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A class of spline functions for landmark-based image registration

G. Allasia, R. Cavoretto and A. De Rossi∗

Abstract

A class of spline functions, called Lobachevsky splines, is proposed for landmark-based
image registration. Analytic expressions of Lobachevsky splines and some of their proper-
ties are given, reasoning in the context of probability theory. Since these functions have
simple analytic expressions and compact support, landmark-based transformations can be
advantageously defined using them. Numerical results point out accuracy and stability of
Lobachevsky splines, comparing them with Gaussians and thin plate splines. Moreover, an
application to a real-life case (cervical X-ray images) shows the effectiveness of the proposed
method.

Keywords: interpolation; image processing; landmark-based transformations; Lobachevsky spli-
nes; elastic registration; radial basis functions.

1 Introduction

The problem of image registration, one of the challenging problems in image processing, consists
essentially in finding a suitable transformation between two images (or image data), called the
source and the target images. More precisely, given two images, taken either at different times
or from different devices or perspective, the aim is to determine a reasonable transformation,
such that the transformed version of the first image is similar to the second image. There is a
large number of application areas which demand registration, including astronomy, astrophysics,
geophysics, computer vision, robotics and medicine, to name a few. For an overview, see e.g.
[5, 19, 18, 21, 22, 30] and references therein. More specific examples include imaging techniques,
such as computer tomography (CT) and magnetic resonance imaging (MRI).

The image registration process may be based on a finite set of landmarks, i.e. sparse
data points located on images, usually not uniformly distributed. The basic idea is to find
a transformation function F : Rm → R

m, where m is the image dimension, such that each
landmark of the source image is mapped onto the corresponding landmark of the target image
(see, e.g., [21, 22, 26]).

This problem can be formulated in the context of multivariate scattered data interpolation
and solved by using radial basis functions (RBFs) (see, e.g., [10, 31]), in particular, thin plate
splines. Their use was first proposed by Bookstein [3] and they are still commonly used (see
the recent papers [23, 24] and the software package MIPAV [20]). Since RBFs are in general
globally supported and a single landmark pair change may influence the whole registration
result, in the last decade several methods have been proposed to circumvent this disadvantage,
such as compactly supported RBFs [12], elastic body splines [14], and the modified inverse
distance weighted method [6, 7].

In this paper we propose the use of a class of spline functions, called Lobachevsky splines (see
[1, 8]), for landmark-based registration. We consider the analytic expressions of Lobachevsky
splines and some of their properties, reasoning in the context of probability theory, which
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provides the most powerful tools. These splines can be used for multivariate scattered data
interpolation, since they and their products are strictly positive definite functions. Moreover,
Lobachevsky splines have simple analytic expressions and compact support, providing sparse
interpolation matrices and the possibility of a fast evaluation. These interpolation matrices have
also generally much smaller condition numbers than those given by Gaussian function. Numer-
ical results for interpolation show accuracy of Lobachevsky splines, comparing them with the
Gaussian. Hence, taking into consideration all the described properties, we define landmark-
based transformations using Lobachevsky splines, which, as far as we know, have never been
used in the image registration context before our sketch in [2]. In fact, [2] is only an extended
abstract in which the topic is just sketched. Here instead we provide a complete and extensive
presentation of Lobachevsky splines. In particular, we describe in detail properties and charac-
teristics of Lobachevsky splines, referring not only to convergence properties but also giving an
integral characterization of positive definiteness of Lobachevsky splines. Moreover, after con-
sidering the connection between Lobachevsky spline interpolation and image transformation,
we report several numerical results testing on four typical test cases accuracy and effectiveness
of Lobachevsky splines compared to Gaussian and thin plate spline. Finally, we show exper-
imental results obtained by a real application to cervical X-ray images. Using Lobachevsky
spline transformations, we obtained good results in both the test cases and in the real-life case
application to cervical X-ray images. In particular, Lobachevsky splines achieve better results
than Gaussians, with regard to accuracy and stability, and their performance is comparable
with that of thin plate splines.

In Section 2 some preliminary definitions and the mathematical formulation of the landmark-
based registration problem are given. In Section 3 we consider the analytic expressions of the
Lobachevsky splines and some of their properties, discussing the strictly positive definiteness
of such functions for univariate and multivariate interpolation. Section 4 is devoted to the
formulation of the Lobachevsky spline transformations. Finally, in Section 5 several numerical
results obtained for some test cases are presented, while in Section 6 an application to X-ray
images is given.

2 Landmark-based registration problem

Let SN = {xj ∈ R
m, j = 1, 2, . . . , N} be a given set of landmarks in the source image S and

let TN = {tj ∈ R
m, j = 1, 2, . . . , N} be the given set of corresponding landmarks in the target

image T . The registration problem reads as follows.

Problem 2.1. Let the landmark sets SN and TN be given. Find a transformation F : Rm → R
m

within a suitable space F of admissible functions, such that

F(xj) = tj, j = 1, 2, . . . , N.

Each coordinate of the transformation function is calculated separately, i.e. the interpolation
problem Fk : Rm → R is solved for each coordinate k = 1, 2, . . . ,m, with the corresponding
conditions

Fk(xj) = tk,j, j = 1, 2, . . . , N. (1)

In accordance with [18] we give also the following preliminary definitions.

Definition 2.1. An image transformation is called rigid when only translations and rotations
are allowed. If the transformation maps parallel lines onto parallel lines, it is called affine. If
it maps lines onto lines, it is called projective. Finally, if it maps lines onto curves, it is called
elastic.

Definition 2.2. An image transfomation is called global if it applies to the entire image, and
local if each subsection of the image has its own defined transformation.
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3 Lobachevsky spline functions

3.1 Definitions and properties

Let us consider an infinite sequence X1,X2, . . . of random variables, which are independent and
uniformly distributed on [−a, a], a ∈ R

+. The reduced sum of the first n variables

S∗
n =

X1 +X2 + · · · +Xn

a

√

n

3

satisfies the local form of the central limit theorem (see, e.g., [13, 25]), namely the sequence
f∗
n(x), n = 1, 2, . . . , of the density functions of the random variables S∗

n converges to the normal
density function with expectation 0 and standard deviation 1, i.e.

lim
n→∞

f∗
n(x) =

1√
2π

exp
(−x2

2

)

, (2)

and moreover the convergence is uniform for all x ∈ R.
To get an explicit expression of f∗

n it is convenient referring to the sum

Sn = a

√

n

3
S∗
n = X1 +X2 + · · · +Xn,

whose density function is denoted by fn(x). Since Sn = Xn + Sn−1 and Xn and Sn−1 are
independent, fn(x) is given by the convolution product

fn(x) =

∫ +∞

−∞

f1(u)fn−1(x− u)du =
1

2a

∫ +a

−a
fn−1(x− u)du,

because by definition the density function of Xn is f1(x) = 1/(2a) for −a ≤ x ≤ +a and
f1(x) = 0 elsewhere. Setting x− u = t, we get the recursive formula

fn(x) =
1

2a

∫ x+a

x−a
fn−1(t)dt, n = 2, 3, . . . (3)

From (3) it follows for −na ≤ x ≤ na (fn(x) = 0 elsewhere)

fn(x) =
1

(2a)n(n − 1)!

{

(x+ na)n−1 −
(n

1

)

[x+ (n− 2)a]n−1

+
(n

2

)

[x+ (n− 4)a]n−1 −
(n

3

)

[x+ (n− 6)a]n−1 (4)

+
(n

4

)

[x+ (n− 8)a]n−1 −
(n

5

)

[x+ (n− 10)a]n−1 + . . .
}

where the sum is extended to all arguments x+ (n − 2k)a, k = 0, 1, 2, . . ., which are positive.
This result, which was found by Lobachevsky [15] (see [13, 25]), can be proved by induction,
together with the property that fn(x) is an even function (see [11]).

Sometimes it may be convenient to consider different forms of (4), namely

fn(x) =
1

(2a)n(n− 1)!

⌊

na+x

2a

⌋

∑

k=0

(−1)k
(n

k

)

[x+ (n− 2k)a]n−1,

where ⌊·⌋ means the greatest integer less than or equal to the argument, or

fn(x) =
1

(2a)n(n − 1)!

n
∑

k=0

(−1)k
(n

k

)

[x+ (n− 2k)a]n−1
+ , (5)
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where the truncated power function (x)+ is defined as x for x > 0 and 0 for x ≤ 0.
Note that classic B-splines with equally spaced knots are directly connected to Lobachevsky

splines. To show it, we observe that the random variables Ti = (Xi + a)/(2a), i = 1, 2, . . ., are
uniformly distributed on [0, 1] and the sum of the first n of them is

Un ≡
n
∑

i=1

Ti =

n
∑

i=1

Xi + a

2a
=

1

2a
Sn +

n

2
.

