
22 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Milestones on Steroids and the Nervous System: 10 Years of Basic andTranslational Research

Published version:

DOI:10.1111/j.1365-2826.2011.02265.x

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/89142 since 2016-07-01T18:23:00Z



This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Frye C.; Bo E.; Calamandrei G.; Calzà L.; Dessì-Fulgheri F.; Fernandez M.;
Fusani L.; Kah O.; Kajta M.; Le Page Y.; Patisaul H.B.; Venerosi A;
Wojtowicz A.K.; Panzica G.C.. Endocrine disrupters: a review of some
sources, effects, and mechanisms of actions on behavior and neuroendocrine
systems. JOURNAL OF NEUROENDOCRINOLOGY. 24 (1) pp: 144-159.
DOI: 10.1111/j.1365-2826.2011.02229.x

The publisher's version is available at:
http://doi.wiley.com/10.1111/j.1365-2826.2011.02229.x

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/88647



For Peer Review
 O

nly
 

 
 

 

 
 

Milestones on steroids and the nervous system: Ten years 

of basic and translational research 
 
 

Journal: Journal of Neuroendocrinology 

Manuscript ID: JNE-11-0283-RA.R1 

Manuscript Type: Review Article 

Date Submitted by the Author: n/a 

Complete List of Authors: Panzica, GianCarlo; University of Torino, Anatomia, Farmacologia e 
Medicina Legale 
Balthazart, Jacques; University of Liege, Center for Cellular and Molecular 
Neurobiology 
Frye, Cheryl; SUNY Albany, Psychology  
Garcia-Segura, Luis; Instituto Cajal, CSIC,  
Herbison, Allan; University of Otago, Department of Physiology 
Mensah-NyagaN, Guy; Université de Strasbourg, Equipe Stéroïdes, 
Neuromodulateurs et Neuropathologies 
McCarthy, Margaret; Univ. Maryland Baltimore , Physiology 
Melcangi, Roberto; University of Milan, Dept. Endocrinology 

Keywords: 
neurosteroids, behavior, sex differences, neuroprotection, GnRH, 
Kisspeptin 

  

 

 

Journal of Neuroendocrinology



For Peer Review
 O

nly

 

Milestones on steroids and the nervous system: Ten years of basic and 

translational research. 

 

Panzica G.C.1,2, Balthazart J.3, Frye C.M.4, Garcia-Segura L.M.5, Herbison A.E.6, 

Mensah-Nyagan A.G.7, McCarthy M.M.8, Melcangi R.C.9 
1Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and 
Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, 
Torino, Italy 
2Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano (Torino), Italy 
3University of Liège, GIGA Neuroscience, Research Group in Behavioral 
Neuroendocrinology, Liège, Belgium 
4Department Psychology, University at Albany, Albany, NY (USA) 
5Instituto Cajal, CSIC, Madrid, Spain 
6Centre for Neuroendocrinology, Department of Physiology, University of Otago, 
Dunedin, New Zealand 
7Equipe Stéroïdes, Neuromodulateurs et Neuropathologies, EA-4438 Université de 
Strasbourg, Strasbourg, France. 
8Departments of Physiology, School of Medicine, University of Maryland, Baltimore, 
Maryland 
9
Dept. of Endocrinology, Pathophysiology and Applied Biology - Center of 

Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy 
 
 

 

 

Corresponding author 

GianCarlo Panzica, PhD 

Dept.Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of 

Torino (NIT), University of Torino. 

Neuroscience Institute Cavalieri-Ottolenghi (NICO) 

Regione Gonzole, 10 – 10043 Orbassano (TO), Italy 

Phone +39 011 6706607 

Fax      +39 011 2366607 

e-mail: giancarlo.panzica@unito.it 

Page 1 of 43 Journal of Neuroendocrinology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Ten years of the Torino Steroids’ Meeting 

 2

Abstract 

During the last ten years, the conference on “Steroids and Nervous System” 

held in Torino (Italy) was an important international point of discussion for scientists 

involved in this exciting and expanding research field. The present review aimed to 

recapitulate the main topics that were presented through the various editions of the 

meeting. Two broad areas were explored: the impact of gonadal hormones on brain 

circuits and behaviour, and the mechanism of action of neuroactive steroids. 

Relationships among steroids, brain and behaviour, the sexual differentiation of the 

brain and the impact of gonadal hormones, the interactions of exogenous steroidal 

molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal 

steroids modulate the behaviour of GnRH neurones were the topics of several lectures 

and symposia during this series of meetings. At the same time, many contributions 

were dedicated to the biosynthetic pathways, the physiopathological relevance of 

neurosteroids, and the demonstration of the cellular localization of different enzymes 

involved in neurosteroidogenesis, the mechanisms by which steroids may exert some 

of their effects, both classical and non-classical action of different steroids, the role of 

neuroactive steroids on neurodegeneration, neuroprotection and the response of the 

neural tissue to injury. In these 10 years, this field has significantly advanced and 

neuroactive steroids have emerged as new potential therapeutic tools to counteract 

neurodegenerative events. 

