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SOME REMARKS ON CONNECTED COALGEBRAS

A. ARDIZZONI AND C. MENINI

Dedicated to Freddy Van Oystaeyen, on the occasion of his siztieth birthday

ABSTRACT. In this paper we introduce the notions of connected, 0-connected and strictly graded
coalgebra in the framework of an abelian monoidal category M and we investigate the relations
between these concepts. We recover several results, involving these notions, which are well known
in the case when M is the category of vector spaces over a field K. In particular we characterize
when a 0-connected graded bialgebra is a bialgebra of type one.

INTRODUCTION

Let M be a coabelian monoidal category such that the tensor product commutes with direct
sums. Given a graded coalgebra (C' = ©nenCh, A, €) in M, we can write A|¢, as the sum of unique
components A; ; : Ciy; — C; ® C; where i + j = n. The coalgebra C' is defined to be a strongly
N-graded coalgebra (see [AX, Definition 2.9]) when AY; : Ciy; — C; ® C; is a monomorphism for
every i,j € N. The associated graded coalgebra
CAgC @ CAgCAEC &

C ChgC
for a given subcoalgebra C' of a coalgebra FE in M, is an example of strongly N-graded coalgebra
(see [BEM3, Theorem 2.10]).

A graded coalgebra (C = @penChn,Ac,ec¢) in a cocomplete monoidal category M is called
0-connected whenever eci§ : Co — 1 is an isomorphism where i§ : Cy — C denotes the canonical
injection. C is called strictly graded whenever it is both strongly N-graded and 0O-connected. The
associated graded coalgebra griC' of a coaugmented coalgebra C' in M is an example of a strictly
graded coalgebra (see Theorem EZI0). We also introduce the notion of connected coalgebra in M
(see Definition E7).

In Theorem ECIT we prove the following result. Let (C' = @penCh, Ac,ec) be a 0-connected
graded coalgebra in a cocomplete coabelian monoidal category M. Then

greE=C&®

1) ((C, Ac,ec),uc = zlc) is a connected coalgebra where uc := igsgl 11— C;
2) Co Ac Cp =Cy@ P (C), where P (C) denotes the primitive part of C.

Moreover, if M is also complete and satisfies ABS5, the following assertions are equivalent:

(a) C is a strongly N-graded coalgebra;
(b) C1=P(C).

This result is then applied to the following setting. Let H be a braided bialgebra in a cocomplete
and complete abelian braided monoidal category (M, ¢) satisfying AB5. Assume that the tensor
product commutes with direct sums and is two-sided exact. Let M be in ZMI. Let T = Ty (M)
be the relative tensor algebra and let T¢ = T'5; (M) be the relative cotensor coalgebra as introduced
in [AMST]. In [BENMT], we proved that both T' and T have a natural structure of graded braided
bialgebra and that the natural algebra morphism from 7" to T, which coincides with the canonical
injections on H and M, is a graded bialgebra homomorphism. Thus its image is a graded braided
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bialgebra which we denote by H[M] and call, accordingly to [Nd|, the braided bialgebra of type one
associated to H and M (see [BM, Definition 6.7]).

Let now (B,mp,up,Ap,ep) be a braided graded bialgebra in (M,c). Assume that B is 0-
connected as a coalgebra. Then, by the foregoing, ((B,Ap,e5),up) is a connected coalgebra. We
prove (see Theorem ZT3) that B is the braided bialgebra of type one By [B;] associated to By and
B if and only if

(Bn>1Bn)? = ®p>2B,  and P (B) = By,

Therefore TOBAs, as introduced in [BQ, Definition 3.2.3], are exactly the braided bialgebras of
type one in M = HYD which are 0-connected.

1. PRELIMINARIES AND NOTATIONS

Notations. Let [(X,ix)] be a subobject of an object E in an abelian category M, where
ix =i¥ : X < E is a monomorphism and [(X,ix)] is the associated equivalence class. By abuse
of language, we will say that (X,ix) is a subobject of F and we will write (X,ix) = (Y,iy) to
mean that (Y,4y) € [(X,ix)]. The same convention applies to cokernels. If (X,ix) is a subobject
of E then we will write (E/X,px) = Coker(ix), where px =p% : E — E/X.

