x,D)(xβ−δ̃−γ0∂α−δu).

We now look at the operator xβ−δ̃−γ0∂α−δ. Given γ0, α, δ, let γ̃0 be a multi-index
of maximal length among those satisfying |γ̃0| ≤ |γ0| and γ̃0 ≤ α− δ. We write, by
the inverse Leibniz formula (2.5),

(4.7) xβ−δ̃−γ0∂α−δ = xβ−δ̃−γ0∂γ̃0∂α−δ−γ̃0 = ∂γ̃0 ◦ xβ−δ̃−γ0∂α−δ−γ̃0

+
∑

0 6=γ1≤β−δ̃−γ0
γ1≤γ̃0

(−1)|γ1|(β − δ̃ − γ0)!

(β − δ̃ − γ0 − γ1)!

(
γ̃0

γ1

)
∂γ̃0−γ1 ◦ xβ−δ̃−γ0−γ1∂α−δ−γ̃0 .

We now look at the operator xβ−δ̃−γ0−γ1∂α−δ−γ̃0 . We denote by γ̃1 a multi-index of
maximal length among those satisfying |γ̃1| ≤ |γ1|, γ̃1 ≤ α − δ − γ̃0. Again by the
inverse Leibniz formula we have

(4.8) xβ−δ̃−γ0−γ1∂α−δ−γ̃0 = xβ−δ̃−γ0−γ1∂γ̃1∂α−δ−γ̃0−γ̃1

= ∂γ̃1 ◦ xβ−δ̃−γ0−γ1∂α−δ−γ̃0−γ̃1

+
∑

0 6=γ2≤β−δ̃−γ0−γ1
γ2≤γ̃1

(−1)|γ2|(β − δ̃ − γ0 − γ1)!

(β − δ̃ − γ0 − γ1 − γ2)!

(
γ̃1

γ2

)
∂γ̃1−γ2 ◦ xβ−δ̃−γ0−γ1−γ2∂α−δ−γ̃0−γ̃1 .
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Continuing in this way and substituting all in (4.6) we get

[P, xβ∂α]u =
∑
δ≤α

h∑
j=0

∑
γ0≤β−δ̃

(δ,γ0)6=(0,0)

∑
0 6=γ1≤β−δ̃−γ0

γ1≤γ̃0

· · ·
∑

0 6=γj≤β−δ̃−γ0−...−γj−1
γj≤γ̃j−1

Cα,β,δ,γ0,γ1,...,γj

× pα,β,δ,γ0,γ1,...,γj(x,D)
(
xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju

)
,

where γ̃j is defined inductively as a multi-index of maximal length among those
satisfying |γ̃j| ≤ |γj| and γ̃j ≤ α− δ − γ̃0 − . . .− γ̃j−1,

|Cα,β,δ,γ0,γ1,...,γj | =
α!(β − δ̃)!

(α− δ)!δ!γ0!(β − δ̃ − γ0 − . . .− γj)!

j∏
k=1

(
γ̃k−1

γk

)

≤ |α|!|β − δ̃|!
|α− δ|!δ!γ0!|β − δ̃ − γ0 − . . .− γj|!

2|γ̃0+...+γ̃j−1|,(4.9)

cf. (2.4) and (2.1), and

(4.10) pα,β,δ,γ0,γ1,...,γj(x, ξ) = xδ̃
(
Dγ0
ξ ∂

δ
xp
)
(x, ξ)ξγ̃0−γ1+γ̃1−...−γj+γ̃j , j ≥ 0,

(if j = 0 in (4.9) we mean that there are not the binomial factors, nor the power
of 2). Observe that, since we have γj 6= 0 for every j ≥ 1, this procedure in fact
stops after a finite number of steps.

Now we observe that, by (1.9), (2.1), and Leibniz’ formula, for every θ, σ ∈ Nd

we have

(4.11) |∂θξ∂σxpα,β,δ,γ0,γ1,...,γj(x, ξ)| ≤ C |γ0|+|δ|+1γ0!δ!〈x〉n−|σ|〈ξ〉m−|θ|,

for some constant C depending only on θ and σ. In fact |δ̃| ≤ |δ|, |γ̃0−γ1+γ̃1−. . .−
γj + γ̃j| ≤ |γ̃0| ≤ |γ0|, and the powers of |δ| and |γ0| which arise can be estimated
by C |γ0|+|δ|+1 for some C > 0.

We now use these last bounds to estimate E ◦ pα,β,δ,γ0,γ1,...,γj(x,D). To this end,

observe that this operator belongs to OPG0,0(Rd), and therefore its norm as a
bounded operator on Hs(Rd) is estimated by a seminorm of its symbol in G0,0(Rd),
depending only on s and d. Such a seminorm is in turn estimated by the product
of a seminorm of the symbol of E in G−m,−n(Rd) and a seminorm of pα,β,δ,γ0,γ1,...,γj
in Gm,n(Rd), again depending only on s, d. Hence we see from (4.11) that

(4.12) ‖E ◦ pα,β,δ,γ0,γ1,...,γj(x,D)‖B(Hs(Rd)) ≤ C |γ0|+|δ|+1
s γ0!δ!.

Let now |β| ≥ |α|. Then |δ̃| = |δ|. Using moreover the estimate

|α|!|β − δ̃|!
|β|!|α− δ|!

=
|α|!(|β| − |δ|)!
|β|!(|α| − |δ|)!

