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Abstract

This review surveys different approaches for generating features from

comprehensive two-dimensional chromatography for non-targeted

cross-sample analysis. The goal of non-targeted cross-sample analysis is to

discover relevant chemical characteristics (such as compositional similarities

or differences) from multiple samples. In non-targeted analysis, the relevant

characteristics are unknown, so individual features for all chemical

constituents should be analyzed, not just those for targeted or selected

analytes. Cross-sample analysis requires matching the corresponding

features that characterize each constituent across multiple samples so that

relevant characteristics or patterns can be recognized. Non-targeted,

cross-sample analysis requires generating and matching all features across

all samples. Applications of non-targeted cross-sample analysis include
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sample classification, chemical fingerprinting, monitoring, sample

clustering, and chemical marker discovery. Comprehensive two-dimensional

chromatography is a powerful technology for separating complex samples

and so is well suited for non-targeted cross-sample analysis. However,

two-dimensional chromatographic data is typically large and complex, so

the computational tasks of extracting and matching features for pattern

recognition are challenging. This review examines five general approaches

that researchers have applied to these difficult problems: visual image

comparisons, datapoint feature analysis, peak feature analysis, region

feature analysis, and peak-region feature analysis.

Keywords: Comprehensive two-dimensional gas chromatography

(GC×GC), Comprehensive two-dimensional liquid chromatography

(LC×LC), Non-targeted analysis, Cross-sample analysis, Feature generation

and matching, Pattern recognition

1. Introduction1

The goal of non-targeted cross-sample analysis is to discover relevant2

chemical characteristics (such as compositional similarities or differences)3

from multiple samples. Some applications of non-targeted cross-sample4

analysis are:5

• Classification. Given a sample from an unknown class and6

exemplary samples from a set of known classes, determine the class of7

the unknown sample. For example, given samples of cancerous tumors8

labeled by grade, determine the tumor grade for an ungraded9

sample.[1]10
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• Chemical fingerprinting. Given a sample from an unknown source11

and exemplary samples from multiple known sources, determine the12

source of the unknown sample. For example, given a sample of13

environmental pollution from an unknown source and labeled samples14

from several possible sources of the pollution, identify the source for15

the pollution.[2] Fingerprinting is a type of classification problem16

except that each class is restricted to a single source, whereas the17

general classification problem allows each class to have multiple18

similar sources.19

• Monitoring. Given a sequence of samples, identify samples that20

have uncharacteristic differences with other samples, e.g., for quality21

assurance. Monitoring also can be used to discover trends in sample22

sequences, even recognizing subtle changes if they are progressive or23

cyclical. For example, use a time-sequence of samples from an24

environmental oil spill to track and understand the weathering25

processes on oil constituents.[3]26

• Clustering. Given a set of samples, partition subsets such that27

samples within each subset are relatively similar and samples in28

different subsets are relatively dissimilar. For example, given multiple29

samples from oil reservoirs, use clustering to determine the number of30

distinct reservoirs.[4]31

• Marker discovery. Given a set of exemplary samples from known32

classes, determine the chemical characteristics that are most relevant33

for distinguishing the classes. For example, given samples of tumors34
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labeled by grade, determine which characteristics (i.e., biomarkers)35

are most useful in distinguishing different tumor grades.[1]36

Non-targeted cross-sample analysis should evaluate each and every37

constituent in each and every sample. For non-targeted analysis, the38

relevant chemical characteristics are not known, so the analysis should39

generate characteristic feature(s) for each and every constituent. Typically,40

detector intensities or mass spectral (total and/or selected ion) intensities41

are used as characteristic features because they indicate the analyte42

concentrations (or amounts) and provide information for chemical43

identification. Cross-sample analysis should compare the same chemical44

characteristics across multiple samples, so it is necessary to correctly match45

the corresponding features that characterize the same analyte in different46

samples. For example, peak matching would establish which peaks in47

different samples result from the same analyte. Typically, other features,48

such as retention times and/or mass spectral signatures, are used to match49

the characteristic features.50

Non-targeted cross-sample analysis requires comprehensive, selective,51

matched, accurate features. If the features aren’t comprehensive, then52

relevant characteristics may not be analyzed. If the features aren’t selective,53

then relevant trace constituents may be obscured by more prevalent but54

less relevant constituents. If the features aren’t matched, then the analysis55

is confounded by incorrect comparisons. If the features aren’t accurate,56

then the analysis may be unable to detect subtle differences.57

Comprehensive two-dimensional gas chromatography (GC×GC) and58

related techniques are well-suited for non-targeted cross-sample analysis59
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because they offer increased separation capacity, higher-dimensional60

structure-retention relationships, and improved signal-to-noise ratio (SNR),61

compared to traditional one-dimensional chromatography. Comprehensive62

two-dimensional chromatography preserves separations at each stage and63

submits the entire sample to analysis, providing for comprehensive features.64

Increased separation capacity enables more selective features. The65

higher-dimensional structure relationships can be exploited for better66

matched features. And, the improved SNR increases the quantitative67

accuracy of characteristic features.68

Comprehensive two-dimensional chromatography offers unprecedented69

information on compositional characteristics of complex samples, but the70

size and complexity of the data makes data analysis to extract that71

information a challenging problem. The most relevant features for a72

particular cross-sample analysis may be related to trace constituents and/or73

unidentified compounds. Relevant patterns may involve subtle relationships74

among multiple features. So, the goal of non-targeted cross-sample analysis75

is to extract and analyze all of the information that could be relevant. In76

some sense, it is the ultimate information processing challenge.77

The typical data processing sequence for non-targeted cross-sample78

analysis is:79

1. Preprocess individual chromatograms.80

2. Generate features for each chromatogram.81

3. Match features across chromatograms.82

4. Recognize relevant patterns.83
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The purpose of this review is to examine various approaches that84

researchers have applied to Steps 2 and 3 — feature generation and85

matching — but Steps 1 and 4 merit a brief discussion. Preprocessing (Step86

1) involves operations (e.g., baseline correction, [5]–[8], peak87

detection[9]–[13], coeluted peak detection[14]–[25], and alignment88

[24][26]–[36]) that prepare data for further analysis, but which are not89

specific to non-target cross-sample analysis. Therefore, general90

preprocessing methods can be used for these operations. In pattern91

recognition (Step 4), the matched comparative features are analyzed to92

recognize relevant characteristics or patterns among samples. Such pattern93

recognition is not specific to chromatographic analysis and so can be94

performed with various general-purpose methods, including statistical95

methods such as principal component analysis (PCA), analysis of variance96

(ANOVA), and discriminant function analysis (DFA), and machine-learning97

methods such as support vector machines (SVM), neural networks, and98

decision trees[1][4][31][35]–[58]. Of course, research continues to improve99

methods for preprocessing and pattern recognition and to evaluate their100

effectiveness for non-targeted cross-sample chromatographic analysis, but101

that research is not the focus of this review.102

This review describes five different types of features that have been103

used for non-targeted cross-sample analyses with comprehensive104

two-dimensional chromatography: visual images, datapoints, peaks, regions,105

and peak-regions. Visual images present chromatograms using various106

methods for two-dimensional data, including pseudo-colorization, contour107

plots, and three-dimensional projections. Datapoint analyses treat each108
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datapoint as a feature, allowing chromatograms to be compared intensity109

by intensity. Peak-based approaches attempt to separately integrate the110

intensities from multiple datapoints that induced by each individual111

analyte. Regional features aggregate datapoints in separate regions of the112

two-dimensional chromatographic plane. Peak-region methods attempt to113

define a region for each individual analyte.114

Some examples of previous research illustrate each approach to115

features for two-dimensional chromatographic analyses, with most research116

involving GC×GC. The order of presentation roughly follows the historical117

development. The discussion of each approach presents advantages and118

problematic issues. Other authors have provided more general reviews of119

GC×GC and related technologies and provide a broader context for this120

review.[59]–[77]121

2. Visual Features122

The earliest non-targeted cross-sample analyses with comprehensive123

two-dimensional chromatography were conducted without benefit of124

software specifically designed for operating on two-dimensional125

chromatographic data. Therefore, most early cross-sample comparisons126

were primarily qualitative visual comparisons using general-purpose127

software. In particular, two-dimensional chromatograms can be regarded as128

digital images of the chromatographic plane. Digital images are129

two-dimensional arrays of intensities and the datapoint intensities of130

two-dimensional chromatograps are represented naturally in131

two-dimensional arrays arranged so that the abscissa (X-axis, left-to-right)132
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is the elapsed time for the first-column separation and the ordinate (Y-axis,133

bottom-to-top) is the elapsed time for the second-column separation. Then,134

digital image visualization and processing methods can be used for135

two-dimensional chromatograms.136

In 1990, Bushey and Jorgenson[78] demonstrated comprehensive137

two-dimensional liquid chromatography LC×LC and showed data from a138

UV detector as surface plots with three-dimensional projection to two139

dimensions. They presented side-by-side visualizations of reconstituted140

serum from a human and from a horse, but did not make explicit141

comparisons of the samples.142

Blomberg et al.[79] showed side-by-side two-dimensional contour plots143

of GC×GC data from a flame ionization detector (FID) for distillation144

fractions of a heavy catalytic cracked cycle oil before and after145

hydrogenation to illustrate the conversion of olefins and sulfur compounds.146

Their results showed that “a clear distinction between different products is147

visible immediately.”[79, p. 544] For perspective on the computers of the148

time, they used a computer with 100MHz processor, 32 megabytes of149

memory, and generic scientific data processing and visualization software.150

The authors noted the need for more automated processing to characterize151

and compare samples: “The vast amount of data generated, necessitate152

that considerable effort has to be put in software and hardware153

developments for automated interpretation.”[79, p. 544]154

Gaines et al.[2] presented GC×GC-FID data from an oil spill sample155

and from two potential sources for the spill as pseudo-colorized images with156

a cold-to-hot color scale for qualitative visual comparison. Their goal was157
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to demonstrate GC×GC for oil spill source identification, an application of158