Let (Xl,i§11) be a subobject of Y7 and let (Xg,i?é) be a subobject of Y5. Let z : X; — X5 and

y : Y1 — Y5 be morphisms such that yoii?1 = i?z ox. Then there exists a unique morphism, which

we denote by y/x = £ :Y1 /X1 — Yz/Xs, such that £ op?1 = p}g oy:

T

i le
X X
X, C 0y, 2y

X1

Y2 pY2

X X
Ny, P

0y, will denote the Kronecker symbol for every u,v € N.

1.1. Monoidal Categories. Recall that (see [Kd, Chap. XI]) a monoidal category is a category
M endowed with an object 1 € M (called wnit), a functor ® : M x M — M (called tensor
product), and functorial isomorphisms axyz : (X ®Y)®Z - X (Y ®Z2),Ix : 1 X — X,
rxy : X®1 — X, for every X,Y,Z in M. The functorial morphism a is called the associativity
constraint and satisfies the Pentagon Axiom, that is the following relation

(U®aywx)oauvewx o (auyvw @ X) = au,v,wex © AUev,w,x

holds true, for every U, V, W, X in M. The morphisms [ and r are called the unit constraints and
they obey the Triangle Aziom, that is (V ® lw) o ay1,w =rv @ W, for every V,W in M.

A braided monoidal category (M, ¢) is a monoidal category (M, ®, 1) equipped with a braiding
¢, that is a natural isomorphism cxy : X ® Y — Y ® X for every X,Y, Z in M satisfying

cxev,z = (cx,z®@Y)(X®cyz) and  cxyez= (Y ®@cxz)lcxy ®Z).
For further details on these topics, we refer to [Kd, Chapter XIII].

It is well known that the Pentagon Axiom completely solves the consistency problem arising
out of the possibility of going from (U@ V)@ W)® X to U® (V® (W ® X)) in two different
ways (see [MI, page 420]). This allows the notation X; ® --- ® X, forgetting the brackets for
any object obtained from Xy, -- X, using ®. Also, as a consequence of the coherence theorem,
the constraints take care of themselves and can then be omitted in any computation involving
morphisms in a monoidal category M.

Thus, for sake of simplicity, from now on, we will omit the associativity constraints.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can be
introduced in the general setting of monoidal categories. Given an algebra A in M on can define the
categories 4 M, M4 and g4 M 4 of left, right and two-sided modules over A respectively. Similarly,
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given a coalgebra C in M, one can define the categories of C-comodules “ M, M ¢ M. For
more details, the reader is referred to [BRS].

DEFINITIONS 1.2. Let M be a monoidal category.
We say that M is a coabelian monoidal category if M is abelian and both the functors
X®(=):M—=Mand (—)® X : M — M are additive and left exact, for any X € M.

1.3. Let M be a coabelian monoidal category.
Let (C,iE) and (D,i5) be two subobjects of a coalgebra (E, A, ). Set

Ac.p = (pE @ pp)A: E — g ® %
(CAgD,igr,p) =ker (Acp),  iga,p:CAeD—E
(ppy PEnen) = Coken (i) =T (Bcn) . PErup i B 5o
Moreover, we have the following exact sequence:
1) 0—sCppD 8P pPisr B
CANgD

Assume now that (C,iZ) and (D, %) are two subcoalgebras of (E, A, ¢). Since Ac.p € EMPE | it is
straightforward to prove that C' Ag D is a coalgebra and that iZ A D 18 & coalgebra homomorphism.

Let (C,i&) be a subobject of a coalgebra (F, A, ) in a coabelian monoidal category M. We can
define (see [AMSZ]) the n-th wedge product (C"=",if,,.) of C in E where iZ,,. : C"=" — E.
By definition, we have

C"E0 — and chen = 0NeL AR O, for every n > 1.

One can check that C"#? A C\BI = CEH for every 4, j € N.
Assume now that (C,i£) is a subcoalgebra of the coalgebra (E,A,¢). Then there is a (unique)
coalgebra homomorphism

AEn+l
nggn . CNE" 5 ONEP L for every n e N.