Then, the density function un(t) of Un is given by

un(t) = 2afn

[

2a
(

t− n

2

)]

=
1

(n− 1)!

n
∑

k=0

(−1)k
(n

k

)

(t− k)n−1
+ ,

which is a well-known form of the classic B-splines on the support [0, n] (see, e.g. [27]). Like
B-splines, Lobachevsky splines satisfy a three-term recurrence relation, namely,

fn(x) =
1

n− 1

[na+ x

2a
fn−1(x+ a) +

na− x

2a
fn−1(x− a)

]

, (6)

which may be interesting from a computational point of view. In fact, this relation is very
stable, whereas (5) could suffer from loss-of-significance errors owing to subtraction of nearly
equal quantities.

The piecewise function fn(x) is graphically represented by polynomial arcs of degree n− 1;
the first n− 2 derivatives of different polynomial arcs are equal at the knots (the points where
the parabolic pieces are joined), i.e. fn ∈ Cn−2[−na, na]. The knots are uniformly spaced with
size 2a, and fn(x) is an even function with support [−na, na]. In the case a = 1/2 the knots
are unit spaced. This class of splines enjoys very interesting applications in signal and image
processing, wavelets theory, etc. (see, e.g., [4, 9, 29]).

From a computational viewpoint it is convenient to evaluate fn(x) starting from the pieces
defined on [−na, 0] and then obtain the pieces on [0, na] by symmetry. Moreover, each piece on
[−na, 0] can be obtained by the preceding one by simply adding a term, as clearly appears from
(4).

Considering the connection between fn(x) and f∗
n(x), the limit (2) becomes

lim
n→∞

f∗
n(x) = lim

n→∞
a

√

n

3
fn

(

a

√

n

3
x

)

=
1√
2π

exp
(−x2

2

)

. (7)

The variables S∗
n and Sn are said to be asymptotically normal (0, 1) and (0, a

√

n/3), respectively.
Noteworthy convergence properties are also satisfied by integrals and derivatives of Lobachevsky

splines. From the central limit theorem for the convergence in distribution (see, e.g., [25]) we
have, referring to the distribution function of S∗

n,

lim
n→∞

∫ x

−∞

f∗
n(t)dt = lim

n→∞

∫ x

−∞

a

√

n

3
fn

(

a

√

n

3
t

)

dt =

∫ x

−∞

1√
2π

exp
(−t2

2

)

dt.

This result is also a direct consequence of (2) and Lebesgue’s dominated convergence theorem.
The asymptotic behaviour of derivatives of Lobachevsky splines is described by the following

result (see [4]).

Theorem 3.1. The sequence Dkf∗
n(x), n = 1, 2, . . ., of the k-th derivatives of f∗

n(x), where
k ≤ n− 2 is a fixed integer, converges to the k-th derivative of the standardized normal density
function, i.e.,

lim
n→∞

Dkf∗
n(x) = lim

n→∞
Dk

[

a

√

n

3
fn

(

a

√

n

3
x

)]

= Dk

[

1√
2π

exp
(−x2

2

)

]

.
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3.2 Integral characterizations of positive definiteness

A celebrated result on positive definite functions is given by Bochner’s theorem (see, e.g.,
[10, 16]), whose characterization is expressed in terms of Fourier transforms.

Theorem 3.2 (Bochner’s theorem). A (complex-valued) function Φ ∈ C(Rm) is positive
definite on R

m if and only if it is the Fourier transform of a finite non-negative Borel measure
µ on R

m, i.e.

Φ(x) =
1

√

(2π)m

∫

Rm

e−i(x·y)dµ(y), x ∈ R
m,

where (x · y) is the usual inner product.

If the measure µ is defined for any Borel set B by µ(B) =
∫

B f(x)dx, then we get Corollary
3.1.

Corollary 3.1. Let f ∈ L1(R
m) be a continuous non-negative function, not identically zero.

Then the Fourier transform of f is strictly positive definite on R
m.

Finally, a criterion to check whether a given function is strictly positive definite is reported
in [31].

Theorem 3.3. A continuous function Φ ∈ L1(R
m) is strictly positive definite if and only if Φ

is bounded and its Fourier transform is non-negative and not identically equal to zero.

Theorem 3.3 is of fundamental importance. In fact, if we assume that Φ is not identically
equal to zero (which implies that also Φ̂ is not identically equal to zero), then we need to ensure
only that Φ̂ be non-negative in order for Φ to be strictly positive definite.