≤ 1,



HOLOMORPHIC EXTENSION FOR ELLIPTIC EQUATIONS 17

together with (4.9) and (4.12), we obtain

(4.13)

ε|α|+|β|

|β|!
|Cα,β,δ,γ0,γ1,...,γj |‖E ◦ pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)‖s

≤ Cs(Csε)
|δ|+|γ0+...+γj |+|γ̃0+...+γ̃j−1| ε

|α|+|β|−|δ|−|γ0+...+γj |−|γ̃0+...+γ̃j−1|

|β − δ̃ − γ0 − . . .− γj|!
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖s.

Similarly, if |α| ≥ |β| we have |γ̃k| = |γk|, 0 ≤ k ≤ j, and

(4.14)
|β − δ̃|!|α− δ − γ̃0 − . . .− γ̃j|!
|α− δ|!|β − δ̃ − γ0 − . . .− γj|!

≤ 1,

(recall that if |δ̃| < |δ| then β − δ̃ = γ0 = . . . = γj = γ̃0 = . . . = γ̃j = 0).
By (4.9), (4.12) (4.14), we get in this case

(4.15)

ε|α|+|β|

|α|!
|Cα,β,δ,γ0,γ1,...,γj |‖E ◦ pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)‖s

≤ Cs(Csε)
|δ|+|γ0+...+γj |+|γ̃0+...+γ̃j−1| ε

|α|+|β|−|δ|−|γ0+...+γj |−|γ̃0+...+γ̃j−1|

|α− δ − γ̃0 − . . .− γ̃j|!
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖s.

Since, if |β| ≥ |α|, we have

max{|β − δ̃ − γ0 − . . .− γj|, |α− δ − γ̃0 − . . .− γ̃j|} = |β − δ̃ − γ0 − . . .− γj|,
whereas if |α| ≥ |β| it turns out

max{|β − δ̃ − γ0 − . . .− γj|, |α− δ − γ̃0 − . . .− γ̃j|} = |α− δ − γ̃0 − . . .− γ̃j|,
we deduce from (4.13) and (4.15) that, if ε is small enough,∑
|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E[P, xβ∂α]u‖s

≤ Cs
∑

|α̃|+|β̃|≤N−1

ε|α̃|+|β̃|

max{|α̃|, |β̃|}!
‖xβ̃∂α̃u‖s

h∑
j=0

∑
δ

∑
γ1 6=0,...,γj 6=0

γ0: (δ,γ0)6=(0,0)

(Csε)
|δ|+|γ0+γ1+...+γj |

≤ Ss,εN−1[u]
h∑
j=0

(C ′sε)
j+1 ≤ C ′′s εS

s,ε
N−1[u].
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We now turn the attention to the nonlinear term.

Proposition 4.5. Let E ∈ OPG−m,−n(Rd), m ≥ 1, n ≥ 0, and h ∈ Nd, |h| ≤
max{n− 1, 0}, ρk ∈ Nd, |ρk| ≤ m− 1, for 1 ≤ k ≤ l, l ≥ 2.

Then for every s > d/2 + maxk{|ρk|} there exists a constant Cs > 0 such that,
for every ε small enough, N ∈ N and u ∈ S(Rd), the following estimates hold:

(4.16)
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E
(
xβ∂α

(
xh

l∏
k=1

∂ρku
))
‖s

≤ Csε
(
‖u‖l−1

s Ss,εN−1[u] + (Ss,εN−1[u])l
)

if n ≥ 1 and

(4.17)
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E
(
xβ∂α

l∏
k=1

∂ρku
)
‖s

≤ Csε
(
‖〈x〉

1
l−1u‖l−1

s Ss,εN−1[u] + (Ss,εN−1[u])l
)
.

if 0 ≤ n < 1.

Proof. Let n ≥ 1, (hence |h| ≤ n − 1). In the sum (4.16) we consider the terms
with α = 0. Namely, we prove that

(4.18)
∑

0 6=|β|≤N

ε|β|

|β|!
‖E
(
xβxh

l∏
k=1

∂ρku
)
‖s ≤ Csε‖u‖l−1

s Ss,εN−1[u].

Given β 6= 0, let j ∈ {1, . . . , d} such that βj 6= 0. SinceE◦xjxh ∈ OPG−m,−n+|h|+1(Rd)
is bounded Hs−M(Rd) → Hs(Rd), with M = maxk{|ρk|} (because |h| ≤ n − 1,
|ρk| ≤ m − 1), and applying Schauder’s estimates (recall that s −M > d/2) we
have

ε|β|

|β|!
‖E
(
xβxh

l∏
k=1

∂ρku
)
‖s ≤ Csε

ε|β|−1

(|β| − 1)!
‖xβ−ej∂ρ1u‖s−M‖u‖l−1

s .

Then (4.18) follows by writing

(4.19) xβ−ej∂ρ1u =
∑

γ≤β−ej
γ≤ρ1

(−1)|γ|(β − ej)!
(β − ej − γ)!

(
ρ1

γ

)
∂ρ1−γ(xβ−ej−γu).

in view of(2.5), and using

(4.20)
(β − ej)!

(|β| − 1)!(β − ej − γ)!
≤ 1

(|β| − 1− |γ|)!
,
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cf. (2.4).
For 0 ≤ n < 1, consider first the terms in (4.17) with α = 0. We prove that∑

06=|β|≤N

ε|β|

|β|!
‖E
(
xβ

l∏
k=1

∂ρku
)
‖s ≤ Csε‖〈x〉

1
l−1u‖l−1

s Ss,εN−1[u].