. .ONgnt+1 .
such that ngEnH o ZgAEn = ZgAEn'

1.4. Graded Objects. Let (X,), cy be a sequence of objects in a cocomplete coabelian monoidal
category M and let
X = @ X,

neN
be their coproduct in M. In this case we also say that X is a graded object of M and that the
sequence (X,,) defines a grading on X. A morphism

fX=Px.»Yy=F.

neN neN

neN

is called a graded homomorphism whenever there exists a family of morphisms (f,, : X, — Y3,)
such that f = ®penfn i-e. such that

neN

fo z§ = z¥ o fn, for every n € N.
We fix the following notations. Throughout let
pr:X —>X, and ir:X,—X

be the canonical projection and injection respectively, for any n € N.
Given graded objects X,Y in M we set

(X®Y), =@arp=n (Xa®@Y3).

Then this defines a grading on X ® Y whenever the tensor product commutes with direct sums.
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1.5. Let M be a coabelian monoidal category such that the tensor product commutes with direct
sums.
Recall that a graded coalgebra in M is a coalgebra (C, A, e) where

C= EBnGNCn

is a graded object of M such that A : C — C ® C' is a graded homomorphism i.e. there exists a
family (A,) _ of morphisms

AY =A,:C, = (CR0), =@arpen (Coa @ Cy) such that A = @, enA,,.
We set

UJC,C
Bap = Bas = (C‘”” M (C90), ¥ Cu® Cb> '

A homomorphism f : (C,A¢,ec) — (D,Ap,ep) of coalgebras is a graded coalgebra homomor-
phism if it is a graded homomorphism too.

DEFINITION 1.6. [BENM, Definition 2.9] Let (C' = @,enCh, A, €) be a graded coalgebra in M. In
analogy with the group graded case (see [NT]), we say that C is a strongly N-graded coalgebra
whenever

AC

1,7
where Agj is the morphism defined in Definition 3.

: Ciyj — C; ® C; is a monomorphism for every 4, j € N,

2. CONNECTED COALGEBRAS

DEFINITIONS 2.1. Let M be a coabelian monoidal category. A coaugmented coalgebra ((C, A, ¢e) ,u)
in M consists of a coalgebra (C, A, e) endowed with a coalgebra homomorphism « : 1 — C called
coaugmentation of C'. Note that u is a monomorphism as eu = Id;. Given a coaugmented coalgebra

((C,Ae),u) define
ac = (C@uC)OTal+(Uc®C)OlE«1 —Ac:C—->CxC,
(P(C),ip(c)) =ker(ac).

(P (C),i p(c’)) is called the primitive part of the coaugmented coalgebra C.
A connected coalgebra in M is a coaugmented coalgebra ((C, A, ¢),u) in M such that

iy (1) 1 = C.

REMARK 2.2. Let M be the category of vector spaces over a field K and let ((C,A,e),u) be a
connected coalgebra in M accordingly to the previous definition. Then C(g) := Corad (C) C Im (u)
(see e.g. [ANIST, Lemma 5.2]) and hence C(gy = Im (u) so that C' is connected in the usual sense.

On the other hand, since C' = @(C@%)%N it is clear that an ordinary connected coalgebra C' is
also a connected coalgebra in M.

REMARK 2.3. Let C' be a connected coalgebra in the monoidal category of vector spaces over a
field K. Then, the cotensor coalgebra T'¢ = T& (M) is strongly N-graded and connected for every
C-bicomodule M. Nevertheless C' needs not to be K, in general.

QUESTION 2.4. Let M be a cocomplete coabelian monoidal category and let ((C,A,e),u) be a
connected coalgebra in M. Let M be a C-bicomodule in M. Is it true that the cotensor coalgebra
T&(M) is a connected coalgebra?

