New olfactory bulb granule cells (GCs) are GABAergic interneurons continuously arising from neuronal progenitors and integrating into preexisting bulbar circuits. They receive both GABAergic and glutamatergic synaptic inputs from olfactory bulb intrinsic neurons and centrifugal afferents. Here, we investigated the spatiotemporal dynamic of newborn GC synaptogenesis in adult mouse olfactory bulb. First, we established that GABAergic synapses onto mature GC dendrites contain the GABAA receptor alpha2 subunit along with the postsynaptic scaffolding protein gephyrin. Next, we characterized morphologically and electrophysiologically the development of GABAergic and glutamatergic inputs onto newborn GCs labeled with eGFP (enhanced green fluorescent protein) using lentiviral vectors. Already when reaching the GC layer (GCL), at 3 d post-vector injection (dpi), newborn GCs exhibited tiny voltage-dependent sodium currents and received functional GABAergic and glutamatergic synapses, recognized immunohistochemically by apposition of specific presynaptic and postsynaptic markers. Thereafter, GABAergic and glutamatergic synaptic contacts increased differentially in the GCL, and at 7 dpi, PSD-95 clusters outnumbered gephyrin clusters. Thus, the weight of GABAergic input was predominant at early stages of GC maturation, but not later. NewbornGCdendrites first reached the external plexiform layer at 4 dpi, where they received functional GABAergic contacts at 5 dpi. Reciprocal synapses initially were formed on GCdendritic shafts, where they might contribute to spine formation. Their presence was confirmed ultrastructurally at 7 dpi. Together, our findings unravel rapid synaptic integration of newborn GCs in adult mouse olfactory bulb, with GABAergic and glutamatergic influences being established proximally before formation of output synapses by apical GC dendrites onto mitral/tufted cells.

Early synapse formation in developing interneurons of the adult olfactory bulb

PANZANELLI, Patrizia;PALLOTTO, MARTA;SASSOE' POGNETTO, Marco;
2009-01-01

Abstract

New olfactory bulb granule cells (GCs) are GABAergic interneurons continuously arising from neuronal progenitors and integrating into preexisting bulbar circuits. They receive both GABAergic and glutamatergic synaptic inputs from olfactory bulb intrinsic neurons and centrifugal afferents. Here, we investigated the spatiotemporal dynamic of newborn GC synaptogenesis in adult mouse olfactory bulb. First, we established that GABAergic synapses onto mature GC dendrites contain the GABAA receptor alpha2 subunit along with the postsynaptic scaffolding protein gephyrin. Next, we characterized morphologically and electrophysiologically the development of GABAergic and glutamatergic inputs onto newborn GCs labeled with eGFP (enhanced green fluorescent protein) using lentiviral vectors. Already when reaching the GC layer (GCL), at 3 d post-vector injection (dpi), newborn GCs exhibited tiny voltage-dependent sodium currents and received functional GABAergic and glutamatergic synapses, recognized immunohistochemically by apposition of specific presynaptic and postsynaptic markers. Thereafter, GABAergic and glutamatergic synaptic contacts increased differentially in the GCL, and at 7 dpi, PSD-95 clusters outnumbered gephyrin clusters. Thus, the weight of GABAergic input was predominant at early stages of GC maturation, but not later. NewbornGCdendrites first reached the external plexiform layer at 4 dpi, where they received functional GABAergic contacts at 5 dpi. Reciprocal synapses initially were formed on GCdendritic shafts, where they might contribute to spine formation. Their presence was confirmed ultrastructurally at 7 dpi. Together, our findings unravel rapid synaptic integration of newborn GCs in adult mouse olfactory bulb, with GABAergic and glutamatergic influences being established proximally before formation of output synapses by apical GC dendrites onto mitral/tufted cells.
2009
29
15039
15052
Panzanelli P; Bardy C; Nissant A; Pallotto M; Sassoè-Pognetto M; Lledo PM; Fritschy JM
File in questo prodotto:
File Dimensione Formato  
JNeurosci_2009.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/101237
Citazioni
  • ???jsp.display-item.citation.pmc??? 44
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 66
social impact