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a b s t r a c t

In this paper we consider the modeling of a portion of the signal transduction pathway
involved in the angiogenic process. The detailed model of this process is affected by a high
level of complexity due to the functional properties that are represented and the size of its
state space. To overcome these problems, we suggest approaches to simplify the detailed
representation that result inmodelswith a lower computational and structural complexity,
while still capturing the overall behavior of the detailed one.

The simplification process must take into account both the structural aspects and the
quantitative behavior of the original model. To control the simplification from a structural
point of view, we propose a set of reduction steps that maintain the invariants of the
original model. To ensure the correspondence between the simplified and the original
models fromaquantitative point of viewweuse the flowequivalentmethod that provides a
way of obtaining the parameters of the simplifiedmodel on the basis of those of the original
one.

To support the proposed methodology we show that a good agreement exists among
the temporal evolutions of the relevant biological products in the simplified and detailed
model evaluated with a large set of input parameters.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Formal modeling is a central theme in systems biology where mathematical reasoning and simulation can play an
important role. In general, biologicalmodels are affected by a high level of complexity due to the organization and functional
properties of the systems that are considered. The interaction of qualitative and quantitative analysis is necessary to check
a model for consistency and correctness. Following this idea, Heiner et al. proposed in [18] a methodology to develop and
analyze large biological models in a step-wise manner. This approach consists of four steps focusing on: (1) readability,
(2) executability (animation techniques), (3) validation techniques and (4) analysis techniques. During the modeling and
analysis processes these stages could represent a supervised way to increase the confidence on the results provided by the
model.
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In our opinion, between the exploration of executability of the model and the validation of the model’s integrity (second
and third steps, respectively) it is necessary in some cases to apply a simplification step. This step becomes mandatory
considering two main obstacles in the analysis of biological systems: (i) the number of states of a system may grow
exponentiallywith the number of compounds involved in the representation, and (ii) the large number of kinetic parameters
that are needed, many of which are unknown.

For these reasons, simplification is an important issue of the model analysis process that, starting from the construction
of the original detailed description, attempts to identify only those variables that are crucial to the dynamics of the system
in order to obtain a representation suitable for making predictions, generating new hypotheses, and suggesting the design
of novel biological experiments (see [8]).

As reported in [16] there are two main classes of reduction techniques that can be used: exact, based on the idea of
grouping together states with similar characteristics so that the behavior of the whole model remains un-affected by this
state space modification, and approximate, based on a deep understanding of the features of the system and yielding only
approximate results. In each type of approach the conservation of stoichiometric and kinetics aspects of the biochemical
system must be ensured. From a biochemical point of view, several proposals have been presented [39,34] to describe
different methods for the conservation analysis based on the use of the stoichiometry matrix in order to detect the presence
of dependences.

These general techniquesmay also be interpreted as two-phase procedures. The first phase concerns a biological analysis
of the system: the compounds that have a significant effect on the behavior of the system are necessary while compounds
and parameters that have a weak influence may be eliminated leading to a reduced model [40]. The second phase relies
on specific features of the formalism used to represent the biological system and reduces the size of the state space of the
model by identifying structures of the state space (e.g., symmetry conditions) that allow the analyst to group together states
with similar or identical behaviors [6,5].

In this paper we report our experience of modeling signal transduction pathways for the angiogenic phenomenonwhere
we devised a complexity reduction methodology applied to the detailed representation of the dynamics of the system. We
model this phenomenon using Petri Nets (PNs) [33] (and in some cases their variant called Stochastic Petri Nets (SPNs)
[30,27,4]).

We propose a simplification process which takes into account both the biochemical and the formalism views.
Similarly towhat has been done in other proposals, we use structural properties of the PNmodel to assist the quantitative

analysis. In particular, our simplification process is based on the identification of basic building blocks (groups of biological
reactions) that can be replaced in the PN representation with equivalent ‘‘macro’’ reactions which preserve the overall
behavior of the model. This reduction process is guided by qualitative properties whereas the accuracy of the substitutions
is validated by comparing the quantitative characteristics of the detailed and simplified models. In deriving information
related to the qualitative analysis, an important role is played by the so-called net’s invariants [33,28].

The quantitative validation is performed by translating the PNmodels into the corresponding sets of coupled, first order
Ordinary Differential Equations (ODEs).

Obviously, the specifications of the reducedmodels depend on the dynamics of the original one. To perform this transfor-
mation,we apply the concept of flow equivalent server [7,10,36], investigating the conditionswhich ensure that the behaviors
of the simplified nets are similar to that of the detailed one.

The discussion contained in this paper is focused on the robustness of the approach and is based on numerical and
analytical results that have been derived without referring to parameters coming from wet-lab experiments. Indeed, even
though the chronology of the biochemical events is properly defined, the rates and concentration values are not yet available,
consequently our knowledge about the enzyme kinetic mechanism and the quantitative aspects that dominate all reactions
is limited. Within this context, our work must be considered as a preliminary step toward the application of the proposed
methodology to realistic and complex models. In particular, studying the reliability of the method performed with respect
to a parameter space characterized by wide ranges of the individual parameters, allows us to conclude with the belief that
our methodology is a promising approach in the direction of attacking a problem that is crucial in systems biology.

The paper, which is an extended version of [29] that uses the flow equivalentmethod for computing the parameters of the
reduced networks, is organized as follows. Section 2 provides an overview of PNs and SPNs and of their use in biochemical
systems for qualitative and quantitative analysis. Section 3 describes the angiogenic case study and presents the approach
we adopted to build the SPNs. Section 4 shows the simplification processes we followed. Section 5 discusses the validity of
the resulting models from a structural point of view. In Section 6, the attention is focused on the quantitative issues of the
simplification process. The accuracy and the mathematical robustness of the simplified model are presented in Section 7.
We conclude with a discussion and an outlook of future work in Section 8.

2. Modeling formalism and solution techniques

The descriptions commonly used in biology, where the relations among reagents are expressed either by biochemical
reactions, or by interactions of genes, are easy to transform into PNs in which places correspond to genes/proteins/-
compounds (substrates) and transitions to interactions. PNs have been first proposed for the representation of biological
pathways by Reddy et al. [32]. Since their introduction, many other researchers proposed PN models of biological
systems [20] with the aim of using their representations to obtain quantitative information about the behavior of these



F. Cordero et al. / Theoretical Computer Science ( ) – 3

a b

Fig. 1. PN representation of reactions Pip3 + Pten
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systems, mostly via simulation [21,14]. However, as shown by Heiner et al. [18,19], PNs can be used for deeper studies of
biological systems where both qualitative and quantitative results are derived for assessing general behavioral patterns and
specific concentration or timing measures. Indeed, the interaction of qualitative and quantitative analysis is necessary to
check a model for consistency and correctness as we will show in the rest of this paper.

2.1. Petri net representation for biochemical interactions

PNs are a graphical language for the formal description of distributed systems with concurrency and synchronization.
PNs are bipartite graphs with two types of nodes, namely places and transitions, connected by directed arcs. The state of
the system is given by the distribution of tokens over the places of the net and is calledmarking. The dynamics of the model
(starting from an initial marking) is captured by state changes due to firing of transitions and by the consequent movement
of tokens over the places. Formally, a PN is characterized in the following manner.

Definition 1 (PN-syntax). A Petri Net is a tuple (P, T ,W ,m0), where

• P is a finite set of places;
• T is a finite set of transitions;
• P and T are such that P ∩ T = ∅;
• W : (P × T ) ∪ (T × P) → N defines the arcs of the net and assigns to each of them a multiplicity, thus representing the

flow relations of the net; a particular elementW (p, t) (orW (t, p)) gives the number of tokens that the firing of transition
t takes away from (or puts into) place p;

• m0 is the initial marking which associates with each place a number of tokens.

Given the structure of the net, the dynamics is described by the evolution of its marking that is governed by transition
firings which remove tokens from input places and put tokens in output places. Identifying with •t the set of input places
of transition t (•t = {p : w(p, t) > 0}), we say that transition t is enabled if all of its input places are marked with at least
as many tokens as the multiplicities of the corresponding arcs. More formally, we can say that t is enabled in markingm iff
{∀p ∈

•t : m(p) ≥ w(p, t)}. The firing of transition t , enabled in marking m, yields a new marking m′ such that ∀p ∈ P :

m′(p) = m(p) − w(p, t) + w(t, p).
The set of all the markings that the net can reach, starting from m0, is called the reachability set of the net and denoted

with RS(m0).
As already observed, when PNs are used in systems biology places represent biochemical entities (enzymes, compounds,

etc.) and transitions correspond to their interactions [32]. We assume that the tokens in the places represent the number
of molecules of the corresponding entities. The biological system we consider is described by biochemical reactions similar
to those reported in Fig. 1(a) where we show the PN representation scheme we adopted to model all reactions of this type.
Fig. 1(b) represents the state evolution of this elementary sub-net, due to firing of transition K53 (occurrence of the forward
reaction with rate k53).

2.2. Analysis techniques based on structural properties

The PN graph representation is the basis for the computation of several functional properties of the model, that are
valid independently of its initial marking: such properties are, for instance, the boundedness, the occurrence of structural
deadlocks and traps, and the potential existence of home states, i.e., the possibility for the net of returning infinitely often
to its initial state [33,28,4]. In deriving such kinds of information, an important role is played by certain properties of the
net which are called invariants. There exist two kinds of invariants: place invariants (P-invariants) and transition invariants
(T -invariants) [33,28].

