This communication reports on the first electrochemical study of the human flavin-containing monooxygenase 3 (hFMO3) either absorbed or covalently linked to different electrode surfaces. Glassy carbon and gold electrodes gave reversible electrochemical signals of an active hFMO3. The midpoint potential measured for the immobilized enzyme on a glassy carbon electrode was -445 +/- 8 mV (versus Ag/AgCl). A monolayer coverage was obtained on gold functionalized with dithio-bismaleimidoethane that covalently linked surface accessible cysteines of hFMO3. A structural model of the enzyme was generated to rationalize electrochemistry results. The turnover of the active enzyme was measured with two specific drugs: tamoxifen and benzydamine. For tamoxifen, 1.7 and 8.0 microM of its N-oxide product were formed by the enzyme immobilized on glassy carbon and gold electrodes, respectively. In the case of benzydamine, a K(M) of 44 +/- 5 microM was measured upon application of a -600 mV bias to the enzyme immobilized on the glassy carbon electrode that is in good agreement with the values published for microsomal hFMO3 where NADPH is the electron donor.

Direct Electrochemistry of Drug Metabolizing Human Flavin-ContainingMonooxygenase: Electrochemical Turnover of Benzydamine and Tamoxifen

SADEGHI, JILA;CATUCCI, GIANLUCA;DI NARDO, Giovanna;GILARDI, Gianfranco
2010-01-01

Abstract

This communication reports on the first electrochemical study of the human flavin-containing monooxygenase 3 (hFMO3) either absorbed or covalently linked to different electrode surfaces. Glassy carbon and gold electrodes gave reversible electrochemical signals of an active hFMO3. The midpoint potential measured for the immobilized enzyme on a glassy carbon electrode was -445 +/- 8 mV (versus Ag/AgCl). A monolayer coverage was obtained on gold functionalized with dithio-bismaleimidoethane that covalently linked surface accessible cysteines of hFMO3. A structural model of the enzyme was generated to rationalize electrochemistry results. The turnover of the active enzyme was measured with two specific drugs: tamoxifen and benzydamine. For tamoxifen, 1.7 and 8.0 microM of its N-oxide product were formed by the enzyme immobilized on glassy carbon and gold electrodes, respectively. In the case of benzydamine, a K(M) of 44 +/- 5 microM was measured upon application of a -600 mV bias to the enzyme immobilized on the glassy carbon electrode that is in good agreement with the values published for microsomal hFMO3 where NADPH is the electron donor.
2010
132
458
459
Human FMO3; tamoxifen; Electrochemistry; glassy carbon electrode; protein engineering
Sheila Sadeghi; Rita Meirinhos; Gianluca Catucci; Vikash Dodhia; Giovanna Di Nardo; Gianfranco Gilardi;
File in questo prodotto:
File Dimensione Formato  
JACS-2010.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 720.81 kB
Formato Adobe PDF
720.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/132536
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact