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Abstract 

Campylobacter jejuni is worldwide recognised as a human foodborne pathogen. It is 

widely present in poultry meat and slaughterhouses, but little is known about its fate 

during the processing of poultry meat preparations. In stress conditions, this pathogen 

can enter into a viable but non-culturable state, where quantitative PCR (qPCR) 

becomes more convenient for its detection. In this study, two different pairs of primers, 

targeting the rpoB and the hipO genes, were compared for its detection and 

quantification by PCR. Two calibration curves were prepared: one for the meat samples 

and the other for the environmental samples. rpoB primers showed higher sensitivity 

with a quantification limit of 1 log cfu/g or ml. Microbial Assessment Scheme (MAS) 

was used to select the Critical Sampling Locations (CSLs) along the poultry processing 

line. Forty-six out of 48 samples were positive by qPCR after enrichment (t = 48h) 

while only 6 samples were positive by ISO 10272-1:2006. Forty-three samples showed 

positive signal without enrichment (t = 0h), however only 16 samples could be 

quantified. These results showed the high prevalence of C. jejuni in the poultry industry 

and the need for new, rapid and sensitive techniques, such as qPCR, for the detection 

and quantification of C. jejuni in meat and environmental samples. 
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Introduction 

The global incidence of campylobacteriosis has increased over recent years. The last 

report published by the European Centre for Disease Prevention and Control (ECDC), 

in 2007, pointed to an increased incidence of campylobacteriosis in the EU, in 

comparison with 2006, of around 15%; a rise from around 40 to 47 cases per 100,000 

inhabitants. It is the most commonly reported cause of gastrointestinal disease in the EU 

(ECDC, 2009). In the United States, 13 cases per 100,000 inhabitants were reported by 

FoodNet (CDC, 2010), although it is estimated that two-to-three million 

Campylobacter-related illnesses occur per year (Friedman et al., 2000; Miller and 

Mandrell, 2005). Furthermore, Nachamkin (2003) has estimated an annual global 

incidence rate of between 400–500 million illnesses. Campylobacter infection is serious 

but usually self-limiting, although it can also lead to long-term sequels such as reactive 

arthritis and Guillain-Barré syndrome. Campylobacter is ubiquitous in nature and, as a 

consequence, it is frequently found in farm animals, in the environment and on many 

raw foods. Bacterial numbers can be very high on certain key foods including raw 

poultry meat. Although all commercial meat poultry species can carry campylobacters, 

the risk of campylobacteriosis is greater in chicken meat (Pires et al., 2010), because of 

high levels of chicken consumption, among other reasons (Humphrey et al., 2007).  

The Campylobacter genus currently includes 16 species and six subspecies. C. jejuni is 

by far the major cause of recognized Campylobacter outbreaks and sporadic illness, 

together with C. coli (thermophilic campylobacters). Generally, it is recognized that C. 

jejuni is more commonly associated with poultry (Murphy et al., 2006) than C. coli, 

which is more related to pork (Doorduyn et al., 2010, Mayr et al., 2010). Nevertheless, 

other Campylobacter species are beginning to emerge in specific regions of the world 

(Humphrey et al., 2007). 
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Classical detection methods are slow and sometimes unreliable due to the complex 

growth requirements of Campylobacter. For this reason, there has been a growing 

interest in the development of molecular tools to allow quick and unambiguous 

detection and identification of thermophilic Campylobacter species in food safety 

controls (Bonjoch et al., 2010; Mayr et al., 2010). Conventional methods currently in 

use are time-consuming and laborious, requiring prolonged incubation periods and 

selective enrichment to reduce the growth of background flora. It has been observed that 

enrichment broths used in traditional microbiological testing often fail to recover 

Campylobacter spp. from food, thereby the real prevalence of these pathogenic 

microorganisms is hardly understood (Habib et al., 2008). Additionally, Campylobacter 

species can enter a VBNC state. Molecular methods must therefore be developed to 

increase detection sensitivity as a useful alternative to traditional enrichment testing 

(Nogva et al., 2000). PCR-based methods can be designed to detect genera (Linton et 

al., 1996; Marshall et al., 1999) or groups of species, such as thermophilic 

Campylobacter (Fermér and Engvall, 1999; Klena et al., 2004; Thunberg et al., 2000), 

or they can be designed to speciate Campylobacter present in a sample (Bonjoch et al., 

2010; Burnett et al., 2002; Mayr et al., 2010). With the accumulation of genomic data, 

new methods have been described that amplify genes unique to a given species. These 

include, for example, the hipO gene of C. jejuni (Keramas et al., 2003; Steinhauserova 

et al., 2001; Wang et al., 2002). 