To this end, given β 6= 0, let j ∈ {1, . . . , d} such that βj 6= 0. Since E is bounded
Hs−M(Rd)→ Hs(Rd), M = maxk{|ρk|}, by Schauder’s estimates we have

ε|β|

|β|!
‖E
(
xβ

l∏
k=1

∂ρku
)
‖s ≤ C ′sε

ε|β|−1

(|β| − 1)!
‖xβ−ej∂ρ1u‖s−M‖xj

l∏
k=2

∂ρku‖s−M

≤ C ′′s ε
ε|β|−1

(|β| − 1)!
‖xβ−ej∂ρ1u‖s−M‖〈x〉

1
l−1u‖l−1

s ,

cf. the action on weighted Sobolev spaces described in Section 2. Then the claim
follows by applying again (4.19) and (4.20).

We now treat the terms with α 6= 0 in the sums (4.16) and (4.17). Namely, we
prove that (both in the cases 0 ≤ n < 1 and n ≥ 1)

(4.21)
∑

0<|α|+|β|≤N
α 6=0

ε|α|+|β|

max{|α|, |β|}!
‖E
(
xβ∂α

(
xh

l∏
k=1

∂ρku
))
‖s ≤ Csε(S

s,ε
N−1[u])l.

Let α 6= 0 and j ∈ {1, . . . , d} such that αj 6= 0. We can write

xβ∂α
(
xh

l∏
k=1

∂ρku
)

= Qα,β
1 [u] +Qα,β

2 [u],

with

Qα,β
1 [u] = ∂xjx

β∂α−ej
(
xh

l∏
k=1

∂ρku
)
,

Qα,β
2 [u] = −βjxβ−ej∂α−ej

(
xh

l∏
k=1

∂ρku
)
.

Now we estimate ε|α|+|β|

max{|α|,|β|}!‖EQ
α,β
1 [u]‖s. To this end observe that, by Leibniz’

formula,

Qα,β
1 [u] = ∂xj

∑
δ0+δ1+...+δl=α−ej

δ0≤h

(α− ej)!
δ0!δ1! . . . δl!

h!

(h− δ0)!
xh−δ0xβ

l∏
k=1

∂δk+ρku.

Let now δ̃0 be a multi-index of maximal length among those satisfying |δ̃0| ≤ |δ0|
and δ̃0 ≤ β. Observe that E∂xjα ◦ x

h−δ0xδ̃0 ∈ OPG−m+1,−n+|h|(Rd) is bounded
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Hs−M(Rd) → Hs(Rd) with M = maxk{|ρk|} (because |ρk| ≤ m − 1 for 1 ≤ k ≤ l
and |h| ≤ max{n− 1, 0} ≤ n). Hence

ε|α|+|β|

max{|α|, |β|}!
‖EQα,β

1 [u]‖s

≤ Cs
∑

δ0+δ1+...+δl=α−ej
δ0≤h

ε|α|+|β|

max{|α|, |β|}!
(α− ej)!
δ0!δ1! . . . δl!

h!

(h− δ0)!

× ‖xβ−δ̃0
l∏

k=1

∂δk+ρku‖s−M .

We can now write

(4.22) xβ−δ̃0
l∏

k=1

∂δk+ρku =
l∏

k=1

xγk∂δk+ρku,

where γ1+. . .+γl = β− δ̃0 and, if |β| ≤ |α|−1, with |γk| ≤ |δk| for 1 ≤ k ≤ l (which

is possible because in that case |β − δ̃0| ≤ |α − δ0| − 1; observe that if |δ̃0| < |δ0|
then β − δ̃0 = 0), whereas, if |β| ≥ |α|, with |γk| ≥ |δk| for 1 ≤ k ≤ l (which is

possible because in that case |δ̃0| = |δ0| and |β − δ̃0| ≥ |α− δ0| ≥ |α− δ0| − 1).
Hence we get by Schauder’s estimates

(4.23)
ε|α|+|β|

max{|α|, |β|}!
‖EQα,β

1 [u]‖s

≤ Csε
∑

δ0+δ1+...+δl=α−ej
δ0≤h

l∏
k=1

ε|γk|+|δk|

max{|γk|, |δk|}!
‖xγk∂δk+ρku‖s−M ,

where if |β| ≤ |α| − 1 we used the inequality

(4.24)
1

(|α| − 1)!

(α− ej)!
δ0!δ1! . . . δl!

≤ 1

|δ0|!|δ1|! . . . |δl|!
,

which is (2.3), whereas if |α| ≤ |β| we applied

(4.25)
1

|β|!
(α− ej)!
δ0! . . . δl!

≤ 1

|δ̃0|!|γ1|! . . . |γl|!
,

which also follows at once from (2.3).
Now, we write xγk∂δk+ρku = ∂ρk

(
xγk∂δku

)
+ [xγk∂δk , ∂ρk ]u in the last term of

(4.23), so that

‖xγk∂δk+ρku‖s−M ≤ ‖xγk∂δku‖s + ‖〈D〉−|ρk|[xγk∂δk , ∂ρk ]u‖s.
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Using this last estimate we get

ε|α|+|β|

max{|α|, |β|}!
‖EQα,β

1 [u]‖s

≤ Csε
∑

δ0+δ1+...+δl=α−ej
δ0≤h

l∏
k=1

ε|γk|+|δk|

max{|γk|, |δk|}!