LeEMMA 2.5. Let (C,uc) be a coaugmented coalgebra and let f : C — D be a coalgebra homo-
morphism in a coabelian monoidal category M. Then (D,up) is a coaugmented coalgebra where
up = fouc. Moreover

apof=(f®f)oac.
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Proof. Clearly (D,up) is a coaugmented coalgebra. Moreover, we have

apof = [(D®up)orp' + (up®D)olpy' —Aplof
(D®fouc)orD of—|—(fouc®D)olDlof Apof
= (D®fouc)o(fel)org' + (fouc®D)o(1af)ols' — (fof) o Ac
(fof)o [(C®uc)org' +(uc @ C)olg' = Ac] = (f® f) o ac.
]

LEMMA 2.6. Let i&: F — E and iE : G — E be monomorphisms which are coalgebra homomor-
phisms in a coabelian monoidal category M. Then

<F/\EG F FAgG
——— " pragc :
G e}

FAgG
F
G—>®G)

is a left F-comodule where ¥ pragc is uniquely defined by
G

FARG
EpF/\EG = (’L?@ £ ) OFpF/\EG.
— G —

Furthermore the following diagram

A e}
FApG e (FARG)® (F A G)
pgAEG\L
F/\égG (F/\EG)@pgAEG
FPF/\EG\L
G
iiAEG(X)F/\GEG
F @ £hec (F A G) ® £Lz8
is commutative and
1p1/\EG’ = lilll\EG
G G

whenever F = 1.

Proof. The first part of the statement follows by [Bd, Lemma 2.14].
Let us prove the commutativity of the diagram. We have

, FAgG . FAegG
(#rsee TEEE ) o (1820 0 TREE ) 0P o0l
) FArG

<zg® CJ:E ) pF/\EGOpgAEG meGOpgAEG

(E®pgl\EG) OEPF/\EG — (Zg/\EG@) F/\EG) OAF/\EG-

F/\EG

Since the tensor product is left exact, then if, , ®
the commutativity of the diagram. Finally, since

is a monomorphism so that we obtain

FAeG
Tl enge = <€F ® = ) onmEc and e1 = Idq,
G G G
when F' =1 we obtain the last equality in the statement. |

LEMMA 2.7. Let (E up = zl) be a coaugmented coalgebra in a coabelian monoidal category M.

Then
AT _ANE
(1 B uyag =1
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s a coaugmented coalgebra for every n € N. Furthermore, for every n € N, there exists a unique
n+1 n n
morphism T, : 1°5" — 1°8 @ 18 such that the following diagram

n+1
1"'e

T & jntl

1

.
ntl n1
1"E ® 1B 1\E 1\E
An+1 An+1

18 commutative.

Proof. Set 1" := 1"&, for every n € N.
Since (1,u; =1Idy) is a coaugmented coalgebra and zil is a coalgebra homomorphism, in view of
Lemma 3, it is clear that (1AE, Ujng = zil) is also a coaugmented coalgebra.
Consider the following exact sequence
.t 1t

i1n 1n+1 pPin n+l

1n 0

(2) 0—1"
were p%:H denotes the canonical projection. By applying the functor 1! @ (—) we get

n+41 n+1
1" @iln 1" @pin

O 1n+1 ® 1n 1n+1 ® 1n+1 1n+1 ® 1;:1
ﬁ Taln
1n+1

By Lemma B3, we have

AAR1T ® 1/\E 1" 01 n o 1ANg1™ (1 A 11’7,) ® 1/\E1 OA
21 7171 ,01AE1 Pin E Pin 1Al

and I7'1ape = Ypiage so that
G G

n 1t n n
(3) (Zi1+1 ® 1" ) ol™! 1AEG OpinJrl <1n+1 X inJrl) 0 Aqnt1.
<

We compute

)
1 n+1
-F n+1 1 1
<11n+1® L )o(l"+ ® pin )Ooz1n+1

1n
. 1 1ntan 1ntt 1ntt
B ® an+1 ) (1”+ X pln le ) (¢] T1n+1 + (le (24 pln o ll"+1 +
= 1 o
1n+1 n+1
IR (1n+1 ®p1 ) o A1n+1

)
. Uqn n+1 n+41 _ n+1
<an+1 ® 11:) o {( 11 ®p%n ) o 117}4.1 - (1n+1 ®pin ) o A1n+1:|

B n+1
B (. 131 qntl n+1 1 n+1 1 _ n+1
= <zfn+1 ® ll"n ) o {(zil ® pin ) olit, — i ® ) ol lugc opin | =0,

where the last equahty follows by naturality of the unit constraint.