Definition 2 (Semiflows). Given a Petri Net, let

• C be the Incidence Matrixwhose generic element cpt = W (t, p) −W (p, t) describes the effect of the firing of transition t
on the number of tokens in place p;

• x ∈ Z|P| be a place vector;
• y ∈ Z|T | be a transition vector;
• A P-semiflow be a place vector x that is an integer and non-negative solution of the matrix equation xC = 0;
• A T-semiflow be a transition vector y that is an integer and non-negative solution of the matrix equation Cy = 0.
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The support of a semiflow h, denoted with supp(h), is the set of nodes corresponding to the non-zero entries of h.
A P-invariant is a weighted sum of tokens contained in a subset of places of the net that remains constant through the entire
evolution of the model, starting from an initial marking. Each P-semiflow x allows the computation of a corresponding P-
invariant using supp(x) as the subset of places and the non-zero entries of x as weights. All the P-semiflows of a PN can be
expressed as linear combination of a set of minimal P-semiflows that are thus the basis for the analysis [25,28]. When the
net is covered by P-semiflows (i.e., all the places of the net belong to one P-semiflow, at least) the state space of the net
is finite and the markings of the places are bounded. The interpretation of a (minimal) P-invariant in a biological context,
where tokens represent compounds, enzymes etc., is relatively simple: the places of supp(x) represent the portion of the PN
where a given kind of correlated matter is preserved.

Slightly more complex is the definition of a T -invariant that corresponds to a set of transitions whose firing may bring
the net back to its initial marking. T -invariants are interpretations of T -semiflows y. Recall that [33], given a marking m,
the firing of transition ti yields a new marking m′ which results from the addition of two vectors: the marking m and the
column ci corresponding to transition ti in the incidencematrix C. The effect of the firing of all the transitions of a T -semiflow
is given by the weighted sum


ti∈T yi ∗ ci. It follows from its definition that a T -invariant corresponds to the situation in

which the previous sum yields a null vector and implies that the total modification of the marking is null after the firings
of all the transitions involved by the semiflow (i.e., identified by the support of T -semiflow y). In other words, the non-zero
components of a T -semiflow can be interpreted as the number of times the corresponding transitions must appear in a
sequence of firings that brings the net back into a given marking.

As in the case of P-semiflows, all the T -semiflows of a PN can be expressed as linear combination of minimal T -
semiflows [28]. T -semiflows represent invariant laws derived from the structure of the net (the PN graph), but knowledge
of them alone is not sufficient to state the effective enabling of the transitions they involve and further considerations are
necessary to study, for instance, liveness properties or cyclic behaviors of the system. In a biological context, T -semiflows
can be interpreted as elementary modes as discussed at some length in [15].

2.3. Quantitative temporal analysis

One main objective in systems biology is to model and analyze temporal dynamics of the phenomenon under study. It
is natural hence to apply an extension of PN that allows the introduction of temporal specifications in the model. The most
common timed extension of PN is SPN inwhich exponentially distributed randomdelays (interpreted as durations of certain
activities) are associated with the firings of the transitions. SPNs were originally defined in [27,30]

Definition 3 (SPN-syntax). A Stochastic Petri Net is a pair (PN, K), where

• PN is a Petri net;
• K is a function which allows the definition of the stochastic component of an SPN model, mapping transitions into real

positive functions of the SPN marking (rates of the corresponding negative exponential distributions).

Given this definition, for any transition t it is necessary to specify a functionK(t,m). In the case ofmarking independency,
the simpler notation ki is normally used to indicate K(ti), for any transition ti ∈ T . When transition ti is enabled in marking
m, evaluating the function K(ti,m) (or ki) provides the rate of transition ti in markingm, i.e., the parameter of the negative
exponential distribution that characterizes the firing time of this transition in this marking. Assuming that the atomic firing
(characteristic of the un-timed model) is preserved in the SPN specification (i.e., once enabled, the transition waits for a
random delay before actually firing, then removing tokens from its input places and adding tokens to its output places in
zero time) and given that the distribution of the firing times have infinite supports, SPNs are qualitatively equivalent to
PNs, meaning that the RSs of the two models are identical and that for their structural analysis it is sufficient to disregard
their time specifications. The temporal stochastic behavior of an SPN is isomorphic to that of a continuous time Markov
chain (CTMC) which can be built automatically from the description of the SPN. In particular, bounded SPNs can be shown
to be isomorphic to finite CTMCs. This stochastic approach based on SPN adopts a discrete view of the quantity of the
entities and sees their temporal behavior as a random process governed by the so-called Chapman–Kolmogorov differential
equations [11], and corresponding to the behavior of the biological system described by theMaster Chemical Equations [13].

Starting from the information contained in the SPN model, it is also possible to adopt a deterministic approach in which
the temporal behavior of the quantity of the entities contained in the different places is a completely predictable process. In
the following we give a brief description of this approach; for a detailed discussion, the interested reader is referred to [17].

The deterministic approach translates the interactions into ODEswith one equation per place.Whenmodelingmetabolic
pathways, the most common way to translate the reactions into a set of ODEs is provided by the law of generalized mass
action (GMA) [41]. By GMA the system of ODEs describing the model is of the form

dXi(t)
dt

=

Ni
j=1

kij
E

h=1

Xh(t)gijh (i = 1, . . . , E) (1)

where E is the number of interacting entities and Xi(t) represents the amount of the ith entity at time t . Furthermore, Ni
is the number of reactions in which the ith entity is involved, the parameters kij are rate constants describing the speeds



F. Cordero et al. / Theoretical Computer Science ( ) – 5

of these reactions and the parameters gijh are the so-called kinetics orders which depend on the stoichiometry and on the
mechanism of the reactions. As it is possible to deduce from (1), the behavior of the entities involved in the system depends
both on the network topology and on the reaction rates.

Referring again to the reactions considered in Fig. 1, the corresponding ODEs are

dXPip3(t)
dt

= −k53XPip3(t)XPten(t) + k54XPip3:Pten(t),

dXPten(t)
dt

= −k53XPip3(t)XPten(t) + k54XPip3:Pten(t),

dXPip3:Pten(t)
dt

= k53XPip3(t)XPten(t) − k54XPip3:Pten(t).

The ODEs can be obtained automatically from the SPN representation1 and having also the information about the initial
amount of the different entities, numerical integration of the ODEs is applied to calculate the quantities at a given time
instant.

As is shown in [22], when the number of tokens increases the quantitative behavior obtained applying the stochastic
approach tends to that obtained from the ODEs. Having the SPN description of the biological phenomenon, the construction
of the corresponding CTMC or a set of ODEs can be done automatically. The choice of using one of the two approaches
(stochastic or deterministic) for studying the behavior of the system is thus left to the analyst who decides on the basis
of the objectives of his/her study. In this paper we mainly use the deterministic approach because it allows for faster and
simpler evaluation of the simplification process we propose for the SPN representation of our system.

3. A Petri Nets based approach applied to signal transduction pathways for the angiogenic process

One main objective in systems biology is to model and analyze the temporal dynamics of the phenomenon under study.
By using SPNs as the formalism for the construction of the model, the analysis is performed in two phases: the first provides
qualitative information about the structure of the model and the second investigates its quantitative behavior including the
computation of statistical indexes that describe the dynamics of the system. In this paper we use this approach to study an
angiogenic signal transduction system described in Section 3.1 and modeled in Section 3.2.

3.1. Biological case study definition

The example used in this paper describes the intracellular signal transduction events induced by Vascular Endothelial
Growth Factor (VEGF ) in the context of the angiogenic process. Angiogenesis is a complex phenomenon that proceeds
from a molecular level through specific cellular mechanisms to macroscopic events defined as the formation of new
vessels from preexisting ones. At the molecular level this phenomenon involves the activities of many growth factors
and relative receptors which trigger several signaling pathways resulting in different cellular responses. VEGF family
proteins are widely regarded as the most important growth factors involved in angiogenesis. Among the VEGF family
proteins, VEGF-A has been the subject of many investigations and is well recognized as the major angiogenic factor. VEGF
receptor-2 (KDR in humans) is the primary mediator of VEGF-A-induced cellular responses, including cell proliferation,
survival, and migration [31]. Although the core components of the main KDR-induced pathways have been identified,
further research is needed to better elucidate the KDR-signaling network. Indeed, a strong body of evidence indicates the
existence of common adaptor/effector proteins involved in the survival and proliferation pathways induced by VEGF-A/KDR
axis, pointing out the difficulty of isolating a specific pathway and suggesting the presence of common nodes which
contribute to create an intricate signaling network. In particular, the phosphorylated active receptor, indicated as KDR∗,
catalyzes phosphorylation of several intracellular substrates including the adaptor protein Gab1 [23,9], which is shared
by both proliferative and survival signaling. The main pathway through which VEGF-A induces cell proliferation involves
the activation of Plcγ [37]. Activation of Plcγ promotes phosphatidylinositol 4,5-bisphosphate (Pip2) hydrolysis giving rise
to 1,2-diacylglycerol (Dag). VEGF-A-induced cell survival is dependent on the activity of Pi3k [12]. The activated Pi3k
phosphorylates Pip2 generating phosphatidylinositol-3,4,5-triphosphate (Pip3). This recruits Akt to the membrane where
it is activated through phosphorylation. Activated Akt induces cell survival. Taking into account these notions, we wrote a
system of biochemical reactions based on the available biological information together with further supposed mechanisms
which could contribute to underline the presence of key molecular nodes in the context of VEGF-A-induced proliferation
and survival pathways.