fingerprinting. The visual comparison allowed them to note that one of the159

sources exhibited considerably fewer peaks in the heavy aromatic region160

than the spill, which suggested that it was not the source for the spill.161

They also made selected quantitative comparisons for fingerprinting, as162

described here in subsequent sections.163

Reddy et al.[80] used a side-by-side sequence of pseudo-colorized164

images to visualize GC×GC-FID data from progressively weathered165

samples of a fuel oil standard for comparison to an image of data from a166

sample of a decades-old fuel oil spill. Their goal was to understand167

progressive changes in the oil. The visual comparisons allowed them to168

observe that 70% evaporative weathering of the standard was required to169

effect the same level of reduction of naphthalenic compounds observed in170

the oil spill sample, but that level of weathering also removed other171

components that still were present in the oil spill sample. They were able to172

conclude that evaporative weathering could not solely account for the173

GC×GC pattern observed in the oil-spill sample and that other factors,174

such as water washing, preferential biodegradation, and microbial175

degradation were required to explain the actual weathering of the oil spill.176

Others have used visual comparisons for similar purposes. Janssen et177

al.[81] visualized LC×GC-FID data for samples of edible oils and fats as178

two-dimensional bubble plots with circles indicating detected peaks (with179

dot locations determined by retention from LC and carbon number from180

GC and dot areas determined by intensity). Perera et al.[82] showed a181

region of GC×GC-FID data as contour plots to fingerprint headspace182
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volatiles from plant samples. Hope et al.[83] used contour plots to compare183

total intensity counts (TICs) of data from GC×GC with time-of flight184

(TOF) mass spectrometry (MS) for pre and post harvest lawn grass185

extracts. Shellie et al.[39] used GC×GC-TOFMS to analyze mouse spleen186

samples, then (a) visually compared averaged chromatograms from obese187

mice to averaged chromatograms from control mice, (b) computed the188

difference between the averaged chromatograms and showed images of the189

positive and negative values, (c) compared bubble plots for averaged peaks,190

and (d) compared bubble plots for relative weighted differences of averaged191

peaks (dividing by the average standard deviation among sample groups).192

Hollingsworth et al.[32] developed software methods for automatically193

aligning chromatograms using reference peaks, normalizing intensities, and194

visualizing the differences by various image-based methods, including195

time-loop flicker (switching between images) and colorized differences.196

Figure 1 illustrates a small chromatographic region with benzene, toluene,197

ethylbenzene, and xylene (BTEX) peaks and a visualization of the198

differences between two aligned chromatograms. Nelson et al.[84] and199

Wardlaw et al.[85] used these methods to illustrate weathering of an oil spill200

and oil seep. Cordero et al.[51] used these methods to compare201

chromatograms from coffee samples. Such visualizations of pointwise202

differences provide a segue to the next approach for non-targeted203

multi-sample analyses — pointwise feature analysis.204

Visual comparisons continue to be used both as a preliminary tool and205

as an investigatory and confirmatory method for automated methods.206

However, visual analyses are insufficient in several respects: the approach is207
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not quantitative, subtle differences and complex patterns may not be208

visible, and the approach is not well suited for cross-sample analysis with209

large sample sets.210

3. Datapoint Features211

Quantitative pointwise comparison is a natural progression from visual212

image comparison. In a pointwise approach, chromatograms are compared213

point-by-point (or in imaging terms pixel-by-pixel). With this approach,214

each datapoint is a feature and the datapoint features at the same retention215

times are implicitly matched.216

In 2002, Johnson and Synovec[37] used quantitative datapoint features217

(i.e., the chromatographic intensities at each datapoint) of GC×GC-FID218

data to recognize patterns in different jet fuel mixtures. Their first219

experiments involved five replicates for each of nine different mixtures of220

two fuels for a total of 45 chromatograms each with 120K datapoints. Their221

second experiments involved three replicates for each of thirteen different222

classes for a total of 39 chromatograms each with 105K datapoints. The223

potential relevance of each feature was computed by ANOVA, as the Fisher224

f ratio — the variance between classes divided by the variance within225

classes. Then, features were selected based on a f -ratio threshold that226

yielded good class separation in the space defined by the first two227

components of PCA. In this way, they reduced the number of features to a228

few hundred, which gave good PCA separation of classes and good229

organization in a K-means dendrogram.230

Mohler et al.[40] and Pierce et al.[41] applied PCA to231
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GC×GC-TOFMS datapoint intensities at selected mass-to-charge (m/z)232