Although, a significant number of studies have developed and used different 

quantitative PCR (qPCR) methods for detecting Campylobacter spp., fewer use this 

methodology for quantification of Campylobacter spp. in food samples (Botteldoorn et 

al., 2008; Hong et al., 2007; Josefsen et al, 2010; Yang et al., 2003), and determination 

of surface contamination by campylobacters on an industrial scale. In this study, the 
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sensitivity of two different pairs of primers in the detection and quantification of C. 

jejuni in poultry and environmental samples has been tested. The most sensitive method 

was chosen and applied throughout the poultry processing plant, comparing its results 

with those of the culture-based method. More sensitive methods can help in a better 

design of preventive measures, and/or intervention processes to increase food safety 

with specific reference to Campylobacter jejuni presence in foods. 

Material and Methods 

Campylobacter jejuni strains 

In this study, different strains of C. jejuni isolated from poultry samples have been used 

as controls: C. jejuni CaTA007 (kindly provided by Gaiker Centro Tecnológico, Bilbao, 

Spain), CaTA008 (kindly provided by the Departamento de Inmunología, Microbiología 

y Parasitología, Facultad de Farmacia, Universidad del País Vasco, Vitoria, Spain) and 

CECT 7572 (Spanish Type Culture Collection) isolated from human faeces. 

Additionally, two strains of Listeria monocytogenes, CECT 4032 and LTA002, isolated 

from lamb (Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de 

Burgos, Burgos, Spain) and Escherichia coli CECT 729 were used as negative controls. 

The bacterial isolates were recovered from -70ºC storage and grown on agar plates or 

broth. C. jejuni strains were grown on Columbia Blood Agar (Oxoid, Basingstoke, 

Hampshire, England) supplemented with 5% horse blood (Oxoid). Plates were 

incubated at 41.5 ºC for    48 h under microaerophilic atmosphere (5% O2, 10% CO2, 

85% N2) generated by CampyGen® (Oxoid). Non-campylobacters were incubated in 

brain heart infusion (BHI, Oxoid) at 37ºC for 24 h. 
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Sampling methodology 

In order to apply both the conventional and the qPCR technique throughout the poultry 

chain, some principles of the Microbial Assessment Scheme (MAS) (Jacxsens et al., 

2009; Sampers et al., 2010) were used. The Critical Sampling Locations (CSL), 

sampling frequency and sampling method are summarized in Table 1. In this study, 

sampling began with the entrance of chicken carcasses after slaughtering and continued 

up until the production of fresh and raw poultry products.  

 

Sample preparation 

For the destructive sampling method (meat samples), 25 g were taken aseptically and 

homogenised with 225 ml of sterile Bolton broth (Oxoid) supplemented with Bolton 

broth selective supplement (Oxoid) for C. jejuni detection and Buffer Peptone Water 

(BPW, AES Chemunex, Bruz, France) for C. jejuni quantification (culture-based 

method). Although Bolton broth has to be supplemented with blood as recommended in 

ISO 10272-1:2006, some studies (Al-Soud and Rådström, 2001; Josefsen et al., 2004; 

Mercier et al., 1990; Rantsiou et al., 2010) suggested that blood components can 

produce a possible inhibitory effect on PCR reactions. In order to check whether the 

absence of blood supplement in Bolton broth influences the growth of campylobacters 

during the enrichment step, a simple test was performed to compare its suppression 

before the application of the ISO method or qPCR analysis. Bolton broth without blood 

was used in this study, the results of which are discussed below. 

Sterile abrasive sponges (EnvirospongeTM, Biotrace international) were used for 

sampling the carcasses, working surfaces and personnel gloves, putting the sponges 

after sampling into a sterile plastic bag containing 100 ml of sterile Bolton broth 
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supplemented as described above. Sponges were homogenised for 2 min in a sterile 

plastic bag in a lab blender (Stomacher 400, Seward, London, UK).  

For the conventional method, serial decimal dilutions were prepared in sterile Buffered 

Peptone Water (BPW) (AES Chemunex), then 100 µl were spread onto modified 

charcoal cefoperazone deoxycholate agar (mCCDA) prepared with Campylobacter 

blood-free selective agar base (Oxoid) supplemented with CCDA selective supplement 

(Oxoid) and onto a Campylobacter agar base (Karmali, Oxoid) with Campylobacter 

Selective Supplement (Karmali, Oxoid). Selective plates were incubated at 41.5 ºC for 

48 h in a microaerophilic atmosphere. Samples homogenized in Bolton broth were also 

enriched at the same conditions for detection as described in ISO 10272-1:2006 (ISO, 

2006). 

For quantitative PCR and prior to the enrichment step, about 40 ml of the homogenate 

in Bolton broth were transferred to a 50 ml sterile tube and the solids were allowed to 

settle for about 5 min; for sponges, samples were allowed to settle out in the same bag. 

Further 1/10 dilution in BPW was carried out in the case of meat samples and 1 ml was 

centrifuged (Centrifuge 5415R, Eppendorf, Hamburg, Germany) at 13,400 rpm for 10 

min at 4ºC. The resulting pellets were stored at -70ºC awaiting DNA extraction. 

Samples in Bolton broth were also incubated at 41.5ºC for 48h for detection by qPCR, 

then 1 ml of the enriched broth, diluted (1/10 in BPW for meat samples only) and 

pelleted, was used for DNA extraction and amplification. 

DNA extraction 

Nucleic acid extraction for Campylobacter jejuni was performed using the Master 

PureTM Complete DNA and RNA Purification Kit (Epicentre, Madison, WI, USA) 

following the manufacturer’s instructions, as suggested by Rantsiou et al. (2010).  
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Detection and quantification of Campylobacter jejuni by PCR 

The detection and quantification of C. jejuni was performed using two different pairs of 

primers (Table 2). The procedure described by Rantsiou et al. (2010) was followed for 

the rpoB gene; while certain modifications to the procedure described by Keramas et al. 

(2003) were carried out for the hipO gene. Samples were first subjected to detection by 

qPCR at 48h after sample enrichment, and those with positive signal were quantified 

using the corresponding DNA obtained before sample enrichment and the calibration 

curves constructed as described below. Amplifications were performed in a final 

volume of 25 µl. One µl of DNA, extracted using method described above, was 

amplified with the specific primers (Table 2). The Euroclone FluoCycleTM SYBR® 

Green Mix kit (Genycell Biotech, Pero, Italy) was used with a MgCl2 concentration of 8 

mM. Primer (Sigma-Aldrich®, Madrid, Spain) concentrations can be found in Table 2. 

All the amplifications were performed in an iCycler iQTM Thermal Cycler machine 

(Bio-rad Laboratories, California, USA). The amplification profile consisted of 50 

cycles: 30s at 95 ºC; 30s at 62 ºC; and finally 30s at 72 ºC, as described by Rantsiou et 

al. (2010). 

Calibration curves 

Two calibration curves were constructed for the purposes of quantification for each 

qPCR procedure described above: one in Bolton broth for environmental samples and 

the other in minced poultry meat for meat samples. Serial dilutions of an overnight 

culture in Bolton broth of C. jejuni CaTA008, containing approximately 106 cfu/ml 

were prepared in BPW, then 1 ml of each dilution was subjected to DNA extraction. 

Ten g of minced poultry meat were inoculated with 1 ml of each dilution for the meat 

curve. The final concentration of the cells in the meat varied from 105 to 101 cfu/g. 

Ninety ml of Bolton broth supplemented as described above was added to the inoculated 
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meat and homogenized in a lab blender (Stomacher 400, Seward). One ml of each 

homogenate was diluted in 9 ml of BPW and 1 ml of the dilution was collected for 

DNA extraction and amplified in triplicate. Each serial dilution and homogenate was 

subjected to enumeration on mCCDA plates. Calibration curves were constructed 

plotting the signals produced (threshold cycle, Ct) by the DNA against the log10 cfu/g or 

ml. Correlations coefficients (R2) and amplification efficiency (AE) were calculated as 

previously described (Higuchi et al., 1993).  

 

Results and Discussion 

Blood and other ingredients were added to conventional formulations of Campylobacter 

media to neutralize the toxic effects of compounds produced in the presence of oxygen 

and light, as stated in the ISO detection method (Corry et al., 1995) On the contrary, 

many studies have shown that some blood components, primarily heme, hemoglobin, 

and lactoferrin are PCR inhibitory (Al-Soud and Rådström, 2001; Josefsen et al., 2004; 

Mercier et al., 1990; Rantsiou et al., 2010). Our results showed no significant difference 

between the counts (p>0.05) obtained by either ISO (6.39 log cfu/ml) and or by qPCR 

(6.62 log cfu/ml) methods, when blood was omitted in the enrichment broth. Similar 

conclusions have been advanced by other authors (Bolton et al., 2002; Paulsen et al., 

2005). On the basis of these results, it was decided to prepare samples using Bolton 

enrichment broth without blood for both methods.  

