Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/98681 since 2017-01-19T17:59:45Z

Published version:
DOI:10.1152/japplphysiol.00003.2011

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
This is the author's final version of the contribution published as:

The publisher's version is available at:
https://syndication.highwire.org/content/doi/10.1152/japplphysiol.00003.2011

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/98681
Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy, in standard clinical tests

Canova D., Roatta S.*, Bosone D., Micieli G.

1Dept. of Neuroscience, Physiology Div., University of Torino, Torino, Italy
2Neurovascular Laboratory - IRCCS National Neurological Institute "C.Mondino Foundation", Pavia, Italy.
3Dept. of Emergency Neurology, IRCCS National Neurological Institute , "C.Mondino Foundation", Pavia, Italy.

Running head: Inconsistent detection of changes in cerebral blood volume

*Corresponding Author
Silvestro Roatta
Dip. Neuroscienze, Sez. Di Fisiologia, Università di Torino
C.so Raffaello 30, 10125 Torino, Italy.
Tel. +39 0116708485; fax. +39 011 6708174
e-mail: silvestro.roatta@unito.it
Abstract

The attractive possibility of near infrared spectroscopy (NIRS) to non invasively assess cerebral blood volume and oxygenation is challenged by the possible interference from extracranial tissues. However, to what extent this may affect cerebral NIRS monitoring during standard clinical tests is ignored.

To address this issue, 29 healthy subjects underwent a randomized sequence of 3 maneuvers that differently affect intra- and extracranial circulation: Valsalva Maneuver (VM), Hyperventilation (HV) and Head-up tilt (HUT). Putative intracranial (“i”) and extracranial (“e”) NIRS signals were collected from the forehead and from the cheek, respectively, and acquired together with cutaneous plethysmography at the forehead (PPG), cerebral blood velocity from the middle cerebral artery and arterial blood pressure.

Extracranial contribution to cerebral NIRS monitoring was investigated by comparing Beer-Lambert (BL) and spatially resolved spectroscopy (SRS) blood volume indicators (the total haemoglobin concentration, tHb, and the total haemoglobin index, THI, respectively) and by correlating their changes with changes in extracranial circulation.

While THIe and tHbe generally provided concordant indications, tHbi and THIi exhibited opposite-sign changes in a high percentage of cases (VM: 46%; HV: 31%; HUT: 40%). Moreover, tHbi was correlated with THIi only during HV (p<0.05), not during VM and HUT, while it correlated with PPG in all 3 maneuvers (p<0.01). These results evidence that extracranial circulation may markedly affect BL parameters in a high percentage of cases, even during standard clinical tests. Surface plethysmography at the forehead is suggested as complementary monitoring helpful in the interpretation of cerebral NIRS parameters.

Keywords: near infrared spectroscopy, cerebrovascular reactivity, hyperventilation, Valsalva maneuver, head-up tilt
Introduction

Near Infrared Spectroscopy is an attractive technology for non invasive monitoring tissue oxygenation and blood volume changes, also at cerebral level. However, a number of factors limits its reliability in the clinical practice, at least in the adult subjects where NIRS must be applied in reflectance mode because transillumination is not possible (1). In fact this type of application has generated concerns about the actual sampling volume and, most significantly, the issue of signal contamination by the extracranial tissue layers (11, 15-17, 23, 32). The issue is particularly relevant if we consider that extracranial circulation may be heavily influenced by several factors including emotional stimuli, postural changes and thermoregulation. Thus, the possibility exists that changes in extracranial circulation are detected by the NIRS optodes, usually positioned on the forehead, and misinterpreted in terms of changes in cerebral parameters.

Aiming to minimize the influence of extracerebral circulation on NIRS measurements different algorithms have been applied (37, 47) and a number of techniques have been developed, such as time-resolved spectroscopy (8, 19), phase-resolved spectroscopy (14) and spatially resolved spectroscopy (SRS), the latter being based on collecting the backscattered light at multiple sites (3, 31, 43).

The interference from extracranial circulation on cerebral NIRS monitoring, particularly on classical Beer-Lambert (BL) parameters, was clearly evidenced during rather extreme maneuvers such as selective transient clamping of the external and internal carotid arteries, in surgical patients (2, 4). However, the contribution of extracerebral vascular beds to changes in putative intracerebral NIRS variables remains difficult to detect and quantify in physiological conditions and in response to standard hemodynamic tests. For this reason the higher cerebral specificity of SRS parameters is not considered to be particularly important in non-extreme conditions, standard BL parameters are still
frequently used in clinical investigations and the risk of interference from extracerebral compartments is still underestimated.

We have reported preliminary observations about incongruous indications by BL and SRS parameters, which occasionally detected changes in blood volume or in tissue oxygenation of opposite sign, during neurovegetative tests (6). We hypothesized that the BL-SRS disagreement was due to a differential influence of extracranial circulation on the two sets of parameters or, in other words, that extracranial circulation was potentially capable of reverting a putatively cerebral NIRS indicator during standard clinical examinations.

With the present study we aimed to assess and document the role of extracranial circulation in disturbing NIRS monitoring of cerebral perfusion during three standard clinical tests, i.e., the Valsalva maneuver (VM), hyperventilation (HV) and head-up-tilt (HUT). These maneuvers, that are frequently adopted to investigate cerebrovascular reactivity and autoregulation also, but differently, affect extracranial circulation. For this reason they constitute a good model to reveal the possible extracranial influence on NIRS parameters. The study is based on the NIRO 300 (Hamamatsu Photonics) which implements both the original BL methodology with the more recently developed SRS and allows for direct comparison of the two sets of data.

The attention is focused in particular on the detection of changes in blood volume as detected by the change in total hemoglobin concentration (tHb), provided by BL algorithm, and the total hemoglobin index (THI), provided by SRS. Moreover, changes in blood volume occurring in the extracranial circulation were simultaneously monitored in different ways: by a second NIRS channel, the probe being applied on the cheek, and by a cutaneous photoplethysmographic device applied on the forehead. In a smaller number of subjects a cutaneous laser Doppler flowmeter applied to the forehead was also employed.
Methods

Subjects

Twenty-nine healthy volunteers, aged between 23 and 40 yr (8 males and 21 females), were enrolled in the study after providing written informed consent. The study was conducted at the “C Mondino” Neurological Hospital after approval by the local Ethical Committee.

Protocols

The study was performed in a quiet room at a constant ambient temperature (~ 23°C). The subjects were kept supine on an electrical auto-tilt table, were not allowed to speak during the experiment and were asked to keep their eyes closed and relax. The three different maneuvers were performed sequentially in randomized order, separated by a resting period of 10-15 minutes during which the subjects remained in the supine position.

Valsalva maneuver

The subjects performed VM by expiring through a closed mouthpiece connected to a manometer that they could read (33). They were requested to generate and hold a positive alveolar pressure of 40 mmHg for 15 s, after a normal-size inspiration. A small leak in the tubing prevented the subjects from maintaining the pressure by closing the glottis (33).

Hyperventilation

The subjects were asked to hyperventilate to achieve and maintain for 1 min an end-tidal carbon dioxide pressure ($P_{ET\text{-}CO_2}$) of 20 mmHg. Visual feedback was obtained directly from the display of the capnograph (20).
Passive head-up tilt to 70° for 5 min was performed. The bed was electrically operated by the experimenter; up and down rotation being performed in about 20s.

Near Infrared Spectroscopy

NIRS monitoring was performed by a two-channel NIRO 300 monitor (Hamamatsu Photonics K.K.). The NIRO 300 is a noninvasive bedside monitor that employs 4 pulsed laser diodes (emitter optode) emitting light at different wavelengths (775, 810, 850 and 910 nm) and collects scattered light by 3 closely placed photodiodes (receiver optode). The device simultaneously provides 3 parameters by conventional differential spectroscopy, based on a modified BL law (12) and on the information collected by a single photodiode, and 2 parameters based on SRS (3, 31) that takes advantage of all three photodiodes (4).

BL parameters measure concentration changes in oxyhemoglobin (O$_2$Hb), deoxyhemoglobin (HHb) and total hemoglobin (tHb = O$_2$Hb + HHb) and are all expressed in μM/L; they do not provide a measure of the absolute concentration of the chromophores, but of concentration changes with respect to an arbitrary value (31).

SRS measures tissue oxygenation by the tissue oxygenation index (TOI), expressed in %, and total tissue hemoglobin concentration by the tissue hemoglobin index (THI) expressed in arbitrary units. These two parameters allow to assess relative changes in tissue oxygenation and tissue blood volume.

Intracranial measurements

One NIRS channel was used for intracranial monitoring, the probe being placed high on left side of the forehead to exclude the temporalis muscle from the sampling volume and
sufficiently lateral from the midline to exclude the superior sagittal sinus. NIRS optodes were set at a distance of 5 cm by a rubber holder secured to the skin by bi-adhesive foam and further stabilized by a crepe bandage around the head (2).

In addition blood velocity in the left middle cerebral artery (V_{MCA}) was monitored using a 2-MHz transcranial Doppler ultrasonography (Multidop X, DWL, Germany), the Doppler probe being held by a headset for bilateral monitoring.

Extracranial measurements

The second NIRO channel was used for extracranial monitoring, the probe being positioned on the left cheek.