 

Keywords: neurosteroids, brain, peripheral nerve, sex difference, neuroprotection, 

GnRH, kisspeptin, behaviour 
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The conference on “Steroids and the Nervous System” emerged as a “spin-off” from a 

conference specifically dedicated to the neuroendocrine controls of behaviour. The 

International Conference on Hormones, Brain and Behaviour" (ICHBB) met several 

times in various locations in Europe during the eighties and nineties (Bielfeld, 

Germany, 1982; Liege, BE, 1984 and 1989; Tours, FR, 1993; Torino, IT, 1996 and 

finally Madrid, SP, 2000). After ICHBB was merged with the activities of the Society 

for Behavioral Neuroendocrinology (SBN) that had been created in 1997, Gian Carlo 

Panzica (University of Torino) and Roberto C. Melcangi (University of Milan) 

decided that it would be important to keep a conference regularly meeting in Europe 

and dealing with steroid action in the brain. A cycle of conferences using essentially 

the same format as ICHBB was therefore initiated that has now met every two years 

for the past 10 years (2001, 2003, 2005, 2007, 2009 and 2011, fig.1) (see 

http://www.dafml.unito.it/anatomy/panzica/neurosteroids/ABSTRACTBOOKS.htm).  

The scope of the conference has been expanded from the behavioural effects of 

steroids in the brain to cover all forms of steroid actions, the controls of steroid 

synthesis in the brain and in the peripheral nervous system, as well as the emerging 

translational models.  

 

Steroids and behaviour at the Torino meeting 

Glancing through the programs of these 6 conferences summarizing 10 years of 

research on steroids, one can identify a large number of symposia that were 

essentially or even exclusively dedicated to “Steroids, Brain and Behaviour”. The 

topics that were covered in these symposia concern many aspects of the active 

research that took place in this field during the last decade.  To list just a few, we had 

over the years the chance of attending symposia dedicated to behavioural effects of 

steroids as well as to the action of environmental oestrogens on behaviourally relevant 

neural circuits (2003) (1), on brain sexual differentiation (2005), on the importance of 

co-regulatory factors for steroid receptor action in the brain (2009) and on 

experimental murine models  (2011).  

Several round tables were also organised within the meeting during which we 

discussed the action of endocrine disrupter action on behaviour and neuroendocrine 

system (2005, 2011), and that of steroid hormones on sexually dimorphic brain 

circuits (2007). It must be mentioned that, as impressive as they are, all these 
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symposia only provide a partial view of the time and talks that were devoted to 

behaviour during the meeting on Steroids and Nervous System. There were indeed 

many individual presentations on behaviour embedded in other symposia and these 

are far too numerous to be cited here. Starting from 2003, each meeting had 

additionally a few (usually 3) key-note speakers and many of the key-note lectures 

concerned, at least in part, the mechanisms of behaviour. During the 2003 meeting the 

attention was focused on the oestradiol modulation of astrocytes and the 

establishment of sex differences in the brain (2) and on the role of sex chromosomes 

in sexual differentiation of the brain (3). In the 2005 meeting, the speakers presented 

data on the rapid changes in the production and behavioural action of oestrogens (4) 

and on genetic models for the study of gonadal steroid dependent behaviours (5). In 

2007 the attention was on the stress system in the human brain in depression and 

neurodegeneration (6). In 2009 meeting one of the key-note lectures was on the 

intracellular signal transduction cascades mediating behavioural effects of ovarian 

steroids (7). Finally, in 2011 we had lectures on comparative and functional 

implications of neurosteroidogenesis (8) and on oestrogen-induced plasticity and 

cognitive function (9). And that is without counting the large number of posters that 

were presented on themes related to the main talks and symposia and that were very 

often using behaviour as their dependent (or sometimes independent) variable. 

Finally, in association with the “Torino meeting“, as it has often been 

colloquially named, a satellite one-day symposium entirely dedicated to the endocrine 

control of behaviour was organised in 2009. It was named 7th ICHBB to celebrate the 

synchronised 60th birthday of the organisers of both the Torino Steroid meeting (Gian 

Carlo Panzica) and of the former ICHBB (Jacques Balthazart). At a more scientific 

level, this 7th ICHBB also coincided with the 50th anniversary of the publication of the 

seminal paper of Phoenix and collaborators (10) universally recognised as the 

founding paper for the research analyzing the endocrine controls of sexual 

differentiation of brain and behaviour. 

With the exception of this satellite symposium, many of the talks and symposia 

mentioned above were not exclusively dedicated to the analysis of behaviour. They 

also concerned other topics such as the non-classical effects of steroids or the effects 

of steroids on the sexual differentiation of the brain. But in each case, they were 

behaviourally relevant in that either the changes in brain structure or function could 

contribute to explain behaviour or changes in behaviour were the driving force 

Page 4 of 43Journal of Neuroendocrinology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Ten years of the Torino Steroids’ Meeting 

 5

leading to changes in the brain or in steroid synthesis. 

 

Ten years of progress in understanding sexual differentiation of the brain. 

What we knew at the beginning of the 21
st
 Century. 