1 This automatic transformation is implemented in several analysis tools such as GreatSPN tool [3] which has been used to support many of the analyses
discussed in this paper.
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Fig. 2. Reactions of the detailed model.

3.2. Model construction

In this section, we discuss the approach we followed to represent the signal transduction cascade using an SPN. Consider
the detailed biological model depicted in Fig. 2 and comprising 63 reactions. Note that in the following we denote a reaction
rate with ki, whereas the corresponding transition in SPNs is named with Ki and its firing rate is equal to ki(m) where m is
the marking of the input places of the transition and the tokens denote the number of molecules.

These reactions describe KDR-proximal signaling events in the context of the survival and proliferation signal modules
induced by receptor activation. In particular, reactions are organized into four blocks. The First Block (of Fig. 3) represents the
earliest signaling events which include KDR∗ (we use the star to denote that proteins are active), Gab1, and Pip3. The Second
Block includes the reactions describing the survival pathway triggered by the Pi3k/Akt axis. The Third Block represents
the proliferation pathway involving Plcγ activation. Finally, the Fourth Block concerns the regeneration of Pip2, a common
substrate for the two signal modules that we are considering. In this block Pip2 recovery was considered to result from
the contribution of Pten-dependent dephosphorylation of Pip3 in combination with Dag catabolism (here recapitulated in
the general enzyme E). Using the reaction representations outlined in Section 2.1 and the GreatSPN tool [3] the SPN model
of the signal transduction process was built as illustrated in Fig. 3. Exploiting the block organization and the structure of
the model we analyzed the biochemical reactions in order to identify possible pathways and sub-pathways that describe
embedded behaviors of the complete model. We denoted the reactions by means of their kinetic constants. In the model,
Akt and Dag have been considered as the end points of the survival and proliferation pathways, respectively. Taking into
account these end points in combination with the notion that Akt activation is strictly Pip3-dependent, we examined the
signal transduction cascade focusing our attention mainly on the reactions that lead to the production of Pip3 (i.e., K21 and
K27) and Dag (i.e., K36, K42, and K48).

This analysis (supported also by a careful drawing of the SPN) allowed us to recognize different sub-pathways that lead
to the survival or proliferation effects. In the context of the survival signal module, we identified three sub-pathways, that
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Fig. 3. SPN representing the detailed model. Compound abbreviations: KDR∗
≡ Kd∗ , Gab1≡ G, Pi3k≡ P3k, Plcγ ≡ Pg , Pip3≡ P3, Pip2≡ P2, Pten≡ Pt . (For the

sake of simplicity, abbreviations are used only for compounds bound with the enzyme).

lead to a survival effect starting from: KDR∗:Gab1∗, KDR∗:Gab1∗:Pip3 and Gab1∗:Pip3. Two of them are characterized by the
presence of a distinguishing complex, KDR∗:Gab1∗ or KDR∗:Gab1∗:Pip3, belonging to the First Block. Moreover, Gab1∗:Pip3
also contributes to the formation of KDR∗:Gab1∗:Pi3k:Pip3 complex already involved in one of the identified sub-pathways.
Summarizing there are three sub-pathways that lead to a survival effect starting from: KDR∗:Gab1∗, KDR∗:Gab1∗:Pip3 and
Gab1∗:Pip3.

Turning our attention to the proliferation module, we identified four different sub-pathways that are distinguished
by the compounds belonging to the First Block, i.e.: KDR∗, KDR∗:Gab1∗, KDR∗:Gab1∗:Pip3 or Gab1∗:Pip3. Notice that the
distinguishing elements of the detected sub-pathways are the same within the survival and proliferation modules, with
the exception of the compound KDR∗.

Referring again to the SPN of Fig. 3, we can notice that the time evolution of this SPN is intuitively portrayed by a top-
down view. On the top is depicted the place KDR∗ that represents the starting point of the signal cascade induced by its
ligand. All the sub-pathways that characterize the proliferation and survival pathways start from the KDR∗ cascade. The
places describing Dag and Pip3 are aligned at the bottom of the net.
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Fig. 4. Subtypes of the component RC and its simplified version. Note that Kn is equivalent to K0 , K57 , and K62 for (d), (e), and (f) respectively in Fig. 5.

As reported in [29] the resulting SPN is covered by P-invariants (see Table A.2 in Appendix).

4. Model simplification

The molecular mechanisms involved in the VEGF-A angiogenic functions need to be characterized in fine details in
order to better understand the flow of information among cell proliferation, survival, andmigration. Experimental evidence
demonstrates the existence of common adaptor/effector proteins in both the pathways analyzed in this paper. These shared
compounds form an intricate network that is worthy of thorough investigation. The SPNmodel representation (Fig. 3) takes
into account the presence of these competitions and offers a tool for investigating the temporal dynamics of two relevant
products in the context of VEGF-A-induced proliferation and survival pathways, such as Dag and Pip3 respectively.

The analysis of the model requires knowledge of the transition rates (that in the biological context correspond to the
reaction rates) and of the initial marking (the initial quantities of the chemical compounds).

The quantitative analysis of this SPN is hampered by the size of its state space that can grow very large and suffers from
numerical problems that are quite common in models of this type (e.g. stiffness).

To mitigate these problems we propose a model simplification process that aims at the reduction of the structural
complexities of the model without losing its capability of representing the overall behavior of the considered biological
phenomenon. This approach identifies the presence of sub-models (sub-nets) with similar structures, that we call
components, and replace them with simpler constructs without heavy modification of the overall properties of the model.
In particular, the simplification process eliminates the intermediate proteins complexes (e.g. Kd∗:Pg and Kd∗:Pg∗:P2)
and it allows an analysis focused on the common adaptor and effector proteins of the cascade (e.g. Plcγ and KDR∗:Gab1
respectively). The resulting model is characterized by a simpler structure that can better support the analysis of the system.

In Section 4.1, we perform the simplification process based on the replacement of a small component that is replicated
many times in the detailed model. We show its structure, describe the methodology adopted to simplify it and present
the resulting overall simplified model. In Section 4.2, we propose a more drastic simplification process which is based on
the replacement of a larger component. In Section 5, we verify that the simplification processes preserve the structural
properties of the original model.

4.1. Simplification process: first reduction component

We identified a small component, which we call Reduction Component (RC), that is replicated many times in the model.
All the occurrences of RC share a similar basic structure with small variants that suggest to group them into three different
classes which we discuss individually in the following, denoting the input places by gray places and the output places by
black places.

The first type has the structure depicted in Fig. 4(a) and is highlighted in Fig. 3 as RC1. The behavior of this sub-model in
isolation can be summarized as follows. Place KDR∗:Gab1∗ is absorbing, i.e., the tokens present in place KDR∗:Gab1∗ cannot
move away from this place. Tokens positioned in places KDR∗ andGab1 have instead the effect of starting possible evolutions
of the sub-net which result into tokens eventually appearing in place KDR∗:Gab1∗. This interpretation is supported by the
structural analysis of the sub-model which shows the presence of twominimal P-semiflows with identical supports, except
for the presence of KDR∗ in the first and of Gab1 in the second.
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The second type (denoted as RC2 in Fig. 3) differs from RC1 since it has two output places as reported in Fig. 4(b). Besides
this ‘‘double’’ output, RC2 behaves exactly as RC1. In this case, there are four P-semiflows that take into account the flows
of tokens starting from each input place to each output place.

The third type, denoted as RC3 in Fig. 3, is reported in Fig. 4(c). In this sub-model the only input place is Pip3 and the
only output place is Pip2. The difference with respect to RC1 is the presence of the arc from transition K55 to place Pten that
behaves as a feedback, moving the tokens produced by the output transition K55 to the place Pten. This difference is reflected
in the P-semiflows of the sub-model, one ofwhich covers places Pten and Pt:P3 while the other comprises places Pip3, Pt:P3,
and Pip2. This means that the net effect of this sub-model is that of transforming Pip3 into Pip2 leaving to Pten the role of an
enabling component.

Even if the components RC1, RC2 and RC3 are not identical, we can simplify them in a similar manner taking into account
their structural differences. In all types of the RC sub-net tokens flow from input places toward output places and this can
be captured by a single transition.

The resulting simplified sub-nets are depicted in Fig. 4(d)(e)(f) where transitions Kn play the role of moving the tokens
from the input places toward the output places.

The feedback arc in RC3 (from transition K55 to place Pten) is included in the simplified sub-net as well, where we have
an arc from transition Kn to the appropriate input place (see Fig. 4(e)).

From a biological point of view, the RC1 corresponds to the first group of reactions after the activation of KDR∗. They are
characterized by reversible reactions indicatedwith transitionsK0 andK1 and one-way reactions representedwith transition
K2:

KDR∗
+ Gab1

k0
�
k1

KDR∗:Gab1
k2
→ KDR∗:Gab1∗.