In addition, extracranial circulation was monitored through an infrared plethysmograph transducer (MLT1020 IR Plethysmograph, PowerLab ADInstruments), detecting changes in blood volume from the cutaneous microcirculation (PPG), the probe being placed on the right side of the forehead. In a smaller group of subjects (n=9) laser Doppler flowmetry (LDF) (MBF3D, Moor Instruments Ltd, England) was also employed to monitor cutaneous blood flow at the forehead (right side). Application of LDF and PPG on the right side of the forehead, opposite to the intracranial NIRS monitoring, prevented possible interference with NIRS signals.

Systemic measurements

Continuous non-invasive measurement of arterial blood pressure (ABP) was performed by photo-plethysmography (Finapres, Ohmeda 2300, USA) applied to the right third finger. $P_{ET}CO_2$ was continuously recorded using a small nasal cannula connected to a capnograph (Ohmeda 4700 OxiCap, USA).
Signal Acquisition and Processing

All NIRS signals from both channels, O_2Hbi, HHbi, tHbi, THli, TOli, O_2Hbe, HHbe, tHbe, THle and TOle (the subscripts i and e indicate the intracranial and extracranial monitoring, respectively) were continuously acquired and digitally transferred to PC by a proprietary software (Hamamatsu Photonics) (sampling frequency: 2Hz) throughout the whole session. These data were subsequently exported in text files for off-line analysis under Microsoft Excel.

In addition, V_{MCA}, ABP, $P_{ET}CO_2$, PPG and LDF, along with some of the NIRS signals (tHbi, THli, tHbe and THle) were continuously acquired on PC (PowerLab ML 785 ADInstruments) (sampling freq = 200 Hz) throughout the whole session. The same software enabled off-line calculation of heart rate (HR) and was used to extract mean values and relative changes of the different signals throughout the different maneuvers.

Data analysis and statistics

The response to the different maneuvers was assessed by computing absolute or relative changes exhibited by the different variables with respect to the pre-test (control) value. The control value was computed as the mean value over a 30-s interval immediately before the beginning of the test, whereas mean values elicited by each maneuver were computed over the phase II of the response to VM (46), over a 20-s interval starting 40 s after the beginning of HV, and over a 30-s interval starting 3 min after the beginning of HUT.
Inconsistency between BL and SRS parameters was assessed by detecting opposite changes in the blood volume indicators tHbi and THli in response to the different maneuvers.

Data are presented as mean±SD.

Changes produced on the different variables (V_{MCA}, ABP, HR, TOli, THli, tHbi, TOle, THle, tHbe and PPG) with respect to the pre-test (control) values were tested separately for the three maneuvers by means of a multivariate ANOVA and the Tukey HSD post-hoc test.

Significance of changes in LDF, that was collected from a smaller number of subjects, was separately assessed by the Student's t-test.

Pearson correlation coefficient was calculated to assess the correlation between different parameters.

Results

Out of the 29 recruited subjects, two failed to complete the HUT, in 5 subjects the extracranial NIRS recording was not performed because of one probe being under scheduled maintenance and in 2 subjects changes in extracranial NIRS variables during VM could not be assessed due to saturation of the signals.

Valsalva Maneuver

The response to VM from a representative subject is shown in Fig. 1. In the ABP trace the different phases of the response can be identified, labeled from I to IV (46). V_{MCA} exhibited the initial decrease, followed by the gradual recovery starting before the end of the maneuver.
It can be observed that, while the extracranial NIRS variables \(t_{Hbe} \) and \(TH_{le} \) concordantly detect an increase in tissue blood volume at the cheek, the two cerebral parameters give a contradictory indication: a decrease in \(TH_{li} \) and a clear-cut increase in \(t_{Hbi} \). Notably, the same pattern of increase exhibited by \(t_{Hbi} \) is also exhibited by skin plethysmography at the forehead (PPG).

Average changes, evaluated in phase II, are shown in Table 1 for the different variables. VM systemic effects resulted in non significant changes in ABP and significant HR increase (from 75.8 ± 10.2 to 100.3 ± 18.3 bpm). At cerebral level both \(V_{MCA} \) and TOI significantly decreased while inconsistent indication about cerebral blood volume is provided by \(TH_{li} \) and \(t_{Hbi} \), the former was not significantly affected while the latter was significantly increased. In particular, \(t_{Hbi} \) increased in 100% of cases while \(TH_{li} \) decreased in 46% which means that \(TH_{li} \) and \(t_{Hbi} \) provided a contradictory indication, as pointed out for the subject recorded in Fig. 2, in almost half of the population examined.

The lower part of Table 1 reports values obtained from extracerebral monitoring. While LDF produced variable and non significant results, both NIRS (cheek) and surface photoplethysmography applied to the forehead reported very significant increases in the blood volume indicators \(TH_{le} \), \(t_{Hbe} \), PPG and TOIe.

