We have investigated the kinetics, permeability and pharmacological properties of Ca channels in in vitro differentiated IMR32 human neuroblastoma cells. The low-threshold (LVA, T) Ca current activated positive to -50 mV and inactivated fully within 100 ms in a voltage-dependent manner. This current persisted in the presence of 3.2 microM omega-conotoxin (omega-CgTx) or 40 microM Cd and showed a weaker sensitivity to Ni and amiloride than in other neurons. The high-threshold Ca currents (HVA,L and N) turned on positive to -30 mV, and inactivated slowly and incompletely during pulses of 200 ms duration. The amplitude of the HVA currents and the number of 125I-omega-CgTx binding sites increased markedly during cell differentiation. In agreement with recent reports, 6.4 microM omega-CgTx blocked only about 85% of the Ba currents through HVA channels in 50% of the cells. Residual omega-CgTx-resistant currents proved to be more sensitive to dihydropyridines (DHP) than total HVA currents. Bay K 8644 (1 microM) had a clear agonistic action on omega-CgTx-resistant currents and was preferred to other Ca antagonists for identifying HVA DHP-sensitive channels. Compared to the omega-CgTx-sensitive, the DHP-sensitive currents turned on at slightly more negative potentials and showed a weaker sensitivity to voltage. The two HVA currents were otherwise hardly distinguishable in terms of activation/inactivation kinetics, Ca/Ba permeability and sensitivity to holding potentials. This suggests that currently used criteria for identifying multiple types of neuronal Ca channels (T;L,N) may be widely misleading if not supported by pharmacological assays.

Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology

CARBONE, Emilio;
1990-01-01

Abstract

We have investigated the kinetics, permeability and pharmacological properties of Ca channels in in vitro differentiated IMR32 human neuroblastoma cells. The low-threshold (LVA, T) Ca current activated positive to -50 mV and inactivated fully within 100 ms in a voltage-dependent manner. This current persisted in the presence of 3.2 microM omega-conotoxin (omega-CgTx) or 40 microM Cd and showed a weaker sensitivity to Ni and amiloride than in other neurons. The high-threshold Ca currents (HVA,L and N) turned on positive to -30 mV, and inactivated slowly and incompletely during pulses of 200 ms duration. The amplitude of the HVA currents and the number of 125I-omega-CgTx binding sites increased markedly during cell differentiation. In agreement with recent reports, 6.4 microM omega-CgTx blocked only about 85% of the Ba currents through HVA channels in 50% of the cells. Residual omega-CgTx-resistant currents proved to be more sensitive to dihydropyridines (DHP) than total HVA currents. Bay K 8644 (1 microM) had a clear agonistic action on omega-CgTx-resistant currents and was preferred to other Ca antagonists for identifying HVA DHP-sensitive channels. Compared to the omega-CgTx-sensitive, the DHP-sensitive currents turned on at slightly more negative potentials and showed a weaker sensitivity to voltage. The two HVA currents were otherwise hardly distinguishable in terms of activation/inactivation kinetics, Ca/Ba permeability and sensitivity to holding potentials. This suggests that currently used criteria for identifying multiple types of neuronal Ca channels (T;L,N) may be widely misleading if not supported by pharmacological assays.
1990
416(1-2)
170
179
Neuroblastoma umano; canali del calcio di tipo T L e N
Carbone E; Sher E; Clementi F
File in questo prodotto:
File Dimensione Formato  
Carbone et al Pfluegers Arch 1990.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/115446
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact