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SOME REMARKS ON CONNECTED COALGEBRAS

A. ARDIZZONI AND C. MENINI

Dedicated to Freddy Van Oystaeyen, on the occasion of his sixtieth birthday

Abstract. In this paper we introduce the notions of connected, 0-connected and strictly graded
coalgebra in the framework of an abelian monoidal category M and we investigate the relations
between these concepts. We recover several results, involving these notions, which are well known
in the case when M is the category of vector spaces over a field K. In particular we characterize

when a 0-connected graded bialgebra is a bialgebra of type one.

Introduction

Let M be a coabelian monoidal category such that the tensor product commutes with direct
sums. Given a graded coalgebra (C = ⊕n∈NCn,∆, ε) in M, we can write ∆|Cn

as the sum of unique
components ∆i,j : Ci+j → Ci ⊗ Cj where i + j = n. The coalgebra C is defined to be a strongly
N-graded coalgebra (see [AM1, Definition 2.9]) when ∆C

i,j : Ci+j → Ci⊗Cj is a monomorphism for
every i, j ∈ N. The associated graded coalgebra

grCE = C ⊕ C∧EC

C
⊕ C∧EC∧EC

C∧EC
⊕ · · · ,

for a given subcoalgebra C of a coalgebra E in M, is an example of strongly N-graded coalgebra
(see [AM2, Theorem 2.10]).

A graded coalgebra (C = ⊕n∈NCn,∆C , εC) in a cocomplete monoidal category M is called
0-connected whenever εCi

C
0 : C0 → 1 is an isomorphism where iC0 : C0 → C denotes the canonical

injection. C is called strictly graded whenever it is both strongly N-graded and 0-connected. The
associated graded coalgebra gr1C of a coaugmented coalgebra C in M is an example of a strictly
graded coalgebra (see Theorem 2.10). We also introduce the notion of connected coalgebra in M
(see Definition 2.1).

In Theorem 2.11 we prove the following result. Let (C = ⊕n∈NCn,∆C , εC) be a 0-connected
graded coalgebra in a cocomplete coabelian monoidal category M. Then

1)
(
(C,∆C , εC) , uC = iC1

)
is a connected coalgebra where uC := iC0 ε

−1
0 : 1 → C;

2) C0 ∧C C0 = C0 ⊕ P (C) , where P (C) denotes the primitive part of C.

Moreover, if M is also complete and satisfies AB5, the following assertions are equivalent:

(a) C is a strongly N-graded coalgebra;
(b) C1 = P (C).

This result is then applied to the following setting. Let H be a braided bialgebra in a cocomplete
and complete abelian braided monoidal category (M, c) satisfying AB5. Assume that the tensor
product commutes with direct sums and is two-sided exact. Let M be in H

HMH
H . Let T = TH(M)

be the relative tensor algebra and let T c = T c
H(M) be the relative cotensor coalgebra as introduced

in [AMS1]. In [AM1], we proved that both T and T c have a natural structure of graded braided
bialgebra and that the natural algebra morphism from T to T c, which coincides with the canonical
injections on H and M , is a graded bialgebra homomorphism. Thus its image is a graded braided
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SOME REMARKS ON CONNECTED COALGEBRAS 3

bialgebra which we denote by H[M ] and call, accordingly to [Ni], the braided bialgebra of type one
associated to H and M (see [AM1, Definition 6.7]).

Let now (B,mB, uB ,∆B , εB) be a braided graded bialgebra in (M, c). Assume that B is 0-
connected as a coalgebra. Then, by the foregoing, ((B,∆B , εB) , uB) is a connected coalgebra. We
prove (see Theorem 2.13) that B is the braided bialgebra of type one B0 [B1] associated to B0 and
B1 if and only if

(⊕n≥1Bn)
2
= ⊕n≥2Bn and P (B) = B1.

Therefore TOBAs, as introduced in [AG, Definition 3.2.3], are exactly the braided bialgebras of
type one in M = H

HYD which are 0-connected.

1. Preliminaries and Notations

Notations. Let [(X, iX)] be a subobject of an object E in an abelian category M, where
iX = iEX : X ↪→ E is a monomorphism and [(X, iX)] is the associated equivalence class. By abuse
of language, we will say that (X, iX) is a subobject of E and we will write (X, iX) = (Y, iY ) to
mean that (Y, iY ) ∈ [(X, iX)]. The same convention applies to cokernels. If (X, iX) is a subobject
of E then we will write (E/X, pX) = Coker(iX), where pX = pEX : E → E/X.