The scatter plots shown in Fig. 2 help to understand the correlation between the different variables, while all R values are summarized in Tab. 2. In particular, Fig. 2a underlines the agreement between \(TH_{le} \) and \(t_{Hbe} \) which never gave contradictory indications and exhibited a correlation of \(R = 0.54 \) \((p<0.05)\) which rises to 0.74 after removing one outlier. Conversely, a non significant correlation was observed between \(t_{Hbi} \) and \(TH_{li} \) (Fig. 2b). It is interesting to observe that a significant correlation resulted between \(t_{Hbi} \) and PPG \((R = 0.48, p<0.05)\) (Fig. 2c) and between \(t_{Hbi} \) and PPG \((R = 0.50, p<0.01)\) (Fig. 2d).
Notably, cutaneous plethysmography at the forehead was not correlated with \(tHbe \) \((R=0.15)\), although they both increased in 100% of subjects, nor with LDF \((R=-0.031)\). LDF and PPG showed concordant changes in 30% of the cases.

Hyperventilation

The response to HV of a representative subject is shown in Fig. 3. \(P_{ETCO_2} \) stabilizes at 20 mmHg during the maneuver and \(V_{MCA} \) exhibits a marked reduction with a latency of 10-15 s while ABP exhibits a transient increase. In this subject intracranial blood volume indicators exhibit opposite changes, while \(THle \) and \(thbe \), as well as PPG, all indicate an increase in extracranial blood volume. On average (Table 1), HV produced a significant increase in HR (from 74.7 \(\pm \) 10.4 to 104.2 \(\pm \) 20.8 bpm), a small decrease in ABP (from 85.8 \(\pm \) 13.2 to 80.5 \(\pm \) 15.4 mmHg), along with a marked and sustained decrease in \(V_{MCA} \) (from 62.4 \(\pm \) 13.11 to 46.5 \(\pm \) 7.3 cm/s).

Blood volume in the extracranial compartment (cheek) exhibited changes of variable sign in the different subjects resulting in non significant average change. However a good correlation resulted between \(THle \) and \(tHbe \) \((R=0.73, p<0.01)\) (Fig. 4a). At cerebral level \(thbi \) was not significantly affected, while \(THli \) exhibited on average a significant decrease (it was reduced in 80% of the subjects). When looking at individual trials, the two parameters provided contradictory indications in 31% of the cases (Fig. 4b).

\(thbi \) resulted significantly correlated with the extracranial indicators \(tHbe \) \((R = 0.57, p<0.01)\) (Fig. 4c) and PPG \((R = 0.70, p<0.01)\) (Fig. 4d), as well as with \(THli \) \((R=0.47, p<0.05)\) (Fig 4b).

With respect to VM, a lower agreement is here observed between extracranial blood volume changes at the cheek \(tHbe \) and at the forehead (PPG), exhibiting opposite sign in
50% of the cases, while a 78% agreement and a significant correlation is observed between LDF and PPG ($R = 0.86, P<0.01$).

Notably, oxygenation indices show again opposite average changes at intracranial (increase) and extracranial (decrease) level.

Head-up tilt

The response to HUT in a representative subject is shown in Fig. 5. A slight decrease in V_{MCA}, ABP and P_{ETCO_2} can be observed, particularly in the first minutes after the tilt-up. NIRS blood volume indices exhibit discordant patterns at cerebral level with a decrease in $tHbi$ and an increase in $THli$. At the cheek level no appreciable change in $tHbe$ and a clear decrease in $THle$ are exhibited while forehead skin blood volume (PPG) decreased with a time course remarkably similar to $tHbi$'s.

On average (see Table 1), HUT elicited a significant increase in HR (from 73.7 ± 9.8 to 89.6 ± 10.8 bpm), non-significant changes in ABP (at heart level), and a significant decrease in V_{MCA} (from 64.2 ± 15.6 to 59.2 ± 11.2 cm/s).

Unlike previous maneuvers, oxygenation indices show concordant changes: a significant decrease in both $TOli$ and $TOle$.

At extracranial level blood volume does not appear to be univocally affected. At the cheek level both $THle$ and $tHbe$ reveal a significant decrease (in 100% of the subjects) and a good correlation ($R = 0.63, p<0.01$) (Fig. 6a) while cutaneous blood volume index from forehead (PPG) evidences a greater response variability (8 increases out of 29 subjects), resulting in a non-significant change. In addition PPG variations were not correlated with changes in $tHbe$ ($R = -0.068$), the two variables exhibiting changes of opposite sign in 30% of the cases.
With regard to the intracranial compartment, both THli and tHbi showed a large variability and no significant changes on average; nevertheless, when looking at the individual trials, the two parameters yielded contradictory indications in 40% of the cases and resulted to be non significantly correlated ($R = 0.27$) (Fig. 6b).

At variance with what observed for VM and HV, the scatter plots here evidenced a non significant correlation between changes in tHbi and changes in tHbe ($R = 0.37$, Fig. 6c). However, tHbi was still significantly correlated with PPG ($R = 0.55$, $p<0.01$, Fig. 6d); in particular, it can be observed that large changes in PPG are associated with large changes in tHbi. This relationship also hold for responses to VM and HV (Fig. 2d, 4d and Fig. 6d). PPG and LDF exhibited a 70% agreement and a non significant correlation.

Figure 7 provides a summary of the correlations among the following variables: tHbi, THli (intracranial variables), PPG and tHbe (extracranial variables). In order to graphically emphasize the degree of correlation between two given variables, these have been connected by lines whose thickness is proportional to the R value. In addition, dashed instead of continuous lines have been used whenever the correlation was not statistically significant. By considering the three maneuvers all together it can be observed that tHbi, the putative intracranial BL parameter, exhibits a stronger correlation with extracranial indicators, i.e., tHbe (2 out of 3 correlations are statistically significant) and PPG (all correlations are significant), than with THli (only 1 correlation is significant). Conversely, THli exhibits a weak correlation with the same extracranial indicators PPG (only 1 of the correlations is significant) and tHbe (none of the correlations is significant).

The correlations between V_{MCA} and the two intracranial NIRS parameters tHbi and THli are always non-significant (Tab. 2).
Discussion

The present study shows that tHbi and THIi, respectively the BL and SRS NIRS indicators of cerebral blood volume, give contradictory information in a high percentage of cases, ranging between 31 and 46% (average 39%), during maneuvers routinely used in clinical investigations. Such inconsistency is observed to a much lesser extent in extracranial NIRS monitoring (occurrence of discordant indications between tHbe and THle: 6.6 %, on average).

The strong correlation observed between the tHbi and the extracranial indicators of blood volume, as compared to the weak or absent correlation between THI and the same parameters (Fig. 7), suggests that extracranial circulation is responsible for the observed inconsistency between BL and SRS. This interpretation is supported by the notion that BL parameters are intrinsically more sensitive than SRS parameters to extracranial circulation.

The results will be separately discussed for the different maneuvers before final considerations are drawn.

Valsalva maneuver

VM produces a large increase in intrathoracic pressure, which hinders venous return and increases blood pressure in venous compartments (18, 33, 41, 46). The resulting marked increase of blood volume in extracranial compartments has been clearly detected by PPG, THle and tHbe.

The effect on blood volume at intracranial level is not as straightforward. In fact, cerebral blood volume can increase only if cerebrospinal fluid volume decreases (total volume of the cranium cannot change) however both central venous pressure and central spinal fluid pressure are increased during the maneuver (22, 24, 33). A number of studies, employing
BL-based NIRS, report increased cerebral blood volume and oxygenation during VM (34, 36, 49). We also consistently observed an increase in tHbi (100% of cases) however THli decreased in 46% of subjects. This suggests that intracranial blood volume can possibly be reduced during VM and that the increased volume of extracranial compartments heavily affects the tHbi indicator. In addition, it cannot be excluded that also THli could have been affected to a small extent, which would imply an overestimation of the intracranial blood volume change by THli.

SRS-derived information about tissue oxygenation also deserves consideration. In fact it is interesting to observe that, while TOIe was significantly increased (cheek level), TOIi consistently decreased at intracranial level. This is at variance with other studies in which a paradoxical increase in cerebral oxygenation was detected by BL-based NIRS (34, 36). The VM-induced increase in central venous and intracranial pressures produces a decrease in cerebral perfusion pressure that impairs cerebral blood flow (10, 46). Such a situation fits well with the observed decrease in V_{MCA} and the decrease in cerebral oxygenation, as detected by the SRS parameter TOIi. It is possible that, also in this case, the disagreement with BL-based data from the literature is due to the greater sensitivity of BL parameters to changes in extracranial circulation, as compared to SRS’s.

Hyperventilation

HV induces transient arterial hypcapnia and alkalosis provoking a rapid cerebral vasoconstriction, cerebral blood flow reduction (21, 30) and increased cerebral oxygen extraction (48). This results, as also observed in the present study, in both a marked reduction of V_{MCA} (7, 39) and a decrease in cerebral oxygenation (TOIi) (5, 44, 48, 55). A reduction of cerebral blood volume as detected by THli (80% of subjects) is consistent with the occurrence of a marked cerebral vasoconstriction and is supported by previous
16 studies (29, 35). On the other hand tHbi is not significantly affected by HV and gives in
28% of the subjects opposite indication to THli.
In extracranial compartments, information about perfusion changes in response to HV is
scanty. In one study increases in cutaneous blood flow have been reported (40). We here
observe that both the NIRS signals from the cheek and cutaneous plethysmography
(forehead) detected increase in blood volume in a large percentage of cases, all these
signals being moderately correlated with tHbi. In particular it can be observed from the
scatter plots (Figs. 4c; 4d) that largest PPG and tHbe increases are associated to the
largest increases in tHbi, supporting the notion of extracranial interference on BL
parameters (20, 51).

