Magnesium and strontium both play important roles in the growth of bone and so are desirable ions for substitution into hydroxyapatite (HA) intended for use as bioinstructive bone substitutes. A range of compositions were prepared by a solid state method based on the nominal composition of HA (Ca10(PO4)6(OH)2), with various levels of strontium and/or magnesium substitution: strontium-substituted HA (Ca8Sr2(PO4)6(OH)2), magnesium-substituted HA (Ca9.8Mg0.2(PO4)6(OH)2 and Ca9Mg(PO4)6(OH)2), and strontium and magnesium co-substituted HA (Ca7.8Sr2Mg0.2(PO4)6(OH)2 and Ca7Sr2Mg(PO4)6(OH)2). Materials were characterised by powder X-ray diffraction, Fourier-transform infrared spectroscopy and Raman spectroscopy. These analyses indicated that the co-substituted materials were composed of mixtures of strontium-substituted hydroxyapatite and magnesium and strontium co-substituted β-tricalcium phosphate. In the magnesium-substituted materials, increased magnesium content was related to increased proportion of β-tricalcium phosphate phase, both with and without strontium co-substitution. The unsubstituted and strontium mono-substituted materials, however, were pure apatite phase, suggesting that magnesium was the destabilising factor in the phase compositions of the magnesium mono-substituted and magnesium and strontium co-substituted materials.

Synthesis and characterization of strontium and magnesium co-substituted biphasic calcium phospahtes

AINA, VALENTINA;CERRATO, Giuseppina;
2013-01-01

Abstract

Magnesium and strontium both play important roles in the growth of bone and so are desirable ions for substitution into hydroxyapatite (HA) intended for use as bioinstructive bone substitutes. A range of compositions were prepared by a solid state method based on the nominal composition of HA (Ca10(PO4)6(OH)2), with various levels of strontium and/or magnesium substitution: strontium-substituted HA (Ca8Sr2(PO4)6(OH)2), magnesium-substituted HA (Ca9.8Mg0.2(PO4)6(OH)2 and Ca9Mg(PO4)6(OH)2), and strontium and magnesium co-substituted HA (Ca7.8Sr2Mg0.2(PO4)6(OH)2 and Ca7Sr2Mg(PO4)6(OH)2). Materials were characterised by powder X-ray diffraction, Fourier-transform infrared spectroscopy and Raman spectroscopy. These analyses indicated that the co-substituted materials were composed of mixtures of strontium-substituted hydroxyapatite and magnesium and strontium co-substituted β-tricalcium phosphate. In the magnesium-substituted materials, increased magnesium content was related to increased proportion of β-tricalcium phosphate phase, both with and without strontium co-substitution. The unsubstituted and strontium mono-substituted materials, however, were pure apatite phase, suggesting that magnesium was the destabilising factor in the phase compositions of the magnesium mono-substituted and magnesium and strontium co-substituted materials.
2013
24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012
Fukuoka; Japan
21-24/10/2012
529-530
88
93
hydroxyapatite, beta-tricalcium phosphate, biphasic calcium phosphates, strontium, magnesium, solid state synthesis, Rietveld refinement
Imrie F.E.; Aina V.; Lusvardi G.; Malavasi G.; Gibson I.R.; Cerrato G.; Annaz B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/131965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact