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ABSTRACT
The Alba succession (Tertiary Piedmont Basin, NW Italy) preserves the northernmost record of the 

Messinian salinity crisis (MSC) and was deposited on the southern margin of a wide wedge-top 

basin, related to the involvement of the Piedmont Basin in the Apennine compressional tectonics. 

Pre-MSC sediments consist of a cyclic succession of marine euxinic shales and calcareous marls, 

deposited under the influence of precession-modulated climate changes, and document the 

progressive restriction of the basin prior to the onset of the MSC. They are followed by the Primary 

Lower Gypsum unit (PLG), deposited during the first MSC stage (from 5.96 to 5.60 Ma). These 

sediments show a clear precession-related cyclic stacking pattern and record the lateral transition 

from a shallow water marginal setting in the SW to a deeper one in the NE. In marginal settings, six 

PLG cycles are recognized, truncated by an erosional unconformity placed at the base of the post-

evaporitic sediments. The lowermost five cycles are composed of massive and banded selenite beds 

separated by thin shale intervals. A sharp change, evidenced by the appearance of the branching 

selenite facies, is recorded by the 6th gypsum bed that represents a distinctive marker bed, here 

called Sturani key-bed, that can be mapped throughout the study area. Basinward, the lower PLG 

cycles are transitional to decimetre-thick dolomite-rich layers interbedded to euxinic shales, that are 

overlain by the Sturani key-bed. Above the marker bed, other seven PLG cycles are present. The 

gypsum beds form thinner bodies compared to the Sturani key-bed and are characterized by a 

greater amount of fine-grained terrigenous fraction, suggesting an increase of continental runoff 

related, in turn, to humid climate conditions at the end of the first MSC stage. PLG cycles are 

followed by slumped mudstones and clastic gypsum beds that correspond to the resedimented and 

chaotic facies (Resedimented Lower Gypsum), deposited in the Mediterranean basins during the 

second MSC stage (from 5.60 to 5.55 Ma). They are in turn overlain by continental and brackish 

water facies with Lago Mare fossil assemblages, recording the final stage of the MSC. 

The Messinian succession of Alba provides the opportunity to reconstruct the lateral facies 
transition between marginal and distal settings and to shed new light on the deep water MSC 
sedimentary record. Moreover, the appearance of the branching selenite facies from the 6th PLG 
cycle upward provides a tool for properly place the Piedmont record  in the MSC 

2



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

chronostratigraphic framework, allowing to investigate the influence of climate gradients on the 
sedimentary response to the Mediterranean salinity crisis.

Key words: Messinian salinity crisis, evaporites, Tertiary Piedmont Basin.

1. Introduction

The Messinian salinity crisis (MSC) is one of the major palaeoceanographic event that 
occurred in the Mediterranean region during the Neogene and was, and still is, the topic of a strong 
scientific debate.  After the discovery of deep-seated Mediterranean evaporites and the formulation 
of the desiccated deep basin model (Cita, 1973; Hsü et al., 1973; Cita et al., 1978), a wealth of 
studies has been carried out on the Mediterranean Messinian sediments. The studies have been 
addressed to both outcropping successions (e.g. Butler et al., 1995; Hilgen et al, 1995; Suc et al., 
1995; Clauzon et al., 1996; Riding et al., 1998; Krijgsman et al., 1999a, b, 2001; Roveri et al., 2001, 
2003; Manzi et al., 2005; Orszag-Sperber, 2006; Roveri et al., 2008a), considered to be mainly 
deposited in shallow and marginal basins,  and to the offshore domain, where seismic profile 
analyses allowed to image the deep basinal MSC record preserved beneath the abyssal plains of the 
present-day Mediterranean sea (e.g. Ryan, 1976; Lofi et al., 2005; Sage et al., 2005; Maillard et al., 
2006; Bertoni and Cartwright, 2007; Lofi et al., 2011).  As a matter of fact,  different interpretations 
of the MSC events have been proposed (e.g. Rouchy and Caruso, 2006; Ryan, 2009), mainly 
because a reliable correlation between the onshore and offshore MSC record is not yet available, 
due to the absence of a continuous drilling of the latter and the lack of its precise stratigraphic 
calibration. The main controversies regard the amplitude and timing of drawdown phases, the 
shallow vs deep water nature of evaporites, the synchronous vs diachronous onset of evaporite 
deposition, the palaeogeographic status of some Mediterranean sub-basins and the correlation of the 
shallow and deep water sedimentary record. 

Recently a new MSC model, has been proposed, mainly based on the study of the 
stratigraphic architecture of the Sicilian succession (CIESM, 2008; Roveri, 2008a). The model 
derives from the two step scenario proposed by Clauzon et al. (1996) and envisages that the MSC 
developed through three main evolutionary stages. During the first stage (from 5.96 to 5.60 Ma), 
sulphate evaporites (Primary Lower Gypsum unit; Roveri et al., 2008a) formed in shallow-silled 
peripheral basins, whereas in deep basinal areas  organic-rich shales interbedded to dolomite-rich 
beds were deposited (Manzi et al., 2007, 2011). The Primary Lower Gypsum (PLG) consists of up 
to 16 cycles, composed of shales/gypsum couplets. This cyclicity has been ascribed to precession-
driven climate changes (Krijgsman et al., 1999a,b; Lugli et al., 2010), thus allowing to date the top 
of the unit at around 5.60 Ma. 

In the second stage (from 5.60 to 5.53 Ma) several lines of evidence suggest a  prominent 
sea level drop. During this stage (MSC acme), the PLG unit underwent  subaerial exposure and 
erosion; the products of erosion were transferred downslope and deposited in deep basins, where 
they form various types of gravity-driven deposits (chaotic bodies, debris flows, high- to low-
density gravity flow deposits). These sediments, firstly described in the Northern Apennines and 
Sicily (Manzi et al., 2005, 2007; Roveri et al., 2008a) and referred to as  Resedimented Lower 
Gypsum (RLG), locally host thick halite bodies (e.g. in the Caltanisetta basin of Sicily). They could 
correspond to the seismic-defined Lower Unit, recognized offshore in the western Mediterranean 
basin above pre-MSC sediments (e.g. Lofi et al., 2005, 2011). Here, this unit is overlain by thick 
halite bodies, that has been seismically documented also in the eastern Mediterranean basin (Mobile 
Unit; Lofi et al., 2011), directly above pre-MSC sediments (Bertoni and Cartwright, 2007). 

During the third stage (from 5.53 to 5.33 Ma) a cyclic alternation of gypsum and shales with 
brackish-water  fossil  assemblages  (Upper  Evaporites)  was  deposited  in  the  SE  part  of  the 
Mediterranean basin (Sicily, Ionian Islands, Crete, Cyprus and Nile Delta area), whereas shallow to 
deep water clastic sediments  are found in the Apennines and in the Sorbas basin. In the upper part 
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of these units, fresh and brackish water sediments with Paratethyan fossil assemblages are present, 
recording  the  so  called  Lago  Mare  event.  In  the  offshore  domain,  the  presence  of  sediments 
equivalent to the Upper Evaporites has been suggested in the western Mediterranean basin (e.g. Lofi 
et al., 2011). Conversely, this interval is missing in the eastern Mediterranean basin. 

 The Messinian section of Alba (Tertiary Piedmont Basin, NW Italy) was one of the 
reference successions for the interpretation of the complex events of the MSC in the years 
immediately following the formulation of the deep desiccated basin model (Cita et al., 1978). 
However, in recent times this succession has been overlooked, despite its study may give  important 
contribution to the understanding of the MSC events at the northern edge of  the 
(palaeo)Mediterranean basin. 

The aim of this paper is to provide new data on the stratigraphic architecture of the 
Messinian succession of the Alba region (Fig. 1), focusing on the PLG unit deposited during the 
first MSC step, and its lateral equivalents. Field work, consisting of geologic mapping and 
description, measurement and sampling of six stratigraphic sections (Arnulfi, Rio Berri, Cascina 
Merlotti, Rocca del Campione,  Pollenzo and Santa Vittoria d’Alba, Fig. 2), has been supported by 
semiquantitative micropaleontologic analyses on foraminifer and calcareous nannofossil 
assemblages from Arnulfi section, that have been integrated to previous data from the Pollenzo one 
(Lozar et al., 2009, 2010). Finally, preliminary petrographic studies of carbonate-rich beds and of 
gypsum lithofacies have been performed. The results of this study have allowed to reconstruct a 
coherent and updated stratigraphic model of the MSC record of Alba and to correlate it to the 
recently proposed MSC chronostratigraphic framework (CIESM, 2008).

2. Regional geologic setting
 

The Tertiary Piedmont Basin (TPB), located on the inner side of SW Alps arc (Fig. 1), is 
filled with Upper Eocene to Messinian sediments that stratigraphically overlie a complex tectonic 
wedge of Alpine, Ligurian and Adria basement units juxtaposed in response of the collision between 
Europe and Adria plates (e.g. Roure et al., 1996; Mosca et al., 2009; Rossi et al., 2009) (Fig. 3A). 
The Cenozoic sediments are presently exposed in the southern (Langhe, Alto Monferrato and 
Borbera Grue domains) and in the northern (Torino Hill - Monferrato arc) sectors of the TPB (Fig. 
1). The relationships between the two outcropping belts are masked by Pliocene to Holocene 
deposits of the Savigliano and Alessandria basins, but are well imaged by seismic profiles (Bertotti 
and Mosca, 2009). 

Outcrop and seismic data show that the Late Eocene-Oligocene succession consists of 
continental and shallow marine deposits, accumulated in small fault-bounded basins, followed by 
deep water Upper Oligocene-Lower Miocene turbidites (Rossi et al., 2009). Since the Late 
Burdigalian, a more regular physiography was established and the TPB behaved as a single large 
wedge-top basin, bounded to the north by the uplifted Monferrato arc. The progressive uplift of the 
southern part of the TPB and its tilting towards the north occurred since the Middle Miocene 
(Langhian) (Mosca, 2006; Mosca et al., 2009). During the Late Miocene, the north-verging 
Apennine tectonics involved the Torino Hill area. The N-S crustal shortening was accommodated 
by further uplift of the southern parts of the TPB and by the establishment of two major subsiding 
depocentres (Savigliano and Alessandria basins), developed in a piggy-back basin bordered by the 
Torino Hill - Monferrato tectonic arc (Rossi et al., 2009). This last sector is eventually overthrust to 
the north onto the Po Plain foredeep, along the Late Neogene to Quaternary Padane thrust front that 
corresponds to the westward prolongation of the more external Apennine thrusts.  The Alba 
succession, that is the focus of this paper, was deposited on the southern margin of the Savigliano 
basin, regularly deepening towards the north (Figs. 3A, B).

3. Stratigraphy of the Messinian sediments of the TPB
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Messinian sediments are exposed both at the northern and southern margins of the TPB. 
Most of them, however, are presently buried below the thick cover of Pliocene-Quaternary deposits 
of the Savigliano and Alessandria basins (Figs. 1, 3A).

The pioneering studies of Sturani (1973, 1976), focused on the Alba region, documented a 
threefold subdivision of the Messinian succession (Fig. 4). The author recognized a lower  pre-
evaporitic deep water marine interval (Sant’Agata Fossili Marls, Tortonian-early Messinian), 
consisting of hemipelagic marls and organic-rich clayey levels (interval 1, Fig. 4) and recording the 
progressive restriction of the basin prior to the onset of the MSC (Sturani and Sampò, 1973). These 
sediments are followed by an intermediate evaporitic interval (Gessoso Solfifera Formation), that 
starts with laminated silty clays and thin stromatolitic limestone beds, considered to be equivalent 
of the Sicilian “Calcare di Base”. This interval (2, Fig. 4) is overlain by laminated euxinic shales 
(3a, Fig. 4) encasing a 7 m thick laminated microcrystalline primary gypsum bed (known as 
balatino gypsum) (3b, Fig. 4). Metre-sized masses of selenite, interpreted to be of diagenetic origin, 
were recognized in the euxinic shales below and above the primary gypsum bed. According to 
Sturani (1973), these evaporitic sediments were deposited in a hypersaline lagoon: the occurrence of 
abundant and perfectly preserved continental fossils in the euxinic shales and laminated gypsum, 
including leaves and delicate dragonfly larvae, indicate that the lagoon was close to a continental 
area. Episodes of marine incursions, demonstrating the connection with the open ocean, were 
documented by the occurrence of stenohaline fishes immediately below and above the primary 
gypsum bed and have been supported by further ichthyologic findings (Cavallo and Gaudant, 1987; 
Gaudant and Cavallo, 2008) and by the discovery of marine diatom assemblages (Fourtanier et al., 
1991; Irace et al., 2005). The upper part of the evaporitic interval consists of laminated silty marls 
(4a, Fig. 4), deposited under fluctuating salinity conditions, and selenite conglomerates (4b, Fig. 4), 
up to 2 m thick. According to Sturani (1973), these latter beds “were deposited during flash floods 
by local torrential streams discharging in the lagoonal environment”.

The upper post-evaporitic interval (Cassano Spinola Conglomerates according to Boni and 
Casnedi, 1970), consists of deltaic to lacustrine terrigenous facies that contain Lago Mare fossil 
assemblages. These sediments (5, Fig. 4) are in turn overlain by marine Zanclean deposits (Argille 
Azzurre Fm.) that testify the re-establishment of fully marine conditions after the MSC (Violanti et 
al., 2009). 

The Alba succession has been considered for a long time as the reference section for the 
Messinian stratigraphy of the TPB. However, field works carried out in the northern and SE sector 
of the TPB (Dela Pierre et al., 2002, 2007, 2010;  Irace et al., 2005) have shown that in situ primary 
evaporites are locally preserved. On the contrary, most of the Messinian gypsum-bearing sediments 
actually consist of an up to 200 m thick chaotic unit (Valle Versa chaotic complex), that 
unconformably overlies pre-evaporitic or pre-Messinian sediments. Only locally (Torino Hill, 
northern edge of the Langhe domain) this unit rests on primary evaporites (Fig. 3B). According to 
seismic data (Mosca, 2006) the Valle Versa chaotic complex reaches the thickness of 400 m in the 
Alessandria basin. 

The Valle Versa chaotic complex is composed of a fine-grained matrix enveloping blocks of 
gypsum and of different types of carbonate rocks and is mainly the result of subaqueous mass 
wasting processes involving the primary shallow water evaporites (Dela Pierre et al., 2002, 2007). 
Taking into account its characteristics and stratigraphic position, this  unit may be considered the 
equivalent of the RLG unit, deposited in the deep Mediterranean (sub) basins  during the second 
MSC stage (CIESM, 2008). The Valle Versa chaotic complex is unconformably overlain by the 
Cassano Spinola Conglomerates deposited during the final stages of the MSC, that is after 5.5 Ma.

4. The Alba succession revisited

At Alba, the Messinian succession starts with marine muddy sediments, referred to as the 
Sant’Agata Fossili Marls, followed by primary evaporites composing the PLG unit. PLG sediments 
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are followed by slumped and resedimented chaotic gypsum facies and by continental and brackish 
terrigenous deposits of the Cassano Spinola Conglomerates. These units are described in detail in 
the following paragraphs. 

4.1 The Sant’Agata Fossili Marls

The Sant’Agata Fossili Marls have been studies in the Arnulfi and Pollenzo sections (Figs. 5 
and 6), where the transition to the overlying evaporites is also exposed. The unit consists of marine 
muddy sediments and is characterized by a well defined lithologic cyclicity, given by the alternation 
of laminated euxinic shale/bioturbated calcareous marl couplets forming up to 3 m thick cycles. 
These deposits are similar to those described in the coeval euxinic shales of the Vena del Gesso 
basin (Monte Tondo and Monte del Casino sections; Krijgsman et al., 1997; Vai, 1997; Negri et al., 
1999) where the lithologic cyclicity of the pre-MSC deposits has been tuned to the precessional 
curve.

The fossil content of marly beds consists of foraminifers, calcareous nannofossils, bivalves 
(Propeamussium sp. and Cuspidaria sp.), nassarid gastropods, pteropods (Cavolinia sp., Clio sp, 
Limacina spp.) and land plant debris. The bathyal macroforaminifer Discospirina sp. has also been 
observed. In the euxinic layers, planktonic microfossils and fish remains are present: debris of epi 
and bathypelagic fishes (Myctophum sp., Alosa elongata) have been found in the Pollenzo section 
(Gaudant and Cavallo, 2008; Bonelli, personal communication, 2008). 

In the Arnulfi section (SW sector), five shale/marl cycles (Am1-Am5, Fig. 5) are exposed 
below the first gypsum bed. The upper cycle (Am5) is truncated at the top by a discontinuity surface 
(see below). 

In the Pollenzo section (NE sector) a 80 m thick slumped interval occurs within this unit 
(Fig. 6). Below the slump seven cycles, showing the above described characteristics, are 
recognized. Above the slump, the cyclicity is more clearly visible: seven cycles (Pm1-Pm7, Fig. 6) 
are recognized up to the base of the first gypsum bed (Fig. 7). Each cycle, about 3 m thick, is 
composed of laminated euxinic shales, transitionally overlain by homogeneous marls that are in turn 
followed by a 10-15 cm thick carbonate-rich bed and by an upper marl layer (Fig. 8A). The 
cyclicity is enhanced by regular fluctuations of carbonate content (Fig. 6): in the lower two cycles 
(Pm1 and Pm2), the carbonate content ranges from 12 % (euxinic shale) to 94 % (carbonate beds). 
In the upper cycles (Pm3, Pm4, Pm5, Pm6, Pm7) the bulk carbonate content decreases and ranges 
from 9 % to 47 %. Fossil remains of the euryhaline fish Aphanius crassicaudus have been found in 
the marly layer located immediately below the 6th carbonate-rich bed, within cycle Pm6 (Fig. 6). 

All the carbonate-rich beds (a-g, Fig. 6) show lower and upper transitional contacts and are 
lithologically similar to the interlayered muds, except for their stronger induration. Bed a is the 
most strongly indurated and contains tubular fossil remains, up to 2 cm long and 0.5 mm across, 
possibly corresponding to tube worms. Beds d and e are intensively burrowed and contain 
centimetre-sized rounded muddy clasts. Beds f and g are instead strongly laminated: millimetre-
thick grey laminae, richer of terrigenous grains, alternate with whitish micritic laminae that are 
surrounded and crossed by a network of millimetre-wide contractional cracks (Fig. 8B), empty or 
filled with late diagenetic gypsum crystals and lying both parallel and perpendicular to the bedding. 
SEM/EDS analyses showed that the most of the authigenic carbonate fraction consists of 
idiomorphic rombohedral dolomite crystals ranging in size from 2 to 10 µm (beds a and b, Fig. 8C) 
or of globular dolomite crystal aggregates commonly developed around a central hollow (Fig. 8D). 
Pyrite framboids are common, especially in beds e,  f and g (Fig. 8E). 

4.1.1 Chrono-biostratigraphy
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In the lower part of the Pollenzo section (below the slump) and in the Arnulfi one, Messinian 

planktonic biostratigraphic markers are represented by Globorotalia conomiozea, whose First 

Common Occurrence (FCO), dated at 7.24 Ma (Hilgen et al., 1995), slightly postdates the 

Tortonian/Messinian boundary, and by Globorotalia nicolae whose First Occurrence (FO) (6.83 Ma, 

Hilgen et al., 1995) was recognized at Pollenzo 10 m above the base of the section (Lozar et al., 

2010) (Fig. 6), whereas its Last Occurrence (LO) (6.722 Ma; Hilgen and Krijgsman, 1999; 

Krijgsman et al., 1999a) has been found at Arnulfi at the base of cycle Am2 (Figs. 5, 6). 

Neogloboquadrina acostaensis left coiled is present in both sections, indicating an age older than 

6.337 Ma (i.e. the age of s/d coiling change; Sierro et al., 2001; Krijgsman et al., 2004). An 

abundance peak of Neogloboquadrina atlantica (Mediterranean Messinian FCO 6.65 Ma; Blanc-

Valleron et al., 2002) occurs in the upper part of the Arnulfi section, documenting an influx of 

Atlantic cool waters. These data allow correlation of the two sections to the interval Subzone 

MMi13b (Lourens et al., 2004) (Figs. 5, 6). 

The upper cycles of the Sant’Agata Fossili Marls exposed at Pollenzo, above the slump (Fig. 
6), are referable to the interval Subzone MMi13c (Lourens et al., 2004) on the basis of the strong 
impoverishment of foraminifer assemblages, including only rare stress tolerant planktonic 
(Turborotalita quinqueloba and Turborotalita multiloba) and benthic (Bolivina dentellata and 
Bulimina echinata) taxa. In the lower part N. acostaensis right coiled is present, suggesting an age 
younger than 6.337 Ma  The presence of B. echinata indicates an age close to or younger than its 
FO, dated at 6.29 Ma (Kouwenhoven et al., 2006). Planktonic and benthic foraminifers disappear at 
the top of cycle Pm6, where they are extremely rare and represented by abnormal and dwarf tests of 
T. multiloba, B. dentellata and Brizalina spp.. The barren upper part of the succession is referable to 
the Non-distinctive Zone (Iaccarino, 1985; Lourens et al., 2004) (Fig. 6) lasting up to the base of the 
Pliocene. 

In the Arnulfi section the topmost part of the Sant’Agata Fossili Marls is directly overlain by 
barren silty mudstones, attributed to the Non-distinctive Zone (Lourens et al., 2004) and belonging 
to the first PLG cycle (Fig. 5). Therefore, a hiatus occurs in this section, encompassing the MMi13c 
Subzone.

Calcareous nannofossil assemblages are dominated in both sections by long ranging 

Miocene species (Reticulofenestra spp., Umbilicosphaera spp., Discoaster spp., Helicosphaera 

carteri). The Messinian marker species Amaurolithus delicatus is very rare, but is present from the 

base of the two sections, thus allowing correlation to the MNN11b/c Zone of Raffi et al. (2003). 

4.1.2 Palaeoecology
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Calcareous plankton

Regular fluctuation of foraminifer and calcareous nannofossil assemblages are documented at 

Arnulfi and in the lower samples of Pollenzo below the slump. The  euxinic shale layers are 

characterized by abundant warm-water oligotrophic  taxa (e.g. Orbulina spp. and Globigerinoides 

spp. among foraminifers; Discoaster spp. among calcareous nannofossils), whereas the marls 

contain cool eutrophic taxa, thriving in a well oxygenated water column (i.e Globigerina bulloides 

and Neogloboquadrinids among foraminifers; Reticulofenestra spp. and Umbilicosphaera spp. 

among calcareous nannofossil). 

At Pollenzo, sediments above the slump yield only rare small planktonics (T. quinqueloba), 

suggesting the establishment of restricted conditions, with the increase of surface water eutrophy 

(Lozar et al., 2010). Also the calcareous nannofossil assemblages record the same ecological signal, 

with  the sharp abundance peak of Sphenolithus abies recorded at the base of cycle Pm5 (Fig. 6); it 

reflects a palaeoceanographic event slightly preceding the final disruption of the water column at 

the onset of MSC (see below). The disappearance of the group in cycle Pm7, 3 m below the first 

gypsum bed (Fig. 6), testifies unfavourable conditions to calcareous nannofossil survival. As 

mentioned above, these upper pre-evaporitic cycles are not preserved at Arnulfi, due to the hiatus at 

the top of the Sant’Agata Fossili Marls. 

Benthic foraminifers
In the marly beds of the lower part of Pollenzo and Arnulfi sections, benthic foraminifer 

assemblages are composed of outer neritic to bathyal species (Cibicidoides pseudoungerianus,  
Melonis barleanum, Planulina ariminensis and Uvigerina spp.) (Wright, 1978). The upward 
decrease of specific diversity and the concomitant progressive increase of infaunal buliminids and 
bolivinids (B. dentellata,  Brizalina spp,  B. echinata), adapted to low oxygen content and abundant 
organic matter (Kouwenhoven et al., 2006), suggest the establishment of more restricted conditions, 
with increasing bottom water disoxia. A shallower and marginal environment is indicated at Arnulfi 
by the abundance of planktonic foraminifers typical of upwelling areas (G. bulloides, N. 
acostaensis) (Hemleben et al., 1989; Sierro et al., 2001) and of benthonic taxa (bolivinids, 
Valvulineria bradyana), adapted to high organic fluxes in shelf setting (Jorissen, 1987). Compared 
to Pollenzo, bathyal forms (Cibicidoides kullenbergi) (van Morkhoven et al., 1986) are rarer in this 
section. At Pollenzo, above the slump benthic assemblages are poorly diversified and only rare 
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stress tolerating taxa (B. dentellata and B. echinata) are present, suggesting bottom waters 
progressively impoverished in dissolved oxygen and increased stratification of the water column. 

4.2 The Primary Lower Gypsum Unit

The Alba PLG unit corresponds, from the lithostratigraphic point of view, to the Vena del 
Gesso Formation (sensu Roveri and Manzi, 2007) and shows a cyclic stacking pattern, evidenced by 
the rhythmic repetition of laminated silty mudstones and different types of gypsum lithofacies. The 
most striking feature is a distinct marker bed that can be physically correlated and mapped 
throughout the study area (Fig. 2), emphasizing a lateral facies change along a SW to NE transect. 
This marker bed corresponds to the “balatino gypsum bed” of Sturani (1973) (3b, Fig. 4) and thins 
outward to the NE (Irace et al., 2005). We suggest here to label this marker bed "Sturani key bed" 
(SKB), thus dedicating it to the memory of the scientist who first provided a comprehensive study 
of the Messinian successions of the TPB. In the following paragraphs, the stratigraphy of the SW 
sector, well exposed in the Arnulfi, Cascina Merlotti, Rio Berri and Rocca del Campione sections 
(Fig. 2) is described separately from that of the NE one, that is exposed in the Pollenzo section. 

4.2.1 SW sector

In the Arnulfi section (Figs. 5, 9A) six lithologic cycles (Ag1-Ag6), composed of 
mudstone/gypsum couplets, are recognized, truncated at the top by the erosional unconformity 
placed at the base of the post-evaporitic terrigenous sediments (Cassano Spinola Conglomerates). 
The mudstone layers have an average thickness of 2 m and are strongly laminated, reflecting 
euxinic bottom conditions. They are very rich in plant debris and locally in dragonfly larvae that 
appear to be concentrated in silt-sized coarser laminae. Towards the NE in the Rio dei Berri and 
Cascina Merlotti sections their thickness increases up to 3-4 m.

Gypsum beds composing the three lower cycles (Ag1, Ag2 and Ag3) are only partially 
exposed and consist of massive selenite. The thickness of these beds is of 10, 5 and 4.5 m 
respectively. They are made up of decimetre-sized, vertically arranged twinned crystals (Fig. 9B). 
The size of the crystals is rather constant through the beds. The crystals have a swallow-tail 
twinning and the angle between the arms of the twin ranges from 30° to 40°. Clayey impurities and 
elongated peloidal grains are trapped in the re-entrant angle of the twins, giving to the core of the 
crystals a characteristic cloudy aspect. Very rare “spaghetti like” filaments (e.g. Vai and Ricci 
Lucchi, 1977; Panieri et al., 2010) have been observed. 

The fourth and fifth gypsum beds, also recognized in the Rio Berri, Cascina Merlotti and 
Rocca del Campione sections, are up to 5 m thick and consist of banded selenite (e.g. Bąbel, 2007; 
Lugli et al., 2010). In these beds, roughly tabular layers of vertically oriented twinned crystals 
having the same size, are separated by thin clayey beds (Fig. 9C). The size of the crystals ranges 
from 5 to 10 cm and the angle between the arms of the twins is higher than in underlying beds (60°-
70°). The larger crystals are concentrated in the lower and upper part of the beds, smaller ones 
characterize the middle one. Conical structures, up to 2 m across and consisting of clusters of large 
crystals that grew horizontally or even downward, have been observed at the base of these beds. 
They are considered as nucleation cones (Lugli et al., 2010), related to the sinking of growing 
crystals in the underlying muddy substrate.

A sharp facies change is recorded by the 6th bed (SKB), about 10 m thick and characterized 

by centimetre to metre-sized flat conical structures growing in a laminated matrix, that consists of 

the regular alternation of millimetre-thick clayey/gypsum laminae (Fig. 10A). The gypsum laminae 

are composed of tiny (10-20 µm) elongated single crystals or twins that do not show any 
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preferential orientation but are randomly distributed on the lamina surface (Fig. 10B); this is 

commonly observed in cumulate deposits made of crystals formed at the water/air surface (or in the 

water column) and settled down to the bottom. Within clayey-rich laminae, gypsum crystals are less 

abundant. 

The cones are internally formed by millimetre to centimetre-sized selenite crystals with their 

long axis inclined or oriented horizontally (Fig. 10C). These features have been previously 

interpreted as early diagenetic products resulting from the displacive growth of coarse-grained 

selenite masses within the laminated matrix (Sturani, 1973; Clari et al., 2008), because in cross 

section they show an ellipsoidal shape that gives to the bed a characteristic flaser-nodular structure 

(embrechitic structure in Sturani, 1973; Vai and Ricci Lucchi, 1977) (Fig. 10D). However, the 

careful re-examination of these structures has shown that they are identical to the branching selenite 

facies (Lugli et al., 2010) recently described in the Mediterranean PLG deposits (see below). 

In the SW sector, the SKB can be recognized in the Cascina Merlotti and Rocca del 
Campione sections above the two banded selenite beds. At Rocca del Campione, seven cycles (Rg 
4-Rg10, see Fig. 14) are preserved above the SKB, below the erosional unconformity at the base of 
the Cassano Spinola Conglomerates. These cycles are the same cropping out in the Pollenzo 
section, that are described in the following paragraph. 

4.2.2 NE sector

A different succession is observed in the NE sector (Pollenzo section). Here, below the SKB 
only two thin (respectively 1.5 and 2 m thick) massive selenite beds (Fig. 11A), consisting of 
decimetre-sized vertically arranged twinned crystals, are present (Pg1 and Pg2 in Fig. 6). A 
decimetre-thick discontinuous vuggy carbonate bed is present below the first gypsum layer. The 
SKB  (Figs. 11B, C), shows the same characteristics of the SW sector, but the flat conical structures 
(branching selenite) are larger (up to 2 m across, Fig. 11D) and are surrounded by a larger amount 
of laminated matrix. 

Above the SKB, seven cycles (Pg4-Pg10, Fig. 6) can be recognized (Fig. 12A), showing the 
same characteristics than those of Rocca del Campione (cycles Rg4-Rg10, Fig. 14). The gypsum 
beds composing some cycles (Pg4 and Pg6) are similar to the underlying key bed, except for their 
reduced thickness (2 and 1.5 m respectively) and the greater amount of clayey fraction (Fig. 12B). 
In particular the boundary with the underlying mudstones is transitional and is marked by the 
progressive increase in the amount of gypsum crystals that appear to be dispersed in the terrigenous 
fraction. In the upper part of these beds, flattened cones, up to 1 m across, have been observed. The 
other beds (Pg5 and Pg7) are laterally discontinuous and are formed by decimetre-sized cones that 
float within a matrix of gypsiferous silty mudstones. In the two uppermost beds (Pg9 and Pg10) 
gypsum crystals, larger than those composing the underlying beds (up to few centimetres long), are 
dispersed in a muddy matrix and are followed upward by laterally discontinuous flattened cones. 
These layers have been affected by dissolution of gypsum that is partially replaced by calcite (Fig. 
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12C). The laminated silty mudstones interbedded to gypsum layers are locally deformed by 
slumping (e.g. cycle Pg8). Remains of Aphanius crassicaudus, dragonfly larvae and leaves have 
been found, commonly within centimetre-thick laminae that are richer in silty terrigenous fraction 
(commonly represented by mica flakes) than the underlying and overlying ones.

 
4.3 The post PLG sediments 

In the NE sector (Pollenzo), primary evaporites are sharply followed by slumped mudstones, 
enclosing metre-sized slabs of gypsum similar to those composing the upper PLG cycles (Figs. 
13A, B). Carbonate rocks are also involved in the slump. This unit is 5 m thick in the Pollenzo 
section but becomes thicker toward the NE, i.e. towards the distal portion of the basin. In particular, 
at Santa Vittoria d’Alba (Fig. 2), the slumped sediments are followed by a 5 m thick debris flow that 
includes metre-sized blocks of selenite floating in a strongly deformed fine-grained matrix. In the 
northern part of the Alba basin this unit is 20 m thick and is composed of resedimented gypsum 
beds (gypsrudite and gypsarenite), emplaced by various types of gravity flows and interbedded to 
euxinic mudstones (Gnavi, 2009). 

The upper unit (Cassano Spinola Conglomerates) is composed of continental and brackish 
water terrigenous deposits (Ghibaudo et al., 1985). At Pollenzo, muddy beds and channelized 
conglomeratic layers showing large scale cross stratification and containing remains of terrestrial 
vertebrates (Sardella, 2008) have been observed in the lower part of this unit, together with 
paleosoil horizons, evidenced by the occurrence of in situ root traces. In the upper part, brackish 
water molluscs (Congeria, Melanopsis, Limnocardium) of the Lago Mare biofacies are present, as 
well as brackish shallow water ostracods (Amnycithere propinqua, Cyprideis agrigentina, 
Loxochonca muelleri) that allow a correlation with the Loxoconcha djafarovi Biozone (Carbonnel, 
1978), recognized in the Mediterranean in the post-evaporitic interval (Clari et al., 2008).

5. Discussion: the Alba basin during the Messinian salinity crisis

5.1 Pre-MSC sediments

The cyclic stacking pattern of pre-MSC sediments (Sant’Agata Fossili Marls), evidenced by 
the rhythmic repetition of marl/euxinic shale couplets and by regular fluctuations of foraminifer and 
calcareous nannofossil assemblages (Violanti et al., 2007; Lozar et al., 2009; 2010) reflects 
precession-modulated arid/wet climate changes responsible for deposition of marls at insolation 
minima and of sapropel or euxinic shales at insolation maxima (e.g. Hilgen et al., 1995; Krijgsman 
et al., 1999a, b; Vazquez et al., 2000; Flores et al., 2005; Kouwenhoven et al., 2006).

Foraminifer and calcareous nannofossil assemblages of the Arnulfi section and of the lower 
part of the Pollenzo one document a change from open marine to more restricted conditions during 
the early Messinian, in a time interval encompassing the G. nicolae stratigraphic range (6.83-6.72 
Ma). A slightly shallower sea bottom is documented by foraminifer assemblages in the SW sector 
(Arnulfi section), suggesting that deposition of the early Messinian sediments occurred on a 
northward deepening sea floor (i.e the southern margin of the Late Miocene wedge-top basin). 
According to the biostratigraphic data, a hiatus is present in this section at the top of pre-MSC 
sediments, possibly related to the sliding of discrete packages of sediments from this marginal 
sector to the deeper NE area, where they accumulated; this is recorded by the thick slumped interval 
of the Pollenzo section.

The upper part of pre-MSC sediments is preserved only at Pollenzo above the slump (cycles 
Pm1-Pm4, Fig. 6), and was deposited in a time interval slightly younger than 6.29 Ma (occurrence 
of B. echinata) up to the onset of the MSC (5.96 Ma), recorded in cycle Pm5, above the peak 
abundance of S. abies (Lozar et al., 2009) (see below). Both foraminifer and calcareous nannofossil 
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assemblage documents the progressive deterioration of normal marine conditions prior to the onset 
of MSC, with increasing density stratification, surface salinity and bottom disoxia (Lozar et al., 
2010).

5.2 First MSC stage

Primary evaporites composing the PLG unit were deposited at Alba during the first MSC 
stage (5.96-5.60 Ma, CIESM, 2008). The cyclic stacking pattern, evidenced by the regular 
alternation of gypsum and mudstone layers, is similar to that described in Mediterranean Lower 
Evaporites of the marginal basins (e.g. Krijgsman et al., 2001; Krijgsman and Meijer, 2008) and is 
ascribed to precession-related climate changes responsible for deposition of gypsum beds during 
dry intervals and of laminated mudstones during wet periods. In particular, the mudstone interbeds 
reflect the dilution of marine brines by undersaturated continental waters (Lugli et al., 2010), 
responsible for the transport into the basin of variable amounts of terrigenous particles and of 
terrestrial fossils (leaves, woods, insects) that are locally abundant in these sediments (Sturani, 
1973). The concentration of these fossils (especially dragonfly larvae) in silt-sized coarser laminae 
is consistent with their transport from neighbouring continental areas (Martinetto and Tintori, 
2008).

In the SW marginal part of the Alba basin, five cycles occur below the SKB. Due to a 
relative scarce lateral continuity, these deposits were previously considered of diagnetic origin 
(gypsum masses in interval 3a, Fig. 4). Actually the gypsum beds composing the lower three cycles 
(Ag1-Ag3, Fig. 14) consist of massive selenite. This facies suggests deposition in a basin 
permanently covered by saturated brines; the degree of supersaturation was probably relatively low, 
allowing the growth of larger crystals (e.g. Schreiber and El Tabakh, 2000;  Bąbel, 2007; Lugli et 
al., 2010).

As commonly occurs in other areas of the Mediterranean (Lugli et al., 2010), in the fourth 
and fifth gypsum beds the dominant facies is represented by banded selenite. The occurrence of 
superimposed small-sized crystal palisades separated by thin levels of clayey material suggests 
unstable conditions, dominated by continuous fluctuations of the gypsum saturation surface (i.e. the 
pycnocline, Bąbel 2007) that repeatedly stopped the growth of crystals: as a consequence no large 
crystals could develop, as in the case of massive selenite (e.g. Schreiber, 1978; Lu, 2006;  Bąbel, 
2007). According to Lugli et al. (2010) these conditions suggest a minimum level of the saturated 
brines: in particular, the banded selenite facies would mark the peak of aridity in the cyclical 
deposition of evaporites. 

The vertical transition from massive to banded selenite indicates an increase of brine 
concentration during the early stages of the MSC, due to continuous evaporation and drawdown 
(Roveri et al., 2008b; Lugli et al., 2010). The real depth of formation of these facies is debated, 
since no modern analogues exist: however the occurrence of cyanobacteria filaments, often 
included in the core of the crystals in many Mediterranean examples (e.g. Vai and Ricci Lucchi, 
1977; Panieri et al., 2010) has suggested relatively shallow depth, within the photic zone, although 
the depth of growth of such bacterial mats is not clear (Lugli et al., 2010). These features are rare in 
the studied outcrops, possibly suggesting slightly deeper depositional conditions or a turbid water 
column, due to abundant suspended clayey particles, not suitable for the penetration of light. The 
same gypsum facies described in the Mediterranean have been interpreted as deposited at depth 
lower than 100 - 200 m (Lugli et al., 2010).

The two massive selenite beds that occur in the Pollenzo section below the SKB (Pg1 and 
Pg2) can be correlated to the banded selenite layers that, in the SW compose the fourth and fifth 
cycles (Ag4 and Ag5). Consequently the lower three mudstone/massive selenite cycles found at the 
basin margin (Ag1, Ag2 and Ag3) should correspond, in a more distal position, to the uppermost 
cycles (Pm5, Pm6 and Pm7) at the top of the Sant’Agata Fossili Marls (Fig. 14), that are composed 
of shales and dolomite-rich carbonate beds. Hence these evaporite-free cycles can be regarded as 
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the deeper water counterpart of the lower PLG cycles deposited in the marginal part of the basin 
(Fig.15). This hypothesis is confirmed by biomagnetostratigraphic analyses performed on the upper 
part of the Pollenzo section (Lozar et al., 2009, 2010) that have shown that the onset of MSC should 
be placed at the base of cycle Pm5, few metres above the peak abundance of the calcareous 
nannofossil S. abies. This event can be correlated with other sections in the Mediterranean region 
(Wade and Bown, 2006; Manzi et al., 2007), where it approximates the onset of the MSC. 

Barren shales and dolomite-rich levels have been reported in different Mediterranean areas 
(e.g. Manzi et al., 2007; de Lange and Krijgsman, 2010; Manzi et al., 2011). Their deposition was 
driven by the occurrence of anoxic bottom conditions related to a density stratified water column 
(e.g. Bąbel, 2007; de Lange and Krijgsman, 2010). Petrographic features of the Alba dolomite-rich 
beds (globular aggregates and empty spheroidal dolomite crystals) strongly suggest that dolomite 
precipitation was triggered by microbial activity, at a geochemical interface parallel to the sea floor 
(e.g. Oliveri et al., 2010). At this regard, observations on present-day settings and culture 
experiments (Vasconcelos et al., 1995; Meister et al., 2008) have shown that dolomite precipitation 
in anaerobic, organic carbon-rich sediments, can be driven by sulphate reducing bacteria that, by 
degrading organic matter, consume sulphate ions and increase alkalinity of pore waters, thus 
overcoming kinetic inhibition to dolomite precipitation (Wright and Oren, 2005). At the same time 
the decrease of sulphate concentration can slow or hinder gypsum deposition (Bąbel, 2007; 
Krijgsman and Meijer, 2008). Sulphate reduction produces sulphides, that can further precipitate as 
Fe sulphides if iron is available from pore waters. Even if further geochemical data are needed to 
confirm the role of bacteria in dolomite precipitation, the common occurrence of pyrite framboids 
in the Pollenzo dolomite-rich layers supports this hypothesis. 

Gypsum deposition could start in this deeper setting only when the drop of brine level, 
driven by continuous evaporative drawdown, caused the shift of the oxygen-depleted zone 
basinward, thus inhibiting sulphate reducing bacteria activity and allowing the bottom growth of 
large selenite crystals (massive selenite) on the now oxygenated sea bottom. These beds correspond, 
in the marginal sector, to the banded selenite facies  (Fig. 15) that formed during interval of 
minimum brine level and increased brine concentration.

A prominent change in facies association is recorded from the 6th PLG cycle (SKB) upward 
(Figs. 14, 15). This change is evidenced by the disappearance of the massive and banded selenite 
and by the appearance of the branching selenite facies; moreover, it is accompanied by the 
homogenisation of the depositional conditions, with the ubiquitous deposition of the upper PLG 
cycles both in marginal and distal setting. The branching selenite facies was originally described in 
the Vena del Gesso basin as nodular and lenticular selenite (Vai and Ricci Lucchi, 1977) and was 
considered as rehydrated secondary gypsum, resulting from previous anhydrite nodules formed in a 
sabhka environment. Recently, Lugli et al. (2010) have re-interpreted this gypsum facies as primary; 
according to this new hypothesis these deposits consist of bottom grown small-sized selenite 
crystals grouped in branches projecting outward from a common nucleation cone. Moreover, the 
branching selenite is considered as an evolution of the supercone structures described by Dronkert 
(1985) in the Sorbas Basin but with a less evident conical shape. Its development would be strongly 
related to a current dominated brine flow, able to inhibit the vertical growth of the crystals and to 
force their lateral development. At Alba the deposition of branching selenite was accompanied by 
gypsum cumulate deposition, i.e. crystals formed at the air/water interface and settled to the bottom, 
punctuated by shale deposition during wet episodes. 

Lugli et al. (2010) have suggested that the branching selenite facies appears from the 6th 

PLG cycle (i.e. at around 5.84 Ma) at the Mediterranean scale, providing a tool for bed by bed 
correlations among sections located thousands of km apart. Its synchronous appearance would 
suggest a basin-wide hydrologic change, concomitant with an increased input of Atlantic water in 
the Mediterranean as suggested by the shift of Sr isotope contrasting with the stronger continental 
signature of the lower cycles (Lugli et al., 2007). Although no Sr isotope data are yet available for 
the TBP, such an increase of the oceanic water input in the Mediterranean during the same time 
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period is supported by the occurrence of stenohaline fishes and of marine diatom assemblages in the 
euxinic mudstones immediately below and above the SKB (i.e from the 6th cycle upward) (Sturani, 
1973; Cavallo and Gaudant, 1987; Fourtanier et al., 1991; Gaudant and Cavallo, 2008). These 
paleontologic findings forced Sturani (1973) to stress the connection of the Alba basin with the 
open ocean, in strong contrast with the theory of the dessication of the Mediterranean basin that was 
predominant at that time. 

The influx into the basin of marine waters was superimposed to a general shallowing 
upward trend, suggested by the ubiquitous deposition of the SKB and of the upper cycles in both 
marginal (Rocca del Campione section) and distal settings (Pollenzo section). These upper PLG 
cycles are characterized by higher clayey terrigenous input that became predominant, with only 
minor scattered gypsum deposits; this points to an effective continental runoff from the 
neighbouring emerged Alpine chain and suggests the influence of humid climate conditions at the 
end of the first MSC step. The increased clayey input in the basin may have played a role in the 
disappearance of large swallow-tail crystals, since rapidly buried nuclei could not develop large 
upward growing crystals. 

5.3 Second and third MSC stage

Slumped and chaotic sediments, grading towards the north (i.e. towards the distal part of the 
basin) to clastic evaporites emplaced by various types of gravity flows (Gnavi, 2009) were 
deposited  during the second MSC stage (5.60-5.55 Ma; CIESM, 2008) (Fig. 15). These sediments 
correspond to interval 4b of Sturani (1973) (Fig. 14) and to the chaotic unit (Valle Versa chaotic 
complex) recognized in the northern and eastern sectors of the TPB and in the Savigliano and 
Alessandria depocentres (Mosca et al., 2009) and are considered as equivalent to the Resedimented 
Lower Gypsum unit deposited in some basinal Mediterranean areas (e.g. Manzi et al., 2005). In the 
TPB, the  basal surface of these chaotic sediments is sharp erosional, and locally cuts the underlying 
sediments down to the Tortonian (Irace et al., 2005). This surface is correlated to the Messinian 
Erosional Surface (Dela Pierre et al., 2007), recognized at the Mediterranean margins and 
commonly related to an evaporative sea level-drop of at least 1500 m during the MSC acme, 
leading to subaerial exposure and erosion of marginal Mediterranean areas (e.g. Lofi et al., 2011). 
However, in the TPB this surface is associated to an angular unconformity, clearly recognized in the 
northern margin of the basin (Monferrato and Torino Hill area) and generated by the overthrusting 
of the TPB onto the Po Plain foredeep along the north-verging Padane thrust front  (Dela Pierre et 
al., 2007). This suggests that intra-Messinian tectonic activity played the major role in triggering 
subaqueous large scale mass wasting  phenomena, responsible for the widespread erosion of the 
basin margins and for the emplacement of chaotic deposits. At Pollenzo, thirteen  PLG cycles are 
preserved below the Messinian Erosional Surface, suggesting that 3-4 cycles are missing (Fig. 15).

The chaotic sediments are finally followed by continental and brackish water Lago-Mare 
facies (Cassano Spinola Conglomerates) deposited during the final stages of the MSC (5.5-5.33 Ma; 
CIESM, 2008). The basal surface of these sediments is an erosional surface cutting locally the 
underlying succession down to the SKB (Figs. 14, 15) and probably reflecting the further tectonic 
uplift of the basin margins, due to ongoing north-verging Apennine compressional tectonics.

6. Concluding remarks 

One of the most controversial points of the MSC regards the correlation between marginal 
basins (that provide most of the outcropping successions) and deep basinal areas, whose 
sedimentary record is still poorly known, mainly because it is buried below the abyssal plains of the 
Mediterranean sea (e.g. CIESM, 2008). Outcrop-based studies aimed to the reconstruction of the 
sedimentary record of area connecting marginal and basinal zones may contribute to solve the 
controversy. Unfortunately, transitional zones are rarely preserved in the geologic record, mainly 
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because they corresponded to structurally-controlled slopes that were subjected to later post 
depositional destabilization. 

The Alba succession was deposited on the southern margin of a large wedge-top basin, 
characterized by a wide and deep depocentral zone (now buried under the Pliocene-Quaternary 
sediments of the Savigliano basin) and bounded by a northern uplifted sill corresponding to the 
Torino Hill-Monferrato arc. This peculiar situation provides an opportunity for the reconstruction of 
the stratigraphic and genetic relationship among facies deposited on a transition zone connecting a 
shallow marginal area to a deeper basinal sector. The collected data indicate that massive selenite 
beds pass basinward to euxinic mudstones interbedded with dolomite-rich layers deposited on an 
anoxic sea bottom, in agreement to what recently proposed (Manzi et al., 2007; Lugli et al., 2010; 
Manzi et al., 2011). However, dolomitic beds comparable to those forming the deep water 
counterparts of gypsum are also present in the upper part of the pre-evaporitic succession, from 
around 6.04 Ma (Fig. 15). The onset of gypsum deposition is diachronous over a lateral distance of 
few km and is progressively younger basinward. In the Pollenzo section, the deposition of the first 
massive selenite bed is delayed of three precessional cycles with respect to the marginal part of the 
basin, where the time equivalent facies consists of  banded selenite (Fig. 15).

The appearance of the branching selenite facies from the 6th PLG cycle onward provides a 
tool for the correlation of the TPB succession. i.e the northernmost record of the Mediterranean 
salinity crisis, to the MSC chronostratigraphic framework, allowing to investigate the influence of 
climate gradients on the sedimentary response of the MSC and on the hydrologic changes that 
occurred at the NW termination of the Adriatic gulf, at the foot of the Western Alps. Overall 
evidence indicate that humid climate conditions, responsible for the increase of continental runoff 
from the neighbouring Alpine chain and of the input of clay in the basin, developed from around 
5.84 Ma, together with episodes of marine incursion. This is consistent with available micro- 
(pollen) and macro- (leaves, fruit and seeds) paleobotanical data, that strongly suggest that the 
western prolongation of the Adriatic-Padane basin would have been under predominant moist 
conditions during the first MSC step and that severe climate gradients affected the Mediterranean 
basin during this interval (Bertini and Martinetto, 2011). At this regard, it should be stressed that the 
TPB paleobotanical data set comes from sections where only the upper PLG cycles are exposed. 

The second stage of the MSC is recorded by slumped and chaotic facies equivalent of the 
Resedimented Lower Gypsum unit. In the deeper part of the Alba basin (i.e. Pollenzo section) these 
sediments directly overlies, through the Messinian erosional surface, the PLG unit (Fig. 15), unlike 
other Mediterranean examples where the resedimented facies are developed above their deep water 
counterpart, i.e. barren euxinic shales.  Finally, continental and brackish water sediments with Lago 
Mare fossil assemblages were deposited during the third MSC stage, above an erosional 
unconformity that sharply cuts the underlying succession. 

Further research is needed on the TPB succession, especially devoted to the reconstruction 
of the palaeonvironmental and palaeohydrologic change heralding the onset of the MSC, to the 
characterization of the deep water counterpart of the evaporites, and to the definition of the 
stratigraphic architecture of the Lago Mare sediments, still poorly known.  At this regards, the 
Pollenzo section stands as a key section for the reconstruction of the MSC events at the northern 
edge of the Mediterranean basin, in a transition zone connecting a shallow marginal area with a 
deep basinal sector.
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Figure captions

Fig. 1. Geologic and structural map of northwestern Italy and location of the studied area (modified 

from Bigi et al., 1990). TH: Torino Hill; MO: Monferrato, AM: Alto Monferrato; BG: Borbera 

Grue; SVZ: Sestri Voltaggio fault zone; VVL: Villalvernia–Varzi line. IL: Insubric line; TPB: 

Tertiary Piedmont Basin. 

Fig. 2. Schematic geologic map of the studied area and location of the stratigraphic sections. A) 

Arnulfi; B) Rio Berri; C) Cascina Merlotti; D) Rocca del Campione; E) Pollenzo; F) Santa Vittoria 

d’Alba.