It has been a busy ten years for the field of behavioural neuroendocrinology and the 

topic of sexual differentiation of the brain in particular.  As we entered this century 

we had a strong foundation of immutable facts about the physiological process of 

sexual differentiation of brain and behaviour; 1) hormones of gonadal origin are the 

preeminent determinant of sex differences in brain and behaviour, 2) sex differences 

in levels of gonadal hormones during a sensitive period of brain development will 

organise the brain into a sex-specific phenotype and 3) sex differences in levels of 

gonadal hormones in adulthood will activate the previously determined sex-specific 

brain phenotype in order to drive sex-specific physiology and behaviour.  These are 

the basic facts but many aspects of the details vary by species, by physiological or 

behavioural endpoint and by brain region. In many cases the basic facts do not even 

apply. Nonetheless, the sturdy framework of the Organizational/Activational 

Hypothesis (10), which essentially codifies the three basic facts just enumerated, 

continues to provide a valuable backdrop against which to address all questions of the 

origins and significance of sex differences in the brain. Nothing is more valuable to 

scientific investigation than a dogma to be over thrown.  

Dogma’s overthrown. 

There have been several major challenges to the dogma in the past 10 years, some 

have indeed created a paradigm shift in our thinking while others have offered 

refinements and qualifiers, notable exceptions or a more nuanced understanding.  The 

biggest impact was the development of a mouse model that allowed for distinguishing 

between genetic, or chromosomal sex, and gonadal sex.  The generation of animals 

with an XX genotype and a male phenotype (i.e. testes) or an XY genotype and a 

female phenotype (i.e. ovaries), allowed Art Arnold and his collaborators to ask for 

the first time whether all sex differences in the brain are determined by hormones (3, 

11). The answer is, not surprisingly, mixed. Based on the current data to-date, it 

would appear that the sexual differentiation of endpoints that are directly relevant to 

reproduction, i.e. sexual behaviour and control of gonadotropin secretion and the 

brain areas that mediate them, are indeed subject to the classic hormonally mediated 

sexual differentiation of the brain. However, sex differences in endpoints that involve 
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cognition, emotion or sensory integration are often influenced by chromosomal sex, 

sometimes markedly so. The next ten years will no doubt further advance our 

knowledge on this front by using genetic models such as the steroidogenic factor 1 

(Nr5a1) knock-out mice which lack gonads (12) and by identifying specific X or Y 

genes and the associated mechanism of action. 

Discoveries more in the realm of refinements to the theory are found in the 

characterization of genetically modified mice in which aromatase, androgen receptor 

or either isoform of the oestrogen receptor (ER) is either globally or locally and 

conditionally ablated.  We have learned that in the rodent the long held dominance of 

oestradiol as the masculinizing hormone needs to make some room for androgens as 

important contributors to the natural process (13-18), and that ERα versus ERβ 

expression in a particular brain region mediates different responses (19-21). Our 

views of oestrogens effects have been further refined as well. First, steroid receptors 

are no longer mere transcription factors that mediate gene expression in a slow stately 

and direct manner, but instead can act rapidly at the membrane and integrate signal 

transduction pathways across a wide range of avenues (22, 23). Second, we now 

know oestradiol is more than just a gonadal hormone, it is also synthesised locally and 

rapidly and on demand, so much so that its resemblance to a neurotransmitters has 

been noted (24). Rapid membrane-mediated effects of oestradiol have been confirmed 

to contribute to the process of sexual differentiation of brain and behaviour (25), but 

what role local steroidogenesis plays in the process is not yet clear.  

Advances made. 

The distinction between the active processes of masculinisation and defeminisation of 

the male brain has long puzzled behavioural neuroendocrinologists and the last 

decade has seen several advances along this front. Characterization of null mutant 

mice suggests that the beta isoform of the oestrogen receptor is central to 

defeminisation (26), but how this is so is not clear. During the 2011 meeting a 

symposium was dedicated to the role of ERβ in adult brain function (27). The 

surprising discovery that the final common pathway mediating masculinisation of sex 

behaviour in the rat is the prostaglandin PGE2, also included the observation that 

prostaglandin mediated masculinisation does not influence defeminisation, and 

provided a unique tool for parsing out these separate processes in the same animal 

(28, 29).  Lastly, feminisation of brain development has always been the poor cousin 

Page 6 of 43Journal of Neuroendocrinology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Ten years of the Torino Steroids’ Meeting 

 7

to the more tractable process of masculinisation but recent findings (30, 31) has 

revealed a heretofore unappreciated second sensitive period in which elevated 

oestradiol feminises the brain. This period is about a week to 10 days later than 

masculinisation in the rodent and elucidating the origins, sites of action and 

mechanisms of action of oestradiol during this later period will be an important topic 

in the coming years. 

Future directions 

At this writing we are at the beginning stages of several important new developments 

in the study of sex differences in the brain, some mechanistic and others theoretical.  

On the mechanistic front, it is apparent that the enduring organizational effects of 

steroids on the brain likely involve some sort of epigenetic changes to the genome.  

These include changes to the chromatin (32, 33) and the DNA (34-36), but how these 

changes are integrated, maintained or perhaps modulated, remains to be determined. 

Epigenetic changes are certainly regionally specific, and may be an important 

component of the regional specificity of hormone action in general.  This regional 

specificity compels us to reconsider the Organisational/Activational Hypothesis as 

many early hormonally mediated effects on the brain do not seem to follow the rules 

of this simple theory, suggesting new rules or guidelines are waiting for us to 

elucidate them. An important first step in that process comes from the novel view that 

we should also consider that the purpose of some sex differences in the brain is to 

make males and females more alike than different (37).  