channels to show class separations for yeast[40] and plant[41] samples.233

Pierce et al.[42] analyzed organic acid metabolites in urine samples with234

GC×GC-TOFMS by computing the f ratios at every mass-to-charge (m/z)235

channel of each chromatographic datapoint and then summing the f ratios236

along the m/z dimension (i.e., for each datapoint). Then, they selected237

peaks with features (i.e., datapoints) having the largest weighted and238

unweighted f -ratio sums. For peaks indicated by the f -ratio sums, the239

ratios of the peak volumes between samples from non-pregnant women to240

samples from pregnant women indicated that those components241

significantly differentiated between the two classes.242

Guo and Lidstrom[46] applied the same approach with243

GC×GC-TOFMS data to investigate differences in metabolite profiles of244

methylotrophic bacteria. Mohler et al.[43] used the same approach to245

GC×GC-TOFMS data for yeast metabolites and then performed the246

Student’s t-test as a check on the volumes of the peaks indicated by the247

summed f ratios. Subsequently, Mohler et al.[47] used the ratios of the248

largest and smallest signals in GC×GC-TOFMS data to distinguish249

datapoints and then peaks that changed in concert with the dissolved250

oxygen cycle of yeast. Vial et al.[35, 58] used dynamic peak alignment251

followed by PCA for GC×GC-MS data for several tobacco extracts and252

later used correlation with class members to assess the discriminatory253

power of each datapoint to analyze a large set of GC×GC-MS254

chromatograms for tobacco extracts in three different classes. Gröger et255

al.[45] used multidimensional scaling, hierarchical clustering, and PCA on256
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datapoint intensities to perform clustering and Fisher criterion to identify257

discriminating datapoints for illicit drug samples. Gröger and258

Zimmermann[36] used t-tests to select significant datapoint features from259

selected channels of GC×GC-TOFMS data for partial least-squares (PLS)260

discriminant analysis (DA). Ventura et al.[57] recently used multiway PCA261

on GC×GC-FID data for maltene fractions of crude oils.262

Hollingsworth et al.[32], Mohler et al.[40, 47], Almstetter et al.[34],263

Gröger and Zimmermann[36], and others have noted the importance of data264

alignment for datapoint feature analysis. Hollingsworth et al.[32],265

Almstetter et al.[34], and others have developed alignment algorithms.266

Gröger and Zimmermann[36] implemented alignment and other267

preprocessing operations with parallel processing. The scope of this review268

does not include alignment algorithms.269

Chromatographic misalignment and peak shape variations pose serious270

problems for pointwise cross-sample analysis. The features are individual271

datapoints, so if there is any misalignment between any pairs of samples,272

even as small as a fraction of a datapoint interval, then the features are273

incorrectly matched. Misalignments, both global and local, naturally occur274

even in well controlled conditions. Analytes normally elute over multiple275

datapoints, so the effects of small misalignments are mitigated, but276

misalignment is a fundamental issue that is difficult to eliminate. Like277

differences due to alignment, peak-shape differences are erroneously seen as278

quantitative differences in datapoint features. Another issue is that279

pointwise analysis involves many features and many of those features are280

highly redundant. Both the number of features and feature redundancy281
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complicate pattern recognition. In view of these issues, it can be argued282

that datapoint features may be too selective, thereby generating numerous283

features for slightly varying retention times within individual284

chromatographic peaks.285

4. Peak Features286

Peak features aggregate multiple datapoints with the goal of287

characterizing individual analytes (e.g., summing all datapoint intensities288

that are attributed to each detected peak). Peak features characterize289

larger, more meaningful chromatographic structures, resulting in fewer290

features that are less redundant than datapoint features. Peak features also291

are less sensitive to misalignment and peak-shape variations than datapoint292

features because peaks typically span many datapoints. However, unlike293

datapoint features, peak features are not implicitly matched. So, after294

preprocessing and peak detection, the detected peaks in each295

chromatogram that are induced by same analyte must be matched. Feature296

matching is a critical challenge for peak-feature analysis.297

Gaines et al.[2] provided an early demonstration of using quantitative298

characterizations of individual peaks and groups of peaks (i.e., the299

aggregation of several detected peaks) in GC×GC-FID data to fingerprint300

samples of an oil spill and potential sources in order to identify the source301

of the spill. Their analysis used summed intensities of four peaks and nine302

peak groups that were selected because of their suitability for source303

determination, so the analysis was not comprehensive, but was quite304

advanced given the lack of software for two-dimensional chromatography at305
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the time. Also, the selections were performed by hand and so were not306

automated. Bar charts with the intensities of the selected features showed307

that one potential source was compositionally more similar to the spill than308

the other was.309

Mispelaar et al.[38, 4] used a much larger number of peaks to310

distinguish samples from different oil reservoirs with GC×GC-FID. Their311

peak detection found about 6000 peaks per chromatogram. They used312

retention-time based alignment and filtering to match 3904 peaks, but the313

results of their multi-variate analysis (MVA) were unsatisfactory. They314

attributed the poor initial results to an inadequate number of samples with315

many non-informative peaks and peak detection, quantification, and316

matching errors. They then selected 292 peaks using an automated317

criterion for the relative standard deviations (RSDs) between duplicate318

samples to indicate peak detection and quantification errors. Most of the319

automatically selected 292 peaks were in regions of the chromatogram with320

lower peak density. Then, they manually selected 65 peaks for relevance321

and absence of interference. This small fraction of the peaks (about 1% of322

the detected peaks) was adequate for clustering the samples according to323

reservoir, but the feature reduction is indicative of the difficulties of reliable324

peak detection and matching. Such selective processing could exclude325

highly informative peaks.326

In their work with mouse spleen samples, Shellie et al.[39] matched327

peaks in each chromatogram to reference data using tolerances on retention328

times and mass spectral matching similarity. The TIC of each peak that329

matched the same reference peak was placed on the same row in a matrix330
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with a column each chromatogram. They did not report how many peaks331