Fig. 3. A) Regional profile across the Savigliano basin and adjacent regions in a N-S direction 

(redrawn after Bertotti and Mosca, 2009 and Mosca et al., 2009). The trace of the profile is reported 

in Fig. 1. B) Schematic cross section, flattened at the base of the Pliocene, showing the relationships 

between the Messinian units. Not to scale. PLG: Primary Lower Gypsum; RLG: Resedimented 

Lower Gypsum; CRB: carbonate-rich beds; SKB: Sturani key-bed; MES: Messinian erosional 

surface. 

Fig. 4. The composite Messinian section of Alba reconstructed by Sturani (1973). TO: upper 

Tortonian silty clays and marls; 1: lower Messinian silts and clays; 2: thinly laminated silty clays 

with beds of stromatolitic limestone; 3a: sulphate-rich euxinic clays with lenses of early diagenetic 

selenite; 3b: laminated microcrystalline primary gypsum bed; 4a: laminated silts and silty marls; 4b) 

thick bed of selenite crystals conglomerates; 5: current-laminated fine sands and massive clays; PL: 

normal marine Pliocene silty clays and marls. A: planktonic foraminifers; B: benthic foraminifers; 

C: spatangoid echinoids; D: lantern fish (Myctophum sp.); E: Galeoidea  echinophora; F: 

ahermatypic corals; G: pteropods (Cavolinia gypsorum); H: planktonic diatoms;  I: Rectuvigerina 
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tenuistriata; J: land floras; K: cyprinodont fish (Pachylebias sp., now Aphanius sp.); L: 

Spratelloides sp.; M: dragonfly larva; N: young eel (Anguilla sp.); O: small sole (Microchirus  

bassanianus); P: adult dragonfly; Q; land turtle (Testudo craverii); R: freshwater reeds (Phragmites  

oeningensis); S: in situ roots; T:  Pycnodonta cochlear.

Fig. 5. The Arnulfi section (left) and detail of the transition between the Sant’Agata Fossili Marls 

and the Primary Lower Gypsum (right). The lithologic cycles discussed in the text (Am1-Am5; 

Ag1-Ag6) are shown. The abundance and distribution of selected calcareous nannofossil and 

foraminifer taxa are also reported. The benthic foraminifer assemblages are described in the text. 

SKB: Sturani key-bed; CSC: Cassano Spinola Conglomerates. 

Fig. 6. The Pollenzo section (left) and  detail of the upper part of the Sant’Agata Fossili Marls and 

of the Primary Lower Gypsum unit (right). The lithologic cycles discussed in the text are reported. 

Letters in italics (a to g) indicate the carbonate-rich beds. The carbonate content of the upper part of 

Sant’Agata Fossili Marls is also indicated. SKB: Sturani key-bed; RLG: Resedimented Lower 

Gypsum (VVC: Valle Versa chaotic complex); AAF: Argille Azzurre Fm. Micropaleontological data 

are from Lozar et al. (2010).

Fig. 7. Panoramic view of the lower part of the Pollenzo section, showing the boundary between the 

Sant’Agata Fossili Marls (SAF) and the Primary Lower Gypsum unit (PLG). The letters indicate the 

carbonate-rich beds discussed in the text, that are recognizable for their whitish colour. Carbonate-

rich beds belonging to cycles Pm1 and Pm2 (a and b) are not visible.

Fig. 8. Pollenzo section. A) Outcrop view of cycles Pm3, Pm4 and Pm5. The carbonate- rich beds c, 

d and e are visible. B) Photomicrograph of the 6th bed (f): a network of empty fissures, oriented both 

parallel and perpendicular to bedding, is recognizable. C) SEM image of a slightly etched broken 

chip of the first bed (a) showing euhedral dolomite crystals. D) SEM image of  a slightly etched 

broken chip of the 7th bed (g): a rounded dolomite crystal with a central hollow is recognizable 

(white arrow). The EDS analysis of the crystal is shown. E) SEM image of a pyrite framboid in the 

5th bed (e). 

Fig. 9. Arnulfi section. A) Panoramic view of the upper part of the Arnulfi section. The fourth (Ag4) 

and fifth (Ag5) gypsum beds are visible under the trees. The sixth gypsum bed (Sturani key-bed: 

SKB) is also recognizable. B) First gypsum bed composed of vertically-oriented twinned massive 
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selenite. C) Fourth gypsum bed: different layers of vertically-oriented crystals, separated by sharp 

surfaces, are visible. 

Fig. 10. A) The Sturani key-bed at Arnulfi: clustered flat conical features (branching selenite) are 

recognizable within the laminated matrix (indicated by the black arrow). B) SEM image of a broken 

chip of a gypsum lamina, showing tiny euhedral crystals randomly distributed on the lamina 

surface. A twinned crystal is recognizable in the upper right of the image. C) Close up of a cone 

with horizontally-oriented selenite crystals. The pencil is 3 cm long. D) Polished slab of the Sturani 

key-bed, cut perpendicularly to the bedding: “nodular” features (branching selenite) composed of 

centimetre-sized crystals are recognizable within the laminated matrix.

Fig. 11. Pollenzo section. A) Massive selenite bed belonging to cycle Pg2. B) Outcrop view of cycle 

Pg3 with the Sturani key-bed (SKB) and the underlying mudstone layer (m. The dotted line 

indicates the boundary between cycle Pg3 and the underlying selenite bed of cycle Pg2. C) Close up 

of the Sturani key-bed: note the finely laminated structure and the occurrence, in the lower part, of 

lenticular features composed of coarser gypsum crystals (arrows), corresponding to branching 

selenite. D) Metre-sized flat conical feature (branching selenite) at the base of the Sturani key-bed, 

grown within the laminated matrix (lm).

Fig. 12. A) Upper PLG cycles at Pollenzo: four cycles (Pg4-Pg7), made up of mudstones and thin 

gypsum beds, are recognizable above the Sturani key-bed (SKB). B) Outcrop view of the gypsum 

bed of cycle Pg4, consisting of flat conical features (arrows) within a laminated matrix (lm). C) 

Photomicrograph of a gypsum bed belonging to the upper PLG cycles: dissolved gypsum crystals 

that are partially replaced by calcite, are visible.  

Fig. 13. Pollenzo section. A) Strongly deformed muddy sediments and carbonate beds (arrows) 

belonging to the slumped interval above the PLG unit. Hammer for scale. B) The unconformity 

separating the slumped interval (SI) below, from fine-grained sediments belonging to the Cassano 

Spinola Conglomerates (CSC) above.

Fig. 14. Correlation scheme of the studied sections. Datum plane: base of the Sturani key-bed. 

Symbols are the same as in Figs. 5 and 6. The correlation with the Alba section of Sturani (1973), 

reported in Fig. 4, is shown. Yellow stripes: carbonate-rich beds; blue lines: discontinuity surfaces. 

RLG: Resedimented Lower Gypsum; MES: Messinian Erosional Surface. 
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Fig. 15. Stratigraphic model of the MSC record of Alba. A) cross section flattened at the base of the 

Pliocene. B)  chronostratigraphic scheme. PLG: Primary Lower Gypsum; RLG: Resedimented 

Lower Gypsum. SKB: Sturani key-bed; MES: Messinian erosional surface. Stratigraphic sections: 

A) Arnulfi; B) Rio Berri; C) Cascina Merlotti; D) Rocca del Campione; E) Pollenzo; F) Santa 

Vittoria d’Alba. 
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Research  highlights

- Updated stratigraphy of the northernmost record of the Messinian salinity crisis 
- Reconstruction of the lateral transition between marginal and distal settings 
- Influence of climate gradients on the sedimentary response to the salinity crisis
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