Head-up tilt
Response to HUT appears to be more complex.
At intracranial level the postural change is considered to produce a decrease in cerebral
perfusion pressure which, together with the hyperventilation-induced hypocapnia induced
by the hypotensive stimulus (45), may results in cerebral hypoperfusion which in turn
accounts for the reduction in V_{MCA} and TOI (9, 26, 28, 39, 42), also observed in the
present study.
In agreement with other studies from the literature (26, 27), significant changes in cerebral
blood volume are neither detected by THli nor by tHbi, which is possibly due to the prompt
activation of local myogenic and metabolic compensatory mechanisms (25, 38).
Also at the extracranial compartment the response to HUT is not clear cut.
Decreased transmural pressure at the venous side may decrease blood volume (venous
collapse) but local and neural mechanisms may also intervene. In particular the
sympathetic activation driven by the orthostatic stimulus is known to increase vasoconstrictor tone in skeletal muscles but not in cutaneous tissues (52). This may explain the consistent decrease in blood volume and oxygenation indicated by the NIRS channel positioned on the cheek, which likely reflects perfusion of underlying skeletal muscle layers. Conversely, forehead plethysmography, which mostly reflects cutaneous perfusion, results in a variable response which poorly correlates with tHbe. Notably, also in the HUT response a large percentage (38%) of inconsistent indications by THli and tHbi was observed. At variance with what observed in the other maneuvers, tHbi was poorly correlated with tHbe but still rather correlated with PPG (Figs. 6c; 6d).

Thus, also in this case the occurrence of inconsistencies between cerebral blood volume indicators appears to be related to the influence of extracranial circulation on the BL parameter tHbi.

General considerations

For the sake of simplicity, in the above discussion the assumption was made that measurements were collected at “steady state”, and we did not consider the possibility of different time course of the responses in the different tissues. However this assumption does not undermine the main outcomes of the work. The three maneuvers investigated in the present study elicit very different hemodynamic responses at intra and extracranial levels. In particular: i) VM provokes a marked increase in central venous pressure which results in a large increase in blood volume of extracranial compartments with minor changes at intracranial level, ii) HV produces a marked metabolic cerebrovascular regulation with minor changes at extracranial level, while iii) HUT affects the hydrostatic gradients, and stimulates metabolic and neural regulation at both intra and extracranial levels.
The present results emphasize the notion that BL parameters are particularly sensitive to extracranial circulation (4, 51, 54), to the extent that extracranial interference may considerably alter the measured variables. This may occur not just in response to invasive interventions, like occlusion of external and internal carotid arteries, but also during the standard maneuvers commonly employed in the clinical routine, as well as in experimental investigations.

The inconsistency between tHbi and THli represents a marker of extracranial interference on the putative cerebral NIRS monitoring. Such marker is quite easy to spot-out on the NIRO 300 that displays both SRS and BL variables at the same time, however the following few issues deserve consideration: 1) the inconsistency may only occur if extra and intracranial circulations undergo opposite changes, which is not necessarily the rule.

If, for example, both compartments exhibit a simultaneous increase in blood volume tHbi would overestimate intracranial changes but would probably not disagree with THli; 2) the interference from the extracranial compartment was here evidenced on blood volume indicators but may equally affect BL assessment of tissue oxygenation; 3) although previous studies (4, 51, 54) and the present data quite clearly demonstrate that BL parameters can be affected by extracranial circulation, whether and to what extent SRS parameters can also be affected remains to be ascertained; 4) although the present results, obtained with a specific NIRS device (the Hamamatsu Photonics, NIRO 300), cannot be readily extended to other devices, they suggest that uncorrected BL parameters should be interpreted with caution to infer hemodynamic changes at cerebral level.

In general, awareness of perfusion changes occurring in the extracranial compartment may be of good help in the interpretation of the NIRS recordings. Since NIRS is based on changes in hemoglobin concentration, surface plethysmography is to be preferred to flowmetry, also in consideration of the fact that blood flow and blood volume may not vary
in a concordant way. This was well evidenced in the response to VM: besides large increases in forehead skin blood volume, a non significant blood flow decrease was detected by LDF. In addition we observed that plethysmographic monitoring of the extracranial compartment with a second NIRS channel placed on the cheek may not always be appropriate, possibly due to the different neural regulation of skin and muscle vascular beds, which makes the cheek (skin + muscle) not a good representation of the forehead (mostly skin). Surface plethysmography at the forehead proved to be better correlated to tHbi (particularly during HUT) and to better help in understanding the inconsistency between tHbi and THli. On this basis, it is proposed as a valid and inexpensive measure to be included in the experimental/clinical set-up.