In the original model this structure describes a two-step procedure composed by (i) the interaction between the receptor
KDR∗ and an inactive protein, and (ii) the protein activation. The simplification procedure leads to the substitution of the
three reactions with a single step (a single reaction from substrates directly into products) that appears as follows:

KDR∗
+ Gab1

kn
→ KDR∗:Gab1∗.

The RC2 structure characterizes the reactions that produced Pip3 and Dag . RC2 is similar to RC1 except for the one-way
reaction that has two output places.

Kd∗:G∗:P3k∗
+ Pip2

k19
�
k20

Kd∗:G∗:P3k∗:P2
k21
→ Kd∗:G∗:P3k + Pip3.

The reduction mechanism is the same of RC1:

Kd∗:G∗:P3k∗
+ Pip2

kn
→ Kd∗:G∗:P3k + Pip3.

Differently from the previous cases, in the RC3 structure the two-step procedure is enriched with a feedback arc
characterizing reactions in which the enzyme after the catalysis returns in the free form. The detailed reactions are

Pten + Pip3
k53
�
k54

Pt:P3
k55
→ Pten + Pip2

that are transformed in a single step:

Pten + Pip3
kn
→ Pten + Pip2.

The simplification process identifies all the components of the same type and replaces them with their corresponding
reduced structures. The SPN obtained after the application of this simplification process is depicted in Fig. 5.

4.2. Simplification process: second reduction component

Also a larger repetitive sub-net can be identified in the model. We will refer to this as Second Component (SC), which
is highlighted on the right side of Fig. 3 and shown in Fig. 6(a) in isolation. The sub-nets characterized by this structure
correspond to a specific biochemical cascade:

• the binding between an enzyme and the first substrate (transitions K31 and K32);
• the enzyme activation (transition K33);
• the recruitment of the second substrate (transitions K34 and K35);
• the production of the molecules representing the pathway end point and the enzyme deactivation (transition K36).
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Fig. 5. SPN obtained after the first process of simplification.

All SC sub-nets present in the detailed SPN correspond to an enzymatic reaction group of the form

Plcγ + KDR∗
k31
�
k32

Kd∗:Pg
k33
→ Kd∗:Pg∗

Kd∗:Pg∗
+ Pip2

k34
�
k35

Kd∗:Pg∗:P2

Kd∗:Pg∗:P2
k36
→ Kd∗:Pg + Dag

which is then reduced to the following single step

Plcγ + KDR∗
+ Pip2

kn
→ Plcγ + KDR∗

+ Dag.

The second simplification approach that we propose aims at reducing the entire SC component represented in Fig. 6(a)
with a single transition appropriately connected with the rest of the model. The same flow arguments used to justify the
reduction step of the first simplification process allow the identification of Pip2 as the only input place (gray place in Fig. 6),
while again only place Dag can be considered as an output place (black place in Fig. 6). Also in this case, these equivalence
arguments are supported by the structural analysis of the sub-model that identifies three P-semiflows. The first that covers
places Pip2, Kd∗:Pg∗:P2, and Dag , singles out the flow from Pip2 to Dag . The other two which are identical, except for their
first component ({ Plcγ , Kd∗:Pg , Kd∗:Pg∗, Kd∗:Pg∗:P2} and { KDR∗, Kd∗:Pg , Kd∗:Pg∗, Kd∗:Pg∗:P2}) highlight the fact that places
KDR∗ and Plcγ play the role of enabling compounds.

With this in mind, the six transitions of the detailed sub-model are substituted with a single transition of the reduced
model which is Kn as shown in Fig. 6(b) and all the intermediate protein complex are eliminated.

By performing the reduction of both the SC type sub-nets and the remaining RC type ones, we obtain the net depicted in
Fig. 7.
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Fig. 6. SC sub-net and its reduced counterpart. Note that transition Kn corresponds to K15 in Fig. 7.

Fig. 7. SPN obtained by the second process of simplification.

5. Structural validation

Recalling that the structural properties we are interested in are P- and T -semiflows, we first verify that none of those
important for the analysis of the net are lost due to the simplification. Considering the P-invariants first, every P-semiflow
of the original detailed model has a counterpart in the set of P-semiflows of the simplified models (see Appendix). Indeed,
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Table 1
Space state size of SPNmodels as function of the number of tokens in places KDR∗ ,Gab1,
Plcγ , E, Pip2 , Pten, Pi3k and Akt (All these places have the same number of tokens in the
initial marking).

Number of tokens Space state size
Original First simplification Second simplification

1 110 73 27
2 6587 2601 402
3 188378 44852 3370
4 3345587 496425 19965
5 42734935 4055250 93513
6 426590775 26418100 368410
7 3505084137 144086000 1268724

during the simplification process we verified that any RC and SC has a number of P-semiflows identical to that of the
corresponding reduced block.2 Moreover, both the original and the simplified SPNs are covered by P-semiflowsmeaning that
they are bounded. Obviously, if we consider the P-semiflows of the original model and their counterparts in the simplified
ones, we find that the supports of the P-semiflows coming from the simplified models are always included in those of the
original one.
These results provided by the P-semiflow analysis, show that the substitutions performed during both the simplification
processes have no impact on the conservation laws, supporting the adequacy of the reduction step.

As the quantities are preserved over a P-semiflow, the same quantity will be distributed over a larger number of places
in the original model than in the simplified ones. These peculiarities must be accounted for when choosing initial quantities
for the simplified models and when comparing performance indexes computed for the original and simplified models, as
we will briefly discuss in Section 7.3.

Considering now the T -semiflows, we can observe that not all the transitions of the original model are covered by T -
semiflows. In particular, this happens for transitions K2, K7, and K30. This identifies two different features of our model:

1. Transitions K7 and K2 represent the production of KDR∗:Gab1∗:Pip3 and KDR∗:Gab1∗, respectively. They correspond to
the initial actions of the signal transduction cascade that lead to a stationary behavior of the model which involves the
proliferation and survival pathways.

2. Transition K30 is included only for experimental purposes to capture the activation of Akt . As mentioned in Section 3.2,
the activation of Akt is completely governed by Pip3 that is thus the quantity relevant for our studies.

Obviously, the T -semiflows involving only transitions that have been removed in the simplified models disappear. For
instance, the detailed SPN has the T -semiflow {K19, K20}which is not present in the SPNwhen sub-net RC3 (Fig. 3) including
K19, K20 and K21 is reduced. The T -semiflows including both removed and non-removed transitions are maintained with the
removed transitions replaced by the corresponding new (equivalent) transitions. For instance, the detailed SPN has the T -
semiflow {K18, K19, K21, K58, K60} which after the reduction of the sub-net RC2 with K19, K20, K21 and of the sub-net RC3 with
K58, K59, K60 is still present in the form {K18, K57, K61} where K57 and K61 are the transitions resulting from the substitution
of the corresponding RCs.

The consistency among the invariant properties of all the nets shows that these simplification processes preserve the
important structural properties of the model. Moreover, the substitutions applied to the original SPN model provide new
representations whose analysis has a reduced computational complexity.

In Table 1, we report the size of the state spaces of the original and of the two simplified SPNs as functions of the initial
markings which have been chosen for illustrative purposes, only to show the impact that the simplifications may have on
the sizes of the state spaces of the models.

For the analysis of the state spaceweused a version of theGreatSPN tool [26] enhanced through the use of BinaryDecision
Diagram data structures provided by an existing open-source library (Meddly) [24]. With this new version of GreatSPN we
are able to compute the reachability set of all the models (original, first simplification, and second simplification) when in
the initial marking places KDR∗, Gab1, Plcγ , E, Pip2, Pten, Pi3k and Akt all have from 1 to 7 tokens each.

6. Quantitative analysis

The nets obtained by the reduction of both RC and SC sub-nets contain single transitions that play the role of sets of
transitions of the detailed model. In order to use the simplified models, the parameters of these new transitions have
to be defined. Our objective is to devise a method that allows the computation of the parameters of these substitutive
transitions starting from the firing rates of all the transitions of the corresponding RC and SC sub-models in such a way that
the quantitative behaviors of the simplified models remain similar to that of the detailed one.

2 Including the test places that are often omitted in the computation of the P-semiflows.
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Fig. 8. The RC1 net (upper) and the short-circuited one (lower).

Since we do not have precise information about the parameters of the original detailed model (initial quantities of the
different species and transition speeds), wemust use a parametrization technique that is robustwith respect to a large range
of parameter values. The use of the CTMC that underlies the whole model as a reference for the assessment of the quality
of the simplifications is unfeasible for more than 4 tokens in each of the basic places considered in the initial marking due
to its state space explosion, as reported in Table 1. We thus propose to validate our technique based on the concept of flow
equivalent server by solving the ODE derived from the different SPN models.

6.1. Flow equivalent server

The method that we use to compute the parameters is based on the concept of the flow equivalent server that was
originally devised for the analysis of electrical circuits (known in that field as Norton’s theorem) and that was subsequently
adapted to the study of queuing networks [7,10,36]. The idea behind this concept is to consider each sub-model individually
(and in isolation), to evaluate the flow of tokens that move from the input to the output places of the sub-model, and to
derive information from this flow in order to define the firing rate of the single (substitutive) transition that appears in the
reduced sub-model. The objective of the substitution is to ensure that the two representations provide equivalent flows
of tokens from their input to output places, when operating within identical external conditions (or environments). The
substitution results in (exact) equivalent behavior for the overall model only under specific stringent conditions, which our
models do not usually satisfy, and only in steady state. However, as wewill show in Section 7, the resulting simplifiedmodel
provides a good approximation of the behavior of the detailed one in many cases.