 

Brain and behaviour, targets for the endocrine disrupters. 

The concept that exogenous substances may interfere with the normal development of 

brain and behaviour is not new, and it is at the basis of a large number of 

experimental studies. For instance, many studies on the sexual differentiation of 

rodent preoptic-hypothalamic circuits were conducted by using more powerful 

synthetic oestrogens like diethylstilbestrol [DES, (38)] or ethynylestradiol [EE2, (39)]. 

However, during the years it appeared that these substances and many others that are 

able to bind oestrogen or androgen receptors are not limited to the laboratory use, but, 

due to their large-scale use in pharmaceutical or other industries, they are also widely 

present in the environment. In addition, some molecules of natural origin, like 

phytoestrogens produced by a large number of plants and normally present in the 

animal and human food, may also interact with gonadal hormone receptors. 
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These substances were collectively named endocrine disrupters or endocrine 

disrupting chemicals (EDCs), a term that was coined early in 90’. In early papers (40), 

EDCs were defined as molecules that may disrupt the development of the endocrine 

system. In addition, the effects of EDCs’ exposure during development are often 

permanent. A large consensus on this idea came from the Endocrine Society that 

released a scientific statement outlining mechanisms and effects of EDCs (41). Even 

if neuroendocrinology was specifically mentioned, for many years the study of EDCs 

involved almost exclusively the toxicological aspects, whereas the neuroendocrine 

and behavioural implications of precocious exposure to EDCs were less investigated. 

Just from the first Torino’s meeting in 2001 the issue of neuroendocrine and 

behavioural effects of EDCs emerged as one of the main topics of the conference. In 

fact, in that occasion were presented data on the effects of phytoestrogens contained 

in the food on the expression and regulation of cerebral androgen and progesterone 

metabolizing enzymes (42), as well as on anxiety behaviour and visual-spatial 

memory (43, 44).  

During the 2nd meeting in 2003, a satellite symposium was dedicated to the 

action of environmental oestrogens on behaviourally relevant neural circuits. This 

symposium was the follow up of a series of meetings centered on the actions of EDCs 

on behaviour and associated neural circuits, considered as more sensitive endpoints 

than other targets (45, 46). 

The proceedings of this symposium (1) covered different experimental models 

including teleost fishes [somatostatin receptor (47)], birds [the vasotocin system (48, 

49), the catecholaminergic system (50), and the male copulatory behaviour (48, 51) of 

the Japanese quail], and rodents [catecholaminergic system (52), socio-sexual 

behaviours (53-55), oestrogen receptors (56), and brain plasticity (57, 58)]. These 

contributions provided important information on the action of single EDCs, as well as 

insights into the neural mechanisms by which these EDCs exert their effects. 

During the 3rd meeting, data on the rapid influence of oestrogens on the 

excitability of adult rat hippocampal neurones were presented (59-61). These findings 

have led researchers to postulate the existence of so-called membrane or non-genomic 

oestrogen effects. EDCs able to bind oestrogen receptors (xenoestrogens) also act 

rapidly in the adult brain. For example, the oestradiol-induced enhancement of the 

long-term potentiation in CA1 upon tetanic stimulation was considerably suppressed 

by the co-perfusion with bisphenol A (BPA), although the perfusion of BPA alone did 
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not alter the LTP-induction (62). On the other hand, DES enhanced the LTP by an 

almost identical magnitude to that obtained by oestradiol. EDCs can reach the brain 

via the blood circulation and by crossing the blood–brain barriers.  

A symposium on the cerebral effects of xenoestrogens was again organised 

during the 4th meeting. This symposium included studies on the effects of BPA on the 

modulation of long-term depression and spinogenesis in the hippocampus (63), on the 

expression of oestrogen receptor (64), and on the development of the rodent (65) and 

avian brain (66). 

During the 5th meeting, endocrine disruptors were considered among the wide 

family of steroid receptors coactivators (67), in particular modulating the expression 

of sexually dimorphic social and emotional behaviours (68). Finally, during the last 

meeting, whose proceedings are collected in this special issue, a round table on 

endocrine disrupter action on behaviour and neuroendocrine system has been 

organised (69). 

In summary, during these ten years we observed an increasing interest in the 

field of EDCs, mainly related to the potentially adverse effects on the sexual 

differentiation of brain and behaviour. Some important facts emerged in this field:  

- sexual behaviour and neural circuits related to its control are more sensitive 

endpoints than others currently used in toxicological studies (70, 71); 

- neuropeptides and enzymes are major targets for the action of EDCs in the 

vertebrate brain (72); 

- among different peptidergic systems kisspeptin in rodents (73-77), vasotocin in 

birds (48, 78, 79), as well as the enzyme aromatase in fishes (80-82), or the 

enzyme NO-synthase in rodents (83, 84) appear the most sensitive to low levels of 

EDCs during early development; 

- alterations of these circuits may induce profound effects on sexual behaviour (85), 

puberty (74), reproductive physiology (86), and feeding behaviour (87); 

- neural circuits can be altered also at synaptic levels, for example in the 

hippocampus (63, 88-90) and have profound effects on learning and memory (91); 

- the putative mechanisms of action needs to be more thoroughly explored (69), but 

in addition to the EDCs binding to steroid or thyroid hormone receptors, they 

include the aryl hydrocarbon receptor, its interactions with ERβ, the activation of 

the P450 cytochromes, which are involved in the metabolism of most steroid 
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hormones, the PPARγ and retinoid receptors particularly important in adipose 

tissue. 