Let (X1, i
Y1

X1
) be a subobject of Y1 and let (X2, i

Y2

X2
) be a subobject of Y2. Let x : X1 → X2 and

y : Y1 → Y2 be morphisms such that y ◦ iY1

X1
= iY2

X2
◦x. Then there exists a unique morphism, which

we denote by y/x = y
x : Y1/X1 → Y2/X2, such that y

x ◦ pY1

X1
= pY2

X2
◦ y:

X1

x

��

� �
i
Y1
X1 // Y1

y

��

p
Y1
X1 // Y1

X1

y
x

��
X2

� �
i
Y2
X2 // Y2

p
Y2
X2 // Y2

X2

δu,v will denote the Kronecker symbol for every u, v ∈ N.

1.1. Monoidal Categories. Recall that (see [Ka, Chap. XI]) a monoidal category is a category
M endowed with an object 1 ∈ M (called unit), a functor ⊗ : M × M → M (called tensor
product), and functorial isomorphisms aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), lX : 1 ⊗ X → X,
rX : X ⊗ 1 → X, for every X,Y, Z in M. The functorial morphism a is called the associativity
constraint and satisfies the Pentagon Axiom, that is the following relation

(U ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗X) = aU,V,W⊗X ◦ aU⊗V,W,X

holds true, for every U, V,W,X in M. The morphisms l and r are called the unit constraints and
they obey the Triangle Axiom, that is (V ⊗ lW ) ◦ aV,1,W = rV ⊗W , for every V,W in M.

A braided monoidal category (M, c) is a monoidal category (M,⊗,1) equipped with a braiding
c, that is a natural isomorphism cX,Y : X ⊗ Y −→ Y ⊗X for every X,Y, Z in M satisfying

cX⊗Y,Z = (cX,Z ⊗ Y )(X ⊗ cY,Z) and cX,Y⊗Z = (Y ⊗ cX,Z)(cX,Y ⊗ Z).

For further details on these topics, we refer to [Ka, Chapter XIII].

It is well known that the Pentagon Axiom completely solves the consistency problem arising
out of the possibility of going from ((U ⊗ V ) ⊗ W ) ⊗ X to U ⊗ (V ⊗ (W ⊗ X)) in two different
ways (see [Mj1, page 420]). This allows the notation X1 ⊗ · · · ⊗ Xn forgetting the brackets for
any object obtained from X1, · · ·Xn using ⊗. Also, as a consequence of the coherence theorem,
the constraints take care of themselves and can then be omitted in any computation involving
morphisms in a monoidal category M.
Thus, for sake of simplicity, from now on, we will omit the associativity constraints.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can be
introduced in the general setting of monoidal categories. Given an algebra A inM on can define the
categories AM, MA and AMA of left, right and two-sided modules over A respectively. Similarly,
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given a coalgebra C in M, one can define the categories of C-comodules CM,MC ,CMC . For
more details, the reader is referred to [AMS2].

Definitions 1.2. Let M be a monoidal category.
We say that M is a coabelian monoidal category if M is abelian and both the functors
X ⊗ (−) : M → M and (−)⊗X : M → M are additive and left exact, for any X ∈ M.

1.3. Let M be a coabelian monoidal category.
Let (C, iEC) and (D, iED) be two subobjects of a coalgebra (E,∆, ε). Set

∆C,D := (pEC ⊗ pED)∆ : E → E

C
⊗ E

D

(C ∧E D, iEC∧ED) = ker (∆C,D) , iEC∧ED : C ∧E D → E

(
E

C ∧E D
, pEC∧ED) = Coker

(
iEC∧ED

)
= Im (∆C,D) , pEC∧ED : E → E

C ∧E D

Moreover, we have the following exact sequence:

(1) 0 −→ C ∧E D
iEC∧ED−→ E

pE
C∧ED−→ E

C ∧E D
−→ 0.

Assume now that (C, iEC) and (D, iED) are two subcoalgebras of (E,∆, ε). Since ∆C,D ∈ EME , it is
straightforward to prove that C∧ED is a coalgebra and that iEC∧ED is a coalgebra homomorphism.

Let (C, iEC) be a subobject of a coalgebra (E,∆, ε) in a coabelian monoidal category M. We can
define (see [AMS2]) the n-th wedge product

(
C∧En, iEC∧En

)
of C in E where iEC∧En : C∧En → E.

By definition, we have

C∧E0 = 0 and C∧En = C∧En−1 ∧E C, for every n ≥ 1.

One can check that C∧Ei ∧E C∧Ej = C∧Ei+j for every i, j ∈ N.
Assume now that (C, iEC) is a subcoalgebra of the coalgebra (E,∆, ε). Then there is a (unique)

coalgebra homomorphism

iC
∧En+1

C∧En : C∧En → C∧En+1, for every n ∈ N.

such that iE
C∧En+1 ◦ iC

∧En+1

C∧En = iEC∧En .