3.3 Positive definiteness of Lobachevsky splines

To apply Bochner’s theorem we need to know the characteristic functions of Sn and of related
random variables. The characteristic function of Xi, i = 1, 2, . . ., is

sin(at)

at
, t ∈ R.

Since the random variables X1,X2, . . . ,Xn are independent, the sum Sn has the character-
istic function

ϕn(t) =

∫ +∞

−∞

exp(itx)fn(x)dx

[

sin(at)

at

]n

, (8)

and, conversely,

fn(x) =
1

2π

∫ +∞

−∞

exp(−itx)ϕn(t)dt =
1

2π

∫ +∞

−∞

exp(−itx)

[

sin(at)

at

]n

dt. (9)

The characteristic function of S∗
n is from (8)

ϕ∗
n(t) =







sin
(

t
√

3
n

)

t
√

3
n







n

. (10)

Let us consider the m-dimensional random vector Vm = (Y1, Y2, . . . , Ym), m ≥ 2, whose
components are independent and have the same distribution as the sum Sn, so that the density
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function of the vector Vm is fVm
(y1, y2, . . . , ym) = fn(y1)fn(y2) · · · fn(ym). Then, the character-

istic function of Vm is

ϕVm
(t1, t2, . . . , tm) =

∫

Rm

exp

(

i

m
∑

j=1

tjyj

)

fVm
(y1, y2, . . . , ym)dy1dy2 · · · dym

=
m
∏

j=1

ϕn(tj) =
m
∏

j=1

[

sin(atj)

atj

]n

, (11)

and, conversely,

fVm
(y1, y2, . . . , ym) =

1

(2π)m

∫

Rm

exp

(

− i
m
∑

j=1

tjyj

)

ϕVm
(t1, t2, . . . , tm)dt1dt2 · · · dtm

=
1

(2π)m

∫

Rm

exp

(

− i

m
∑

j=1

tjyj

) m
∏

j=1

[

sin(atj)

atj

]n

dt1dt2 · · · dtm.

The considered characteristic functions are strictly related to the sinc function (see, e.g.,
[17, 28])

sinc t =

m
∏

j=1

sin(πtj)

πtj
, t = (t1, t2, . . . , tm),

whose importance derives largely from its role in the sampling theorem (see, e.g., [9] and refer-
ences therein).

It is well-known from probability theory that also the considered characteristic functions
satisfy convergence properties. Precisely, we have from (10) and (11) respectively

lim
n→∞

ϕ∗
n(t) = exp

(−t2

2

)

, lim
n→∞

ϕ∗
Vm

(t1, t2, . . . , tm) = exp
(

− 1

2
(t21 + t22 + · · ·+ t2m)

)

,

where the limit functions are the characteristic functions of the univariate and m-variate stan-
dardized normal distributions, and ϕ∗

Vm

(t1, t2, . . . , tm) is the characteristic function of the ran-
dom vector V ∗

m whose density function is fV ∗

m

(y1, y2, . . . , ym) = f∗
n(y1)f

∗
n(y2) · · · f∗

n(ym). The
former limit and Theorem 3.1 are interesting in the context of B-spline wavelets, which are
strictly related to cardinal B-splines (see [4, 29]).

It is interesting to remark that also all the considered characteristic functions are strictly
positive definite. In fact, every characteristic function is positive definite by Bochner’s theorem
and moreover in our case the theorem is applied considering continuous (for n ≥ 2) and non-
vanishing density functions.

Finally, we give the following theorem which allows us to construct multivariate (strictly)
positive definite functions from univariate ones (see, e.g., [31]).

Theorem 3.4. Suppose that φ1, φ2, . . . , φm are (strictly) positive definite and integrable func-
tions on R, then

Φ(y) = φ(y1)φ(y2) · · · φ(ym), y = (y1, y2, . . . , ym) ∈ R
m,

is a (strictly) positive definite function on R
m.