The speed of the equivalent transition is assumed to be the throughput of tokens reaching the output place, given a
specific marking of the input places of the same sub-model. In this way the equivalent firing rate assumes different values
for each possible initial marking of the input places and is computed assuming a stationary behavior that is guaranteed by
making sure that, when the sub-model is analyzed in isolation (i.e., disconnected from the rest of the model), each token
that reaches the output place is immediately replaced by new ones in the input places. This is operationally obtained by
short-circuiting the output and input places and by computing the flow along the short-circuit. In our case, the short-circuit
is obtained introducing an immediate transition [1] which connects the output to the input places.

In order to explain this approach in detail, let us consider sub-net RC1 (see Fig. 8(a) which is identical to Fig. 4(a) and
is repeated here only for convenience), where places and transitions have been renamed with general denotation. We can
describe the role of this sub-net as follows.Whenembedded into an ‘‘overall’’model (e.g., themodel of Fig. 3), this component
receives in input, tokens in places A and B from other parts of the whole model and moves these tokens toward C . The
substitutive transition Kn (see Fig. 4(d)) performs the same action and our objective is that of associating with this transition
a parameter that allows for this flow of tokens to be identical to that of sub-net RC1.

It is obvious that the parameter of Kn depends on the original parameters of RC1, k1, k2 and k3. Moreover, since the more
tokens arrive to places A and B the more tokens are moved to place C , the parameter of Kn has to depend also on the actual
number of tokens present in places A and B.

Fig. 8 shows how this method is applied to our archetype sub-model and how the Generalized SPN [1] is constructed
in order to analyze the sub-model in isolation. As we observed before, the two models of Fig. 8(a) and (b) have identical P-
semiflows. Forwhat concerns the T -semiflows, the addition of the short-circuit has the effect ofmaking themodel of Fig. 8(b)
covered by T -invariants thus making the initial marking a ‘‘home state’’ which is a necessary condition for its steady state
analysis.
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Fig. 9. Sub-net SC short-circuited.

More interesting is the representation of sub-net SC that is depicted in Fig. 9. Again the two sub-models have identical
P-semiflows. Focusing the attention on the third P-semiflow that includes places H , I , and L, we notice that the short-circuit
must connect places L and H yielding a representation (Fig. 9(b)) that is now covered also by T-invariants.

For this model, the flow equivalent server characterization amounts thus to the computation of the throughput of
transition t of Fig. 9(b) for different and increasing configurations of the initial markings of the input and enabling places.
These different transition speeds are accounted for in the SPN representing the simplified model by making the rate of the
substitution transition marking dependent (i.e., a different transition speeds for every possible enabling marking).

The concept of flow equivalent server applied when the model is studied with the deterministic approach can result in
symbolic expressions for the parametrization. Having at hand a symbolic expression for the parameter of the equivalent
transition allows for simple analysis of the characteristics of the sub-net (for example, one can derive the maximal speed
withwhich a given entity is produced by the sub-net). Moreover, the symbolic expression can be used to incorporate further
biological assumptions into the model (one can study, for example, the effect of having in the system an overwhelming
amount of a given enzyme). These possibilities can lead to new insights into the kinetics of the considered models.

In the following subsection, we illustrate the application of the flow equivalent server method by considering the sub-
net RC1 because it results in quite compact analytical expressions. In Section 6.3, we will show that the sub-net SC can be
treated as well with the same method, yielding however much more complex analytical expressions.

6.2. Flow equivalent server applied to ODE

As mentioned above, in order to define the parametrization of the substitutive transition Kn, we analyze the short-
circuited version of RC1, depicted in Fig. 8. In particular, we derive the rate of Kn in the presence of specific numbers of
tokens in places A and B, which we will denote byMA andMB, respectively. In line with the usual application of the method
of the flow equivalent server, this is done by calculating the steady state throughput of the immediate transition t . This
throughput, which depends onMA, MB, k1, k2 and k3, will then be assigned to transition Kn in amarking dependentmanner.
We assume that the net is started with initial condition XA(0) = MA, XB(0) = MB, XA:B(0) = 0, and XC (0) = 0. We will
denote the steady statemeasures of the places byXA, XB, XA:B andXC . TheODEs describing the evolution of the short-circuited
RC1 have to reflect the effect of the immediate transition t . The effect is twofold: first, since tokens are immediately moved
by t , the amount of tokens in place C is constantly zero; second, transition t puts tokens into places A and B which can be
seen as if transition K3 wasmoving tokens from place A:B directly to places A and B. Consequently, the steady state measure
of place C is zero (i.e., XC = 0) while the steady state measure of the other places can be determined by considering

• the fact that in steady state the rate of change of the quantities contained in the different places is zero, i.e., we have

dXA(t)
dt

= 0 = −k1XAXB + k2XA:B + k3XA:B, (2)

dXB(t)
dt

= 0 = −k1XAXB + k2XA:B + k3XA:B,

dXA:B(t)
dt

= 0 = +k1XAXB − k2XA:B − k3XA:B
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where the term k3XA:B in the first two equations are due to the fact that tokens moved by K3 from place A:B arrive to
places A and B immediately;

• the relations given by the invariants of the net which are

XA + XA:B = MA, (3)
XB + XA:B = MB. (4)

Eqs. (2), (3) and (4) are three independent equations for the three unknowns. There are two solutions, but only one of them
guarantees positivity of the unknowns. The throughput of the immediate transition t equals the throughput of transition K3
which is k3XA:B and that turns out to be

k3


k1(MA + MB) + k3 + k2 −


(k3 + k2 + k1(MA + MB))2 − 4k21MAMB


2k1

. (5)

This last result provides a symbolic expression for the parametrization of the flow equivalent transition Kn. Note that the
application of (5) introduces more complicated dependences among the actual reaction rates and the actual quantities of
the entities than we have in the case of the detailed model where we apply the law of the generalized mass action. Indeed,
the ODEs describing the simplified models are no longer of the form given in (1).
However, it is worth to note that by introducing

kM =
k2 + k3

k1
,

coinciding with the constant of Henri–Michaelis–Menten [35], Eq. (5) can be rewritten as

k3


MA + MB + kM −


(MA − MB)2 + 2kM(MA + MB) + k2M


2

, (6)

which contains one parameter less. This means that every application of the simplification step to a sub-net of type RC1,
the number of parameters required for the analysis of the system decreases by one. Another point to be observed is that as
MA (or MB) tends to infinity, the speed of the equivalent server tends to k3MB (to k3MA). These limits provide the maximal
speed of the substitutive reaction and they coincidewith themaximal speed obtained by applying Henri–Michaelis–Menten
kinetics regarding enzymatic reactions. Note that the way we derived the maximal speed of the RC1 sub-net did not require
any biological assumptions apart of those expressed by the invariants given in (3) and (4).

The approximate kinetic, which we derived above based on the concept of the flow equivalent server, coincides with the
approximation introduced in [38]. The novelty here is, however, twofold. First, our derivation comes from an automatizable
procedure that can be applied to other type of sub-nets aswell (aswewill show for the SC sub-net in Section 6.3). Second, we
employed this approximation in a systematic manner within a complex networks to every (structurally) identical sub-net.

Let us mention here that in [2] we investigated in detail the flow equivalence based approximate kinetics and showed
that it gives satisfactory approximation not only in the standard deterministic setting, but also in the casewhen the behavior
is modeled by a stochastic process.

6.3. Flow equivalent server for sub-net SC

The sub-net SC can be handled in the same way as the sub-net RC1. In this case, there are six transitions (K4, K5, K6, K7,
K8 and K9), one input place (H), and two enabling places (D and E) (see Fig. 9). Consequently, the parametrization of the
substitutive transition takes into account the actual amount of tokens in these three places (denoted byMH ,MD andME) and
depends on the rates of these six transitions (denoted by k4, k5, k6, k7, k8 and k9). The parametrization according to flow
equivalence leads again to a symbolic expression which, even if much more complicated than in the case of the sub-net RC,
can be obtained, applied and manipulated with the help of tools for symbolic computations, like Maple and Mathematica.

In Fig. 10, we report the numerical values of the rate of the flow equivalent server for some sets of parameters. Looking
at these diagrams it can be seen that having a limited number of tokens in just one of the involved places (it does not matter
which) limits the maximum speed even if the number of tokens in the other places increases.

7. Validation and results

The simplification process proposed in Section 4.1 results in SPNs which maintain certain qualitative properties (i.e.
invariants) of the original SPN, but are approximations of the detailedmodel fromaquantitative point of view. In this section,
we report on severalmodeling experiments thatwere performed in order to check the validity of the simplifications from the
point of view of quantitative measures. Indeed, before using the simplified models in a parameter identification experiment
which uses real data coming fromwet-lab experiments, it is necessary tomake sure that a satisfactory correspondence exists
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Fig. 10. Sub-net SC: speed of the flow equivalent server as function of MD with ME = MH = 1 on the left and as function of MD = MH with ME = 1 on the
right and different values of k4, k5, k6, k7, k8, k9 .

among the quantitative temporal behaviors of the detailed and the simplified models for a wide range of (possible) model
parameters. This test allows the development of confidence about the fact that the reducedmodel is suited for a preliminary
analysis of the angiogenic signal transduction events through in silico experiments.