Both pairs of primers had previously been optimized (Keramas et al., 2003 and Rantsiou 

et al., 2010). Moreover, in this study all three control strains of Campylobacter jejuni 

tested were positive by qPCR, while both strains of L. monocytogenes and the single 

strain of E. coli tested negative, using both the hipO and the rpoB genes.  
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Two calibration curves (meat and environmental samples) were constructed for each of 

the two targeted genes (Figure 1) to verify the effectiveness and the sensitivity in the 

detection and quantification of C. jejuni for both pairs of primers. As shown, 

quantification limits of 1 log cfu/ml and 2 log cfu/g were obtained for the environmental 

and the meat samples, respectively, when the hipO gene was the target (Figure 1a and 

1b); while a quantification limit of 1 log cfu/ml o g was obtained for both types of 

samples, when the rpoB gene was the target. In all probability, the hipO amplification 

gave a lower quantification limit due to lower amplification efficiency, probably 

because of a large PCR product (Kubista et al., 2006). Other authors have also 

quantified C. jejuni by qPCR, by spiking food samples with different C. jejuni 

concentrations, to obtain similar quantification limits of 1 log cfu/g for meat products 

(Bonjoch et al., 2010; Rantsiou et al., 2010). After the calibration curves had been 

constructed, the qPCR method was used to quantify C. jejuni in some of the samples 

collected from different CSLs along the processing line. 

Thirteen samples were randomly selected from all the CSLs to compare the 

quantification results obtained with both pairs of primers (Table 3). Counts obtained 

with both pairs of primers were of the same order of magnitude with a maximum 

difference between both methods of around 0.5 log cfu/g or ml. Only two samples could 

not be quantified with hipO primers because the detection limit for meat samples was 

less sensitive than the one obtained with rpoB primers. 

Once the most suitable pair of primers for the quantification of C. jejuni in poultry and 

environmental samples was selected, the sensitivity of the qPCR method was compared 

with the ISO method for the 48 samples taken in the poultry processing plant following 

the MAS sampling plan (Table 4). 
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Forty-six out of 48 (95.83 %) enriched samples (t = 48h) tested positive by qPCR 

(Table 4), while 43 (89.53 %) were positive when non-enriched samples were analysed 

(t = 0h). However, these results are inconsistent with those obtained by conventional 

method where only 6 out of 48 samples were positive (12.50 %). Other studies have 

reported similar results when using either molecular methods such as qPCR (Rantsiou et 

al., 2010) or traditional microbiological approaches (Habib et al., 2008). These results 

can be explained by accepting that C. jejuni is a fastidious microorganism, sensitive to 

temperature variations, incubation time and also incubation atmosphere (Humphrey et 

al., 2007). Likewise, C. jejuni is present on food and in water at much lower levels than 

in faecal samples, and those present on food may have been injured by exposure to 

heating, chilling, freezing or other conditions related to processing and storage 

(Humphrey and Cruikshank, 1985; Rosenquist et al., 2006). Therefore, an enrichment 

step is required both to detect small numbers of bacteria and to resuscitate damaged 

cells. However, pre-enrichment may increase outgrowth of the normal foodborne 

microflora, resulting in suppression of the growth of Campylobacter (Uyttendaele and 

Debevere, 1996). Thus, according to Jasson et al. (2009) an overgrowth of an 

Escherichia coli strain resistant to the antibiotics added to the Bolton broth and the 

mCCDA plates could suppress the growth of C. jejuni and this could be the reason for 

negative results by ISO methods in comparison with the positive results by PCR. 

Moreover, a wide number of studies have also concluded that Campylobacter can 

change to a viable but non-culturable (VBNC) form when exposed to stress conditions, 

concealing itself from detection by conventional methods (Beumer et al., 1992; 

Humphrey et al., 2007). However, it cannot be excluded that VBNC cells may recover 

and exit from this state becoming potentially pathogenic for humans. From this 
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perspective, the PCR method may successfully be used for food-poisoning-related risk 

assessments (Mayr et al., 2010). 

The data from the present study showed that qPCR was more sensitive than the ISO 

10272-1:2006 in the detection of C. jejuni. These results agree with other studies where 

conventional methods arrived at an underestimation as against molecular methods, 

although the differences were not as great as those found in this study (Botteldoorn et 

al., 2008; Hong et al., 2007; Yang et al., 2003). Debretsion et al. (2006) found that 65 

samples out of 84 (77%) obtained from chicken rinses were positive by qPCR assay, 

whereas only 27 (32%) samples were positive by direct plating on selective media. 

Likewise, Rantsiou et al. (2010) found that 87% of analyzed food samples were 

Campylobacter jejuni positive by PCR while none tested positive using conventional 

methods. Moreover, the qPCR method allows C. jejuni detection and quantification in 

chicken meat and environmental samples within a few hours instead of the 6 days 

required for determination of the presence of Campylobacter spp. by ISO 10272-

1:2006.  

Sixteen out of 43 positive non-enriched samples could be quantified by qPCR. 

Carcasses were the most contaminated samples in this poultry processing plant (Table 

4). C. jejuni was also present in thighs, minced meat and packaged hamburger. Similar 

results were obtained by Sampers et al. (2008) using conventional methods. Applying 

qPCR, Botteldoorn et al. (2008) detected 8.25 log cfu per carcass of Campylobacter 

spp. at slaughterhouse level, after the cooling step. In chicken samples purchased in 

markets, Yang et al. (2003) obtained 5.0 × 108 cfu/g in 27 chicken breasts and 4.6 × 106 

cfu/ml in 16 chicken thighs as mean counts, and Hong et al. (2007), an average of 2.17 

log cfu/ml of C. jejuni in chicken rinses. 
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C. jejuni was also detected on most of the processing surfaces of the poultry line and on 

operator’s gloves (Table 4). Although it is well documented that cross-contamination 

with C. jejuni in the slaughter step could happen (Berndtson et al., 1996, Peyrat et al., 

2008; Rosenquist et al., 2006), few studies have been performed in plants processing 

chicken meat preparations (Cools et al., 2005). The authors, detected C. jejuni by 

conventional methods on conveyor belts, knives, gloves and cutting boards during the 

production shift. In this study, among the environmental samples, only those taken in 

the carcass portioning step (CSL 2- thighs, CSL 5-portioning table and CSL 8-

operator’s gloves) could all be quantified by qPCR. The contamination of these three 

CSLs could indicate cross-contamination between poultry meat, cutting tables and 

gloves while operators were processing the product. In the present study, the presence 

of C. jejuni was also determined after cleaning and disinfection procedures -time 1 of 

each visit- (Table 4), as has been observed in other studies (Cools et al., 2005; Peyrat et 

al., 2008).  

Conclusions 

Though easy to perform and not technically demanding, the plate counting method can 

only recover culturable cells and may not be able to detect highly stressed cells, which 

can easily underestimate the threat of C. jejuni that is present after low temperature 

storage or intervention strategies that have been applied to food. Thus, the qPCR 

method is more convenient for the detection and quantification of C. jejuni from meat 

poultry and environmental samples obtained directly from a poultry company 

processing line. The sensitivity of the two qPCR procedures is greater in comparison 

with conventional methods. Data obtained with both qPCR procedures from the same 

samples showed similar values. Moreover, rpoB primers were more sensitive than hipO 

ones, when the meat samples were analysed.  
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The use of qPCR approaches could represent a more realistic situation of C. jejuni 

prevalence in the poultry processing line, which can be useful to establish new 

preventive measures in order to increase food safety in this kind of products.  

qPCR methods save time and are more sensitive for detection and quantification of C. 

jejuni than conventional methods and could therefore be used, having addressed 

technical issues and training for lab personnel, as routine control methods on an 

industrial scale.  
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Table 1: Sampling scheme according to Microbial Assessment Scheme (MAS) 
procedure along the poultry processing line. 

CSLa 1 2 3 4 5 6 7 8 

Processing 
step 

Carcass at 
arrival  
(reception 
of raw 
material) 

Carcass 
portioning 

After 
poultry 
meat 
grinding 

Final product 
after 
packaging 
and chilling 

Cutting 
table at 
portioning 

Table at 
processing 

Table 
surface at 
packaging 

Operator’s 
gloves at 
portioning 

Frequency 3 visits, 1 sample n=3 3 visits, 3 samples at start–middle and end of the shift n=9 

Sampling 
method 

25 g of 
neck skin 

Surface 
swabbing 
of 25 cm2 
of poultry 
thighs  

25 g of 
minced 
hamburger 
meat  

25 g of 
packaged  
poultry 
hamburger  

Surface swabbing of 25 cm2 of the table Surface 
swabbing 
of 25 cm2 
of the 
gloves 

aCSL: Critical Sampling Location 
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Table 2: Sequence of different primers used to detect Campylobacter jejuni  