4 Lobachevsky spline transformations

4.1 Univariate and multivariate interpolation

Univariate interpolation on scattered data can be obtained by the operator

Ln(x) =
N
∑

j=1

cjf
∗
n(x− xj) =

N
∑

j=1

djfn(x− xj), x, xj ; cj , dj ∈ R, (12)

6



where

f∗
n(x) = a

√

n

3
fn

(

a

√

n

3
x

)

,

fn is given in (5) and n is even, because in this case fn (and hence f∗
n) are strictly positive

definite. On the one hand, the interpolant Ln(x) is a linear combination of the shifted functions
f∗
n(x−xj), which are spline functions with compact supports [xj−

√
3n, xj+

√
3n] and continuous

up to order n− 2. On the other hand, Ln(x) is a linear combination (with different coefficients
dj) of the shifted functions fn(x−xj), whose compact supports are [xj−na, xj+na]. Increasing
the degree n does not give rise to the oscillatory phenomenon typical of high degree polynomials,
but the use of very high degree splines does not appear computation-wise convenient.

In general, for dimension m ≥ 2, we have

Ln(x) = Ln(x1, x2, . . . , xm) =

N
∑

j=1

cjf
∗
n(x1 − x1j)f

∗
n(x2 − x2j) · · · f∗

n(xm − xmj)

=
N
∑

j=1

djfn(x1 − x1j)fn(x2 − x2j) · · · fn(xm − xmj), (13)

where n is even, cj , dj ∈ R, (x1, x2, . . . , xm) ∈ R
m, and (x1j , x2j , . . . , xmj) ∈ R

m, j = 1, 2, . . . , N ,
are the data sites.

The coefficients cj (or dj) in (13) are well defined real numbers for any n, since they are the
unique solution of a linear system, but they change in general with n. When n becomes very
large we have by (7) asymptotically

Ln(x1, x2, . . . , xm) ≍ 1

(2π)m/2

N
∑

j=1

exp

[

− 1

2

m
∑

i=1

(xi − xij)
2

]

for any (x1, x2, . . . , xm) ∈ R
m and fixed (x1j , x2j , . . . , xmj) ∈ R

m. Hence, it occurs that
Ln(x1, x2, . . . , xm) gives an asymptotically radial approximation and its numerical performance
turns out to be comparable with the one of the Gaussian function. We observe that Ln(x1, x2, . . . , xm)
has a simple analytic expression, that its interpolation matrix is sparse with a condition num-
ber smaller than the Gaussian one, and that the recurrence relation (6) is a valid alternative
to (5). Moreover, Lobachevsky splines are more efficient than Gaussians and thin plate splines,
because: (i) sparsity of Lobachevsky spline interpolation matrices allows us to use “ad hoc”
techniques for solving the associated linear systems, thus achieving a considerable saving of
memory and computational effort; (ii) Lobachevsky splines (as well as Gaussians) need to solve
linear sistems of dimension N×N , while thin plate splines require the solution of linear systems
of dimension (N + 3)× (N + 3) since, in order to have positive definite matrices, the addition
of a polynomial term of degree one is necessary (see [10]).

Remark 4.1. It is well-known that using Gaussians the introduction of a shape parameter α
is convenient. This trick can suitably be applied also in our case considering f∗

n(αx). Using the
shape parameter as a factor we observe that a decrease of the shape parameter produces flat basis
functions, while increasing α leads to more peaked (or localized) basis functions. The same result
can be achieved considering fn(x) and acting on the parameter a. Numerical computations show
that the approximation performances obtained by f∗

n(x) or fn(x) are practically equivalent, if
the values of the parameters α and a are suitably chosen [1, 8].

4.2 Definition of Lobachevsky spline transformations

Let us consider the following definition of the Lobachevsky spline transformation, formulated
in the context of image registration.

7



Definition 4.1. Given a set of source landmark points SN = {xj ∈ R
m, j = 1, 2, . . . , N}, with

the associated corresponding set of target landmark points TN = {tj ∈ R
m, j = 1, 2, . . . , N}, a

Lobachevsky spline transformation Ln : Rm → R
m is such that each one of its components

(Ln)k : Rm → R, k = 1, 2, . . . ,m,

takes the form

(Ln)k(x) = (Ln)k(x1, x2, . . . , xm) =
N
∑

j=1

ckjf
∗
n(x1 − x1j)f

∗
n(x2 − x2j) . . . f

∗
n(xm − xmj), (14)

where

f∗
n(xi − xij) = a

√

n

3
fn

(

a

√

n

3
(xi − xij)

)

, i = 1, 2, . . . ,m.

Here fn is given in (5), n is even, (x1, x2, . . . , xm) is any point in R
m, and (x1j , x2j , . . . , xmj)

is a data site.