1.4. Graded Objects. Let (Xn)n∈N be a sequence of objects in a cocomplete coabelian monoidal
category M and let

X =
⊕
n∈N

Xn

be their coproduct in M. In this case we also say that X is a graded object of M and that the
sequence (Xn)n∈N defines a grading on X. A morphism

f : X =
⊕
n∈N

Xn → Y =
⊕
n∈N

Yn

is called a graded homomorphism whenever there exists a family of morphisms (fn : Xn → Yn)n∈N
such that f = ⊕n∈Nfn i.e. such that

f ◦ iXXn
= iYYn

◦ fn, for every n ∈ N.

We fix the following notations. Throughout let

pXn : X → Xn and iXn : Xn → X

be the canonical projection and injection respectively, for any n ∈ N.
Given graded objects X,Y in M we set

(X ⊗ Y )n = ⊕a+b=n (Xa ⊗ Yb) .

Then this defines a grading on X ⊗ Y whenever the tensor product commutes with direct sums.
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1.5. Let M be a coabelian monoidal category such that the tensor product commutes with direct
sums.

Recall that a graded coalgebra in M is a coalgebra (C,∆, ε) where

C = ⊕n∈NCn

is a graded object of M such that ∆ : C → C ⊗ C is a graded homomorphism i.e. there exists a
family (∆n)

n∈N
of morphisms

∆C
n = ∆n : Cn → (C ⊗ C)n = ⊕a+b=n (Ca ⊗ Cb) such that ∆ = ⊕n∈N∆n.

We set

∆C
a,b = ∆a,b :=

(
Ca+b

∆a+b→ (C ⊗ C)a+b

ωC,C
a,b→ Ca ⊗ Cb

)
.

A homomorphism f : (C,∆C , εC) → (D,∆D, εD) of coalgebras is a graded coalgebra homomor-
phism if it is a graded homomorphism too.

Definition 1.6. [AM1, Definition 2.9] Let (C = ⊕n∈NCn,∆, ε) be a graded coalgebra in M. In
analogy with the group graded case (see [NT]), we say that C is a strongly N-graded coalgebra
whenever

∆C
i,j : Ci+j → Ci ⊗ Cj is a monomorphism for every i, j ∈ N,

where ∆C
i,j is the morphism defined in Definition 1.5.

2. Connected coalgebras

Definitions 2.1. LetM be a coabelian monoidal category. A coaugmented coalgebra ((C,∆, ε) , u)
in M consists of a coalgebra (C,∆, ε) endowed with a coalgebra homomorphism u : 1 → C called
coaugmentation of C. Note that u is a monomorphism as εu = Id1. Given a coaugmented coalgebra
((C,∆, ε) , u) define

αC := (C ⊗ uC) ◦ r−1
C + (uC ⊗ C) ◦ l−1

C −∆C : C → C ⊗ C,(
P (C) , iP (C)

)
= ker (αC) .(

P (C) , iP (C)

)
is called the primitive part of the coaugmented coalgebra C.

A connected coalgebra in M is a coaugmented coalgebra ((C,∆, ε) , u) in M such that

lim−→(1∧n
C )n∈N = C.

Remark 2.2. Let M be the category of vector spaces over a field K and let ((C,∆, ε) , u) be a
connected coalgebra inM accordingly to the previous definition. Then C(0) := Corad (C) ⊆ Im (u)
(see e.g. [AMS1, Lemma 5.2]) and hence C(0) = Im (u) so that C is connected in the usual sense.

On the other hand, since C = lim−→(C
∧n

C

(0) )n∈N it is clear that an ordinary connected coalgebra C is

also a connected coalgebra in M.

Remark 2.3. Let C be a connected coalgebra in the monoidal category of vector spaces over a
field K. Then, the cotensor coalgebra T c = T c

C(M) is strongly N-graded and connected for every
C-bicomodule M . Nevertheless C needs not to be K, in general.

Question 2.4. Let M be a cocomplete coabelian monoidal category and let ((C,∆, ε) , u) be a
connected coalgebra in M. Let M be a C-bicomodule in M. Is it true that the cotensor coalgebra
T c
C(M) is a connected coalgebra?