The importance of specifically monitoring cutaneous circulation at the forehead is emphasized by the peculiar neural control of this area, which is profoundly affected by cognitive and emotional aspects (13, 50, 53). These factors are experimentally difficult to control and are likely to account for the observed variability of responses in the extracranial compartments.

Conclusions

In conclusion, the present study reveals that BL NIRS monitoring can be detrimentally affected by changes in extracranial circulation also in routine cardiovascular/neurovegetative tests and emphasizes its low reliability for the assessment of cerebral perfusion. Postural, mechanical and neural changes, that may occur under most investigative maneuvers, alter blood perfusion or/and distribution in the extracranial compartment and affect BL NIRS variables to the extent that detected changes in cerebral tissue blood volume and oxygenation can be frequently reversed. On the basis of the
present data, forehead cutaneous plethysmography is suggested as an additional
measure to complement the hemodynamic monitoring and help in the interpretation of
NIRS recordings.
Acknowledgements

The authors gratefully acknowledge the help of Piera Tosi in providing support to the experimental procedures and of Luisella Milano for the help in the preparation of the figures. This research has been supported by the IRCCS C. Mondino Foundation, Pavia, Italy and by Istituto Nazionale Ricerche Cardiovascolari - Consorzio Interuniversitario (INRC).

5. **Bosone D, Canova, D., Roatta, S., Marcheselli, S., Passatore, M., Micieli, G.** Correlation between tissue oxygenation index (TOI) and CBV: a tool to explore CBF. *Cerebrovascular Disease* 13 (suppl 4): 36, 2002.

Figure legends

Fig. 1 The response to VM in a representative subject. From top to bottom: cerebral blood velocity (V_{MCA}), arterial blood pressure (ABP), end tidal CO$_2$ (P_{ET}CO$_2$), BL and SRS blood volume indices (tHb and THI, respectively) from the intracranial and extracranial compartments (i and e subscripts, respectively), as detected by the probes positioned on the forehead and on the cheek, respectively, and surface forehead plethysmography (PPG). Maneuver start-end points are marked by dashed lines. Labels indicating the different phases of the response are placed on the ABP trace (I = phase I, IIa-IIb = phase II, III = phase III, IV = phase IV). Disagreement between intracranial blood volume indices is evidenced by a dashed circle.

Fig. 2 Scatter plots illustrating the correlation between VM-induced changes in different variables: a) SRS vs. BL extracranial blood volume indicators; b) SRS vs. BL intracranial blood volume indicators c) Extra- vs. intra-cranial BL blood volume indicators d) BL intracranial blood volume vs. forehead skin blood volume. Abbreviations as in Fig. 1; For correlation coefficients see text.

Fig. 3 The response to HV from a representative subject. Abbreviations as in Fig. 1. HV start-end points are marked by dashed lines. Disagreement between intracranial blood volume indices is evidenced by a dashed circle.

Fig. 4 Scatter plots illustrating the correlation between HV-induced changes in different variables. Explanation as in Fig. 2.
Fig.5 The response to HUT in a representative subject. Abbreviations as in Fig. 1. The two leftmost vertical dashed lines indicate the tilt-up phase while the rightmost indicate the tilt-down. The dashed circle evidences the contradictory information provided by the two intracranial indices.

Fig.6 Scatter plots illustrating the correlation between HUT-induced changes in different variables. Explanation as in Fig. 2.

Fig.7 Graphic summary of the correlations among THli, thbi, PPG and tHbe for the different maneuvers: VM (black), HV (dark grey) and HUT (light grey). Solid lines indicate significant correlations (p<0.05), broken lines indicate non significant correlations; line thickness is proportional to R value. Abbreviations as in Fig. 1.
Table 1. Average changes produced by Valsalva maneuver (VM), Hyperventilation (HV) and head-up tilt (HUT) on the different variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>VM (±)</th>
<th>HV (±)</th>
<th>HUT (±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>MCA</sub> (%)</td>
<td>-6.75 ± 7.78 **</td>
<td>-23.63 ± 14.46 **</td>
<td>-6.23 ± 6.10 **</td>
</tr>
<tr>
<td>ABP (%)</td>
<td>4.84 ± 11.44</td>
<td>-4.10 ± 7.53 *</td>
<td>3.71 ± 19.52</td>
</tr>
<tr>
<td>HR (%)</td>
<td>32.42 ± 17.55 **</td>
<td>40.25 ± 24.43 **</td>
<td>21.41 ± 12.20 **</td>
</tr>
<tr>
<td>TOI<sub>i</sub> (%)</td>
<td>-4.77 ± 2.96 **</td>
<td>-5.18 ± 3.04 **</td>
<td>-3.19 ± 4.22 **</td>
</tr>
<tr>
<td>THI<sub>i</sub> (%)</td>
<td>2.30 ± 9.80</td>
<td>-3.90 ± 4.48 *</td>
<td>-1.02 ± 14.61</td>
</tr>
<tr>
<td>tHb<sub>i</sub> (µM)</td>
<td>6.73 ± 3.49 **</td>
<td>0.48 ± 1.97</td>
<td>0.77 ± 3.68</td>
</tr>
<tr>
<td>TOI<sub>e</sub> (%)</td>
<td>6.25 ± 4.98 **</td>
<td>3.41 ± 2.73 **</td>
<td>-6.78 ± 3.35</td>
</tr>
<tr>
<td>THI<sub>e</sub> (%)</td>
<td>33.85 ± 14.97 **</td>
<td>2.80 ± 6.56</td>
<td>-11.61 ± 5.87</td>
</tr>
<tr>
<td>tHb<sub>e</sub> (µM)</td>
<td>16.13 ± 8.81 **</td>
<td>1.17 ± 3.73</td>
<td>-4.75 ± 3.52</td>
</tr>
<tr>
<td>PPG (a.u.)</td>
<td>3.74 ± 3.02 **</td>
<td>0.71 ± 2.07</td>
<td>-0.58 ± 3.30</td>
</tr>
<tr>
<td>LDF (%)</td>
<td>-16.71 ± 37.00</td>
<td>32.89 ± 43.30</td>
<td>-27.47 ± 13.24 **</td>
</tr>
</tbody>
</table>