were detected or how many of the detected peaks were matched. Student’s332

t-tests were used to indicate the eleven metabolites exhibiting the most333

significant differences between obese and control mice.334

Qiu et al.[44] performed GC×GC-FID on volatile oils from Qianghuo,335

a traditional Chinese medicine, from five regions. They did not report336

parameters for rejecting peaks with low SNR nor the number of peaks337

detected. They developed and implemented peak alignment and matching338

methods (using retention times relative to reference peaks) to create a339

matrix with 1544 peaks in fifteen samples. PCA analysis produced three340

clusters, with separate clusters for samples from two of the five regions.341

They used variable importance in the projection (VIP)[86, p. 397] to342

identify potential marker compounds, finding some statistically significant343

features, then used GC×GC-TOFMS for chemical identification of those344

compounds.345

Wardlaw et al.[85] developed an algorithm to track peaks between346

similar samples based on retention times. The algorithm tracked about347

1400 of about 4500 peaks in GC×GC chromatograms from oil samples from348

the reservoir, sea floor, and sea surface.349

Analyzing human serum with GC×GC-TOFMS, Oh et al.[87]350

developed a peak sorting method to recognize peaks from the same351

metabolite in different chromatograms. Their algorithm used several search352

criteria with retention times and mass spectra, with options to eliminate353

non-target peaks. Peaks with low signal-to-noise ratio were discarded354

during peak detection. The matched peaks showed high correlation for355

16



retention times and mass spectra, but only 105 peaks were matched across356

all fifteen chromatograms, even with five replicates for each of three357

samples.358

Gaquerel et al.[48] used GC×GC-TOFMS to analyze the effect of oral359

secretions on volatile plant emissions. Peak detection yielded about 600360

peaks in each of the 108 samples (subject to a threshold SNR of 10). The361

authors noted that inconsistencies in the numbers of the detected peaks in362

each chromatogram complicated matching. In each of three sample periods,363

the peak set of the chromatogram with the largest number of detected364

peaks was used as reference data for matching (with the matching365

procedure developed by Shellie et al.[39]), reducing the number of matched366

peaks to about 400, which then were corrected for false positives from the367

alignment and matching procedure. ANOVA followed by another manual368

check for false positives from the peak alignment and matching was used to369

select about 15% the peaks for MVA with hierarchical clustering analysis370

(HCA) and PCA.371

Li et al.[49] analyzed blood plasma with GC×GC-TOFMS. They used372

a mass spectral filter to extract peaks for trimethylsilyated metabolites,373

then applied a peak alignment method and a peak matching algorithm to374

create a matrix with 492 metabolites in 79 chromatograms. They tried375

several modeling methods, including PLS-DA, in which some problems that376

were attributed to missing values from peak matching were resolved by377

additional peak filtering. Then, VIP was used to indicate potential378

biomarkers.379

Reichenbach et al.[88] developed Smart TemplatesTM for peak matching.380
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The template records a prototypical pattern of peaks with retention times381

and associated metadata, such as chemical identities and compound-group382

membership. Then, the template pattern is matched to the detected peaks383

in subsequent chromatograms and the metadata are copied from the384

template to identify the matched peaks. The matching process explores the385

space of affine geometric transforms to maximize the number of matched386

peaks and minimize the residual geometric error. Smart Templates employ387

rule-based constraints (e.g., multispectral matching) to increase matching388

accuracy. Smart templates also carry other structures, such as text and389

chemical-structure annotations and polygonal regions (which can be used390

for region features, described below). They demonstrated the approach and391

associated methods on urine samples analyzed by LC×LC with a392

ultraviolet (UV) diode array detector (DAD). Figure 2 illustrates template393

peak matching with a template derived from the detected peaks of one394

chromatogram matched to the detected peaks of another chromatogram.395

Cordero et al.[89] analyzed volatile fractions of roasted hazelnuts with396

GC×GC-MS, then performed peak matching with templates in two different397

ways. In the first approach, they aligned and summed the chromatograms,398

then created a feature template comprised by the 411 peaks detected in the399

cumulative chromatogram. That template then was matched to each400

individual chromatogram, with matching rates ranging from 68% to 79%.401

In the second approach, they performed a sequential template matching402

that used both retention-time patterns and mass spectral matching criteria.403

At each step of the sequence, unmatched peaks were added to build a404

comprehensive template. At the end of the sequence, the comprehensive405
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template was matched to each chromatogram and any peak matching with406