Lemma 2.5. Let (C, uC) be a coaugmented coalgebra and let f : C → D be a coalgebra homo-
morphism in a coabelian monoidal category M. Then (D,uD) is a coaugmented coalgebra where
uD = f ◦ uC . Moreover

αD ◦ f = (f ⊗ f) ◦ αC .
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Proof. Clearly (D,uD) is a coaugmented coalgebra. Moreover, we have

αD ◦ f =
[
(D ⊗ uD) ◦ r−1

D + (uD ⊗D) ◦ l−1
D −∆D

]
◦ f

= (D ⊗ f ◦ uC) ◦ r−1
D ◦ f + (f ◦ uC ⊗D) ◦ l−1

D ◦ f −∆D ◦ f
= (D ⊗ f ◦ uC) ◦ (f⊗1) ◦ r−1

C + (f ◦ uC ⊗D) ◦ (1⊗f) ◦ l−1
C − (f⊗f) ◦∆C

= (f⊗f) ◦
[
(C ⊗ uC) ◦ r−1

C + (uC ⊗ C) ◦ l−1
C −∆C

]
= (f ⊗ f) ◦ αC .

�

Lemma 2.6. Let iEF : F → E and iEG : G → E be monomorphisms which are coalgebra homomor-
phisms in a coabelian monoidal category M. Then(

F ∧E G

G
, F ρF∧EG

G

:
F ∧E G

G
→ F ⊗ F ∧E G

G

)
is a left F -comodule where F ρF∧EG

G

is uniquely defined by

EρF∧EG

G

=

(
iEF ⊗ F ∧E G

G

)
◦ F ρF∧EG

G

.

Furthermore the following diagram

F ∧E G

p
F∧EG

G

��

∆F∧EG // (F ∧E G)⊗ (F ∧E G)

(F∧EG)⊗p
F∧EG

G

��

F∧EG
G

F ρF∧EG
G ��

F ⊗ F∧EG
G

i
F∧EG

F ⊗F∧EG

G // (F ∧E G)⊗ F∧EG
G

is commutative and
1ρ 1∧EG

G

= l−1
1∧EG

G

whenever F = 1.

Proof. The first part of the statement follows by [Ar, Lemma 2.14].
Let us prove the commutativity of the diagram. We have(

iEF∧EG ⊗ F ∧E G

G

)
◦
(
iF∧EG
F ⊗ F ∧E G

G

)
◦ F ρF∧EG

G

◦ pF∧EG
G

=

(
iEF ⊗ F ∧E G

G

)
◦ F ρF∧EG

G

◦ pF∧EG
G = EρF∧EG

G

◦ pF∧EG
G

=
(
E ⊗ pF∧EG

G

)
◦ EρF∧EG =

(
iEF∧EG ⊗ pF∧EG

G

)
◦∆F∧EG.

Since the tensor product is left exact, then iEF∧EG ⊗ F∧EG
G is a monomorphism so that we obtain

the commutativity of the diagram. Finally, since

l−1
F∧EG

G

=

(
εF ⊗ F ∧E G

G

)
◦ F ρF∧EG

G

and ε1 = Id1,

when F = 1 we obtain the last equality in the statement. �

Lemma 2.7. Let
(
E, uE = iE1

)
be a coaugmented coalgebra in a coabelian monoidal category M.

Then (
1∧n

E , u
1∧n

E
= i1

∧n
E

1

)
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is a coaugmented coalgebra for every n ∈ N. Furthermore, for every n ∈ N, there exists a unique

morphism τn : 1∧n+1
E → 1∧n

E ⊗ 1∧n
E such that the following diagram

1∧n+1
E

τn

uu

α
1
∧n+1
E

��
1∧n

E ⊗ 1∧n
E

i1
∧n+1
E

1
∧n
E

⊗i1
∧n+1
E

1
∧n
E

// 1∧n+1
E ⊗ 1∧n+1

E

is commutative.

Proof. Set 1n := 1∧n
E , for every n ∈ N.

Since (1, u1 = Id1) is a coaugmented coalgebra and i1
n

11 is a coalgebra homomorphism, in view of

Lemma 2.5, it is clear that
(
1∧n

E , u
1∧n

E
= i1

n

11

)
is also a coaugmented coalgebra.

Consider the following exact sequence

(2) 0 // 1n
i1

n+1

1n // 1n+1
p1n+1

1n // 1n+1

1n
// 0

were p1
n+1

1n denotes the canonical projection. By applying the functor 1n+1 ⊗ (−) we get

0 // 1n+1 ⊗ 1n
1n+1⊗i1

n+1

1n // 1n+1 ⊗ 1n+1
1n+1⊗p1n+1

1n // 1n+1 ⊗ 1n+1

1n

1n+1

βn

ii

α1n

OO

By Lemma 2.6, we have(
i1∧E1n

1 ⊗ 1 ∧E 1n

1n

)
◦ 1ρ 1∧E1n

1n
◦ p1∧E1n

1n =
[
(1 ∧E 1n)⊗ p1∧E1n

1n

]
◦∆1∧E1n

and l−1
1∧EG

G

= 1ρ 1∧EG

G

so that

(3)

(
i1

n+1

11 ⊗ 1n+1

1n

)
◦ l−1

1∧EG

G

◦ p1
n+1

1n =
(
1n+1 ⊗ p1

n+1

1n

)
◦∆1n+1 .