—_

Since zlnﬂ ® 1{’: L is a monomorphism, we obtain
n+1
(4) <1n+1 ®pin ) oan+1 =0

so that, as the above sequence is exact, by the universal property of kernels, there exists a unique
morphism 3, : 1"T1 — 1"*1 ® 1™ such that

(5) (1 @™ ) o By = ann.
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By applying the functor (—) ® 1™ to (B), we get

i1n+1®1n p1n+1®1n -
0 o 1n ® 17L i 1n+1 ® ln in 1:7;, ® ln
R Tf’"
We have
17L+1 qn+1l n+1 n+1 qn+1
( S ® il ) o(mi @1m) 0B, = (ph @1 ) o (1 @ idi ) 0,
a n
@ (p}nﬂ ® 1n+1) cami = 0
1+l

where the last equality can be proved similarly to (@). Since ® i%:“ is & monomorphism we
1n+1

get (pln ® 1") o B, = 0 so that, as the previous sequence is exact, by the universal property of

177.
kernels there exists a unique morphism 7, : 1! — 1™ ® 1™ such that (i%:“ ® 1") 0 Tn = Bn.
Finally we have

(gz“ @z}z“) 0Ty = (1n+1 ® Zi) o (21 ® 1n) 0Ty = (1n+1 ® Z}::“) 0 By = Qgnir.
a

THEOREM 2.8. Let ((E,AE,EE) S UR = zf) be a coaugmented coalgebra in a coabelian monoidal
category M. Then eg oipp) =0 and

2 .
(1 Ap 1= 1AE,zfA%) = (10 P(E),V (ug,ipm)),
where V (uE, ip(E)) :1® P (E) — E denotes the codiagonal morphism associated to ug and ip(g).

Proof. Set P = P (FE). Since (E,ug) is a coaugmented coalgebra, we apply Lemma P33 to the
coalgebra homomorphism e : E — 1. Thus (1,uy = egif =1dy) is a coaugmented coalgebra and
a10ep = (ep ®eg)oar. We have
(6) ajoegoip=(g®eg)oagoip=0.
By definition, we have
(7) a1 =1®u)or; ' +(ug®@1) ol — Ay :rI1+lI1 — it =ryt
Since a is an isomorphism, in view of (B), we obtain eg o ip = 0. Consider the following exact
sequence
iy )
0—1-%EF 70
E

Since eg o i¥ = Id;, there exists a unique morphism a : 7 — E such that Idg = i¥ep + ap¥.
Clearly the following sequence

E
O—>T—>E5—E>1—>O.

is exact. From ep oip = 0, we get that there exists a unique morphism i : P — % such that
aoip =ip. Thus

V (if,a) o (Idy ®ip) = V (if oldy,a0ip) =V (if,ip) .

where V (zf, a) 16 % — E is the codiagonal morphism associated to ¥ and a. Since V (zf, a)
is an isomorphism and Id; @ ¢ is a monomorphism, we get that V (zf N p) is a monomorphism.
Let us prove that

B

B D)
ago (1 — 17 OEg o1 =0.
E ( 1/\2E 1 E 1/\2E>
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By Lemma 3 and Lemma P74, we have

2 2

E E E E E ANE o 10E E o F

apoi = (i i ocayz = (1 i o1 i or = (¢ i7)oT

E O Ny (1A2E®1A2E) 12 (IA%@?IA%) (1 ® 13 ) 1= (iy ®i1) om
. 2

for a suitable 7y : 1" — 1 ® 1. Then, by Lemma B3, we have

a
(8) (€E®8E)OOZE—O£106E(—)T‘11 OEER.