{
‖xγk∂δku‖s+

∑
|γ|≤m−1

‖〈D〉−|γ|[xγk∂δk , ∂γ]u‖s
}
,

(recall that the γk’s depend on β, δ1, . . . , δl). We now sum the above expression
over |α| + |β| ≤ N , α 6= 0. When α and β vary, every term in the above product
also appears in the development of{ ∑

|α̃|+|β̃|≤N−1

ε|α̃|+|β̃|

max{|α̃|, |β̃|}!

{
‖xβ̃∂α̃u‖s +

∑
|γ|≤m−1

‖〈D〉−|γ|[xβ̃∂α̃, ∂γ]u‖s
}}l

,

and is repeated at most, say, L times, with L depending only on h and the dimension
d. Hence we obtain∑
|α|+|β|≤N

α 6=0

ε|α|+|β|

max{|α|, |β|}!
‖EQα,β

1 [u]‖s

≤ C ′′s ε
{ ∑
|α̃|+|β̃|≤N−1

ε|α̃|+|β̃|

max{|α̃|, |β̃|}!

{
‖xβ̃∂α̃u‖s +

∑
|γ|≤m−1

‖〈D〉−|γ|[xβ̃∂α̃, ∂γ]u‖s
}}l

≤ C ′′s ε
{
Ss,εN−1[u] + C ′′′s εS

s,ε
N−2[u]

}l ≤ C ′′′′s ε(S
s,ε
N−1[u])l,

where we used Proposition 4.4 applied with ∂γ and 〈D〉−|γ| in place of P and E
respectively, and we understand Ss,ε−1[u] = 0.

We finally show that

(4.26)
∑

|α|+|β|≤N
α 6=0

ε|α|+|β|

max{|α|, |β|}!
‖EQα,β

2 [u]‖s ≤ Csε(S
s,ε
N−1[u])l.

Since the arguments are similar to the previous ones, we give only a sketch of the
proof.

We can write

Qα,β
2 [u] = βj

∑
δ0+δ1+...+δl=α−ej

δ0≤h

(α− ej)!
δ0!δ1! . . . δl!

h!

(h− δ0)!
xh−δ0xβ−ej

l∏
k=1

∂δk+ρku.

If βj 6= 0, we choose a multi-index δ̃0 of maximal length among those satisfy-

ing |δ̃0| ≤ |δ0| and δ̃0 ≤ β − ej. Next, we use the fact that E ◦ xh−δ0xδ̃0 ∈
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OPG−m,−n+|h|(Rd) is bounded Hs−M(Rd) → Hs(Rd) with M = maxk{|ρk|} and
we apply the decomposition

xβ−ej−δ̃0
l∏

k=1

∂δk+ρku =
l∏

k=1

xγk∂δk+ρku,

with γ1 + . . . + γl = β − ej − δ̃0, and |γk| ≤ |δk| for 1 ≤ k ≤ l, if |β| ≤ |α|, or
|γk| ≥ |δk| for 1 ≤ k ≤ l, if |α| ≤ |β|. Moreover, if |β| ≤ |α| one uses

βj
|α|

1

(|α| − 1)!

(α− ej)!
δ0!δ1! . . . δl!

≤ 1

|δ0|!|δ1|! . . . |δl|!
,

in place of (4.24), whereas if |α| ≥ |β| (hence |δ̃0| = |δ0|) one uses

βj
|β|

1

(|β| − 1)!

(α− ej)!
δ0! . . . δl!

≤ 1

|δ̃0|!|γ1|! . . . |γl|!
,

in place of (4.25). Therefore we get the same formula (4.23) with Qα,β
2 in place of

Qα,β
1 . The proof then proceeds as that for Qα,β

1 without other modifications.

We are now ready to conclude the proof of Theorem 4.1.

End of the proof of Theorem 4.1 (the case m ≥ 1). It follows from (4.1) that, for
α, β ∈ Nd, ε > 0,

ε|α|+|β|

max{|α|, |β|}!
xβ∂αPu =

ε|α|+|β|

max{|α|, |β|}!
xβ∂αf +

ε|α|+|β|

max{|α|, |β|}!
xβ∂αF [u],

so that

ε|α|+|β|

max{|α|, |β|}!
P (xβ∂αu) =

ε|α|+|β|

max{|α|, |β|}!
[P, xβ∂α]u+

ε|α|+|β|

max{|α|, |β|}!
xβ∂αf

+
ε|α|+|β|

max{|α|, |β|}!
xβ∂αF [u].

We now apply to both sides the parametrix E of P . With R = EP − I ∈
OPG−1,−1(Rd) we get

ε|α|+|β|

max{|α|, |β|}!
xβ∂αu = − ε|α|+|β|

max{|α|, |β|}!
R(xβ∂αu) +

ε|α|+|β|

max{|α|, |β|}!
E[P, xβ∂α]u

+
ε|α|+|β|

max{|α|, |β|}!
E(xβ∂αf) +

ε|α|+|β|

max{|α|, |β|}!
E(xβ∂αF [u]).
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Taking the Hs norms and summing over |α|+ |β| ≤ N give

Ss,εN [u] ≤ ‖u‖s +
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖R(xβ∂αu)‖s(4.27)

+
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E[P, xβ∂α]u‖s

+
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E(xβ∂αf)‖s

+
∑

0<|α|+|β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E(xβ∂αF [u])‖s.