We compute(
iE1n+1 ⊗

iE1n+1

1n

)
◦
(
1n+1 ⊗ p1

n+1

1n

)
◦ α1n+1

=

(
iE1n+1 ⊗

iE1n+1

1n

)
◦

 (1n+1 ⊗ p1
n+1

1n i1
n

11

)
◦ r−1

1n+1 +
(
i1

n+1

11 ⊗ p1
n+1

1n

)
◦ l−1

1n+1+

−
(
1n+1 ⊗ p1

n+1

1n

)
◦∆1n+1


=

(
iE1n+1 ⊗

iE1n+1

1n

)
◦
[(

i1
n+1

11 ⊗ p1
n+1

1n

)
◦ l−1

1n+1 −
(
1n+1 ⊗ p1

n+1

1n

)
◦∆1n+1

]
(3)
=

(
iE1n+1 ⊗

iE1n+1

1n

)
◦
[(

i1
n+1

11 ⊗ p1
n+1

1n

)
◦ l−1

1n+1 −
(
i1

n+1

11 ⊗ 1n+1

1n

)
◦ l−1

1∧EG

G

◦ p1
n+1

1n

]
= 0,

where the last equality follows by naturality of the unit constraint.

Since iE1n+1 ⊗
iE
1n+1

1n is a monomorphism, we obtain

(4)
(
1n+1 ⊗ p1

n+1

1n

)
◦ α1n+1 = 0

so that, as the above sequence is exact, by the universal property of kernels, there exists a unique
morphism βn : 1n+1 → 1n+1 ⊗ 1n such that

(5)
(
1n+1 ⊗ i1

n+1

1n

)
◦ βn = α1n+1 .
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By applying the functor (−)⊗ 1n to (2), we get

0 // 1n ⊗ 1n
i1

n+1

1n ⊗1n

// 1n+1 ⊗ 1n
p1n+1

1n ⊗1n

// 1n+1

1n ⊗ 1n

1n+1

τn

ii

βn

OO

We have(
1n+1

1n
⊗ i1

n+1

1n

)
◦
(
p1

n+1

1n ⊗ 1n
)
◦ βn =

(
p1

n+1

1n ⊗ 1n+1
)
◦
(
1n+1 ⊗ i1

n+1

1n

)
◦ βn

(5)
=
(
p1

n+1

1n ⊗ 1n+1
)
◦ α1n+1 = 0

where the last equality can be proved similarly to (4). Since 1n+1

1n ⊗ i1
n+1

1n is a monomorphism we

get
(
p1

n+1

1n ⊗ 1n
)
◦ βn = 0 so that, as the previous sequence is exact, by the universal property of

kernels there exists a unique morphism τn : 1n+1 → 1n ⊗ 1n such that
(
i1

n+1

1n ⊗ 1n
)
◦ τn = βn.

Finally we have(
i1

n+1

1n ⊗ i1
n+1

1n

)
◦ τn =

(
1n+1 ⊗ i1

n+1

1n

)
◦
(
i1

n+1

1n ⊗ 1n
)
◦ τn =

(
1n+1 ⊗ i1

n+1

1n

)
◦ βn = α1n+1 .

�

Theorem 2.8. Let
(
(E,∆E , εE) , uE = iE1

)
be a coaugmented coalgebra in a coabelian monoidal

category M. Then εE ◦ iP (E) = 0 and(
1 ∧E 1 = 1∧2

E , iE
1∧2

E

)
=
(
1⊕ P (E) ,∇

(
uE , iP (E)

))
,

where ∇
(
uE , iP (E)

)
: 1⊕P (E) → E denotes the codiagonal morphism associated to uE and iP (E).

Proof. Set P = P (E). Since (E, uE) is a coaugmented coalgebra, we apply Lemma 2.5 to the
coalgebra homomorphism εE : E → 1. Thus

(
1,u1 = εEi

E
1 = Id1

)
is a coaugmented coalgebra and

α1 ◦ εE = (εE ⊗ εE) ◦ αE . We have

(6) α1 ◦ εE ◦ iP = (εE ⊗ εE) ◦ αE ◦ iP = 0.

By definition, we have

(7) α1 = (1⊗ u1) ◦ r−1
1 + (u1 ⊗ 1) ◦ l−1

1 −∆1 = r−1
1 + l−1

1 − l−1
1 = r−1

1 .