so that

E @& 4 B

T1=(g®eg)o (zf@zf) o = (stQQEE)ooonzlA

Then
B _ (B o i _ (B o By 1 B
CYEOZIME—(H ®iy) o = (it ®iy)ory CEE O Az

On the other, by Lemma 3, hand we have

.E B E E ® g _ .E 1 .E B
Qpoiy OEF Ol g :(2153®216E)an021A —(zl®zl)or1 0Ep Ol =AEOU s
. . . . . 2
Hence ago (i, —ifoegoif , ) = 0so that, there exists a unique morphism b : 12 — P such
A 1 A 9
1"E 1"E
thf:mtszOb:zEA —zfosEozE . Let

1"E 1°E
A <5EiEA2E,b) 1M S 1eP

be the diagonal morphism of egif, : 1" — 1 and b: 1" — P. We have

/\

V(if,iP)OA<5Ez 2, ,b) —lfosEozlAg +Zp0b—21EA

so that
(9) V (i£,ip) o A ( Eb) =if,
We have

(p¥ @pf) o ApoV (if,ip)
= VI[pf®pr)oApoit, (pf @p7) o Apoip]
V{pFepl)o(if@if)orp W epl)o[(Ecif)ory' + (iF@E)olz]} =0
so that there exists a unique morphism I" (zf, z'p) :1@® P — 1"F such that

V (it ip) =il oL (i1, ip).

Since V (zf, ip) is a monomorphism, so is I' (zf, ip) . On the other hand, we get

if, ol (21 ,zp) oA (Ell/\z 7b) © i

lA%‘ 1/\2E .
Since ifAzE is a monomorphism, we get T’ (i?z’p) oA (EifA% , b) = Idl/\%‘ and hence T’ (if,ip) is

also an epimorphism. Thus I' (zf S0 p) and A ( 2 ,b) are mutual inverses. (]

DEFINITION 2.9. A graded coalgebra (C' = ®,enChr, Ao, e¢) in a cocomplete monoidal category
M is called 0-connected whenever e§ = eci§ : Cop — 1 is an isomorphism
A graded coalgebra C' in a cocomplete monoidal category M is called strictly graded whenever

1) C is 0-connected;
2) C is a strongly N-graded coalgebra.

Next theorem provides our main example of a strictly graded coalgebra.
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THEOREM 2.10. Let M be a cocomplete coabelian monoidal category such that the tensor product
commutes with direct sums. Let ((C,A,€),uc) be a coaugmented coalgebra in M.
Then the associated graded coalgebra
INcl  1Ac1AC1
1 A0l

griC =16
18 a strictly graded coalgebra.

Proof. By [BM32, Theorem 2.10], we have that (gvﬂlC7 AgriCrEgriCc =EC OUC © pgrlc) is a strongly
N-graded coalgebra. Since u¢ is a coalgebra homomorphism, we get
egric = eouc o pf*? = pf*c.

It is now clear that Emc = €grC O zgrlc Id; so that griC also 0-connected and hence it is a

strictly graded coalgebra O

THEOREM 2.11. Let (C = ®,enChr, Ac,ec) be a 0-connected graded coalgebra in a cocomplete
coabelian monoidal category M (e.g. C is strictly graded). Then
1) ((C,Ac,ec) ,uc =1if) is a connected coalgebra where uc = if gli1—=C.

2) (C/\C CA% = (Cod P(C),V (if ,ip(c))) , where V (i§ ,ipc)) : Co @ P (C) — C denotes
CO
the diagonal morphism associated to ig and ip(c).

Moreover if M is also complete and satisfies AB5, then the following assertions are equivalent:
(a) C is a strongly N-graded coalgebra.

() (C1i§) = (P(C) ipe).
In particular, when (b) holds, C is a strictly graded coalgebra.
Proof. 1) By Proposition [BNMI, Proposition 2.5], (C’O, Ag=Agp,e0 = eioc) is a coalgebra in M
and ig is a coalgebra homomorphism. Hence ¢y and ig are both coalgebra homomorphisms so that
§:=1i§ey " is a coalgebra homomorphism and hence ((C,A¢,e¢),9) is a coaugmented coalgebra.
By [BDMST, Proposition 3.3], we have C' = ﬂ( )teN Since gq is a coalgebra isomorphism, we
conclude that lig(lAg)neN = Ci.e. that ((C,Ac,ec),0) is a connected coalgebra.