The second and the third term in the right-hand side of (4.27) can be estimated
using Propositions 4.3 and 4.4 while the term containing f is obviously dominated
by Ss,ε∞ [f ]. For the last term we can apply Proposition 4.5. Hence, for n ≥ 1, we
have that, for ε small enough,

Ss,εN [u] ≤ ‖u‖s +CsS
s,ε
∞ [f ] +Csε

(
Ss,εN−1[u] +

∑
l

(
(Ss,εN−1[u])l + ‖u‖l−1

s Ss,εN−1[u]
))
,

whereas if 0 ≤ n < 1 we get

Ss,εN [u] ≤ ‖u‖s + CsS
s,ε
∞ [f ] + Csε

(
Ss,εN−1[u] +

∑
l

(
(Ss,εN−1[u])l

+ ‖〈x〉
1
l−1u‖l−1

s Ss,εN−1[u]
))
.

In both cases we obtain Ss,ε∞ [u] < ∞ if ε is small enough, which implies u ∈
Asect(Rd) by Proposition 3.3 (or, more simply, by the standard Sobolev embeddings,
since s > d/2).

�

4.2. Proof of Theorem 4.1: the case 0 < m < 1. In this case the nonlinearity
has the form

(4.28) F [u] =
∑
h,l

Fh,lx
hul,

where l ∈ N, l ≥ 2, h ∈ Nd, with |h| ≤ max{n− 1, 0} and Fh,l ∈ C, the above sum
being finite.
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We follow the same argument used for the case m ≥ 1. In particular we can
estimate the first four terms in the right-hand side of (4.27) as before since Propo-
sitions 4.3 and 4.4 hold in general for m > 0. Hence, to conclude, it is sufficient to
prove an estimate for the nonlinear term. We have the following result.

Proposition 4.6. Let P satisfy the assumptions of Theorem 4.1 for 0 < m < 1
and let E be a parametrix of P . Let l ∈ N, l ≥ 2, h ∈ Nd, |h| ≤ max{n − 1, 0}.
Then, there exists a constant C ′s > 0 and, for every τ > 0, there exists Cτ > 0 such
that, for every ε small enough, N ∈ N and u ∈ S(Rd) we have∑

0<|α+β|≤N

ε|α|+|β|

max{|α|, |β|}!
‖E(xβ∂α(xhul))‖s ≤ τC ′s‖u‖l−1

s Ss,εN [u]

+ C ′s(εCτ + τ + ε)(Ss,εN−1[u])l + C ′sε‖〈x〉
1
l−1u‖l−1

s Ss,εN−1[u].(4.29)

Proof. We first consider the terms in (4.29) with α = 0. SinceE◦xh ∈ OPG−m,0(Rd)
is bounded on Hs(Rd), we have, by Schauder’s estimates:

‖E(xh+βul)‖s ≤ C ′s‖xβul‖s ≤ C ′′s ‖xβ−eju‖s · ‖xjul−1‖s
if, say, βj 6= 0. Then we get

(4.30)
∑

0<|β|≤N

ε|β|

|β|!
‖E(xβul)‖s ≤ C ′′′s ε‖〈x〉

1
l−1u‖l−1

s · Ss,εN−1[u].

Consider now the terms in (4.29) with α 6= 0. We may write

xβ∂α(xhul) = xh+β∂α(ul) +
∑

0 6=γ≤α
γ≤h

(
h

γ

)
α!

(α− γ)!
xh+β−γ∂α−γ(ul)

= xh∂j(x
β∂α−ej(ul))− βjxh+β−ej∂α−ej(ul)

+
∑

0 6=γ≤α
γ≤h

(
h

γ

)
α!

(α− γ)!
xh+β−γ∂α−γ(ul).(4.31)

Since E is bounded Hs−m(Rd)→ Hs(Rd), we then obtain

‖E(xβ∂α(xhul))‖s ≤ C ′s‖∂j(xβ∂α−ej(ul))‖s−m + C ′sβj‖xβ−ej∂α−ej(ul)‖s−m

+C ′s
∑

0 6=γ≤α
γ≤h

(
h

γ

)
α!

(α− γ)!
‖xβ−γ∂α−γ(ul)‖s−m.(4.32)

Let us estimate the first term in the right-hand side of (4.32). We observe that for
every τ > 0 there exists a constant Cτ > 0 such that

〈ξ〉−m|ξj| ≤ τ |ξj|+ Cτ .
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Hence

‖∂j(xβ∂α−ej(ul))‖s−m = ‖〈D〉−m∂j(xβ∂α−ej(ul))‖s
≤ τ‖∂j(xβ∂α−ej(ul))‖s + Cτ‖xβ∂α−ej(ul)‖s
≤ τβj‖xβ−ej∂α−ej(ul)‖s + τ‖xβ∂α(ul)‖s

+Cτ‖xβ∂α−ej(ul)‖s.
Now we replace

∂α(ul) = lul−1∂αu+
∑

δ1+...+δl=α
δk 6=α ∀k

α!

δ1! . . . δl!

l∏
k=1

∂δku

in the last estimate and we come back to (4.32). We get, for a new constant C ′s > 0,

‖E(xβ∂α(xhul))‖s ≤ C ′sCτ‖xβ∂α−ej(ul)‖s + C ′s(1 + τ)βj‖xβ−ej∂α−ej(ul)‖s
+τC ′s‖u‖l−1

s ‖xβ∂αu‖s

+τC ′s
∑

δ1+...+δl=α
δk 6=α ∀k

α!

