The process ψ(3686)→π^0hc, hc→γηc has been studied with a data sample of 106±4 million ψ(3686) events collected with the BESIII detector at the BEPCII storage ring. The mass and width of the P-wave charmonium spin-singlet state hc(^1 P1) are determined by simultaneously fitting distributions of the π^0 recoil mass for 16 exclusive ηc decay modes. The results, M(hc)=3525.31±0.11(stat)±0.14(syst)  MeV/c^2 and Γ(hc)=0.70±0.28±0.22  MeV, are consistent with and more precise than previous measurements. We also determine the branching ratios for the 16 exclusive ηc decay modes, five of which have not been measured previously. New measurements of the ηc line-shape parameters in the E1 transition hc→γηc are made by selecting candidates in the hc signal sample and simultaneously fitting the hadronic mass spectra for the 16 ηc decay channels. The resulting ηc mass and width values are M(ηc)=2984.49±1.16±0.52  MeV/c^2 and Γ(ηc)=36.4±3.2±1.7  MeV.

Study of ψ(3686)→π^{0}h_{c}, h_{c}→γη_{c} via η_{c} exclusive decays

DESTEFANIS, MARCO GIOVANNI;FAVA, Luciano;GRECO, Michela;MAGGIORA, MARCO;SPATARO, STEFANO GIOVANNI;
2012-01-01

Abstract

The process ψ(3686)→π^0hc, hc→γηc has been studied with a data sample of 106±4 million ψ(3686) events collected with the BESIII detector at the BEPCII storage ring. The mass and width of the P-wave charmonium spin-singlet state hc(^1 P1) are determined by simultaneously fitting distributions of the π^0 recoil mass for 16 exclusive ηc decay modes. The results, M(hc)=3525.31±0.11(stat)±0.14(syst)  MeV/c^2 and Γ(hc)=0.70±0.28±0.22  MeV, are consistent with and more precise than previous measurements. We also determine the branching ratios for the 16 exclusive ηc decay modes, five of which have not been measured previously. New measurements of the ηc line-shape parameters in the E1 transition hc→γηc are made by selecting candidates in the hc signal sample and simultaneously fitting the hadronic mass spectra for the 16 ηc decay channels. The resulting ηc mass and width values are M(ηc)=2984.49±1.16±0.52  MeV/c^2 and Γ(ηc)=36.4±3.2±1.7  MeV.
2012
86
092009-1
092009-13
http://prd.aps.org/abstract/PRD/v86/i9/e092009
BESIII detector; ψ' exclusive decays
M. Ablikim;M. Achasov;O. Albayrak;D. Ambrose;F. An;Q. An;J. Bai;Y. Ban;J. Becker;J. Bennett;M. Bertani;J. Bian;E. Boger;O. Bondarenko;I. Boyko;R. Briere;V. Bytev;X. Cai;O. Cakir;A. Calcaterra;G. Cao;S. Cetin;J. Chang;G. Chelkov;G. Chen;H. Chen;J. Chen;M. Chen;S. Chen;X. Chen;Y. Chen;H. Cheng;Y. Chu;D. Cronin-Hennessy;H. Dai;J. Dai;D. Dedovich;Z. Deng;A. Denig;I. Denysenko;M. Destefanis;W. Ding;Y. Ding;L. Dong;M. Dong;S. Du;J. Fang;S. Fang;L. Fava;F. Feldbauer;C. Feng