at least two chromatograms were retained in a consensus template. The407

consensus template contained 422 peaks and the matching rates ranged408

from 52% to 78%, with 196 peaks matching for all nine chromatograms.409

For both peak matching methods, the feature fingerprints of samples from410

nine regions were sifted for the largest normalized intensities and many of411

the indicated compounds have a known role in defining sensory properties.412

Castillo et al.[55] used GC×GC-TOFMS to analyze a variety of413

samples for metabolomic characteristics. They developed a processing414

sequence of peak detection, matching, filtering, normalization, and415

identification. The matching algorithm used a scoring metric to choose416

some matches over others. For a set of 60 serum samples, almost 15,000417

prospective compounds were filtered to 1540 on the basis of matching a418

sufficient number of chromatograms, then to 1013 compounds by mass419

spectral and chromatographic constraints. The resulting feature vectors420

were analyzed by PCA, which separated samples by their storage421

temperature.422

Koek et al.[56] evaluated the analyst and computer time required to423

process GC×GC-TOFMS datasets for mouse liver samples to produce a424

table of 170 metabolites in 29 samples. The analysis required425

approximately 50h of analyst time and 60h of computer time, with426

substantial analyst time required for optimization and construction of the427

reference target table and dealing with problems of missing peak values.428

These times are indicative that reliable peak matching, even with recent429

software for GC×GC, is not yet automated. Subsequently, they evaluated430
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the resulting metabolite profiles with PCA and PCA-DA.431

Peak detection errors as well as the inherent ambiguity of matching432

both contribute to make comprehensive peak matching (i.e., matching all433

peaks) across many samples intractable. Trace peaks may be detected in434

some samples, but not in others. Coeluting analytes may be detected as435

separate peaks in some chromatograms but as one peak in other436

chromatograms. The peaks of different analytes may be incorrectly437

matched, especially if constituents differ from sample to sample. To438

overcome these challenges, researchers filter the peaks that are used for439

cross-sample analysis. However, such filtering is unreliable and difficult to440

automate. And, to the extent that peaks are correctly filtered, the analysis441

is no longer truly comprehensive. Despite extensive research, methods for442

automated peak matching still are error-prone and/or not comprehensive.443

Despite these problems, peak features can be effectively used in many444

applications for non-targeted cross-sample analysis.445

5. Region Features446

Region features characterize multiple datapoints (e.g., summing the447

intensities at all datapoints in each region). Like peak features, region448

features can characterize larger, more meaningful chromatographic449

structures than datapoint features, resulting in fewer features that are less450

redundant. Like peak features, region features are less sensitive to451

misalignment than datapoint analysis.452

For non-targeted analysis, the feature regions should be defined to453

cover the entire chromatographic space in which analytes are present. When454
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used for cross-sample analysis, the same regions in different chromatograms455

are implicitly matched, thereby avoiding the matching problem that is456

inherent with peak features. However, either the chromatograms should be457

aligned or the regions should be adjusted geometrically so that the same458

regions in different chromatograms encompass the same analyte(s). As459

geometric shapes, regions are amenable to geometric transformations to fit460

different chromatograms in cases of variable retention times.461

Two concerns with region features are that a region may encompass462

more than one analyte and that one analyte may be spread across more463

than one region. In the first case, selectivity is reduced as compared with464

peak features (although peak features also may not separate coeluted465

peaks). In the second case, multiple features for a single analyte are more466

susceptible to errors related to misalignment as compared with peak467

features (although peak features also may incorrectly split analyte peaks).468

Mispelaar[4, 38] created a hand-drawn mesh of contiguous polygons to469

subjectively encompass different groups of interest in diesel samples and470

demonstrated the utility of geometric transformations to better fit different471

chromatograms. Figure 3 illustrates a similar mesh for GC×GC-FID[90]472

with automatically drawn vertical lines at linear retention indices based on473

the n-alkanes and hand-drawn lines to separate compound groups. As474

Mispelaar noted, some prior knowledge of the sample is required to define475

regions related to its components and component groups. And, as can be476

seen, there are regions with multiple analytes and analyte peaks spread477

across multiple regions.478

To quantify weathering of an oil spill by GC×GC-FID, Arey et al.[3]479
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created a grid with region boundaries defined by computed contours of480

hydrocarbon vapor pressure and aqueous solubility. With this approach, no481

prior knowledge of the nature of the sample is required, but regions may482

contain multiple analytes and analyte peaks may straddle multiple regions.483

To mitigate the effect of misalignment, they used trapezoidal weighting484

functions at the borders between regions. With contour lines that are485

roughly orthogonal, the grid can be remapped naturally to a rectangular486

array and colorized according to intensity for convenient visualization.487

They applied the analysis to investigate different weathering processes on488

oil spills, including evaporation, dissolution, biodegradation,489

photodegradation, and other processes. Wardlaw et al.[85] used these same490

lines to warp chromatographic images.491

To analyze Chinese medicine volatile oils with GC×GC-TOFMS, Qiu492

et al.[44] used integration in four regions (mostly, but not fully covering the493

analytes) to compute averages and show differences among five geographical494

classes. Mullins et al.[91] used seven large regions to characterize compound495

groups in downhole fluid analysis with GC×GC-FID and GC×GC-TOFMS.496

They plotted ratios of the summed peak intensities within each region in a497

spider diagram to visualize similarities and differences. Betancourt et al.[92]498

used spider diagrams to visualize features for nine large compound-based499

regions and subdivisions of those regions split by retention indices. Ventura500

et al.[93] extended the approach to twelve regions. Vaz-Freire et al.[50]501

divided chromatograms from olive oil samples into twelve rectangular502

regions, then performed ANOVA and PCA with the regional features.503

The principal issue with region features is that selectivity is reduced to504
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the extent that peaks of multiple analytes are included in the same region.505