Since α1 is an isomorphism, in view of (6), we obtain εE ◦ iP = 0. Consider the following exact
sequence

0 → 1
iE1−→ E

pE
1−→ E

1
→ 0.

Since εE ◦ iE1 = Id1, there exists a unique morphism a : E
1 → E such that IdE = iE1 εE + apE1 .

Clearly the following sequence

0 → E

1

a−→ E
εE−→ 1 → 0.

is exact. From εE ◦ iP = 0, we get that there exists a unique morphism i′P : P → E
1 such that

a ◦ i′P = iP . Thus

∇
(
iE1 , a

)
◦ (Id1 ⊕ i′P ) = ∇

(
iE1 ◦ Id1, a ◦ i′P

)
= ∇

(
iE1 , iP

)
.

where ∇
(
iE1 , a

)
: 1⊕ E

1 → E is the codiagonal morphism associated to iE1 and a. Since ∇
(
iE1 , a

)
is an isomorphism and Id1 ⊕ i′P is a monomorphism, we get that ∇

(
iE1 , iP

)
is a monomorphism.

Let us prove that

αE ◦
(
iE
1∧2

E
− iE1 ◦ εE ◦ iE

1∧2
E

)
= 0.
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By Lemma 2.5 and Lemma 2.7, we have

αE ◦ iE
1∧2

E
=
(
iE
1∧2

E
⊗ iE

1∧2
E

)
◦ α12 =

(
iE
1∧2

E
⊗ iE

1∧2
E

)
◦
(
i1

∧2
E

1 ⊗ i1
∧2
E

1

)
◦ τ1 =

(
iE1 ⊗ iE1

)
◦ τ1

for a suitable τ1 : 1∧2
E → 1⊗ 1. Then, by Lemma 2.5, we have

(8) (εE ⊗ εE) ◦ αE = α1 ◦ εE
(7)
= r−1

1 ◦ εE .

so that

τ1 = (εE ⊗ εE) ◦
(
iE1 ⊗ iE1

)
◦ τ1 = (εE ⊗ εE) ◦ αE ◦ iE

1∧2
E

(8)
= r−1

1 ◦ εE ◦ iE
1∧2

E
.

Then

αE ◦ iE
1∧2

E
=
(
iE1 ⊗ iE1

)
◦ τ1 =

(
iE1 ⊗ iE1

)
◦ r−1

1 ◦ εE ◦ iE
1∧2

E
.

On the other, by Lemma 2.5, hand we have

αE ◦ iE1 ◦ εE ◦ iE
1∧2

E
=
(
iE1 εE ⊗ iE1 εE

)
◦ αE ◦ iE

1∧2
E

(8)
=
(
iE1 ⊗ iE1

)
◦ r−1

1 ◦ εE ◦ iE
1∧2

E
= αE ◦ iE

1∧2
E
.

Hence αE ◦
(
iE
1∧2

E
− iE1 ◦ εE ◦ iE

1∧2
E

)
= 0 so that, there exists a unique morphism b : 1∧2

E → P such

that iP ◦ b = iE
1∧2

E
− iE1 ◦ εE ◦ iE

1∧2
E
. Let

∆
(
εEi

E

1∧2
E
, b
)
: 1∧2

E → 1⊕ P

be the diagonal morphism of εEi
E

1∧2
E
: 1∧2

E → 1 and b : 1∧2
E → P. We have

∇
(
iE1 , iP

)
◦∆

(
εEi

E

1∧2
E
, b
)
= iE1 ◦ εE ◦ iE

1∧2
E
+ iP ◦ b = iE

1∧2
E

so that

(9) ∇
(
iE1 , iP

)
◦∆

(
εiE

1∧2
E
, b
)
= iE

1∧2
E
.

We have (
pE1 ⊗ pE1

)
◦∆E ◦ ∇

(
iE1 , iP

)
= ∇

[(
pE1 ⊗ pE1

)
◦∆E ◦ iE1 ,

(
pE1 ⊗ pE1

)
◦∆E ◦ iP

]
= ∇

{(
pE1 ⊗ pE1

)
◦
(
iE1 ⊗ iE1

)
◦∆E ,

(
pE1 ⊗ pE1

)
◦
[(
E ⊗ iE1

)
◦ r−1

E +
(
iE1 ⊗ E

)
◦ l−1

E

]}
= 0

so that there exists a unique morphism Γ
(
iE1 , iP

)
: 1⊕ P → 1∧2

E such that

∇
(
iE1 , iP

)
= iE

1∧2
E
◦ Γ
(
iE1 , iP

)
.