2) It follows by 1) and in view of Theorem 3.
Now, assume that M is also complete and satisfies AB5 and let us prove that (a) and (b) are
equivalent. By 2), we have

2
(€5%.82) = (Co® P(C),V (i ir(e))
Then, by [BNM, Theorem 2.22], (a) is equivalent to
2

(CO@Cl, (7'0 37’?)) = (06\0362)
and hence to
(10) (Co® C1,V (i i) = (Co @ P (C),V (i§ ,ip(c))) -
(b) = (m) It is trivial.
(™) = (b) By hypothesis there exists an isomorphism A : Cy @ P (C) — Cy @ C; such that
V(1§15 = V(i) o A.

Let ﬂ'c"@cl Cy ® C1 — C, be the canonical projection for a = 0,1. We have

ec oV (if i) =V (ec 0if ec 0if) = V (e, 0Hom(Cy,1)) = €0 © ﬁCO@Cl

and by Theorem B3, we have
ec oV (i§ipc)) =V (50 oif,ec o izca(C)) =V (20, Ostom(p(c) 1) = €00 mg T
Hence, by definition of A we get

Co®C1 Co®P(C)
co oA .

€ooT —ecoV(zo,zl)oA—scoV(zO,ZP(C))—6oo7rc
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Since g is an isomorphism, we get that

(11) ng@cl oA = ng@P(C).

Consider the following diagram

iCo@P(©) 7C0®P(©)
b
0——= P(O) L CypP(C) = Co 0
S
Z-goéBCl ﬂ.g0€901
0 Ch : Co® Cy > Co 0

where the rows are exact and the right square commutes. Hence there is a unique morphism
b: P(C)— C; such that the left square commutes too. Clearly b is an isomorphism. Moreover

i 0b =V (if,if) 0% 0b =V (if ;i) 0 Aoifie) P =V (if . iG ) ) o iy = i)
so that (C1,i€") = (P(C), i, ) O

REMARK 2.12. Let (C = ®,enCh, Ac,ec) be a graded coalgebra in a cocomplete and complete
coabelian monoidal category M satisfying AB5. In view of Theorem EC, C is strictly graded if
and only if it is 0-connected and

(C1,i) = (P(C),ip(c)) -

Note that, when M is the category of vector spaces over a field K, our definition agrees with
Sweedler’s one in [Bu, page 232].

THEOREM 2.13. Let (B,mp,up, Ap,ep) be a braided graded bialgebra in a cocomplete and complete
braided monoidal category (M, c) such that M is abelian satisfying AB5. Assume that the tensor
products are additive, commute with direct sums and are (two-sided) exact. Assume that B is
0-connected as a coalgebra.

Then ((B,Ap,ep),up) is a connected coalgebra.

Moreover B is the braided bialgebra of type one By [B1] associated to By and By if and only if

(@nlen)Q = @7L22Bn and P (B) = Bl'

Proof. By [BM, Theorem 6.10] and Theorem BT, ((B, Ap,ep), ) is a connected coalgebra where
4= i(lfsal : 1 — B. Moreover B is the braided bialgebra of type one By [B;] associated to By and
By if and only if (,51B,)? = ®p>2B, and P (B) = By.

Let us prove that § = upg.

By BRI, Propositions 2.5 and 3.4, ep = €9 0 p& and up = i¥ o ug where ug = pf o up. Thus

Idl:€BOUB:<€OOp()BOi()BOU0:EOOUQ

and hence ug = g5 *. Then we get up = iy ocug = i oy . O

REMARK 2.14. Recall that a TOBA (also called braided Hopf algebra of type one) [BEQ, Definition
3.2.3] in the category YD of Yetter Drinfeld modules over an ordinary K-Hopf algebra H is a
graded bialgebra T' = @,enT, in this category such that

To ~ K, (@n21Tn)2 - @nZQTn7 and P (T) = Tl'

Therefore TOBAs are exactly the bialgebras described in Theorem EI3 in the case when M =
HyD
aYD.
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