 

Synthesis of neurosteroids 

In the research area on steroids and nervous system, the 3 last decades were 

significantly marked by a major finding that revealed that neurones and glial cells 

have the ability to synthesise bioactive steroids, also called neurosteroids (92). This 

important discovery stemmed from a series of pioneer works showing the persistence 

of substantial amounts of pregnenolone, dehydroepiandrosterone and their sulfated 

derivatives in the rodent brain after adrenalectomy and/or gonadectomy (93, 94). 

However, the consolidation of the concept of neurosteroids required several 

investigations performed in different animal species (92, 95-97).  

Since its creation, the International Meeting Steroids and Nervous System has steadily 

contributed through various symposia and plenary lectures to the elucidation of the 

biosynthetic pathways and mechanisms of action of neurosteroids. For instance, the 

first meeting (2001) has been launched with a symposium that provided key data on 

neurosteroid biosynthesis in mammalian and non-mammalian vertebrates (98, 99). 

The second meeting allowed fruitful discussion from talks on neurosteroid 

metabolism in the human brain (100) or neurosteroid production in the retina (101). 

During the 3rd meeting (2005), a satellite symposium made it possible to discuss the 

neuroprotective effects of steroids locally produced by the spinal cord and peripheral 

nervous system (102). In addition, a symposium of the main meeting discussed the 

role of steroidogenic acute regulatory protein and peripheral benzodiazepine receptors 

in neurosteroid biosynthesis (103, 104). Novel technological tools allowing high-

sensitive dosage of neurosteroids were presented in a satellite symposium of the 4th 

meeting (105). To review and update the current knowledge on neurosteroid synthesis 

and functions, the opening lecture of the 6th meeting was dedicated to a comparative 

and functional analysis of neurosteroidogenesis (8), and a satellite symposium was 

focused to neuroactive steroids in the human brain (106).  

Taken together, all of the data provided by renowned experts in symposia and 

proceedings of the International Meeting Steroids and Nervous have significantly 

contributed to clarify the biosynthetic pathways and physiopathological relevance of 

neurosteroids. Nowadays, a consensual definition of neurosteroids considers these 
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molecules as endogenous steroidal compounds synthesised in neurones or glial cells 

of the CNS and PNS. To be qualified as a neurosteroid, the candidate steroidal 

molecule must persist in substantial amounts in the nervous system after removal of 

the peripheral or traditional steroidogenic glands such as the adrenals and gonads. The 

demonstration of neurosteroid biosynthesis requires the localization in nerve cells of 

the translocator protein 18 kDa, the steroidogenic acute regulatory protein and active 

steroidogenic key enzymes such as cytochrome P450 side chain cleavage, 3β-

hydroxysteroid dehydrogenase, cytochrome P450c17, 5α-reductase, 3α-

hydroxysteroid oxido-reductase, 17β-hydroxysteroid dehydrogenase and aromatase 

(92, 95-97, 107, 108).  

Finally, it should also be noticed that endogenous neurosteroids act as paracrine or 

autocrine factors, regulating the activity of classical nuclear steroid receptors or 

membrane receptors including G protein-coupled receptors (109, 110), GABAA and 

T-type calcium channels (111-114) or NMDA (115, 116), P2X (117) and sigma 

receptors (118, 119). 

 

Neuroendocrine control of reproduction by steroids 

Another area of research that has featured strongly at the Torino meetings over the 

last ten years has been that of how gonadal steroids modulate the gonadotropin-

releasing hormone (GnRH) neurones that control fertility.  Since 2001 much has 

changed in this field and this has been reflected in the Torino presentations. Firstly, 

the techniques used by GnRH neurone investigators have changed considerably. This 

has been driven primarily by the use of genetic manipulations in mice that have 

greatly facilitated investigation of the GnRH neurone and its network. As reflected in 

the 2001 meeting, the mainstay approaches of the field at that time were in situ 

hybridization for GnRH mRNA, one of the few direct indices of GnRH neurones at 

the turn of the century (120), and use of the immortalised embryonic GT1 cell lines 

that synthesise GnRH (121). By 2011, a range of sophisticated transgenic and cell- or 

receptor-specific gene mutation approaches were being used to establish the electrical 

properties, gene expression profiles and in vivo significance of GnRH neurone-

selective receptor manipulations. The second major change in this field has been the 

discovery of kisspeptin.  Initially discovered in humans in 2003 (122, 123), GnRH 

neurone investigators rapidly took up the challenge of deciphering how kisspeptin 

regulates fertility and this topic has been present at meetings since 2007 (124-126).  
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The key gonadal steroid-GnRH neurone milestones at Torino meetings over the last 

10 years have been summarised in the following sub-chapters. 

Understanding rapid gonadal steroid actions on GnRH neurones.  

The meeting has witnessed the gradual unfolding of how oestrogens, androgens and 

progesterone derivatives exert rapid, sometimes direct, actions upon GnRH neurones. 