The accuracy assessment was performed applying the deterministic approach described in Section 2.3. For several
different sets of parameters, we compared the temporal behaviors of the detailed SPN with those of the simplified SPNs.
Throughout the comparisons we concentrated on three important entities: Pip3 and Dag which are, in our model, the most
important indicators of survival and proliferation, respectively, and Pip2 which is the common substrate to both the survival
and the proliferation pathways.

A preliminary step of assessment had already been reported in the original version of this paper [29]. As the idea of
connecting the parameters of the detailedmodel to the parameters of the simplified ones by the concept of equivalent server
had not yet been developed, at that time, we performed the assessment either leaving the speed of the reactions unchanged
or determining them by numerical optimization that required the analysis of the whole model. The introduction of the
concept of equivalent server allows for parameterizing the simplified models without numerical optimization. Moreover,
this way of parametrization is modular in the sense that in order to parameterize a given substitutive transition only the
corresponding sub-net has to be analyzed, not the whole model.

7.1. First experimental set

In this section, we report on the results concerning the two cases that were already used in [29] and then in Section 7.2
we illustrate the robustness of the approach on cases where the parameters are chosen in a random manner. For all of the
presented examples, the initial situation is the same: for all three SPNs (see Figs. 3, 5 and 7), we use the initial marking
n1 = 2, n2 = n3 = n4 = 1, n5 = 20, n6 = n7 = n8 = 1, (which indicate the initial number of tokens in places KDR∗,
Pi3k, Gab1, Plcγ , Pip2, Pten, E, and Akt , respectively), which reflects the amount differences that are likely to exist in wet-lab
experiments.

For the first two cases, two different sets of transition rates are used to push the behaviors of the models in opposite
directions. In the first case, the rates are such that the transitions along the survival pathway are ten times faster than all
the others. Fig. 11 depicts the temporal behavior of the entities Pip3, Dag and Pip2 for both the detailed model and the
simplified ones. With these parameters the amount of Pip3 increases, the amount of Pip2 decreases and the amount of Dag
initially increases, but remains relatively low. For all the three quantities, the behaviors in the three models are similar in
the sense that the entities move along curves of the same shape and the changes take place in the same time intervals. The
final amounts are different for the three models, but this is not surprising as the number of places is different in the three
models and this implies that, considering the mass of each individual component appearing in the models, in steady state
it is distributed over (subdivided among) different numbers of locations in the different models (as already mentioned, we
will return to this point in Section 7.3).

In the second case, the transitions along the proliferation pathway are ten times faster than all the others. Fig. 12 reports
the temporal behavior of the three models for the three selected quantities. In this case as well, the shapes of the curves
show a good correspondence. For what concerns instead the time intervals in which the changes occur, the more simplified
model is somewhat ‘‘faster’’ than the detailed one.

7.2. Randomly generated parameters

In the rest of this section, we report on examples with random reaction rates. The reaction rates of the detailed model
are chosen according to the formula

(1 + 9r1) × 10−a+2ar2 (7)

where r1 and r2 are random numbers with uniform distribution on [0, 1]. Accordingly, (1 + 9r1) falls in the interval [1, 10]
while−a+2ar2 in the interval [−a, +a]. Consequently, for a given value of a, the reaction rates cover at most 2a+1 orders
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Fig. 11. Behavior of Pip3 , Dag and Pip2 with the first set of parameters in the detailed and in the two simplified models.

Fig. 12. Behavior of Pip3 , Dag and Pip2 with the second set of parameters in the detailed and in the two simplified models.

Fig. 13. Behavior of Pip3 , Dag and Pip2 with random rates with seed equals 1 and a = 1 in (7).

of magnitude. In general, a higher value of a implies more stiffness of the differential equations and more complex behavior
of the model. Moreover, since it is shown in [38] that the approximate kinetic is appropriate on a single RC type sub-net if
k3/(k2 + k3) is small, we require for every RC type sub-net k3/(k2 + k3) < 0.2 (meaning that k2 is at least four times larger
than k3) and we generate the random rates of all the transitions of the detailed model randomly, but with the restriction of
the previous inequality being satisfied for all the transitions of the RC blocks recognized in the net.

Note that the above manner of parameterizing the detailed model (see Eq. (7)), introduces extreme irregularities and
puts the simplification process under stress conditions that would hardly occur with the reaction parameters of realistic
cases. Moreover, to validate the robustness of the approach in a general setting, we ran several sets of experiments using
different seeds for the random number generator. Figs. 13–18 are representative of the results that we obtained with these
experiments and depict the dynamics observed for two different values of the seed and for a = 1, 2, 3. With the first seed
the effect of a can clearly be seen: with a = 1 the three models behave very similarly; with a = 3, the major characteristics
of the curves are maintained, but the shapes of the curves differ more. In this case, there is not much difference between
the two simplified models. With the second seed the difference in robustness between the two simplified models can be
observed. The more simplified model exhibits quite different behavior for what concerns Pip3 with a = 2 and a = 3. The
less simplified model provides a good approximation even if it is somewhat ‘‘slower’’ than the detailed model.

7.3. Correction of absolute amount in the simplified models

From Figs. 11–18 one can observe that, even if the major characteristics of the original model are maintained by the
simplified ones, the absolute amount of the entities can be quite different. This is natural as in the simplified models the
same original quantity of substance is distributed among less places. This problem can be alleviated by a post-correction. The
complete treatment of this correction approach is beyond the scope of this paper andwill be tackled in future works, but we
aim to illustrate it in a simple case in order to show that the proper interpretation of the results can lead to a substantially
improved match between the simplified models and the original one.

Let us consider the RC sub-net depicted in Fig. 4. In its simplified version the place in the middle is eliminated. The
substance that is present in this place in the original model is blocked in the input places of the RC sub-net in the simplified
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Fig. 14. Behavior of Pip3 , Dag and Pip2 with random rates with seed equals 1 and a = 2 in (7).

Fig. 15. Behavior of Pip3 , Dag and Pip2 with random rates with seed equals 1 and a = 3 in (7).

Fig. 16. Behavior of Pip3 , Dag and Pip2 with random rates with seed equals 2 and a = 1 in (7).

Fig. 17. Behavior of Pip3 , Dag and Pip2 with random rates with seed equals 2 and a = 2 in (7).

Fig. 18. Behavior of Pip3 , Dag and Pip2 with random rates with seed equals 2 and a = 3 in (7).

model. Accordingly, there is more substance present in these input places in the simplified model than in the original
one. The quantity of substance that should be in the eliminated place can be approximated by the quantity of substance
present in place A:B in steady state in the short-circuited version of RC (depicted in Fig. 8). This is the amount, given by the
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Fig. 19. Corrected behavior of Dag with the first and the second set of parameters (left and middle, respectively) and with random rates with seed equals
1 and a = 1 (right).

Fig. 20.Corrected behavior ofDag with randomrateswith seed equals 1 and a = 3 (left) andwith seed equals 2 and a = 1, 3 (middle and right, respectively).

expression in (6) divided by k3, by which the quantities present in the input places have to be decreased. Naturally, this
correction procedure is consistent for those places which play the role of input place in only one sub-net. One such place is
Dag positioned in the bottom right part of Fig. 3.

We applied the correction to the experiments with random rates (Figs. 13–18) because for these the mismatch between
the original and the simplified models is larger than that in case of the experiments with structured rates (Fig. 11–12).

As one can observe in Figs. 19 and 20, the correction leads to a very precisematch among the results predicted by the less
simplified model and the original one in all cases that we have tried and thus even in the cases of parameter choices that
put the model in extreme situations. The correction method is not so effective in the cases of the results obtained with the
more simplified model. In this case, the post-correction improves the quality of the results, but is not able to always provide
the surprisingly good match mentioned before. Additional work is needed to obtain satisfactory (and robust) results even
in this case, but we believe that more sophisticated post-correction techniques can be developed in order to have a good
match with the more simplified model as well.

8. Conclusions and future work

Themain goal of this paper is to propose a robustway of simplifyingmodels that describe complex biological systems and
to define a method that can lead to a manageable model. The simplification process exploits the concept of flow equivalent
server used to compute the parameters of the simplified model.

As mathematical models of metabolic pathways have to deal with both mass conservation and kinetic aspects of the
modeled phenomenon, the simplification procedure as well has to take into account both of these aspects.

Since the P-invariants computed from Petri nets can be seen as the counterpart of the law of conservation of mass, we
propose simplifications that maintain P-invariants and hence guarantee that the laws of conservation of mass expressed in
the original model are maintained throughout all the reduction steps.

Kinetics describe the dynamics of the model. In the case of metabolic pathways, the most commonly applied kinetics is
provided by the law of generalizedmass action. The parametrizationmethod that we have used to define the characteristics
of the simplified models, is based on the concept of flow equivalence, and is thus aimed at mimicking the kinetics of the
original model. The application of flow equivalence can be seen as analyzing the flux balance of the original model. In this
respect, it is similar to evaluate the physicochemical constraints of the metabolic network under study.