;R. Ferroli;C. Fu;J. Fu;Y. Gao;C. Geng;K. Goetzen;W. Gong;W. Gradl;M. Greco;M. Gu;Y. Gu;Y. Guan;A. Guo;L. Guo;Y. Guo;Y. Han;F. Harris;K. He;M. He;Z. He;T. Held;Y. Heng;Z. Hou;H. Hu;T. Hu;G. Huang;G. Huang;J. Huang;X. Huang;Y. Huang;T. Hussain;C. Ji;Q. Ji;Q. Ji;X. Ji;X. Ji;L. Jiang;X. Jiang;J. Jiao;Z. Jiao;D. Jin;S. Jin;F. Jing;N. Kalantar-Nayestanaki;M. Kavatsyuk;W. Kuehn;W. Lai;J. Lange;C. Li;Cheng Li;Cui Li;D. Li;F. Li;G. Li;H. Li;J. Li;K. Li;Lei Li;Q. Li;S. Li;W. Li;W. Li;X. Li;X. Li;X. Li;X. Li;Z. Li;H. Liang;Y. Liang;Y. Liang;G. Liao;X. Liao;B. Liu;C. Liu;C. Liu;C. Liu;F. Liu;Fang Liu;Feng Liu;H. Liu;H. Liu;H. Liu;H. Liu;J. Liu;K. Liu;Kai Liu;P. Liu;Q. Liu;S. Liu;X. Liu;Y. Liu;Z. Liu;Zhiqiang Liu;Zhiqing Liu;H. Loehner;G. Lu;H. Lu;J. Lu;Q. Lu;X. Lu;Y. Lu;C. Luo;M. Luo;T. Luo;X. Luo;M. Lv;C. Ma;F. Ma;H. Ma;Q. Ma;S. Ma;T. Ma;X. Ma;Y. Ma;F. Maas;M. Maggiora;Q. Malik;Y. Mao;Z. Mao;J. Messchendorp;J. Min;T. Min;R. Mitchell;X. Mo;C. Morales Morales;C. Motzko;N. Muchnoi;H. Muramatsu;Y. Nefedov;C. Nicholson;I. Nikolaev;Z. Ning;S. Olsen;Q. Ouyang;S. Pacetti;J. Park;M. Pelizaeus;H. Peng;K. Peters;J. Ping;R. Ping;R. Poling;E. Prencipe;M. Qi;S. Qian;C. Qiao;X. Qin;Y. Qin;Z. Qin;J. Qiu;K. Rashid;G. Rong;X. Ruan;A. Sarantsev;B. Schaefer;J. Schulze;M. Shao;C. Shen;X. Shen;H. Sheng;M. Shepherd;X. Song;S. Spataro;B. Spruck;D. Sun;G. Sun;J. Sun;S. Sun;Y. Sun;Y. Sun;Z. Sun;Z. Sun;C. Tang;X. Tang;I. Tapan;E. Thorndike;D. Toth;M. Ullrich;G. Varner;B. Wang;B. Wang;D. Wang;D. Wang;K. Wang;L. Wang;L. Wang;M. Wang;P. Wang;P. Wang;Q. Wang;Q. Wang;S. Wang;X. Wang;Y. Wang;Y. Wang;Y. Wang;Z. Wang;Z. Wang;Z. Wang;D. Wei;J. Wei;P. Weidenkaff;Q. Wen;S. Wen;M. Werner;U. Wiedner;L. Wu;N. Wu;S. Wu;W. Wu;Z. Wu;L. Xia;Z. Xiao;Y. Xie;Q. Xiu;G. Xu;G. Xu;H. Xu;Q. Xu;X. Xu;Z. Xu;F. Xue;Z. Xue;L. Yan;W. Yan;Y. Yan;H. Yang;Y. Yang;Y. Yang;H. Ye;M. Ye;M. Ye;B. Yu;C. Yu;H. Yu;J. Yu;S. Yu;C. Yuan;Y. Yuan;A. Zafar;A. Zallo;Y. Zeng;B. Zhang;B. Zhang;C. Zhang;C. Zhang;D. Zhang;H. Zhang;H. Zhang;J. Zhang;J. Zhang;J. Zhang;J. Zhang;S. Zhang;X. Zhang;X. Zhang;Y. Zhang;Y. Zhang;Y. Zhang;Z. Zhang;Z. Zhang;G. Zhao;H. Zhao;J. Zhao;K. Zhao;Lei Zhao;Ling Zhao;M. Zhao;Q. Zhao;Q. Zhao;S. Zhao;T. Zhao;X. Zhao;Y. Zhao;Z. Zhao;A. Zhemchugov;B. Zheng;J. Zheng;Y. Zheng;B. Zhong;J. Zhong;Z. Zhong;L. Zhou;X. Zhou;X. Zhou;C. Zhu;K. Zhu;K. Zhu;S. Zhu;X. Zhu;Y. Zhu;Y. Zhu;Y. Zhu;Z. Zhu;J. Zhuang;B. Zou;J. Zou
File in questo prodotto:
File Dimensione Formato  
PhysRevD.86.092009.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 638.1 kB
Formato Adobe PDF
638.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/129003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 42
social impact