For some applications, such as petroleum analysis, the goal may be506

comprehensive group-type analysis, so loss of selectivity within groups is507

not problematic. However, the loss of selectivity could be a problem in508

many applications, especially if a critical trace analyte is in the same region509

as a predominant analyte that is irrelevant to the application.510

6. Peak-Region Features511

The final type of feature surveyed in this review is the peak-region.512

Peak-region features attempt to define one region per peak. This approach513

seeks to achieve the one-feature-to-one-analyte selectivity of peak features514

but with the implicit matching of region features.515

Schmarr et al.[53, 54] and Reichenbach and co-workers[51, 52, 1]516

described similar approaches to defining regions for individual peaks517

detected across multiple samples. Schmarr and Bernhardt indicated that518

this general approach is common for 2D gel electrophoresis. After519

preprocessing, including alignment, the chromatograms are combined (e.g.,520

simply by addition or other fusion operations [94]) to form a single521

chromatogram that is reflective of all of the constituents in all samples.522

Then, the boundaries that delineate each peak are recorded as a region in a523

template. That template is then geometrically mapped back to each524

chromatogram and each region defines a feature for each chromatogram.525

The features are comprehensive, accounting for every analyte, and feature526

matching is implicitly performed by the retention-time mapping.527

Schmarr and Bernhardt [53] analyzed 32 samples of volatiles of528
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different fruits by GC×GC-MS. They performed baseline correction with529

the rolling-ball method, then manually generated warp graphs to determine530

warping transforms to align 31 chromatograms to a reference531

chromatogram. Then, each of the chromatograms was aligned by the532

warping transform and combined using a weighted-mean “union fusion”[94].533

They manually detected more than 700 spots indicative of peaks in the534

fused chromatogram. Then, the spot patterns were mapped back to each535

chromatogram according to the inverse of its warping transform and the536

intensities for each region in each chromatogram were computed. The537

software package that they used was optimized for gel electrophoresis rather538

than GC×GC, so much of the processing was manual, requiring about 5h of539

an analyst’s time for the 32 samples. They used HCA and PCA with the540

resulting peak-region features to cluster samples. The different fruits541

(apples, pears, and quince) formed clear clusters. The two pear varieties542

and some of the six apple varieties formed sub-clusters. The mass-spectral543

signatures were used for compound identification of spots which were544

statistically relevant for differentiation. Using a similar approach for545

analyzing red wines subjected to microoxygenation (MOX), Schmarr et546

al.[54] were able to differentiate MOX treatments and specific varietal and547

technological effects. They were able to identify areas in the 2D548

chromatograms that were most responsible for discrimination among549

different MOX treatments and the loadings of individual aroma compounds550

suggested a set of markers for the MOX-induced modifications of volatiles.551

Cordero et al.[51] analyzed samples of coffees and junipers by552

GC×GC-MS. After preprocessing including peak detection, they identified553
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peaks that could be matched reliably across all chromatograms. These554

reliable peaks were the basis of a registration template with mass spectral555

matching rules that then was used to determine a geometric transform to556

align the chromatograms. After alignment, the chromatograms were557

summed to create a cumulative chromatogram. In three chromatograms of558

coffee samples, about 1700 peaks were detected, about half of which were559

reliable. They manually drew a mesh of about 1100 regions which were560

combined with the registration peaks to create a feature template that561

could be matched to individual chromatograms thereby transforming the562

regions to maintain their positions relative to the reliable peaks. They563

sifted the features by intensity, standard deviation, and relative standard564

deviation to select relevant features but did not perform MVA because of565

the small number of samples. Many of the indicated compounds were566

known botanical, technological, and/or aromatic markers for coffee. For the567

analysis of five chromatograms of juniper samples, there were about 100568

reliable peaks and 727 peak-regions were drawn. Reichenbach et al.[52]569

used the same approach for 39 urine samples analyzed by LC×LC. Then,570

they performed classification with SVM and k-NN, evaluating the571

performance using cross-validation.572

Reichenbach et al.[1] analyzed data from GC×GC with high-resolution573

mass spectrometry (HRMS) of samples from breast cancer tumors. There574

were eighteen samples each from different individuals, with six samples each575

for grades one to three as determined by a cancer pathologist. They576

followed the same approach as Cordero et al.[51] except that the process,577

including drawing the regions around the peaks detected in the cumulative578
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chromatogram, was performed automatically by newer software. About579