δ1! . . . δl!
‖xβ

l∏
k=1

∂δku‖s

+C ′s
∑

0 6=γ≤α
γ≤h

(
h

γ

)
α!

(α− γ)!
‖xβ−γ∂α−γ(ul)‖s−m.(4.33)

We have now to estimate the terms in the right-hand side of (4.33). Concerning
the first one, applying Leibniz’ formula we obtain

‖xβ∂α−ej(ul)‖s ≤
∑

δ1+...+δl=α−ej

(α− ej)!
δ1! . . . δl!

‖xβ
l∏

k=1

∂δku‖s.

If |β| ≥ |α|, then we can argue as in the previous section and find γ1, . . . , γl ∈ Nd

such that γ1 + . . . + γl = β and |γk| ≥ |δk| for every k = 1, . . . , l. Moreover, we
observe that the following estimate holds:

(4.34)
1

|β|!
· (α− ej)!
δ1! . . . δl!

≤ 1

|γ1|! . . . |γl|!
.

Then

(4.35)∑
|α|+|β|≤N
0<|α|≤|β|

ε|α|+|β|

max{|α|, |β|}!
‖xβ∂α−ej(ul)‖s ≤ C ′′s ε

∑
|α|+|β|≤N
0<|α|≤|β|

∑
δ1+...+δl=α−ej

l∏
k=1

ε|γk|+|δk|

|γk|!

× ‖xγk∂δku‖s ≤ C ′′′s ε(S
s,ε
N−1[u])l.



26 MARCO CAPPIELLO AND FABIO NICOLA

On the other hand, for |β| ≤ |α| − 1 we can choose multi-indices γ1, . . . , γl such
that γ1 + . . .+ γl = β and |γk| ≤ |δk| for any k = 1, . . . , l and observe that

(4.36)
1

(|α| − 1)!

(α− ej)!
δ1! . . . δl!

≤ 1

|δ1|! . . . |δl|!
.

Then

(4.37)
∑

|α|+|β|≤N
0<|β|≤|α|−1

ε|α|+|β|

max{|α|, |β|}!
‖xβ∂α−ej(ul)‖s

≤ C ′′s
∑

|α|+|β|≤N
0<|β|≤|α|−1

∑
δ1+...+δl=α−ej

l∏
k=1

ε|γk|+|δk|

|δk|!
‖xγk∂δku‖s ≤ C ′′′s ε(S

s,ε
N−1[u])l,

for new constants C ′′s and C ′′′s .
For the second term in the right-hand side of (4.33) we can argue as before, with

γ1 + . . . + γl = β − ej and |γk| ≤ |δk| for k = 1, . . . , l, if |β| ≤ |α| or |γk| ≥ |δk| for
k = 1, . . . , l, if |β| ≥ |α|, using the estimates

βj
|β|

1

(|β| − 1)!

(α− ej)!
δ1! . . . δl!

≤ 1

|γ1|! . . . |γl|!

respectively,

βj
|α|

1

(|α| − 1)!

(α− ej)!
δ1! . . . δl!

≤ 1

|δ1|! . . . |δl|!

instead of (4.34), respectively (4.36). We obtain, for a new constant C ′s > 0,

(4.38)
∑

|α|+|β|≤N
α 6=0

ε|α|+|β|

max{|α|, |β|}!
‖βjxβ−ej∂α−ej(ul)‖s ≤ C ′sε(S

s,ε
N−1[u])l.

Concerning the fourth term in (4.33), we can decompose similarly β = γ1 + . . .+γl
and argue as before, taking into account that now |γ1+. . .+γl+δ1+. . .+δl| = |α+β|,
so that we do not longer gain ε as a factor in the estimate. Hence we get

(4.39)
∑
|α+β|≤N
α 6=0

ε|α|+|β|

max{|α|, |β|}!
∑

δ1+...+δl=α
δk 6=α ∀k

α!

δ1! . . . δl!
‖xβ

l∏
k=1

∂δku‖s ≤ C ′s(S
s,ε
N−1[u])l

for a new constant C ′s. Finally, for the last term in (4.33), we first observe that
max{|α− γ|, |β− γ|} = max{|α|, |β|}− |γ|. Then we can argue as before obtaining
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the estimate
(4.40)∑

|α+β|≤N
α 6=0

ε|α|+|β|

max{|α|, |β|}!
∑

0 6=γ≤α
γ≤h

(
h

γ

)
α!

(α− γ)!
‖xβ−γ∂α−γ(ul)‖s−m ≤ Csε(S

s,ε
N−1[u])l.

The estimates (4.30), (4.35), (4.37), (4.38), (4.39), (4.40) applied in (4.33) yield
(4.29).