A clear advantage of the proposed approach is that it allows for parameterizing the simplified model block by block
instead of analyzing the original model as a whole. Moreover, the obtained parameterizations are general in the sense that
they can be used in any other model that contains components with net structures similar to those discussed in this paper.

A promising result is that the application of flowequivalence leads to a symbolic expression that describes the throughput
of the considered sub-net. These symbolic expressions provide a simple tool to introduce biological assumptions into the
analysis of the model which can provide new insights into the kinetics underlying the studied phenomena. In particular, by
analyzing the expression of the equivalent flow of the RC sub-net, we have provided a connection between the behavior of
the RC sub-net and the kinetics of Henri–Michaelis–Menten applied to enzymatic reactions. In the future, we plan to work
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Table A.2
P-semiflows of the original SPN model.

Semiflow ID Semiflow support

1 Kd∗G∗Pi3k − Kd∗G∗Pi3k∗
− Kd∗G∗Pi3k∗P2

−Kd∗G∗Pi3k∗P3P2 − Kd∗G∗Pi3k∗P3 − Kd∗G∗Pi3kP3
−Kd∗Pg∗P2 − Kd∗Pg∗

− Kd∗Pg − Kd∗G∗Pg
−Kd∗G∗Pg∗

− Kd∗G∗Pg∗P2 − Kd∗G∗PgP3
−Kd∗G∗Pg∗P3 − Kd∗G∗Pg∗P3P2 − KDR∗Gab1∗Pip3
−KDR∗Gab1∗

− KDR∗Gab1Pip3 − KDR∗Gab1 − KDR∗

2 Kd∗G∗Pi3k − Kd∗G∗Pi3k∗
− Kd∗G∗Pi3k∗P2

−Kd∗G∗Pi3k∗P3P2 − Kd∗G∗Pi3k∗P3 − Kd∗G∗Pi3kP3
−G∗Pi3kP3 − Kd∗G∗Pg − Kd∗G∗Pg∗

− Kd∗G∗Pg∗P2
−G∗PgP3 − Kd∗G∗PgP3 − Kd∗G∗Pg∗P3 − Kd∗G∗Pg∗P3P2
−Gab1∗Pip3 − KDR∗Gab1∗Pip3 − KDR∗Gab1∗

− KDR∗Gab1Pip3
−KDR∗Gab1 − Gab1Pip3 − Gab1

3 Kd∗G∗Pi3k − Kd∗G∗Pi3k∗
− Kd∗G∗Pi3k∗P2

−Kd∗G∗Pi3k∗P3P2 − Kd∗G∗Pi3k∗P3 − Kd∗G∗Pi3kP3
−G∗Pi3kP3 − Pi3k

4 Kd∗Pg∗P2 − Kd∗Pg∗
− Kd∗Pg − Kd∗G∗Pg

−Kd∗G∗Pg∗
− Kd∗G∗Pg∗P2 − G∗PgP3 − Kd∗G∗PgP3

−Kd∗G∗Pg∗P3 − Kd∗G∗Pg∗P3P2 − Plcγ

5 −Kd∗G∗Pi3k∗P2 − Kd∗G∗Pi3k∗P3P2 − Kd∗G∗Pi3k∗P3
−Kd∗G∗Pi3kP3 − G∗Pi3kP3 − Kd∗Pg∗P2 − Kd∗G∗Pg∗P2
−G∗PgP3 − Kd∗G∗PgP3 − Kd∗G∗Pg∗P3 − Kd∗G∗Pg∗P3P2
−Gab1∗Pip3 − KDR∗Gab1∗Pip3 − KDR∗Gab1Pip3 − Gab1Pip3 − Pip3
−AktP3 − Dag − DagE − Pip2 − PtP3 − PtP2 − PtP3P2

6 PtP3 − Pten − PtP2 − PtP3P2

7 Akt − Akt∗ − AktP3

8 DagE − E

in this direction by analyzing further the symbolic expressions obtained for the two sub-nets considered in this paper in
order also to derive other symbolic expressions for different types of sub-nets.

Futureworkmust include amore detailed analysis of the accuracy of applying the concept of flow equivalent server in the
parametrization of the simplified models. The methodology of substituting reactions with a single one by flow equivalence
is based on the idea of isolating the sub-net we want to substitute from the rest of the model and of short-circuiting its
output and input places to study its behavior in an equilibrium environment. The analysis provides the steady state features
of the sub-net and these features are then applied to parameterize the substitutive transition. As the substitution is based
on steady state measures, the correspondence it guarantees between the steady state behavior of the detailed model and
the steady state behavior of the simplified model is stronger than that between the transient behaviors of the two models.
Since in systems biology the transient characteristics are often of crucial interest, it is important to check whether flow
equivalence based on steady state is sufficient to provide robust simplification in a wide range of cases.

In this work, we have shown that the accuracy of the method is satisfactory within a very large set of model parameters
that we generated randomly to stress the robustness of the test of our approach.Whenwe applied the simplification process
on the RC sub-nets only, yielding what we called the simplified 1 model, the dynamics of the original model was captured
in a very good manner. Moreover, initial results are provided to show that correcting actions can be performed to improve
the quality of the results considering the way in which the substance may distribute over the smaller number of places
represented in the simplified models. The methodology devised for performing these correcting actions accounts for the
structure of the simplified sub-model, but is independent of the values of its parameters. When applied in this case the
correction yielded surprisingly accurate results. For what concerns the simplified 2 model the trend of the evolution of the
species amount is captured in an appropriate manner, but the accuracy is much less satisfactory. In this case the correcting
actions mentioned before improve the quality of the results, but the accuracy remains questionable and future work is
needed to improve the correction methodology when applied to sub-models with a more complex structure as is the case
for those involved in the construction of this more simplified model.

Other ways of simplifying the detailed model can also be studied in the future. One direction is suggested by the
reachability graph of the SPN representing the detailed model in which the majority of the states are transient. For what
concerns steady state analysis, this suggests to identify the subcomponents that are alive in stationary conditions and use
this information in the simplification process.

Even if the simplification procedure is performed without taking into explicit account assumptions coming from
biological knowledge of the phenomenonunder study, it isworthwhile to investigate if it can be interpreted fromabiological
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Table A.3
P-semiflows of the SPN model obtained after the first simplification process.

Semiflow ID Semiflow support

1 Kd∗G∗P3Pi3k∗
− Kd∗G∗Pi3k∗

− Kd∗G∗P3Pg∗

−Kd∗G∗Pg∗
− Kd∗Pg∗

− KDR∗
− KDR∗G∗

− KDR∗G∗P3
−Kd∗G∗Pi3k − Kd∗G∗Pg − Kd∗Pg − Kd∗G∗P3Pi3k − Kd∗G∗P3Pg

2 G∗P3Pi3k − Kd∗G∗P3Pi3k∗
− Kd∗G∗P3Pi3k − Kd∗G∗Pi3k∗

− Kd∗G∗Pi3k − G∗P3Pg
−Kd∗G∗P3Pg∗

− Kd∗G∗P3Pg − Kd∗G∗Pg∗
− Kd∗G∗Pg − G∗P3 − Gab1 − GP3

−KDR∗G∗
− KDR∗G∗P3

3 G∗P3Pi3k − Kd∗G∗P3Pi3k∗
− Kd∗G∗Pi3k∗

− Pi3k − Kd∗G∗P3Pi3k − Kd∗G∗Pi3k

4 G∗P3Pg − Kd∗G∗P3Pg∗
− Kd∗G∗Pg∗

− Kd∗Pg∗
− Plcγ

−Kd∗G∗Pg − Kd∗Pg − Kd∗G∗P3Pg

5 G∗P3Pi3k − Kd∗G∗P3Pi3k∗
− G∗P3Pg − Kd∗G∗P3Pg∗

−Dag − Pip2 − G∗P3 − Pip3 − GP3 − KDR∗G∗P3 − PtP2 − Kd∗G∗P3Pi3k − Kd∗G∗P3Pg

6 Pten − PtP2

7 Akt − Akt∗

8 E

Table A.4
P-semiflows of the SPN model obtained after the second simplification process.

Semiflow ID Semiflow support

1 Kd∗G∗Pi3k∗P3 − Kd∗G∗Pg∗P3 − KDR∗G∗P3 − KDR∗G∗

−KDR∗Kd∗G∗Pi3kP3 − Kd∗G∗PgP3

2 Kd∗G∗Pi3k∗P3 − G∗Pi3kP3 − G∗PgP3 − Kd∗G∗Pg∗P3 − KDR∗Gab1∗

−KDR∗G∗P3 − GP3 − G∗P3 − Gab1 − KDR∗G∗Pi3kP3 − KDR∗G∗PgP3

3 Kd∗G∗Pi3k∗P3 − G∗Pi3kP3 − Pi3k − Kd∗G∗Pi3kP3

4 Kd∗G∗Pg∗P3 − G∗PgP3 − Plcγ − Kd∗G∗PgP3

5 G∗Pi3kP3 − G∗PgP3 − Kd∗G∗Pg∗P3 − Kd∗G∗Pi3k∗P3 − KDR∗G∗P3
−GP3 − G∗P3 − Pip3 − Dag − Pip2 − PtP2 − Kd∗G∗PgP3 − Kd∗G∗Pi3kP3

6 Pten − PtP2

7 Akt − Akt∗

8 E

point of view aswell. For instance, the substitution applied to RC1 can be translated into the following biological assumption:
the docking of a signal protein (such as Gab1) to the proper upstream activator (such as KDR∗) is simultaneous to the
activation of the signal protein. Moreover, the simplification of SCs can be biologically interpreted as if the formation of the
product (such asDag) was independent of the reagent’s identity. For this reason, we plan toworkmore on this simplification
process and to improve it by considering not only the description of the model, but the related biological assumptions as
well.
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22 F. Cordero et al. / Theoretical Computer Science ( ) –

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, A class of generalized stochastic Petri nets for the performance analysis of multiprocessor systems, ACM
Transactions on Computer Systems 2 (1) (1984).