V_{MCA}= cerebral blood velocity, ABP=arterial blood pressure, HR=heart rate, TOI=tissue oxygenation index, THI=total hemoglobin index, tHB=total hemoglobin concentration, PPG=cutaneous plethysmography at the forehead; LDF=cutaneous Laser Doppler flowmetry at the forehead. Subscripts <i>i</i> and <i>e</i> indicate intracranial (at the forehead) and extracranial (at the cheek) NIRS monitoring. Relative changes are expressed in %, absolute changes in the original units. * = \(P < 0.05 \); ** = \(P < 0.01 \).
Table 2. Strength of the linear correlation (R) between changes exhibited by different pairs of variables in response to the 3 maneuvers.

<table>
<thead>
<tr>
<th></th>
<th>VM</th>
<th>HV</th>
<th>HUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>THLi vs. tHbi</td>
<td>0.27</td>
<td>0.47 *</td>
<td>0.27</td>
</tr>
<tr>
<td>tHbi vs. tHbe</td>
<td>0.48 *</td>
<td>0.57 **</td>
<td>0.37</td>
</tr>
<tr>
<td>tHbi vs. PPG</td>
<td>0.50 **</td>
<td>0.70 **</td>
<td>0.55 **</td>
</tr>
<tr>
<td>THLi vs. tHbe</td>
<td>0.10</td>
<td>0.10</td>
<td>0.41</td>
</tr>
<tr>
<td>THLi vs. PPG</td>
<td>0.37 *</td>
<td>0.20</td>
<td>-0.11</td>
</tr>
<tr>
<td>THLe vs. tHbe</td>
<td>0.54 *</td>
<td>0.73 **</td>
<td>0.63 **</td>
</tr>
<tr>
<td>PPG vs. tHbe</td>
<td>0.15</td>
<td>0.40</td>
<td>-0.068</td>
</tr>
<tr>
<td>LDF vs. PPG</td>
<td>-0.031</td>
<td>0.86 **</td>
<td>0.079</td>
</tr>
<tr>
<td>THLi vs. V_{MCA}</td>
<td>0.27</td>
<td>0.0087</td>
<td>0.092</td>
</tr>
<tr>
<td>tHbi vs. V_{MCA}</td>
<td>-0.18</td>
<td>-0.32</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

Abbreviations as in Tab. 1. * = P < 0.05; ** = P < 0.01
Fig. 2

a

$R = 0.54$
$p = 0.012$
$b = 0.934$

b

$R = 0.27$
$p = 0.16$
$b = 0.766$

c

$R = 0.48$
$p = 0.027$
$b = 0.209$

d

$R = 0.50$
$p = 0.0057$
$b = 0.577$
Fig. 4

(a) $R = 0.73$
$p = < 0.0001$
$b = 1.288$

(b) $R = 0.47$
$p = 0.011$
$b = 1.065$

(c) $R = 0.57$
$p = 0.0034$
$b = 0.315$

(d) $R = 0.70$
$p = < 0.0001$
$b = 0.670$
Fig. 5

- **VMCA (cm/s)**
- **ABP (mmHg)**
- **$P_{ET\text{-}CO_2}$ (mmHg)**
- **tHbi (µmol/l)**
- **tHbe (µmol/l)**
- **THIi (a.u.)**
- **THIe (a.u.)**
- **PPG**

Head and Cheek recordings with annotations for up and down movements.
Fig. 7

(a) THli

(b) THli

Legend:
- VM
- HV
- HUT

PPG