Gen Primer Secuence (5’→ 3’) Concent. 
in the mix Reference 

rpoB Cj_rpoB1 GAGTAAGCTTGCTAAGATTAAAG 400 nM Rantsiou et al., 
2010 Cj_rpoB2 AAGAAGTTTTAGAGTTTCTCC 60 nM 

hipO HIP-FW GTACTGCAAAATTAGTGGCG 400 nM Keramas et al., 
2003 HIP-REV GCAAAGGCAAAGCATCCATA 300 nM 
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Table 3: Comparative qPCR methods between rpoB and hipO genes (n=6) 

 

aCSL: Critical Sampling Location 
bTime: 1- Before the beginning of  the shift; 2- in the middle of the shift; 3- At the end of the 

shift. 
cMean value (Standard deviation) 
d NC: Detected but non quantifiable, because data is below the quantification limit. 
  

   rpoB hipO 

CSLa Visit Timeb Log cfu/cm2 Log cfu/g Log cfu/cm2 Log cfu/g 

Neck skin 
1   1.52 (0.02)c  NCd 
2   3.74 (0.19)  3.75 (0.10) 

Thighs 2  3.75 (0.05)  3.32 (0.06)  

Minced burger 
meat 1   1.43 (0.38)  NC 

Minced 
packaged meat 

2   2.01 (0.48)  2.49 (0.09) 

3   2.00 (0.53)  2.40 (0.16) 
Portioning 

table 2 3 1.74 (0.04)  1.80 (0.10)  

Processing 
table 

1 2 NC  NC  
2 3 NC  NC  

Packaging 
table 

1 3 NC  NC  
3 3 NC  NC  

Operator´s  
gloves  

2 1 NC  NC  
 3 2.32 (0.12)  2.05 (0.08)  
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Table 4: Detection and quantification of Campylobacter jejuni in poultry processing 
plant by standard culture and real-time qPCR 

    ISOa real-time PCRb 

CSLc Visit Timed  

Surface 
Samples 

(Log 
cfu/cm2) 

Meat 
Samples 

(Log cfu/g) 

1 Neck skin 
1  -  2.46 
2  -  3.55 
3  -  3.75 

2 Thighs 
1  - NC  
2  - 2.40  
3  - 1.53  

3 Minced burger 
meat 

1  -  NC 
2  -  1.94 
3  -  2.36 

4 
Packaged 
poultry 

hamburger 

1  -  1.62 
2  -  NC 
3  -  2.36 

5 Portioning 
table 

1 1 - NC  
 2 - 1.25  
 3 - 1.41  

5 Portioning 
table 

2 1 - NC  
 2 - 1.04  
 3 - 1.09  

5 Portioning 
table 

3 1 - NC  
 2 - NC  
 3 - N/A  

6 Processing 
table 

1 1 - NC  
 2 - NC  
 3 - NC  

6 Processing 
table 

2 1 - NC  
 2 - NC  
 3 + NC  

6 Processing 
table 

3 1 - NC  
 2 + NC  
 3 - NC  

7 Packaging 
table 

1 1 - NC  
 2 - NC  
 3 - NC  

7 Packaging 
table 

2 1 - NC  
 2 - NC  
 3 - NC  

7 Packaging 
table 

3 1 - NC  
 2 + NC  
 3 + NC  

8 Operator’s 
gloves   

1 1 - 1.03  
 2 - NC  
 3 - 1.42  

8 Operator’s 
gloves   

2 1 + NC  
 2 - NC  
 3 + 1.42  

8 Operator’s 
gloves     

3 1 - NC  
 2 - NC  
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 3 - N/A  
a - : Not detected by ISO; + : Detected by ISO 
b N/A: Not detected by real-time PCR; NC: detected by real-time PCR but not 
quantifiable 
cCSL: Critical Sampling Location 
dTime: 1- Before the beginning of  the shift; 2- in the middle of the shift; 3- At the end 
of the shift. 
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Figure 1: Standard curves for C. jejuni quantification. 1.a. hipO standard curve for meat 
poultry samples. 1.b. hipO standard curve for surface samples. 2.a. rpoB standard curve 
for meat poultry samples. 2.b. rpoB standard curve for surface samples (AE: 
amplification efficiency; R2: correlation coefficients). 
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Figure 1 
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