Since ∇
(
iE1 , iP

)
is a monomorphism, so is Γ

(
iE1 , iP

)
. On the other hand, we get

iE
1∧2

E
◦ Γ
(
iE1 , iP

)
◦∆

(
εiE

1∧2
E
, b
)

(9)
= iE

1∧2
E
.

Since iE
1∧2

E
is a monomorphism, we get Γ

(
iE1 , iP

)
◦ ∆

(
εiE

1∧2
E
, b
)
= Id

1∧2
E

and hence Γ
(
iE1 , iP

)
is

also an epimorphism. Thus Γ
(
iE1 , iP

)
and ∆

(
εiE

1∧2
E
, b
)
are mutual inverses. �

Definition 2.9. A graded coalgebra (C = ⊕n∈NCn,∆C , εC) in a cocomplete monoidal category
M is called 0-connected whenever εC0 = εCi

C
0 : C0 → 1 is an isomorphism

A graded coalgebra C in a cocomplete monoidal category M is called strictly graded whenever

1) C is 0-connected;
2) C is a strongly N-graded coalgebra.

Next theorem provides our main example of a strictly graded coalgebra.
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Theorem 2.10. Let M be a cocomplete coabelian monoidal category such that the tensor product
commutes with direct sums. Let ((C,∆, ε) , uC) be a coaugmented coalgebra in M.

Then the associated graded coalgebra

gr1C = 1⊕ 1∧C1

1
⊕ 1∧C1∧C1

1∧C1
⊕ · · ·

is a strictly graded coalgebra.

Proof. By [AM2, Theorem 2.10], we have that
(
gr1C,∆gr1C , εgr1C = εC ◦ uC ◦ pgr1C0

)
is a strongly

N-graded coalgebra. Since uC is a coalgebra homomorphism, we get

εgr1C = ε ◦ uC ◦ pgr1C0 = pgr1C0 .

It is now clear that εgr1C0 := εgr1C ◦ igr1C0 = Id1 so that gr1C also 0-connected and hence it is a
strictly graded coalgebra. �
Theorem 2.11. Let (C = ⊕n∈NCn,∆C , εC) be a 0-connected graded coalgebra in a cocomplete
coabelian monoidal category M (e.g. C is strictly graded). Then

1)
(
(C,∆C , εC) , uC = iC1

)
is a connected coalgebra where uC := iC0 ε

−1
0 : 1 → C.

2)

(
C

∧2
C

0 , iC
C

∧2
C

0

)
=
(
C0 ⊕ P (C) ,∇

(
iC0 , iP (C)

))
, where ∇

(
iC0 , iP (C)

)
: C0 ⊕P (C) → C denotes

the diagonal morphism associated to iC0 and iP (C).
Moreover if M is also complete and satisfies AB5, then the following assertions are equivalent:
(a) C is a strongly N-graded coalgebra.
(b)
(
C1, i

C
1

)
=
(
P (C) , iP (C)

)
.

In particular, when (b) holds, C is a strictly graded coalgebra.

Proof. 1) By Proposition [AM1, Proposition 2.5],
(
C0,∆0 = ∆0,0, ε0 = εiC0

)
is a coalgebra in M

and iC0 is a coalgebra homomorphism. Hence ε0 and iC0 are both coalgebra homomorphisms so that
δ := iC0 ε

−1
0 is a coalgebra homomorphism and hence ((C,∆C , εC) , δ) is a coaugmented coalgebra.

By [AMS1, Proposition 3.3], we have C = lim−→(C
∧t

C
0 )t∈N. Since ε0 is a coalgebra isomorphism, we

conclude that lim−→(1∧n
C )n∈N = C i.e. that ((C,∆C , εC) , δ) is a connected coalgebra.

2) It follows by 1) and in view of Theorem 2.8.
Now, assume that M is also complete and satisfies AB5 and let us prove that (a) and (b) are
equivalent. By 2), we have (

C
∧2

C
0 , δ2

)
=
(
C0 ⊕ P (C) ,∇

(
iC0 , iP (C)

))
.

Then, by [AM1, Theorem 2.22], (a) is equivalent to(
C0 ⊕ C1,∇

(
iC0 , i

C
1

))
=
(
C

∧2
C

0 , δ2

)
and hence to

(10)
(
C0 ⊕ C1,∇

(
iC0 , i

C
1

))
=
(
C0 ⊕ P (C) ,∇

(
iC0 , iP (C)

))
.

(b) ⇒ (10) It is trivial.
(10) ⇒ (b) By hypothesis there exists an isomorphism Λ : C0 ⊕ P (C) → C0 ⊕ C1 such that

∇
(
iC0 , i

C
P (C)

)
= ∇

(
iC0 , i

C
1

)
◦ Λ.