End of the proof of Theorem 4.1 (the case 0 < m < 1). Using the same argument
as in the case m ≥ 1, by Propositions 3.3, 4.3, 4.4, 4.6 we obtain

Ss,εN [u] ≤ ‖u‖s + C ′sS
s,ε
∞ [f ] + C ′sεS

s,ε
N−1[u] +

∑
l

(
τC ′s‖u‖l−1

s Ss,εN [u]

+ C ′s(εCτ + τ + ε)(Ss,εN−1[u])l + C ′sε‖〈x〉
1
l−1u‖l−1

s Ss,εN−1[u]
)

for every N ≥ 1 and ε small enough. Now, choosing τ < (2
∑

l C
′
s‖u‖l−1

s )−1 we
obtain

Ss,εN [u] ≤ 2‖u‖s + 2C ′sS
s,ε
∞ [f ] + 2C ′sεS

s,ε
N−1[u]+

+
∑
l

(
2C ′s(εCτ + τ + ε)(Ss,εN−1[u])l + 2C ′sε‖〈x〉

1
l−1u‖l−1

s Ss,εN−1[u]
)
.

Then we can iterate the last estimate observing that, shrinking τ and then ε, the
quantity εCτ + τ + ε can be taken arbitrarily small. This gives Ss,ε∞ [u] < ∞ and
therefore u ∈ Asect(Rd).

5. Remarks and applications

5.1. Lower a priori regularity. For special nonlinearities, in Theorem 1.1 we can
assume lower a priori regularity on the solution u. For example, if F [u] = (∂ρu)l,
|ρ| ≤ min{m− 1, 0}, l ∈ N, l ≥ 2, or even F [u] = |∂ρu|l−1∂ρu, |ρ| ≤ min{m− 1, 0},
l ∈ N, l > 2 odd (as in (1.12)), then we can assume u ∈ Hs(Rd), with s > d

2
− m−|ρ|

l−1
,

s ≥ |ρ|. Indeed, such a solution is actually in H∞(Rd); see e.g. [5, Lemma 4.1,
Remark 4.1] (where that threshold is also proved to be sharp). We also refer to [5]
for other types of non-linearities.

5.2. Eigenfunctions of G-elliptic operators. In the linear case, the assump-
tions on the a priori regularity of u can be relaxed assuming u ∈ S ′(Rd). Then, we
have the following result.

Theorem 5.1. Let P be a G-elliptic pseudodifferential operator with a symbol
p(x, ξ) satisfying (1.9). Then there exists ε > 0 such that every solution u ∈ S ′(Rd)
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of the equation Pu = 0 extends to a holomorphic function in the sector of Cd

Cε = {z = x+ iy ∈ Cd : |y| ≤ ε(1 + |x|)},

satisfying there the estimates (1.3) for some constants C > 0, c > 0.

Proof. It follows from the existence of a parametrix (see Section 2) that any so-
lution u ∈ S ′(Rd) of Pu = 0 is in fact a Schwartz function. Hence we can apply
Theorem 1.1 directly without using Lemma 4.2. Moreover it follows from the clas-
sical Fredholm theory of globally regular operators (see e.g. [27, Theorem 3.1.6])
that the kernel of P is a finite dimensional subspace of S(Rd), which implies that
there exists a sector where all the solutions extend holomorphically.

The main application of Theorem 5.1 concerns eigenfunctions of G-elliptic oper-
ators of orders m > 0, n > 0. Indeed, in that case, if P is G-elliptic also P − λ
is G-elliptic for every λ ∈ C, and one can apply Theorem 5.1 to P − λ. As re-
gards existence, we recall that if P ∈ OPGm,n(Rd), m > 0, n > 0, is formally
self-adjoint (i.e. symmetric when regarded as an operator in L2(Rd) with domain
S(Rd)) then it has a sequence of real eigenvalues either diverging to +∞ or −∞,
and L2(Rd) has an orthonormal basis made of eigenfunctions of P (cf. e.g [25] or
[27, Theorem 4.2.9]). As an example in dimension 1, one can consider the operator
Pu = −(1 + x2)u+ x2u− 2xu′, x ∈ R.

5.3. Solitary waves. The present subsection is devoted to some applications to
solitary waves, in particular to the proof of Theorem 1.2. First we report the
following useful characterization of the condition (1.16).

Proposition 5.2. The estimates (1.16) are equivalent to requiring that p(ξ) extends
to a holomorphic function p(ξ+iη) in a sector of the type (1.18), and satisfies there
the bound |p(ξ + iη)| ≤ C ′〈ξ〉m.

Proof. The sufficiency of (1.16) for the holomorphic extension with the desired
bound follows exactly as in the last part of the proof of Theorem 3.2, where in
(3.5) the exponential factor is now replaced by 〈ξ〉m.

In the opposite direction, we obtain (1.16) from Cauchy’s estimates applied to a
disc in C with center at ξ and radius ε′〈ξ〉 for some small ε′ > 0 (independent of
ξ).

Proof of theorem 1.2. Consider first the equation (1.14). We observe that u satisfies
the equation

(5.1) Mu+ (V − 1)u = F [u],

cf. the proof of [9, Theorem 3.2.1]. By (1.17) and the condition V > 1 the symbol
of the linear part of the equation (5.1), that is p(ξ) + V − 1, is G-elliptic: for some
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constant c > 0

(5.2) p(ξ) + V − 1 ≥ c〈ξ〉m, ξ ∈ R.
Moreover by (1.16) it satisfies the analytic symbol estimates (1.9) (with n = 0). To
conclude the proof it is sufficient to show that u ∈ Hs(Rd) and 〈x〉ε0u ∈ L2(Rd) for
some ε0 > 0, s > d/2, and to apply Theorem 1.1. The fact that u enjoys the above
properties will follow from [9, Theorem 3.1.2, Corollary 4.1.6] once we observe that
the function

K(ξ) =
1

p(ξ) + V − 1

satisfies |K(ξ)| ≤ C〈ξ〉−m for some C > 0 and belongs to H∞(Rd). This is clear,
because (5.2) and (1.16) give

|∂αK(ξ)| ≤ Cα〈ξ〉−m−|α|,
and m ≥ 1.