At the 2001 meeting, the role of allopregnanolone on GABAA-mediated effects on 

GnRH neurones in GT1 cells (127) and native adult GnRH neurones (128) was 

discussed. This was followed at the next meeting in 2003 by descriptions of how 

oestradiol rapidly activates specific intracellular signaling cascades in GnRH 

neurones, including calcium dynamics. These actions were mediated directly by ERβ 

expressed by GnRH neurones as well as indirectly through GABAA receptors (129, 

130).  This line of work was brought up to date at the most recent meeting in 2011 

where studies detailing the complex, dose-dependent direct- and indirect- effects of 

oestradiol (131, 132) and androgen metabolites (133, 134), on GnRH neurone 

electrical activity were presented. Although the issue of the physiological relevance of 

rapid steroid actions remains unknown (135), it is clear that progesterone and 

androgen derivatives, as well as oestradiol itself, can exert rapid actions on 

mammalian GnRH neurones both directly, and indirectly through GABA and 

glutamatergic inputs to these cells.   

 Examining the role of glial cells and growth factors in the steroid regulation of 

GnRH neurones.  

The importance of astrocytic growth factors such as TGFβ and βFGF on the 

functioning of GT1 cells (121) was elucidated during the 2001 meeting. This was 

expanded in 2003 to document the role that oestradiol played in regulating glial 

production of these growth factors (136). At the same meeting, the key roles for IGF-

1 interactions with oestradiol in modulating adrenergic tone within the GnRH 

neuronal network in vivo were illustrated (137). This was to be expanded further in 

2007 meeting by showing that oestradiol acts on membrane ERs on glial cells to 

promote progesterone synthesis that, in turn, impacts on the ability of GnRH neurones 

to exhibit the preovulatory surge (138). Alongside many other talks at the Torino 

meeting on steroid hormone-growth factor interactions, these studies have provided 

the impetus for considering the potentially important impact of glial cells on GnRH 

neurone functioning.  The lack of good tools to dissect the roles of specific groups or 
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regional locations of glia in vivo seems to remain a significant problem for 

understanding the roles of these cells beyond their normal “neuronal support roles”. 

Defining the mechanisms of oestrogen positive and negative feedback.   

Talks presented in 2001 meeting focused upon the roles of gonadal steroids in 

regulating GnRH gene transcription using in situ hybrization (120) and GnRH 

transgenics (139), respectively. This topic moved a considerable step forward with the 

data presented at the 2003 meeting detailing the effects of ovariectomy and oestrogen 

replacement upon GnRH neurone firing rates and the potential ion channels 

underlying these actions (140).  It would not, however, be until the 2011 meeting that 

the data on single cell RT-PCR allowed to define the precise ion channel subunits 

modulated by oestradiol in GnRH neurones (141, 142). The GnRH neurone firing 

studies in 2003 were complemented by studies showing the effects of different steroid 

regimens upon pulsatile GnRH secretion from hypothalamic explants (143).  

Although from different species, this highlighted the continuing puzzle as to why the 

effects of ovariectomy and oestradiol replacement on GnRH neurone firing rates and 

GnRH secretion are so dissimilar. The 2007 meeting was presented with a series of 

genetic and ER-specific ligand studies (144, 145) that defined the mechanism and 

types of ERs involved in the positive feedback mechanisms in mice and rats. These 

studies concluded that oestradiol acted on ERα-expressing neurones in the rostral 

hypothalamus to activate GnRH neurones to evoke the GnRH surge (124). Other 

studies presented at that meeting highlighted the oestrogen-sensitivity of kisspeptin 

neurones (125).  By the time of the 2011 meeting the promise of the oestradiol-

sensitive kisspeptin neurones within the GnRH neuronal network had been fulfilled 

with three papers (126, 146, 147) detailing their now established key importance in 

different oestrogen feedback mechanisms.  

Over the last 10 years, the Torino meeting has provided one focus meeting for 

promoting the understanding of how gonadal steroids modulate the behaviour of 

GnRH neurones.  This is a large subject with too many active investigators to 

accommodate at the Torino meeting at one time. Nevertheless, those outside the field 

have been treated to a consistently high-quality overview of progress in the subject 

while GnRH neurones aficionados have had the luxury of discussing science in the 

delightful mid-winter setting of Torino. 
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Interactions with classical and non classical steroid receptors 

Through the years at the International Conference on Steroids and the Nervous 

System, there has been much work presented on the mechanisms by which steroids 

may exert some of their effects. Nuclear steroid receptors (nSRs) were discovered 

over 50 years ago for oestrogen and were followed by discovery of specific nSRs for 

progestins and androgens (148). These classic nSRs are intracellular, are activated by 

the binding of steroids, and serve as transcription factors. Our discussions of 

oestrogen action in the brain via nSRs has included actions via the originally 

discovered ERα and its traditional role in reproduction, but also how these actions 

have effects in other brain regions such as the hippocampus, to influence processes 

relevant for aging and related functions (149). Various effects, from form to function, 

of the more recently discovered ERβ have been discussed (27, 150), with an emphasis 

on integrated actions via ERα and ERβ (5).  The role of progestin receptors in 

reproduction, and their effects as neural integrators of hormonal and environment 

actions, have been proposed (151, 152). How actions at progestin receptors may occur 

through steroid activation or involve other ligands, such as dopamine, is intriguing 

(153). At this venue, we have also discussed the role of androgens receptors in sexual 

differentiation, and other processes, along with how there may be actions of 

androgens via other nSRs, including ERbeta, as well as actions apart from nSRs (15, 

16, 154-158). 