Referring to Definition 4.1, we observe that the transformation function (Ln)k : Rm → R

has to be calculated for each k = 1, 2, . . . ,m, and the parameters ckj in (14) are to be obtained
by solving m systems of linear equations.

Since we are mainly interested in the bivariate transformation Ln : R2 → R
2, we take m = 2

in (13), requiring that Ln solves Problem 2.1. Therefore, we have to consider

(Ln)k(x) = (Ln)k(x1, x2) =
N
∑

j=1

ckjf
∗
n(x1 − x1j)f

∗
n(x2 − x2j),

which, imposing the conditions (Ln)1(xi) = t1i and (Ln)2(xi) = t2i, for i = 1, 2, . . . , N , gives
two associated linear systems.

5 Numerical results

In this section we show the applicability of Lobachevsky transformations, referring to examples
given in [12] and [14] which concern the registration of elastic images (see [2]). With respect
to rigid or affine registration techniques, in which we have rigid objects embedded in elastic
material changing their position or form, the approach we propose can handle successfully local
differences between corresponding images. In general, these differences may be caused by the
physical deformation of human tissue due to surgeries or pathological processes such as tumor
growth or tumor resection.

The considered examples simulate typical medical cases, where image portions shift or scale.
We denote with X the grid point set, which is formed by 40×40 points. The grid is transformed
using 32 (case 1) and 64 (case 2) landmarks. Moreover, when a square is shifted, 4 quasi–
landmarks are added to prevent an overall shift. The source and target image landmarks,
shown in Figure 1 and in Figure 2 for both cases, are marked by a circle (◦) and a star (⋆),
respectively.

Our aim is to determine a transformation function which connects the points of the two
images, so that the target image is affected by the slightest possible deformation. In order to
verify the goodness of the proposed spline transformations, we make a comparison of registration
results using also Gaussian and thin plate spline transformations. Figures 3, 4, 5, and 6 show
Lobachevsky, Gaussian and thin plate spline registration results (left to right), taking α = 1 as
shape parameter in the first two cases. Furthermore, in Tables 1, 2, 3, and 4 we report the root
mean squares errors (RMSEs) and the maximum absolute errors (MAEs) obtained by using
Lobachevsky spline transformations for n = 2, 4, 6 (denoted with L2, L4 and L6, respectively),
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Figure 1: Square shift (left) and square scaling (right): source (◦) and target (⋆) landmarks
(case 1).
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Figure 2: Square shift (left) and square scaling (right): source (◦) and target (⋆) landmarks
(case 2).

Gaussian (G) and thin plate spline (TPS) transformations. These errors are found computing
the distances between the displacements of grid points x ∈ X and the values obtained by the
transformations. They assume the following form

RMSE =

√

∑

x∈X
‖x−F(x)‖2
∑

x∈X
1

, MAE = max
x∈X

‖x− F(x)‖ ,

where ‖·‖ is the Euclidean norm.

L2 L4 L6 G TPS

RMSE 4.4160E − 2 4.9751E − 2 5.1238E − 2 6.2166E − 2 4.3460E − 2
MAE 1.2155E − 1 7.0959E − 2 7.0717E − 2 7.5323E − 2 7.1871E − 2

Table 1: Shift of a square: errors for α = 1 (case 1).

We note that for square shifts Lobachevsky and thin plate spline transformations give grids
which are visibly less deformed in comparison with Gaussian transformed grids, while for square
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Figure 3: Shift of a square (case 1): registration results obtained by Lobachevsky splines L4
(left), Gaussian functions (center) with α = 1, and thin plate splines (right).
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Figure 4: Scaling of a square (case 1): registration results obtained by Lobachevsky splines L6
(left), Gaussian functions (center) with α = 1, and thin plate splines (right).

L2 L4 L6 G TPS

RMSE 2.8312E − 1 1.3931E − 1 1.8271E − 1 2.0763E − 1 2.0929E − 1
MAE 7.5136E − 1 2.2327E − 1 2.8785E − 1 3.4941E − 1 3.5355E − 1

Table 2: Scaling of a square: errors for α = 1 (case 1).
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Figure 5: Shift of a square (case 2): registration results obtained by Lobachevsky splines L4
(left), Gaussian functions (center) with α = 1, and thin plate splines (right).

scaling registration the results of Lobachevsky transformations are significantly better, since grid
deformations are limited. Moreover, registration errors point out that Lobachevsky transforma-
tions are comparable and sometimes better than those obtained with the radial basis function
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Figure 6: Scaling of a square (case 2): registration results obtained by Lobachevsky splines L6
(left), Gaussian functions (center) with α = 1, and thin plate splines (right).