The case of the equation (1.15) is completely similar: in place of (5.2) one
just has V Mu + V − 1 = F [u], and the above arguments apply to the function
K(ξ) = (V p(ξ) + V − 1)−1.

The theorem is then proved.

As an example where the solutions are known in closed form, consider the gen-
eralized Korteweg-de Vries equation

(5.3) vt + vx + vlvx + vxxx = 0,

where l ≥ 1 is a positive integer. Here we have p(ξ) = ξ2. The solitary wave
solutions have the form v(x, t) = u(x− V t), where V > 1 and

u(x) =
l

√
(l + 1)(l + 2)(V − 1)

2
Cosh−2/l

(√V − 1

2
lx
)
,

which singularities at the points z = i (2k+1)π

l
√
V−1

, k ∈ Z. Also, the exponential decay

in sectors containing the real axis predicted by Theorem 1.2 is confirmed.
During the years 1990-2000, several papers were devoted to 5-th order and 7-

th order generalization of KdV, see for example Porubov [29, Chapter 1]. The
corresponding stationary equation is of the type

(5.4)
m∑
j=0

aju
(j) +Q[u] = 0,

where Q is a polynomial, Q[u] =
∑M

j=2 bju
j and a0 6= 0. Because of physical as-

sumptions, the equation
∑m

j=0 ajλ
j = 0 has no purely imaginary roots, and then all

the solutions of the corresponding linear equation have exponential decay/growth.
This condition can be read as G-ellipticity of the symbol of the linear part of
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the corresponding stationary equation:
∑m

j=0 aj(iξ)
j 6= 0 for ξ ∈ R, in particular

ξ2 +V −1 6= 0 in the case of(5.3). Non-trivial solutions u of (5.4) with u(x)→ 0 as
x→ ±∞ may exist or not, according to the coefficients aj, bj, and when they exist,
in general they do not have an explicit analytic expression. Holomorphic extension
and exponential decay on a sector are granted anyhow by Theorem 1.2.

5.4. Standing wave solutions of the Schrödinger equation. Consider the
Schrödinger equation in Rd,

i∂tv + ∆v = µ|v|l−1v, (t, x) ∈ R× Rd,

with l ∈ N, l > 2 odd, µ ∈ C, and look at standing wave solutions, i.e. v(t, x) =
eiωtu(x), ω > 0. The corresponding equation for u is

∆u− ωu = µ|u|l−1u.

Since the operator ∆−ω is G-elliptic (because ω > 0), when solutions u exist, with
u ∈ Hs(Rd), s > d

2
− 2

l−1
, s ≥ 0, and 〈x〉ε0u ∈ L2(Rd), for some ε0 > 0, then Theo-

rem 1.1 and the remark in Subsection 5.1 assure that u extends to a holomorphic
function on a sector of the type (1.13) and displays there an exponential decay of
type (1.3). This applies, in particular, to the bound states in H1(Rd) exhibited in
[4] when l < d+2

d−2
, d ≥ 3.

5.5. Sharpness of the results. Here we show the sharpness of Theorem 1.1 as
far as the shape of the domain of holomorphic extension is concerned.

Consider in dimension d = 1 the equation

−u′′ + e−2iθu =
e−2iθ

2
u2,

where −π < θ ≤ π, |θ| 6= π
2
. This equation is G-elliptic, since it is elliptic and

ξ2 + e−2iθ 6= 0 for every ξ ∈ R. An explicit Schwartz solution is given by

u(x) = 3Cosh−2
(e−iθ

2
x
)
.

The function u extends to a meromorphic function in the complex plane with poles
at z = ei(θ+π/2)(2k+1)π, k ∈ Z. This shows that in Theorem 1.1 we cannot replace
the sector (1.13), e.g., with a larger set of the type

{z = x+ iy ∈ Cd : |y| ≤ ε(1 + |x|)ψ(x)},
for any continuous function ψ(x) > 0, with ψ(x)→ +∞ as |x| → +∞.
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Basel, 2010.
[28] C. Parenti, Operatori pseudo-differentiali in Rn e applicazioni, Annali Mat. Pura Appl., 93

(1972), 359–389.
[29] A. V. Porubov, Amplification of nonlinear strain in solids, World Scientific, Singapore, 2003.
[30] E. Schrohe, Spaces of weighted symbols and weighted Sobolev spaces on manifolds. In “Pseu-

dodifferential Operators”, Proceedings Oberwolfach 1986. H. O. Cordes, B. Gramsch and H.
Widom editors, Springer LNM, 1256 New York, 360–377 (1987).

[31] E. Schrohe, Complex powers on noncompact manifolds and manifolds with singularities,
Math. Ann., 281 (1988), no. 3, 393–409.

[32] B.-W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure
and Applied Mathematics (New York). John Wiley & Sons, Ltd., Chichester, 1998.

[33] H. Triebel, Interpolation theory, function spaces, differential operators. Second edition. Jo-
hann Ambrosius Barth, Heidelberg, 1995.

[34] M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising
in long wave propagation, Comm. Partial Differential Equations, 12 (1987), 1133–1173.

Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Al-
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