Plant defenses against herbivores include the emission of specific blends of volatiles, which enable plants to attract natural enemies of herbivores. We characterized a plastidial terpene synthase gene, PlTPS2, from lima bean (Phaseolus lunatus). The recombinant PlTPS2 protein was multifunctional, producing linalool, (E)-nerolidol and (E,E)-geranyllinalool, precursors of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT]. Transgenic Lotus japonicus and Nicotiana tabacum plants, expressing PlTPS2 or its homolog Medicago truncatula TPS3 (MtTPS3), were produced and used for bioassays with herbivorous and predatory mites. Transgenic L. japonicus plants expressing PlTPS2 produced (E,E)-geranyllinalool and TMTT, whereas wild-type plants and transgenic plants expressing MtTPS3 did not. Transgenic N.tabacum expressing PlTPS2 produced (E,E)-geranyllinalool but not TMTT. Moreover, in olfactory assays, the generalist predatory mite Neoseiulus californicus but not the specialist Phytoseiulus persimilis was attracted to uninfested, transgenic L. japonicus plants expressing PlTPS2 over wild-type plants. The specialist P. persimilis was more strongly attracted by the transgenic plants infested with spider mites than by infested wild-type plants. Predator responses to transgenic plant volatile TMTT depend on various background volatiles endogenously produced by the transgenic plants. Therefore, the manipulation of TMTT is an ideal platform for pest control via the attraction of generalist and specialist predators in different manners.

Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E,E)-geranyllinalool synthase attracts generalist and specialist predators in different manners

BRILLADA, CARLA;MAFFEI, Massimo Emilio;
2013-01-01

Abstract

Plant defenses against herbivores include the emission of specific blends of volatiles, which enable plants to attract natural enemies of herbivores. We characterized a plastidial terpene synthase gene, PlTPS2, from lima bean (Phaseolus lunatus). The recombinant PlTPS2 protein was multifunctional, producing linalool, (E)-nerolidol and (E,E)-geranyllinalool, precursors of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT]. Transgenic Lotus japonicus and Nicotiana tabacum plants, expressing PlTPS2 or its homolog Medicago truncatula TPS3 (MtTPS3), were produced and used for bioassays with herbivorous and predatory mites. Transgenic L. japonicus plants expressing PlTPS2 produced (E,E)-geranyllinalool and TMTT, whereas wild-type plants and transgenic plants expressing MtTPS3 did not. Transgenic N.tabacum expressing PlTPS2 produced (E,E)-geranyllinalool but not TMTT. Moreover, in olfactory assays, the generalist predatory mite Neoseiulus californicus but not the specialist Phytoseiulus persimilis was attracted to uninfested, transgenic L. japonicus plants expressing PlTPS2 over wild-type plants. The specialist P. persimilis was more strongly attracted by the transgenic plants infested with spider mites than by infested wild-type plants. Predator responses to transgenic plant volatile TMTT depend on various background volatiles endogenously produced by the transgenic plants. Therefore, the manipulation of TMTT is an ideal platform for pest control via the attraction of generalist and specialist predators in different manners.
2013
200
4
1200
1211
http://onlinelibrary.wiley.com/doi/10.1111/nph.12442/abstract
(E; E)-4; 8; 12-trimethyltrideca1; 3; 7; 11-tetraene (TMTT); herbivoreinduced plant volatiles (HIPVs); indirect defense; lima bean (Phaseolus lunatus); mite; terpene.
C. Brillada; M. Nishihara; T. Shimoda; S. Garms; W. Boland; M. Maffei; G.I. Arimura
File in questo prodotto:
File Dimensione Formato  
Revision_4aperto.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/135716
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 48
social impact