L2 L4 L6 G TPS

RMSE 9.6830E − 2 1.0335E − 1 1.1182E − 1 1.3666E − 1 1.0310E − 1
MAE 1.4142E − 1 1.4164E − 1 1.4169E − 1 1.8994E − 1 1.5131E − 1

Table 3: Shift of a square: errors for α = 1 (case 2).

L2 L4 L6 G TPS

RMSE 1.5291E − 1 1.7152E − 1 1.9817E − 1 2.0849E − 1 2.0929E − 1
MAE 5.1545E − 1 2.6796E − 1 3.1900E − 1 3.4929E − 1 3.5355E − 1

Table 4: Scaling of a square: errors for α = 1 (case 2).

approach.
Quantitative graphs for the accuracy of the registration results are shown in Figure 7 and

Figure 8, where the RMSEs obtained by varying the parameter α in Lobachevsky splines and
Gaussians are presented. Thus, exploiting the analysis of errors in Figure 7 and Figure 8, we can
take good values for α and compare the registration results, obtained by applying Lobachevsky
and Gaussian functions. Their comparison points out the goodness and the effectiveness of
our approach. In particular, such graphs point out that Lobachevsky splines (at least for
n = 2, 4, 6) produce better registration results than Gaussian functions for equispaced values of
α ∈ [0.1, 2.0].

Finally, in Table 5 we report condition numbers of interpolation matrices. We observe that
condition numbers of Lobachevsky splines are generally much smaller than those of the Gaussian
but larger, except L2, than the condition numbers of thin plate splines.

L2 L4 L6 G TPS

Shift (case 1) 4.8918E + 03 2.7992E + 09 1.0031E + 13 2.3082E + 17 3.0583E + 04
Shift (case 2) 6.7668E + 04 1.5389E + 09 6.3546E + 12 2.2036E + 18 5.3148E + 04

Scaling (case 1) 6.9016E + 04 2.5711E + 09 9.1953E + 12 2.0573E + 17 2.6722E + 04
Scaling (case 2) 6.5173E + 04 1.4710E + 09 6.0739E + 12 1.0419E + 19 5.0165E + 04

Table 5: Condition numbers for α = 1.
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Figure 7: Shift (left) and scaling (right) of a square: RMSEs using Lobachevsky splines L2, L4,
L6, and Gaussian functions by varying the shape parameter α (case 1).
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Figure 8: Shift (left) and scaling (right) of a square: RMSEs using Lobachevsky splines L2, L4,
L6, and Gaussian functions by varying the shape parameter α (case 2).

6 An application to a real-life case

In this section we present experimental results obtained by applying Gaussian, thin plate spline
and Lobachevsky spline schemes to real image data. More precisely, we consider two X-ray
images of the cervical of an anonymous patient taken at different times. In Figure 9 we show
the two images along with landmarks and quasi-landmarks, setting on the left the source image
and on the right the target one. The size of both images is 512×512 pixels. In particular, within
each of the two images we have manually selected 6 landmarks. Moreover, to fix transformation
and to prevent an overall shift, we have added 12 quasi-landmarks on the boundaries of the
source and target images.

Each result in Figure 10 (a), (b), (c) and (d) represents a transformed image, obtained using
Gaussian, thin plate and Lobachevsky spline tranformations, respectively. For the Gaussian and
Lobachevsky L4 and L6 spline transformations we have used the parameter value α = 1.6. We
observe that the Gaussian transformation strongly deforms the image, while thin plate splines
and Lobachevsky splines give significantly better results, since deformations are limited and the
transformed images are very similar to the target image.

Moreover, for Lobachevsky splines (L2, L4 and L6) and Gaussians we have analyzed the
behaviour of registration results obtained by varying the value of α ∈ [0.1, 2.0]. This allows
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Figure 9: Source and target cervical images with landmarks and quasi-landmarks (left to right).
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(a) G, α = 1.6
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(c) L4, α = 1.6
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(d) L6, α = 1.6

Figure 10: Registration results obtained by Gaussian (a), thin plate spline (b) and Lobachevsky
spline (c)-(d) for the cervical image.

us to note that: (i) L2 gives similar results for every value of α; (ii) L4 produces a slight
deformation at the bottom of the transformed image when α < 1.6, whereas results similar to
those shown in Figure 10 (c) are obtained when α ≥ 1.6; (iii) L6 provides a slight deformation
at the bottom of the transformed image when α < 1.2, while results similar to those pointed out
in Figure 10 (d) are obtained when α ≥ 1.2; (iv) G does not produce good registration results
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for any value of α and the transformed image is strongly deformed; furthermore, for α < 0.4
interpolation matrices turn out to be ill-conditioned. Note that this drawback does not occur
using Lobachevsky splines.