[2] A. Angius, G. Balbo, F. Cordero, A. Horvath, D. Manini, Comparison of approximate kinetics for unireactant enzymes: Michaelis-Menten against the
equivalent server, in: Proceedings of the International Workshop on Biological Processes and Petri Nets, BioPPN, 2010.

[3] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, G. Franceschinis, The GreatSPN tool: recent enhancements, ACM SIGMETRICS, Performance
Evaluation Review 36 (4) (2009) 4–9.

[4] G. Balbo, Introduction to stochastic Petri nets, in: E. Brinksma, H. Hermanns, J.-P. Katoen (Eds.), Lectures on FormalMathods and Performance Analysis,
in: LNCS, vol. 2090, Springer, Berlin, Germany, 2001, pp. 1–37.

[5] H. Busch, W. Sandmann, V. Wolf, A numerical aggregation algorithm for the enzyme-catalyzed substrate conversion, in: Computational Methods in
Systems Biology, in: LNCS, vol. 4210, Springer, 2006, pp. 298–311.

[6] M. Calder, V. Vyshemirsky, D. Gilbert, R. Orton, Analysis of signalling pathways using continuous timeMarkov chains, Transactions on Computational
Systems Biology VI 4 (2006) 44–67.

[7] K.M. Chandy, U. Herzog, L.S. Woo, Parametric analysis of queueing networks, IBM Journal of R. & D. 19 (1) (1975) 36–42.
[8] I.-C. Chou, E. O. Voit, Recent developments in parameter estimation and structure identification of biochemical and genomic systems, Mathematical

Biosciences 219 (2) (2009) 57–83.
[9] M. Dance, A. Montagner, A. Yart, B. Masri, Y. Audigier, B. Perret, J. Salles, P. Raynal, The adaptor protein Gab1 couples the stimulation of vascular

endothelial growth factor receptor-2 to the activation of phosphoinositide 3-kinase, Journal of Biological Chemestry 281 (2006) 23285–23295.
[10] P.J. Denning, J.P. Buzen, The operational analysis of queueing network models, ACM Computing Surveys 10 (3) (1978) 225–261.
[11] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, John Wiley, 1968.
[12] H. Gerber, A. McMurtrey, J. Kowalski, M. Yan, B. Keyt, V. Dixit, N. Ferrara, Vascular endothelial growth factor regulates endothelial cell survival through

the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. requirement for Flk-1/KDR activation, Journal of Biological Chemestry 273 (1998)
30336–30343.

[13] D. Gillespie, A rigorous derivation of the master chemical equation, Physica 188 (1992) 404–425.
[14] P. Goss, J. Pecoud, Quantitativemodeling of stochastic systems inmolecular biology by using stochastic Petri nets, Proceedings of theNational Academy

of Sciences 95 (12) (1998) 6750–6755.
[15] E. Grafahrend-Belau, F. Schreiber,M. Heiner, A. Sackmann, B. Junker, S. Grunwald, A. Speer, K.Winder, I. Koch,Modularization of biochemical networks

based on classification of Petri net t-invariants, BMC Bioinformatics 9 (2008).
[16] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, Probabilistic Model Checking of Complex Biological Pathways, Springer, 2006, pp.

32–47.
[17] M. Heiner, D. Gilbert, R. Donaldson, Petri nets for systems and synthetic biology, in: 8th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems, in: LNCS, Springer, Bertinoro, Italy, 2008, pp. 215–264.
[18] M. Heiner, I. Koch, J. Will, Model validation of biological pathways using Petri nets demonstrated for apoptosis, BioSystems 75 (2004) 10–28.
[19] M.Heiner, C.Mahulea,M. Silva, On the importance of the deadlock trap property formonotonic liveness, in: Proceedings of the InternationalWorkshop

on Biological Processes and Petri Nets, BioPPN, 2010.
[20] R. Hofestädt, A Petri net application of metabolic processes, Journal of System Analysis, Modeling and Simulation 16 (1994) 113–122.
[21] R. Hofestädt, S. Thelen, Quantitative modeling of biochemical networks, In Silico Biology 1 (6) (1998).
[22] T.G. Kurtz, The relationship between stochastic and deterministicmodels for chemical reactions, Journal of Chemical Physics 57 (7) (1972) 2976–2978.
[23] M. Laramée, C. Chabot, M. Cloutier, R. Stenne, M. Holgado-Madruga, A. Wong, I. Royal, The scaffolding adapter Gab1 mediates Vascular Endothelial

Growth factor signaling and is required for endothelial cell migration and capillary formation, Journal of Biological Chemestry 282 (2007) 7758–7769.
[24] MEDDLY, 2010. Webpage. http://sourceforge.net/projects/meddly.
[25] G. Memmi, J. Vautherin, Advanced algebraic techniques, in: W. Brawer, W. Reisig, G. Rozenberg (Eds.), Advances on Petri Nets ’86—Part I, in: LNCS,

vol. 254, Springer Verlag, Bad Honnef, West Germany, 1987.
[26] A. Miner, J. Babar, M. Beccuti, S. Donatelli, Greatspn enhanced with decision diagram data structures, in: Proc. 31-st Int. Conf. Applications and Theory

of Petri Nets ICATPN 2010, in: LNCS, vol. 6128, Springer, Braga, Portugal, 2010, pp. 308–317.
[27] M.K. Molloy, Performance analysis using stochastic Petri nets, IEEE Transaction on Computers 31 (9) (1982) 913–917.
[28] T. Murata, Petri nets: properties, analysis, and applications, Proceedings of the IEEE 77 (4) (1989) 541–580.
[29] L. Napione, D. Manini, F. Cordero, A. Horváth, A. Picco, M.D. Pierro, S. Pavan, M. Sereno, A. Veglio, F. Bussolino, G. Balbo, On the use of stochastic Petri

nets in the analysis of signal transduction pathways for angiogenesis process, in: Proc. of The 7th Conference on Computational Methods in Systems
Biology, CMSB 2009, in: Lecture Notes in Bioinformatics, vol. 5688, Bologna, Italy, 2009, 281–295.

[30] S. Natkin, Les réseaux de Petri stochastiques et leur application à l’évaluation des systèmes informatiques, Thèse de Docteur Ingégneur, CNAM, 1980.
[31] A. Olsson, A. Dimberg, J. Kreuger, L. Claesson-Welsh, Vegf receptor signalingin control of vascular function, Nature Reviews Molecular Cell Biology 7

(5) (2006) 359–371.
[32] V. Reddy,M.Mavrovouniotis,M. Liebman, Petri net representation inmetabolic pathways, in: Proc. Int. Conf. Intelligent Systems forMolecular Biology,

1993, pp. 328–336.
[33] W. Reisig, A Primer in Petri Net Design, Springer Compass International, 1992.
[34] H. Sauro, B. Ingalls, Conservation analysis in biochemical networks: computational issues for software writers, Biophysical Chemistry 109 (1) (2004)

1–15.
[35] I. H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems, Wiley, New York, 1993.
[36] W.J. Stewart, Probability, Markov Chains, Queues, and Simulation: TheMathematical Basis of PerformanceModeling, Princeton University Press, 2009

(Chapter 15).
[37] T. Takahashi, H. Ueno, M. Shibuya, VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis

in primary endothelial cells, Oncogene 18 (1999) 2221–2230.
[38] A.R. Tzafriri, Michaelis–Menten kinetics at high enzyme concentrations, Bulletin of Mathematical Biology 65 (2003) 1111–1129.
[39] R. Vallabhajosyula, V. Chickarmane, H. Sauro, Conservation analysis of large biochemical networks, Bioinformatics 22 (2006) 346–353.
[40] R.R. Vallabhajosyula, H.M. Sauro, Complexity reduction of biochemical networks, in: Winter Simulation Conference, 2006, pp. 1690–1697.
[41] E.O. Voit, Computational Analysis of Biochemical Systems, Cambridge University Press, 2000.

http://sourceforge.net/projects/meddly

	Simplification of a complex signal transduction model using invariants and flow equivalent servers
	Introduction
	Modeling formalism and solution techniques
	Petri net representation for biochemical interactions
	Analysis techniques based on structural properties
	Quantitative temporal analysis

	A Petri Nets based approach applied to signal transduction pathways for the angiogenic process
	Biological case study definition
	Model construction

	Model simplification
	Simplification process: first reduction component
	Simplification process: second reduction component

	Structural validation
	Quantitative analysis
	Flow equivalent server
	Flow equivalent server applied to ODE
	Flow equivalent server for sub-net SC

	Validation and results
	First experimental set
	Randomly generated parameters
	Correction of absolute amount in the simplified models

	Conclusions and future work
	Acknowledgements
	P-Semiflows
	References