3300 peaks were detected in each of the eighteen individual chromatograms,580

but only thirteen were reliable across all eighteen chromatograms. Note581

that reliability was defined as bidirectional matching between all possible582

pairs (more than 300 matches for each common peak). In the cumulative583

chromatogram, more than 3300 peak-regions were defined. Figure 4 shows584

the cumulative chromatogram overlaid with black ovals for the reliable585

peaks used for registration and red outlines for the peak-regions. They586

applied several machine learning methods with the peak-region features to587

classify samples by tumor grade and to indicate potential biomarkers for588

tumor grade which then were investigated using the high-resolution mass589

spectra.590

The peak-region approach is more comprehensive than using reliably591

matched peak features and is more selective than region features. As with592

the other feature methods, misalignment is a potential source of errors. As593

with peak features, peak detection errors, such as unseparated coelutions594

and incorrectly split peaks, are another source of errors for peak-region595

features.596

7. Conclusion597

A common goal of chemical analysis is to compare samples, either for a598

few specific compounds (targeted analysis), for groups of compounds599

(group-type analysis), or for all compounds (i.e., non-targeted analysis).600

The key to comparative analyses is to establish correspondences between601

features of different data sets, e.g., recognizing that a peak in the data for602
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one sample and a peak in the data for another sample are induced by the603

same compound. Establishing correspondences — feature matching — is604

necessary before it is possible to perform comparisons and pattern605

recognition across sample sets.606

Targeted analyses and group-type analyses are more straightforward607

than non-target analyses. In targeted analyses, the compounds of interest608

are known, so the chromatography can be tailored to provide selectivity for609

those compounds and the data processing methods can be refined for610

detecting and recognizing the features for those compounds. For group-type611

analysis, the method need not be selective of every individual analyte, so612

many problems of feature generation (e.g., peak unmixing) and matching613

can be avoided. Comprehensive non-target analyses are more difficult614

because the most relevant compounds are unknown, so the chromatography615

and data processing cannot be tuned specifically for individual compounds616

or for groups of compounds.617

Non-targeted cross-sample analysis is especially difficult because it618

requires the analysis of all analytes in all chromatograms of a sample set.619

Applications of non-targeted cross-sample analysis include sample620

classification, chemical fingerprinting, monitoring, sample clustering, and621

chemical marker discovery. Comprehensive two-dimensional622

chromatography is a powerful technology for separating complex mixtures623

and so is well suited for comprehensive non-targeted analysis, but fully624

extracting chemical information from large and complex datasets is625

challenging and the subject of ongoing research. And, the difficulty of626

comparative analyses increases with the size of the sample set.627
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Feature matching for comprehensive two-dimensional chromatography628

can be based on retention times, spectral signature, detected intensity,629

and/or other characteristics of features. Past research on non-targeted630

cross-sample analysis with comprehensive two-dimensional chromatography631

has demonstrated the usefulness of qualitative visualization, individual632

datapoints, detected peaks, chromatographic regions, and comprehensive633

peak-regions.634

Each type of feature has advantages and disadvantages. Visualization635

is simple and intuitive, but is not quantitative, important differences may636

not be visible, and working with large sample sets is difficult. Datapoint637

features are highly selective and implicitly matched across aligned638

chromatograms, but they are subject to misalignment errors and generate a639

large number of features, many of which are redundant. Peak features640

characterize individual analytes and so are especially consistent with641

analytical goals, but peak matching is an intractable problem. Region642

features are more attuned to meaningful analytical characteristics than643

datapoint features and are easier to match across samples than peak644

features, but they may not be as selective as datapoint or peak features.645

Peak-regions define a region for each peak across chromatograms and so646

aim for selectivity and accurate feature matching, but still are subject to647

errors from misalignment and peak detection failures.648

Future research will refine, compare, and combine these approaches.649

There has been little research to deeply examine the variables that affect650

feature generation and matching in the different approaches and to validate651

performance in cross-sample analyses. Advances in instrument technologies652
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could contribute to improved feature generation and matching, e.g., with653

increased repeatability and reproducability, greater mass spectrometric654

accuracy, and more effective column sets. Feature generation and matching655

might be improved by better preprocessing methods, especially for detection656

of coeluted peaks, but also for baseline correction and aligment. Likewise,657

more research is needed to compare the performance of different approaches658

for feature generation and matching in different applications. Ultimately, a659

hybrid approach, using a combination of different approaches, may be most660

effective e.g., peak features for peaks that can be reliably matched, and661

peak-region, region, or datapoint features for other chromatographic data.662

Again, such combined approaches require a better understanding of the663

variables that affect the performance of the different approaches.664
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Figure 1: Top – A pseudocolorized image of a chromatographic region with BTEX peaks.

Bottom – A pseudocolorized image of the differences between two aligned chromatograms

with red indicating a larger value in the reference image, green indicating a smaller value,

and grey indicating nearly equal values.[32]
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Figure 2: A pseudocolorized image of an LC×LC chromatogram of a urine sample. The

open circles indicate the retention times of the expected peaks recorded in the template.

The outlines indicate the detected peaks and the filled circles indicate the retention times

of the apexes of the detected peaks that are matched by the template.[88]
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Figure 3: A mesh of regions with automatically drawn vertical lines at linear reten-

tion indices based on the n-alkanes and hand-drawn crossing lines to separate compound

groups.[90]
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Figure 4: Cumulative chromatogram for eighteen breast-cancer tumor samples overlaid

with the feature template (registration peaks shown with dark ovals and region fea-

tures shown with red outlines). The color bar shows the logarithmic pseudocolorization

mapping.[1]
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