7 Conclusions

In this paper we have proposed the use of a class of piecewise polynomials, called Lobachevsky
splines, in the context of landmark-based image registration. After deducing analytic expres-
sions of Lobachevsky splines, using concepts of probability theory, we have presented their
noteworthy properties, like the convergence of sequences of Lobachevsky splines to the normal
density function (i.e., Gaussian function) and the convergence of sequences of their integrals and
derivatives. Moreover, Lobachevsky splines of each even degree n ≥ 2 are strictly positive defi-
nite functions, and, being compactly supported, they produce sparse interpolation matrices (for
suitable choices of shape parameters) and fast evaluation. Furthermore, Lobachevsky splines
generate interpolation matrices whose condition numbers are generally much smaller than those
of Gaussian transformations. Several numerical results have been carried out by considering
typical test cases: they have shown that Lobachevsky splines are usually more accurate and
stable than Gaussians (in particular, referring to RMSEs and condition numbers), and at the
same time are comparable with thin plane splines. Finally, an application to cervical X-ray im-
ages has pointed out good applicability and effectiveness of Lobachevsky spline transformations
in landmark-based registration. This has also been supported by a comparison with Gaussian
and thin plate spline transformations.

Acknowledgements

The authors kindly thank the Department of Mathematics “G. Peano”– University of Turin
for its financial support through the project “Modelling and approximation of complex systems
(2010)”. The work of the second author has been performed with a grant of the “Istituto
Nazionale di Alta Matematica” (INdAM), which is gratefully acknowledged.

References

[1] Allasia G. Scattered multivariate interpolation by a class of spline functions. In Vigo-
Aguiar J et al (eds), Proceedings of the 9th International Conference CMMSE09, vol. 1,
2009; 73–79.

[2] Allasia G, Cavoretto R, De Rossi A, Quatember B, Recheis W, Mayr M, Demertzis S.
Radial basis functions and splines for landmark-based registration of medical images. In
Simos TE, Psihoyios G, Tsitouras C (eds), Proceedings of the International Conference

on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1281:
Melville, New York, 2010; 716–719.

[3] Bookstein F. Principal warps: thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence 1989; 11:567–585.

[4] Brinks R. On the convergence of derivatives of B-splines to derivatives of the Gaussian
functions. Computational & Applied Mathematics 2008; 27:79–92.

[5] Brown LG. A survey of image registration techniques. ACM Computing Surveys 1992;
24:325–376.

14



[6] Cavoretto R, De Rossi A. A local IDW transformation algorithm for medical image reg-
istration. In Simos TE, Psihoyios G, Tsitouras C (eds), Proceedings of the International

Conference of Numerical Analysis and Applied Mathematics. AIP Conference Proceedings,
vol. 1048: Melville, New York, 2008; 970–973.

[7] Cavoretto R, De Rossi A, Quatember B. Landmark-based registration using a local ra-
dial basis function transformation. Journal of Numerical Analysis, Industrial and Applied

Mathematics 2011; 5:141–152.

[8] Cavoretto R.Meshfree Approximation Methods, Algorithms and Applications. PhD Thesis,
University of Turin, 2010.

[9] Cheney EW, Light W. A Course in Approximation Theory. Brooks Cole: Pacific Grove,
CA, 1999.

[10] Fasshauer G. Meshfree Approximation Methods with MATLAB. World Scientific: Singa-
pore, 2007.

[11] Feller W. An Introduction to Probability Theory and its Application, vol. 2, Wiley & Sons,
New York, 1971.

[12] Fornefett M, Rohr K, Stiehl HS. Radial basis functions with compact support for elastic
registration of medical images. Image and Vision Computing 2001; 19:87–96.

[13] Gnedenko BV. The Theory of Probability. MIR: Moscow, 1976.

[14] Kohlrausch J, Rohr K, Stiehl HS. A new class of elastic body splines for nonrigid registration
of medical images. Journal of Mathematical Imaging and Vision 2005; 23:253–280.
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