More recently, it has been demonstrated that steroids bound to nSR complexes, 

bind hormone response elements, and have actions through co-activators, to result in 

changes in their rates of transcription and translation. The importance of co-regulatory 

factors to influence nSRs action has been discussed at our venue (159).  How steroids’ 

actions in the brain via sNRs can also involve coactivators, which modulate hormone-

dependent gene expression in brain and reproductive behaviour in rodents (67) and 

galliforms (159), and co-repressors, such as chromatin binding factors mediation of 

epigenetic organization of sex differences in the brain (160), has been the topic of 

recent symposia.  Thus, as evidence has emerged regarding steroids actions via nSRs, 

these topics have been of ongoing interest and discussion. 

This classical “genomic” mechanism of steroid action, involving the 

transcription of DNA and synthesis of proteins, can elicit a biological response within 

10 minutes, hours or days. In addition to classical actions via nSRs, there has been an 
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ongoing dialogue about non-traditional actions of steroids.  Non-classical actions of 

steroids can occur much more rapidly (<10 minutes, and even in seconds) than actions 

at nSRs, in the absence of nSRs, and in the presence of inhibitors of transcription 

and/or translation. Non-classical, rapid steroid actions, often referred to as “non-

genomic” actions of steroids, have been extensively studied over the past few 

decades, demonstrated for all the major classes of steroids, and are now well-

recognised.  Rapid, non-classical actions of oestrogens, progestogens, and androgens 

and their role in various hormone-sensitive functions, have been ongoing topics of 

discourse at this meeting (4, 69, 89, 161, 162). 

An important question is which receptors mediate non-genomic actions? 

Several physiologically relevant membrane-associated proteins have been identified 

on plasma membranes suggesting the existence of specific membrane steroids 

receptors (22, 23, 163-165). However, identities of some of these membrane targets 

remain controversial.  Neurotransmitter receptors have been foci of non-genomic 

signaling activity of steroids. The most widely studied (and discussed) 

neurotransmitter targets for steroid actions have been through GABA receptors (166-

173). However, actions of steroids through glutamate (120, 174), dopamine (175), 

adrenergic (137, 176, 177), opiate (178), and sigma (179) receptors have been 

investigated and discussed at this meeting. 

Some non-traditional effects of steroids may be downstream of actions at 

membrane targets. The intracellular signal transduction cascades, which mediate some 

behavioural effects of ovarian steroids have been discussed (137, 176).  Some effects 

of steroids, such as progestagens, may be mediated in part through adenyl cyclase, G-

proteins, PKA, PLC, and/or PKC pathways (180, 181).  Other effects of oestrogen 

may be mediated through MAPK signaling, mitochondrial processes, or other 

intracellular pathways. (182). Extensive discussions of traditional and novel effects 

and mechanisms of steroids have taken place during the meetings organised in Torino.  

There have also been perspectives of how actions through classic nSR signaling may 

integrate with rapid, membrane action of steroids, and their downstream effectors 

(183, 184).  The discourse to date about classic and non-traditional steroid action have 

been productive and will likely continue to expand the field in a substantive manner 

to elucidate new perspective regarding modulatory effects of steroid signalling. 

 

Neuroactive steroids as neuroprotective agents: translational research 
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The role of neuroactive steroids on neurodegeneration, neuroprotection and the 

response of the neural tissue to injury has been a fundamental topic in the 

International Meeting on Steroids and Nervous System since its first edition in 2001. 

Since then, this field has significantly advanced and neuroactive steroids have 

emerged as new potential therapeutic tools to counteract neurodegenerative events. 

Oestradiol and neuroprotection 

By the time of the first Torino meeting extensive experimental evidence indicated that 

oestradiol is neuroprotective (126). However, a turning point was the publication of 

the results of the Women’s Health Initiative (WHI) clinical trial on the effects of 

hormonal therapy in women (185, 186). The results of this study showed an increased 

risk of dementia and stroke in women over 65 years of age who received conjugated 

equine oestrogens plus medroxyprogesterone acetate (MPA) compared to women who 

received placebo. This finding was in contradiction with the evidence obtained in 

animal models of neurodegenerative diseases. Therefore, new studies have addressed 

in recent years the possible causes of this discrepancy. In particular, age at which 

hormones were administered relative to the perimenopausal transition has emerged as 

a critical issue. Observational studies and randomised clinical studies suggest that 

early initiation of hormone therapy may provide cognitive benefits, particularly to 

verbal memory and other hippocampus-mediated functions (187). In addition, new 

basic studies have shown that the neuroprotective activity of oestradiol depends on 

the duration of ovarian hormone deprivation (188) and is affected by age-associated 

modifications in the levels of other molecules, such as insulin-like growth factor-I 

(189).  