Let πC0⊕C1

Ca
: C0 ⊕ C1 → Ca be the canonical projection for a = 0, 1. We have

εC ◦ ∇
(
iC0 , i

C
1

)
= ∇

(
εC ◦ iC0 , εC ◦ iC1

)
= ∇

(
ε0, 0Hom(C1,1)

)
= ε0 ◦ πC0⊕C1

C0

and by Theorem 2.8, we have

εC ◦ ∇
(
iC0 , iP (C)

)
= ∇

(
εC ◦ iC0 , εC ◦ iCP (C)

)
= ∇

(
ε0, 0Hom(P (C),1)

)
= ε0 ◦ πC0⊕P (C)

C0
.

Hence, by definition of Λ we get

ε0 ◦ πC0⊕C1

C0
◦ Λ = εC ◦ ∇

(
iC0 , i

C
1

)
◦ Λ = εC ◦ ∇

(
iC0 , iP (C)

)
= ε0 ◦ πC0⊕P (C)

C0
.
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Since ε0 is an isomorphism, we get that

(11) πC0⊕C1

C0
◦ Λ = π

C0⊕P (C)
C0

.

Consider the following diagram

0 // P (C)

b

��

i
C0⊕P (C)

P (C) // C0 ⊕ P (C)

Λ

��

π
C0⊕P (C)

C0 // C0

IdC0

��

// 0

0 // C1

i
C0⊕C1
C1 // C0 ⊕ C1

π
C0⊕C1
C0 // C0

// 0

where the rows are exact and the right square commutes. Hence there is a unique morphism
b : P (C) → C1 such that the left square commutes too. Clearly b is an isomorphism. Moreover

iC1 ◦ b = ∇
(
iC0 , i

C
1

)
◦ iC0⊕C1

C1
◦ b = ∇

(
iC0 , i

C
1

)
◦ Λ ◦ iC0⊕P (C)

P (C) = ∇
(
iC0 , i

C
P (C)

)
◦ iC0⊕P (C)

P (C) = iCP (C)

so that
(
C1, i

C
1

)
=
(
P (C) , iCP (C)

)
. �

Remark 2.12. Let (C = ⊕n∈NCn,∆C , εC) be a graded coalgebra in a cocomplete and complete
coabelian monoidal category M satisfying AB5. In view of Theorem 2.11, C is strictly graded if
and only if it is 0-connected and (

C1, i
C
1

)
=
(
P (C) , iP (C)

)
.

Note that, when M is the category of vector spaces over a field K, our definition agrees with
Sweedler’s one in [Sw, page 232].

Theorem 2.13. Let (B,mB , uB ,∆B, εB) be a braided graded bialgebra in a cocomplete and complete
braided monoidal category (M, c) such that M is abelian satisfying AB5. Assume that the tensor
products are additive, commute with direct sums and are (two-sided) exact. Assume that B is
0-connected as a coalgebra.
Then ((B,∆B , εB) , uB) is a connected coalgebra.
Moreover B is the braided bialgebra of type one B0 [B1] associated to B0 and B1 if and only if

(⊕n≥1Bn)
2
= ⊕n≥2Bn and P (B) = B1.

Proof. By [AM1, Theorem 6.10] and Theorem 2.11, ((B,∆B , εB) , δ) is a connected coalgebra where
δ := iB0 ε

−1
0 : 1 → B. Moreover B is the braided bialgebra of type one B0 [B1] associated to B0 and

B1 if and only if (⊕n≥1Bn)
2
= ⊕n≥2Bn and P (B) = B1.

Let us prove that δ = uB .
By [AM1, Propositions 2.5 and 3.4], εB = ε0 ◦ pB0 and uB = iB0 ◦ u0 where u0 = pB0 ◦ uB . Thus

Id1 = εB ◦ uB = ε0 ◦ pB0 ◦ iB0 ◦ u0 = ε0 ◦ u0

and hence u0 = ε−1
0 . Then we get uB = iB0 ◦ u0 = iB0 ◦ ε−1

0 . �

Remark 2.14. Recall that a TOBA (also called braided Hopf algebra of type one) [AG, Definition
3.2.3] in the category H

HYD of Yetter Drinfeld modules over an ordinary K-Hopf algebra H is a
graded bialgebra T = ⊕n∈NTn in this category such that

T0 ≃ K, (⊕n≥1Tn)
2
= ⊕n≥2Tn, and P (T ) = T1.

Therefore TOBAs are exactly the bialgebras described in Theorem 2.13 in the case when M =
H
HYD.
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