Progesterone and other neurosteroids 

Another neuroactive steroid whose neuroprotective activity has been frequently 

discussed in Torino meetings is progesterone. The neuroprotective activity of 

progesterone and its metabolites dihydroprogesterone and tetrahydroprogesterone has 

been characterised in the last decade (190-192). Progesterone and its metabolites 

promote remyelination in the CNS (193, 194) and the PNS (195-197). Furthermore, 

progesterone attenuates clinical severity, demyelination, neuronal dysfunction and 

axonal damage in experimental autoimmune encephalomyelitis, a well-established 

experimental model of multiple sclerosis (198-201) and in diabetic neuropathy (202). 

Progesterone is also protective after traumatic brain injury in animals (192). In 

addition, clinical trials have indicated a reduction in the mortality and an 
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improvement of functional outcomes after traumatic brain injury in patients treated 

with progesterone (203). 

The neuroprotective action of other neuroactive steroids has also been assessed during 

the last decade. Among these is allopregnanolone, whose cerebral levels are decreased 

in an experimental model of Niemann-Pick type C disease. The neonatal 

administration of allopregnanolone results in a delay of the onset of neurological 

symptoms, and a doubling the lifespan of the animals (204). Other studies have 

demonstrated the efficacy of treatment with dehydroepiandrosterone after spinal cord 

injury (205) and in diabetic neuropathy (206). Neuroactive steroids are also important 

endogenous modulators of mood and have therapeutic potential for the treatment of 

depression and anxiety disorders. Novel therapeutic strategies might either be based 

on synthetic derivates of endogenous 3alpha-reduced neuroactive steroids or on the 

modulation of neurosteroidogenic activity (207). Pregnenolone and 

dehydroepiandrosterone are also promising candidates for the treatment of 

schizophrenia (208, 209). Better performance on executive tasks is associated with 

increased plasma levels of dehydroepiandrosterone in schizophrenic patients (209) 

and clinical trials have demonstrated that pregnenolone is able to decrease negative 

symptoms and extrapyramidal side effects and to improve verbal memory, attention 

and working memory performance in these patients (208).  

Alternatives to treatment with neuroactive steroids have been also explored in recent 

years. These include synthetic receptor modulators, like for instance selective 

oestrogen modulators (SERMs). Some SERMs have been shown to be 

neuroprotective and anti-inflammatory agents in experimental animal models of 

central neurodegeneration (210). Another alternative therapeutic strategy might be the 

use of pharmacological agents that increase the synthesis of endogenous neuroactive 

steroids within the nervous system (211). With this perspective, ligands of 

translocator protein (TSPO, previously known as peripheral benzodiazepine receptor 

(104)) may represent an interesting option (212-214). TSPO is mainly present in the 

mitochondrial outer membrane, where it promotes, in cooperation with steroidogenic 

acute regulatory protein (StAR), the translocation of cholesterol to the inner 

mitochondrial membrane. The mitochondrial translocation of cholesterol is a limiting 

step in steroidogenesis, since it allows the transformation of cholesterol into 

pregnenolone. Observations have shown that treatment with ligands of TSPO, like for 

instance Ro5-4864, exerts neuroprotective effects in aged peripheral nervous system 
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(215), in peripheral nerve during diabetes (216) and in CNS after neuronal injury 

(217). A similar approach has been obtained with a ligand of liver X receptors. 

Indeed, treatment of diabetic animals with a synthetic ligand of these receptors (i.e., 

GW3965) results in an increase of neuroactive steroidoigenesis in the sciatic nerve 

which is associated with neuroprotective effects (218).  

Perspectives for the future 

During the last decade several studies have shown that pathological events have an 

important impact on neuroactive steroid levels in nervous tissues. Changes in 

neurosteroid biosynthesis or in neurosteroid levels in the brain, spinal cord or 

peripheral nerves have been detected under different pathological conditions, 

including experimental models of diabetes (219-221), hereditary peripheral 

neuropathy (219), peripheral nerve injury (222), spinal cord injury (223, 224), 

multiple sclerosis (225, 226), autism (227), and Parkinson's disease (228, 229). 

Neuroactive steroid levels are also modified in the human brain under pathological 

conditions, including Alzheimer’s disease, Parkinson's disease, multiple sclerosis and 

hepatic encephalopathy (97, 230-235). To develop adequate therapeutic tools based 

on neuroactive steroids (212-214) it would be necessary to increase our knowledge on 

the specific regional and temporal changes that occur in neurosteroid levels in the 

human brain at different phases of neurodegenerative diseases and during affective 

disorders. In addition, it would be also necessary to determine the implications of 

such changes for the manifestation and outcome of the pathological condition.   

Another important issue is that different pathologies of the central and 

peripheral nervous system show sex differences in their incidence, symptomatology 

and/or neurodegenerative outcome (236). Interestingly, the levels of neuroactive 

steroids in the CNS and PNS under pathological conditions also show sex differences 

(219, 221, 224-226, 237, 238). In addition, the nervous system of males and females 

show different responses to neuroactive steroids. Therefore, it would be important to 

explore with detail the interaction of sex with neurosteroid levels and neurosteroid 

actions to develop adequate sex-specific neuroprotective strategies. 
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Legend to the figure 

 

Fig. 1 – Participants at the 6th International Meeting on Steroids and Nervous System, 

Torino, February 2011. 
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Fig. 1 – Participants at the 6th International Meeting on Steroids and Nervous System, Torino, February 

2011.  
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